Next Article in Journal
Hydroxytyrosol Prevents Doxorubicin-Induced Oxidative Stress and Apoptosis in Cardiomyocytes
Next Article in Special Issue
Oxidative Stress as a Main Contributor of Retinal Degenerative Diseases
Previous Article in Journal
Resveratrol in Treating Diabetes and Its Cardiovascular Complications: A Review of Its Mechanisms of Action
Previous Article in Special Issue
Overexpression of CERKL Protects Retinal Pigment Epithelium Mitochondria from Oxidative Stress Effects
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Inherited Retinal Dystrophies: Role of Oxidative Stress and Inflammation in Their Physiopathology and Therapeutic Implications

by
Isabel Pinilla
1,2,3,*,
Victoria Maneu
4,5,*,
Laura Campello
6,†,
Laura Fernández-Sánchez
4,
Natalia Martínez-Gil
6,
Oksana Kutsyr
6,
Xavier Sánchez-Sáez
6,
Carla Sánchez-Castillo
6,
Pedro Lax
5,6 and
Nicolás Cuenca
5,6
1
Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
2
Department of Ophthalmology, Lozano Blesa, University Hospital, 50009 Zaragoza, Spain
3
Department of Surgery, University of Zaragoza, 50009 Zaragoza, Spain
4
Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain
5
Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
6
Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain
*
Authors to whom correspondence should be addressed.
Present address: Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
Antioxidants 2022, 11(6), 1086; https://doi.org/10.3390/antiox11061086
Submission received: 24 April 2022 / Revised: 24 May 2022 / Accepted: 26 May 2022 / Published: 30 May 2022
(This article belongs to the Special Issue Oxidative Stress in the Retina Diseases)

Abstract

:
Inherited retinal dystrophies (IRDs) are a large group of genetically and clinically heterogeneous diseases characterized by the progressive degeneration of the retina, ultimately leading to loss of visual function. Oxidative stress and inflammation play fundamental roles in the physiopathology of these diseases. Photoreceptor cell death induces an inflammatory state in the retina. The activation of several molecular pathways triggers different cellular responses to injury, including the activation of microglia to eliminate debris and recruit inflammatory cells from circulation. Therapeutical options for IRDs are currently limited, although a small number of patients have been successfully treated by gene therapy. Many other therapeutic strategies are being pursued to mitigate the deleterious effects of IRDs associated with oxidative metabolism and/or inflammation, including inhibiting reactive oxygen species’ accumulation and inflammatory responses, and blocking autophagy. Several compounds are being tested in clinical trials, generating great expectations for their implementation. The present review discusses the main death mechanisms that occur in IRDs and the latest therapies that are under investigation.

1. Introduction

Degenerative diseases of the central nervous system (CNS) are enigmatic and complex conditions that, despite their different etiologies, share common events, leading to neuronal death and irreversible loss of cognitive, visual, acoustic, or motor function.
As the neural component of the eye, the retina is considered to be part of the CNS, and consists of several layers of perfectly organized and interconnected neurons and glial cells [1]. Light is captured by photoreceptors (rods and cones) to initiate the phototransduction cascade; visual information is then processed and sent to the brain, resulting in visual perception, allowing us to perceive the surrounding environment. The high metabolism and oxygen consumption intrinsic to photoreceptor cells leads to the production of free radicals, which must be in perfect balance with endogenous and exogenous antioxidant and anti-inflammatory mechanisms. This equilibrium is lost in the states of cell damage induced by retinal pathologies, leading to morphological and functional alterations that can be clinically observed using different methodologies, including optical coherence tomography and electrophysiological testing [2,3]. The central region of the human retina is the fovea, where the highest density of cones is concentrated. This region has a unique architecture [4], corresponds to the area of maximal visual acuity (VA), and is subject to great environmental stress.
Inherited retinal dystrophies (IRDs) are a group of progressive retinal degenerative disorders that drive the loss of visual function. They comprise many overlapping conditions, such as retinitis pigmentosa (RP), Leber congenital amaurosis (LCA), and Stargardt disease, among others. Together, IRDs have a prevalence of one case in every 3000 individuals [5], with hundreds of genes being linked to the diseases [6]. IRDs are typically classified based on the cell type that is predominantly affected and occur in both syndromic and non-syndromic forms. The most common form of rod dystrophy is RP, whereas the most frequent cone dystrophy is Stargardt disease. Although hundreds of genes have been identified as direct or contributing causes of retinal degeneration in IRDs, the predominant phenotype is an early loss of photoreceptor cells, which are unable to regenerate. During disease progression, all IRDs share basic common mechanisms with other CNS degenerative diseases, including oxidative stress, neuroinflammation and cell death. Microglial cells and, later, astrocytes and Müller cells, secrete multiple pro-inflammatory mediators including cytokines, chemokines, trophic factors, reactive oxygen species (ROS), nitric oxide (NO) and tumor necrosis factor alpha (TNF-𝛼), which promote chronic inflammation and are related to severe pathological side-effects (reviewed in [3]). Several drugs with antioxidant and/or anti-inflammatory properties have shown promising results both in vitro and in vivo for the treatment of IRDs [3,7]. Gene- and cell-based therapies are not yet commonly available, and no single drug has been proven to prevent or revert visual loss. Combined therapies of antioxidant, anti-inflammatory and antiapoptotic agents are a common pharmacological approach to slow down the degenerative processes, and to preserve visual function and quality of life. A promising design of new hybrid compounds with more than one mode of action is also under investigation. It is important to note that even a degenerated retina with a complete loss of vision can benefit from the administration of neuroprotective factors, which aid in the maintenance of other non-visual functions, such as the control of circadian rhythms and pupil contraction [8].
In this review, we will focus on the effects of oxidative stress and inflammation in the pathogenesis of IRDs and neuroprotective approaches that slow vision loss caused by oxidative damage and pro-inflammatory processes.

2. Definition of Oxidative Stress and Inflammation

2.1. Oxidative Stress

Oxidative stress is defined as an imbalance in the formation and removal of ROS, which occurs when the production of free radicals, atoms or molecules that have an unpaired electron cannot be counteracted by antioxidant responses [9]. Oxygen- and nitrogen-containing species are susceptible to these energetic changes, which can occur as a result of cellular metabolism, generating ROS and reactive nitrogen species (RNS) [10]. Reactive oxygen and nitrogen species (RONS) can react with other stable molecules (e.g., proteins, lipids), promoting their loss of function and destabilizing cellular homeostasis [10]. Accordingly, oxidative and nitroxidative stress involves not only redox-mediated reactions, but also essential metabolic pathways [11,12]. In this review, the term oxidative stress will be used to describe both oxidative and nitroxidative stress.
Different subcellular sources of RONS have been established, including mitochondria, endoplasmic reticulum (ER), microsomes and peroxisomes, and they can be generated by cytosolic and plasma membrane enzymes. Depending on the source, it is possible to differentiate the main reactive species that are produced [13]. Mitochondria are one of the major ROS producers, generating great quantities of not only superoxide anion radicals (O2•−) as a by-product of the electron transport chain, but also hydrogen peroxide (H2O2) [14]. Beyond the mitochondria, the transmembrane NADPH oxidases (NOXs) also generate O2•− and/or H2O2, depending on their location and regulation [13]. The ER and peroxisomes contain various types of oxidases that are also able to generate O2•− and H2O2 [15,16]. H2O2 is recognized as the major ROS in redox signaling pathways [13], and is produced by the dismutation of O2•− (which is short-lived) to H2O2 (which is more stable) by cytosolic, mitochondrial, and nuclear superoxide dismutase (SOD) enzymes [17]. Despite the diverse cellular sources of H2O2 and its ability to modulate different redox cellular responses, it is less reactive than the hydroxyl radical (•OH), which is the most reactive ROS. •OH is formed by the interaction between H2O2 and metal ions (Fe2+ or Cu2+) through Fenton reactions at or close to its site of formation. In a similar reaction to that needed for oxygen to generate ROS, reactive nitrogen intermediates are successive 1-electron reduction products of NO (NO•) [18]. NO, which is an important signaling molecule, is generated by three isoforms of NO synthase (NOS) that can be found in different subcellular compartments, including the plasma membrane, Golgi apparatus, mitochondria, cytosol, or peroxisomes [19,20,21]. Each NOS isoform is predominantly found in a specific tissue or context: NOS1 is also named neuronal NOS (nNOS) because it is constitutively expressed in neural tissue; NOS3 is also named endothelial NOS (eNOS), as it is mostly found in endothelial cells; NOS2 is also named inducible NOS (iNOS), as it is upregulated by pro-inflammatory factors [22]. As NO plays a key role in vascular homeostasis and neural activity, it cannot be considered a toxic RNS; however, its reaction with O2•− generates peroxynitrite (ONOO−), which is a powerful oxidant [23]. Accordingly, when NO is inefficiently removed and superoxide anion production is elevated, the consequent generation of ONOO−can damage many biological molecules, such as proteins, lipids, and nucleic acids [23].

2.2. Inflammation

Inflammation is a protective response against injury, infection, or other harmful stimuli. An inflammatory state is a common scenario in IRDs [3]. The most important retinal immune cells are the microglial cells, which are responsible for maintaining retinal homeostasis and mediating the inflammatory response in the retina. Additionally, macroglial cells, which include Müller cells and astrocytes, also participate to preserve retinal health [24]. A balance is maintained between pro-inflammatory and anti-inflammatory stimuli under healthy conditions; however, in degenerating tissue, a plethora of pro-inflammatory molecules are secreted, first by microglia and later by Müller cells and astrocytes, changing their primary defensive response into a chronic inflammatory condition that aggravates the already-poor retinal health [3].
The various harmful stimuli are detected by retinal immune cells through engagement with pattern recognition receptors, including pathogen-associated molecular patterns and damage-associated molecular patterns, which respond by upregulating myriad inflammatory genes [25]. Four classes of pathogen recognition receptor families have been described to date: Toll-like receptors, C-type lectin receptors, retinoic acid-inducible gene (RIG)-I-like receptors, and NOD-like receptors [26]. The activation of these receptors triggers a change in retinal microglia morphology, from a normal, highly ramified morphology to an amoeboid morphology, and also modifies their secretory phenotype to pro-inflammatory or anti-inflammatory [27]. Similar to other degenerative CNS diseases, the major contributors to IRD-related inflammation and cell death are TNF-𝛼 and interleukin (IL)-1. TNF-𝛼 is a key factor secreted in the retina by activated microglia and macrophages [25] and can trigger different cell-death mechanisms, including apoptosis, pyroptosis, necroptosis, and parthanatos [25,28].
The most common pathways that are activated in IRDs are the nuclear factor kappa-beta (NF-κB), Janus kinase/signal transducer and activator of transcription (JAK/STAT), and mitogen-activated protein kinase (MAPK) signaling pathways, ultimately leading to the release of pro-inflammatory molecules [28]. The NF-κB signaling pathway is stimulated through different receptor subsets, including pro-inflammatory cytokines, growth factors, lipopolysaccharide (LPS), and antigen receptors, which activate the IkB–kinase complex. This activation, in turn, triggers the phosphorylation, ubiquitination and degradation of IkB proteins, releasing the p50 and p65 subunits, which translocate to the nucleus and activate the transcription of pro-inflammatory genes [29,30,31]. Alterations in NF-κB expression have been reported in different retinal degeneration conditions [28,29]. Activation of the JAK/STAT signaling pathway, through STAT phosphorylation by dimerized JAK, has also been reported to be involved in many neurodegenerative diseases, including RP. Activated STAT is translocated to the nucleus, where it regulates the expression of numerous genes. IL-6 is one of the best-known activators of the JAK1/STAT3 pathway in macrophages [32,33,34,35]. Finally, the MAPK family (p38-MAPK, c-Jun N-terminal kinase -JNK, and extracellular signal-regulated kinases-ERK1/2) also plays an important role in retina cell survival and apoptosis, and a variety of cytokines can activate this pathway, leading to the release of neuroinflammatory cytokines [36,37,38].

2.3. Effects of Oxidative Stress and Inflammation in Inherited Retinal Dystrophies

The retina is one of the most metabolically active tissues in the body and is exposed to high levels of light and oxygenation. Accordingly, the RONS flux needs to be a perfectly regulated process under steady-state conditions. Oxidative stress occurs when the balance between RONS formation and its removal is disrupted, which activates inflammation and cell-death pathways, and retinal degeneration. It has been demonstrated that oxidative stress plays a central role not only in the most common eye diseases, such as glaucoma [39,40], age-related macular degeneration (AMD) [41,42], and diabetic retinopathy (DR) [43], but also in IRDs [44].
IRDs are characterized by the progressive degeneration of the retina, the retinal pigment epithelium (RPE), and the choriocapillaris, the vascular source of nutrients and oxygen. A total of 280 genes have been directly related to retinal dystrophies to date, with photoreceptors and RPE cells serving as the main carriers of the mutations [6]. While there are common mechanisms through which oxidative stress and inflammation trigger retinal neurodegeneration in these retinopathies, affecting cellular metabolism, cell signaling and homeostasis, it is still unknown whether oxidative stress is the main cause of the pathology, or whether it is a secondary contributor to its progression [45].
Retinal degeneration in IRDs involves inflammation, oxidative stress and cell death. In this situation, a non-ocular stimulus that stimulates inflammation can exacerbate photoreceptor cell death, which worsens the degenerative process. This was shown for P23H rats (an RP model with a mutation in the rhodopsin gene) administered systemically with LPS, which increased the expression levels of several inflammation-related genes such as TNF-𝛼, IL-1𝛼, IL-1𝛽 and caspases-3 and -8 [46]. Other factors, including a high-fat diet, can worsen the disease progression in rd10 mice (a model of autosomal RP whose mutation in phosphodiesterase 6 (PDE6b) is the same as that found in patients with RP) through the increased expression of inflammatory mediators such as glycogen synthase kinase-3β (GSK-3β), NF-κB and IL-6, phospho-STAT3/STAT3 and IL-1α [35].

2.3.1. Purinergic Signaling Activation

Purinergic signaling, particularly through the P2X7 receptor (P2X7R), plays a fundamental role in the evolution of the retinal degenerative process [47]. Most purinergic receptor subtypes are expressed in the mammalian retina. P2X7R can be found in the RPE, astrocytes, microglia, Müller cells, and in pericyte-containing retinal microvessels [48,49,50,51,52,53]. The expression of P2X7R has also been reported in the synaptic terminals of cones and rods, the inner plexiform layer, and retinal ganglion cells [51,52,54]. P2X7R is an ATP-gated ion channel that, when activated by ATP secreted from neurons or glial cells, leads to the activation of microglial cells, which release pro-inflammatory cytokines that help to extend the gliosis (cellular response to injury) to surrounding tissue [3,47,55,56]. When overactivated, P2X7R mediates the formation of wide plasma membrane pores that contribute to calcium overload and cytotoxicity. The P2X7 pore is also associated with the activation of the inflammasome and with the inflammasome-dependent cell-death pathway [57], leading to the release of pro-inflammatory cytokines and ROS by macrophages and microglia [58]. In the P23H rat model of RP, inflammasome activation was found to be a major cause of cone photoreceptor death, mediated by P2X7R [59]. In the rd1 mouse model of RP, the inhibition of P2X receptor signaling delays photoreceptor degeneration [60].

2.3.2. Cell Death

Apoptosis

For many years, apoptosis was considered to be the only mechanism of programmed cell death, whereas necrosis was defined as an unregulated process. However, new programmed cell-death mechanisms have been described for IRDs, with oxidative stress playing a major role in their induction [28,61]. The intracellular machinery responsible for apoptosis involves a family of caspase proteases, which are synthesized in the cell as inactive precursors (or procaspases) and are activated by either extracellular or intracellular stimuli. As an intrinsic apoptosis pathway, elevated intracellular oxidative stress up-regulates pro-apoptotic markers such as Bax family members, which induce the expression and activation of caspases- 3, 6, 7 and 9. By contrast, the extrinsic pathway is activated by members of the TNF receptor family that are also modulated by oxidative stress and inflammation mediators, inducing the expression and activation of caspases- 3, 6, 7, and 8 [28]. Both extrinsic and intrinsic activation lead to DNA fragmentation and cytoplasm degradation, ultimately promoting cell death [61].

Necroptosis

Although traditionally classified as a type of uncontrolled cell death process, different types of regulated necrosis that trigger cell death have been reported in retinal dystrophies, including necroptosis, pyroptosis, parthanatos and ferroptosis [61]. Necroptosis is induced by the TNF-α pathway and is mediated by the interaction between protein kinase-1 receptor (RIPK1) and RIPK3. When caspases are inactivated, the formation of the RIPK1/RIPK3 necroptosis complex activates the mixed-lineage kinase domain-like (MLKL) protein, which promotes plasma membrane permeability. In the context of RP, RIPK-mediated programmed necrosis not only plays a critical role in inducing cell death in RPE and cone photoreceptors, but also promotes retinal inflammation during retinal degeneration [62].

Parthanatos

Several authors suggest that parthanatos contributes to retinal neurodegeneration in different RP models [63]. Photoreceptor cell death mediated by parthanatos begins with an oxidative stress or inflammatory stimulus that triggers the activation of poly-ADP-ribose polymerase (PARP) and Ca2+-dependent cysteine proteinases (calpains). Subsequently, the release of apoptosis-inducing factor (AIF) from mitochondria to the cytoplasm ultimately results in DNA fragmentation [64,65]. Under physiological conditions, cells have different mechanisms to regulate parthanatos. However, in a scenario of retinal neurodegeneration, the upregulation of PARP activity and cGMP signaling, together with cytosolic Ca2+ overload, culminates in cell death [66].

Pyroptosis

Whereas necroptosis and parthanatos are caspase-independent mechanisms of cell death, pyroptosis occurs upon the activation of pro-inflammatory caspases [67]. Pyroptosis promotes cellular lysis by disturbing the electrochemical gradient and the osmotic potential of cellular membranes. Following inflammasome activation, caspase-1 cleaves and activates the gasdermin (GSDM) family of pore-forming proteins, of which gasdermin D (GSDMD) is the main pore-forming executioner in the plasma membrane [67]. This inflammatory-induced cell death mechanism has been described in different neurodegenerative diseases, such as Alzheimer’s disease [68]. Moreover, there is evidence of its possible involvement in photoreceptors and RPE cell death in experimental IRDs models [69]. However, the cellular mechanisms by which it occurs are unknown and further investigation is needed.

Ferroptosis

Ferroptosis is another cell-death mechanism associated with CNS disease and has recently been linked to retinal degenerative processes in experimental RP models [70,71]. As the name suggests, this programmed cell death pathway is dependent on iron, and is induced by the oxidation of polyunsaturated fatty acids (PUFAs) that are present in lipid bilayer membranes. Iron has been described to act as a catalyst in the Fenton reaction (where H2O2 is converted to ·OH radicals), triggering a free-radical chain reaction and resulting in PUFA oxidation or degradation [72]. The iron-dependent oxidation of PUFAs causes mitochondrial alterations and cell membrane damage, which promotes cell death. In this line, it has been proposed that the dysregulation of heme or iron homeostasis due to variations in a gene encoding a heme-transporter protein is a cause of RP [73]. Accordingly, defects in iron metabolism not only could promote ferroptosis, but can also induce retinal degeneration.

2.3.3. Autophagy/Mitophagy and Mitochondrial Effects

Autophagy is an essential mechanism in the retina to ensure correct retinal development function and tissue homeostasis by removing damaged cell components [74,75,76]. In the context of IRDs, autophagy has mostly been studied in photoreceptors and RPE cells, likely due to its implications in the visual cycle [77]. Autophagic activity is involved in the degradation of the visual pigments and in adaptation to circadian rhythms and is essential to the maintenance of protein concentrations that are implicated in the visual cycle [77]. Moreover, in RPE cells, autophagy degrades lipofuscin (age pigment) aggregates and vesicles that contain the photoreceptor outer segment membranes after shedding [78].
Beyond its role in retinal cell homeostasis, autophagy is also activated under oxidative stress conditions. It is a regulated catabolic process where damaged organelles such as mitochondria (termed mitophagy), misfolded proteins or waste products of cellular metabolism are internalized in autophagosomes, to be later degraded through fusion with lysosomes. The activation of autophagy requires the inhibition of the nutrient sensor molecular target of rapamycin (mTOR) and the activation of the energy sensor 5-AMP-activated protein kinase (AMPK). The formation and elongation of the autophagosome requires the participation of different proteins, including ATG proteins, BECLIN1 and LC3. The fusion of autophagosomes containing dysfunctional cargo with a lysosome allows for the degradation or recycling of the content [74].
The role of autophagy in the retina and its implications for retinal degeneration has been studied in several different experimental models [79,80,81]. Autophagy appears to be blocked in rd10 mice, suggesting that its activation could play a neuroprotective role [78]. By contrast, studies in P23H rats revealed that the upregulation of autophagy could be related to an increase in photoreceptor death and proteasome blockage [82,83]. Therefore, autophagy likely plays a dual role: maintaining retinal homeostasis in healthy conditions and participating in retinal degeneration processes in disease states.

2.3.4. Lipid Peroxidation

Lipid peroxidation is an important oxidative-stress-related event associated with retinal damage and pathogenesis [44]. It is a metabolic pathway that can be over-activated not only under cellular stress, but also under chronic light exposure, inducing photooxidative damage [84,85,86,87]. Mechanistically, RONS accumulation promotes the oxidation of unsaturated lipids, especially PUFAs present in the lipid bilayer membranes of the cells, resulting in their oxidative degradation to a variety of products.
Photoreceptors contain large quantities of PUFAs, especially in their outer segment membranes. An increase in lipid peroxidation products in cones was reported in a pig model of RP [61]. Moreover, because RPE cells are responsible for photoreceptor outer segment shedding, the accumulation of lipid protein aggregates (i.e., lipofuscin) and lipid peroxidation products (i.e., acrolein and 4-hydroxynonnenal (4-NHE)) has been suggested to contribute to retinal degeneration in some IRDs, such as Best or Stargardt diseases [88,89,90]. There is a close relationship between the increase in lipid peroxidation processes and the activation of different cell death pathways in retinal dystrophies. Lipid peroxidation not only induces apoptosis and autophagy [91], but it has recently been demonstrated that lipid peroxidation products react with iron molecules in RP, which promotes photoreceptor cell death by ferroptosis [70,71].

2.3.5. Nucleic Acid Damage

Nuclear DNA is less vulnerable than other DNA structures to increases in RONS; however, it can be directly damaged by a chemical attack from purine and pyrimidine bases and deoxyribose sugars [23]. Moreover, RONS accelerates the shortening of chromosome telomeres [44]. By contrast, the close proximity of mitochondrial DNA to ROS generation in the inner mitochondrial membrane undoubtedly increases its vulnerability to oxidation and damage. In this line, the upregulation of DNA polymerase gamma and 8-oxoguanine-DNA-glycosylase, which are selectively localized in the mitochondria of the photoreceptor synaptic terminals and exert a DNA-repair function, has been proposed as a pharmacologic strategy to promote photoreceptors’ rescue in degenerative retinal diseases [92].
For decades, it has been proposed that RNA oxidation may occur during the early stages of degeneration in neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease [93,94]. As RNA is generally single-stranded, it is considered more unstable than DNA. In addition, RNA comprises about 80–90% of the total nucleic acids in cells and is localized in the cytoplasm, adjacent to mitochondria, where more free radicals are generated. Thus, RNA is considered more vulnerable to oxidative damage than DNA or proteins. Hydroxyl radicals are the major RNA oxidants and 8-hydroxyguanosine (8-OHG) is the most prevalent oxidized nucleobase (C-8 position of deoxyguanosine) in RNA by •OH [93]. RNA oxidative damage affects the translational process during protein synthesis, causing truncated, misfolded and/or aggregated proteins [93]. Furthermore, alterations in the expression profile of long non-coding RNAs and short non-coding RNAs (such as some micro-RNAs) have been directly related to the increase in oxidative stress, not only in the neural retina, but also in the RPE [58].

2.3.6. Protein Damage and Endoplasmic Reticulum Stress

The ER acts as a quality-control organelle that retains and degrades misfolded proteins. Increases in intracellular RONS induce protein metabolism and structure disorders through the oxidation of and reduction in cysteine residues, the formation of protein–protein cross-linkages, or by post-translational modifications [94]. These changes can lead to secondary effects, including protein fragmentation, aggregation, and unfolding [95] which result not only in the loss of protein function but also in a decline in cellular antioxidant capacity and the degradation of oxidized or misfolded proteins by the proteasome or autophagy processes. In the retina, under uncontrollable oxidative and nitro-oxidative stress conditions, the ER can activate cell-death pathways, such as apoptosis [96], as a protective response, promoting the neurodegenerative process. Moreover, ER stress has been suggested to be a primary cause of photoreceptor death associated with rhodopsin mutations [97].

3. Therapeutic Strategies to Reduce Oxidative Stress and Inflammation: Antioxidants and Anti-Inflammatory Agents and Other Strategies

At present, no pharmacological agent has been proven to be effective in preventing or restoring vision loss in IRDs. Accordingly, new therapies, including gene- and cell-based therapies, are urgently needed. Gene therapy could treat the disease or block its progression, depending on the moment of treatment and the gene mutation. Voretigene neparvovec is indicated for the treatment of patients with biallelic RPE65 mutations associated in the interim; other strategies are being investigated to protect the retina and slow disease progression [98]. Neuroprotection aims to stop photoreceptor loss during IRD. Treatments that do not specifically target the molecular mechanisms of the disease could be used not only in IRDs, but also in other acquired retinal degeneration diseases, such as AMD or DR, the main causes of visual loss. Other ancillary treatments could be used to treat IRD complications such as macular edema or cataracts. In this section, we will specifically focus on neuroprotective interventions that slow the vision loss caused by oxidative stress and pro-inflammatory processes associated with retinal disease.
Neuroprotective strategies include a broad array of approaches that promote neuron survival by preserving their structure and function. A multitude of neuroprotective agents, including antiapoptotic, antioxidant and anti-inflammatory drugs, and rehabilitative methods such as exercise and electrical stimulation, have proven effective in animal models of retinal degeneration and in patients with reduced vision [3,99,100]. While none of these agents have been approved by the US Food and Drug Administration as drugs with neuroprotective effects, numerous compounds have been tested in research and in (pre)clinical studies [101,102]. While oxidative mechanisms underlie the pathophysiology of many IRDs, the sources and impact of RONS can depend on the pathogenic mutation, which will determine the effect of different drugs in preventing cone death and prolonging rod survival [44]. Mutations that cause the misfolding of transmembrane proteins involved in photoreception or phototransduction, such as rhodopsin, arrestin, PDE6 and TULP1, are associated with increased ER stress. The ER responds to the burden of misfolded proteins by activating the unfolded protein response (UPR), a complex intracellular mechanism that regulates the expression of multiple genes to maintain ER homeostasis and prevent further cell damage [103]. Genetic and pharmacologic interventions to modulate ER stress and UPR-associated transcriptional programs are promising technologies to treat retinal degeneration [104]. For example, the overexpression of chaperones such as BiP/Grp78 [105] and the downregulation of the UPR transcription factor ATF4 [106] have beneficial effects in cell culture or animal models of IRDs. Importantly, RPE cells show altered microRNA (miRNA) expression profiles under oxidative stress, and many of the dysregulated miRNAs are modulators of the expression of the causative genes of IRDs, such as KLHL7, RDH11, CERKL, AIPL1 and USH1G [107].
While the existence and negative effects of oxidative stress in the etiopathogenesis of retinal dystrophies is clear, the translation from animal research into the clinic has many challenges. IRDs are rare diseases affecting a small fraction of the population, and there are countless genetic and phenotypic variations. In addition, after rod cell death, cones are chronically exposed to oxidative stress, which makes the design of long-term treatments necessary. Dietary supplementation and treatments with antioxidant and/or anti-inflammatory compounds have been shown to have beneficial effects in retinal dystrophies [3,44]. Below, we discuss potential candidates with promising neuroprotective properties in retinal disease. Table 1 lists most of the proven therapeutic interventions for IRDs and other retinal damage models, including AMD, DR and ganglion cell damage. Table 2 describes different clinical trials (CTs), which are ongoing and completed.

3.1. Antioxidants and Anti-Inflammatory Agents

3.1.1. N-Acetylcysteine

N-acetylcysteine (NAC) is clinically used as a mucolytic agent and as an antidote to acetaminophen toxicity. It is a sulfhydryl-containing liposoluble molecule that can penetrate cell membranes and has oral bioavailability. NAC is derived from the thiol-containing amino acid L-cysteine. It is a precursor of glutathione, and thus enhances glutathione S-transferase activity. NAC has a direct antioxidant effect via its reactive sulfhydryl agent; it can neutralize ROS by itself and can also break thiolated proteins, releasing free thiols and reduced proteins with antioxidant effects, such as mercaptoalbumin. NAC can stabilize protein structures by crosslinking cysteine disulfide molecules [445,446]. Its systemic administration results a significant intraocular concentration, although there is variability in its absorption. NAC has been studied in different eye conditions, including IRD, AMD, DR, glaucoma and Sjogren’s disease. A phase 1 randomized trial demonstrated that NAC is safe and well-tolerated and may improve sub-optimally functioning macular cones in advanced forms of RP [122].
Several CTs have been conducted to assess the effect of NAC in RP. The FIGHT-RP1 study (NCT03063021) was a phase-1 dose-escalation trial to test the effects of oral NAC in patients with RP. The primary outcome was safety, and secondary outcomes were assessed visual function, including best-corrected visual acuity (BCVA) and macular sensitivity using microperimetry. Patients were treated with escalating doses of NAC (600, 1200 or 1800 mg twice daily for 3 months); the highest NAC dose reduced the risk of macular sensitivity loss [121]. In the aforementioned CT, patients receiving NAC were divided into two arms depending on the carbonyl content GSH/GSSG level in aqueous humor. Another goal of FIGHT-RP1 is to study gene expressions that can interfere with NAC efficacy. In patients with idiopathic pulmonary fibrosis, polymorphisms in TOLLIP can influence the outcomes of NAC treatment. In the CT, DNA samples will be collected to identify the modifier genes that can impact cone survival.
The FIGHT-RP1 extension study (NCT04864496), will use NAC 1800 mg twice daily to check safety and tolerability over 2 years of follow-up in patients with moderately advanced RP. Secondary outcomes will be measured, such as BCVA, central sensitivity using microperimetry, changes in the ellipsoid zone, changes in the aqueous GSH/GSSG ratio, and NAC and carbonyl levels. The estimated study completion date is the end of 2025. NAC appears to be well-tolerated, with minimal side-effects. While the most effective dosage is still unclear, its efficacy has been proven in multiple diseases that manifest with oxidative stress. Although similar to other antioxidants, caution needs to be exercised in lung cancer as a result of p53 inhibition [446].

3.1.2. NPI-001 (N-Acetylcysteine Amide)

GMP-grade N-acetylcysteine amide (NPI-001, NACA) is the amide form of NAC manufactured by Nacuity Pharmaceuticals (Fort Worth, TX, USA). Its structure is more lipophilic, which allows for it to permeate cell membranes more than NAC while preserving its antioxidant properties [447,448]. It has demonstrated the ability to cross blood–brain and blood–retinal barriers with therapeutic potential in neurodegenerative diseases [447]. The compound is safe and effective. The SLO-RP study (NCT04355689) is a phase 1, 2 randomized CT using NPI-001 for RP associated with Usher syndrome; in phase 1, NPI-001 250 mg will be compared with placebo.

3.1.3. Thioredoxin

The thioredoxin (TRX) family of oxidoreductases contains the active center cysteine–glycine–proline–cysteine and oxidized cysteine groups. TRXs can protect against oxidative stress and also have anti-inflammatory properties [449,450,451]. Their antioxidant properties are based on the reduction in other proteins by cysteine thiol disulfide exchange [126]. Rod-derived cone viability factor (RdCVF) is a truncated (alternatively spliced) product of NXNL1 (nucleoredoxin-like 1), which is secreted by rods and protects cones from degeneration through its actions as a trophic factor. The loss of rods in IRDs implies the lack of a protective effect of RdCVF, and the exogenous administration of this molecule has therapeutic value in preventing photoreceptor degeneration [452,453]. The dominant protein encoded by NXNL1 is RdCVFL (TRX-like protein RdCVF) an enzymatically active TRX [454,455]. The loss of RdCFVL expression leads to increased oxidative damage, as reported in mice lacking Nxnl1 [456]. In rd mice, TRX can protect against photoreceptor death, activates the GSH system, and partially reduces retinal gliosis [126].

3.1.4. Saffron

Saffron is the dried stigma (part of the pistil) of Crocus sativus L., and has a neuroprotective effect against oxidative damage. Its major constituents, crocin and crocetin, derive from carotenoids, and exert potent antioxidative actions due to multiple C-C bonds. Saffron has a complex mechanism of action beyond its antioxidant activity, as it also stimulates the mechanisms of tissue resilience [457]. Crocetin prevents retinal degeneration secondary to oxidative and ER stress by inhibiting caspase 3 and 9 activity in cell lines and in a mouse model of light retinal damage [458]. Crocin protects cultured photoreceptors from light damage [459]. Crocetin also increases oxygen diffusivity through tissues [460]. Metabolites of this flavonoid also directly bind to DNA, partially changing it to a beta-DNA conformation and protecting the cell from damage [461]. Saffron is also able to modulate gene expression involved in the retina response to light damage, including endothelin 2 and FGF [129].
Saffron supplementation has been tested in the STARSAF02 trial for Stargardt disease (NCT01278277) [427]. In a short-term administration (6 months) study, 31 patients with ABCA4 mutations were treated either with saffron or with placebo. The substance was well-tolerated but no improvement was observed in visual function. The study suggested that saffron may prevent the deterioration of macular flicker electroretinogram (ERG) amplitude, but a long-term study is needed to test its benefits [427]. The authors followed some patients for 36 months outside the period of the CT, finding that long-term supplementation could stabilize visual function, but these results need to be validated. Saffron has been also tested in a CT (NCT00951288) of early AMD, where it was found to stimulate an increase in ERG values against placebo and improve flicker sensitivity [134].

3.1.5. Minocycline

Minocycline is a broad-spectrum, second-generation, semi-synthetic tetracycline with free-radical scavenging properties, and anti-inflammatory, antiapoptotic and neuroprotective properties [462]. While its mechanism of action is not fully understood, it appears to regulate several main enzymes and systems; for example, it downregulates NF-κB [463] and inhibits many enzymes, including iNOS, MMPs, phospholipase A2, caspases, and other proteins involved in apoptosis, including p38-MAPK and poly [ADP] ribose polymerase1 [462]. Minocycline has demonstrated neuroprotective effects in preclinical studies of neurodegenerative disorders, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s diseases, amyotrophic lateral sclerosis and multiple sclerosis [462]. As an inhibitor of microglial activation, it has been shown to protect retinal ganglion cells (RGC) in mouse models of glaucoma [163,164]. In CTs with patients with neurodegenerative disorders, its effects have been modest at best [464,465]. At present, it is being tested in phase 2 CTs for treatment of AMD (NCT02564978) and RP (NCT04068207). In a CT testing its potential efficacy for the treatment of macular edema associated with RP, it failed to induce significant changes in mean visual acuity; however, a small but progressive decrease in mean central macular thickness was observed [428]. Minocycline can easily pass through the blood–brain barrier and is generally safe and well-tolerated. Adverse reactions include gastrointestinal distress and photosensitivity, hepatotoxicity, and an exacerbation of pre-existing renal failure; therefore, the monitoring of patients is recommended after 6 months of treatment [466].

3.1.6. Melatonin

Melatonin (N-acetyl-5-methoxytryptamine) is a hormone derived from the essential amino acid tryptophan and is synthesized by numerous organs including the pineal gland and the retina [467]. Melatonin is also found in edible plants and foods, including milk, fruits, vegetables, and fish, and in the medicinal herbs of chamomile (Matricaria chamomilla L.) and St John’s wort (Hypericum perforatum L.), among others [468,469]. Melatonin plays a major role in the regulation of circadian rhythms, in addition to modulating various physiological functions, such as cardiovascular and immune system regulation and retinal function [470]. Melatonin exhibits a high antioxidant capacity, directly acting as a free-radical scavenger, and indirectly enhances antioxidant enzymes, such as CAT, SOD, glutathione reductase, and GPX. Melatonin also suppresses the activity of pro-oxidant enzymes such as NOS and COX-2, and acts as a cell-survival agent by modulating autophagy [471].
Melatonin supplementation (in drinking water) in P23HxLE rats, a model that resembles the clinical features of heterozygous patients with RP, improved visual acuity, contrast sensitivity and retinal electrical activity [168]. It also improved circadian synchronization and increased the levels of CAT and SOD, which further reduced oxidative stress. Therefore, melatonin promotes cell survival, preserves retinal cells, and delays the progression of RP.
The intravitreal administration of melatonin is also effective in ameliorating photoreceptor degeneration induced by the DNA-alkylating agent N-methyl-N-nitrosourea (MNU). Melatonin mediated the protective effects on visual function by modulating apoptotic cascades and alleviating oxidative stress [172]. Specifically, the retinas from mice treated with melatonin after MNU-induced damage showed lower levels of lipid peroxidation (reduced malondialdehyde, MDA) and DNA oxidation (decreased nuclear 8-OHdG) and higher levels of SOD and manganese SOD (MnSOD) than untreated counterparts [172].

3.1.7. Curcumin

Curcumin is a yellow polyphenolic pigment derived from the rhizome of turmeric (Curcuma longa L.) with well-known anti-inflammatory and antioxidant properties that are secondary to the inhibition of TNF-dependent NF-κB and pathways that produce ROS. Other actions include the downregulation of COX-2 and the inhibition of the pro-inflammatory enzyme 5-lipoxygenase, thus reducing the biosynthesis of inflammation products such as leukotrienes and lipid mediators. Curcumin also lowers the production of inflammatory cytokines including TNF, IL-1, IL-6. IL-8, iNOS and interferon-γ, and downregulates the expression of genes involved in apoptosis and cellular proliferation and inflammation [472]. Curcumin has pleotropic effects in different diseases, including gastrointestinal, cardiovascular, rheumatological and neurodegenerative diseases, including ocular pathologies (for a review, see [473]).
The effects of curcumin have been studied in cell lines and animal models of different retinal diseases, including IRDs. However, its clinical use is limited by its poor solubility and oral bioavailability, and different delivery mechanisms (liposomes and nanoparticles) are currently being studied [474,475]. Curcumin was protected against retinal degeneration in rat models of light-induced retinal degeneration by inhibiting NF-κB signaling [193]. In different retina cell lines, curcumin protected against H2O2 damage, altered the expression of H2O2-modulated miRNAs, increased the levels of antioxidant genes and reduced the expression of angiotensin II type 1 receptor, VEGF and NF-κB [476]. Curcumin also exhibits anti-protein aggregate activities in vitro, and improves retinal structure and function in P23H rats [191].

3.1.8. Carotenoids

The retina stores antioxidant products as macular pigments, including lutein, zeaxanthin and meso-zeaxanthin (converted from lutein in the retina) [477]. Zeaxanthin is present in the central region, whereas lutein concentration increases with radial distance from the fovea and meso-zeaxanthin levels decrease [477,478]. Lutein/zeaxanthin are related to static indicators of visual function [479], absorb blue light, scavenge ROS using their double bounds, protect membrane phospholipids against UV-induced peroxidation, induce phase-II antioxidant enzymes, and reduce lipofuscin formation [480]. Lutein suppresses NF-κB activation and the expression of iNOS and COX-2 [480]. The role of lutein or zeaxanthin in AMD has been studied in some depth. Genes controlling SR-B1 (a lutein-binding protein in the retina) and high-density lipoprotein levels predisposed to AMD, supporting the involvement of both lutein and the cholesterol pathway in AMD development [480]. Nevertheless, the Age-Related Eye Disease Study 2 (AREDS2) trial (NCT00345176) was unable to demonstrate protective effects for lutein or zeaxanthin in patients with advanced AMD [481]. Lutein and zeaxanthin improve retinal antioxidant capacity by modulating the expression of G-protein-coupled receptors and growth factors in rats [225] by diminishing inflammation in models of uveitis, choroidal neovascularization, diabetes, or ganglion cell damage, providing photoreceptor protection and reducing ER stress in rodent models of RP [224].

3.1.9. Catechins

Catechins are polyphenolic antioxidants that are found in many plants. (−)-Epigallocatechin gallate (EGCG) is the most abundant catechin-based flavonoid in green tea (Camellia sinensis L.). Its multiple actions include antioxidant, anti-inflammatory, neuro- and cardioprotective, antimicrobial and anti-carcinogenic actions, and it thus has therapeutic potential against different human diseases [482]. EGCG has an important scavenging activity and protects against H2O2--triggered oxidative damage [483]. EGCG is hydrophilic, has a low molecular weight, and can cross the blood–retina barrier to reach the retinal cells and the entire ocular structure [484]. Overall, these properties make EGCG a potential treatment for retinal neurodegeneration. EGCG administration induced Sod1 and Gpx3 expression in the rat retina but suppressed Cat expression [484]. EGCG has shown retinal protection in models of retinal damage, including RP models, by reducing the levels of peroxidized lipids and nitrosative damage, and increasing total antioxidant capacity. These effects might be related to different mechanisms, including an antagonist’s effect on the NMDA receptor as a glutamate receptor antagonist, and reducing glutamate excitotoxicity by increasing Ca2+ influx through a signaling cascade involving protein kinase C [485,486,487]. EGCG modulates the gene expression of pro-oxidant and antioxidant enzymes and inhibits the expression of p38-MAPK and NF-κB. Its anti-inflammatory activity is related to the regulation of pro-inflammatory and anti-inflammatory factors, including interleukins, chemokines, TNF-α, NF-κB and COX-2 [482,488].

3.1.10. Wolfberry-Derived Zeaxanthine Dipalmitate

Wolfberry or Lycium barbarum (commonly known as goji berries) has been used for thousands of years in traditional Chinese medicine and is distinguished by its high antioxidant potential. The bioactive compounds of this exotic “berry” (polysaccharides, carotenoids or flavonoids, and phenolic compounds, among others) have been shown to modulate antioxidant, anti-inflammatory and antiapoptotic pathways, and to exhibit neuroprotective effects in retinal diseases in animal models and human subjects [489]. The carotenoid zeaxanthin dipalmitate [(3R,3′R)-3,3′-O-dipalmitoyl-β-carotene] is a major constituent in wolfberry and is considered as a promising supplement to delay RP, as evidenced by its beneficial morphological and functional effects in the retina of rd10 mice [490]. The mechanisms of action of zeaxanthin dipalmitate include the modulation of numerous genes in the STAT3, CCL2 and MAPK pathways, ultimately ameliorating the developing inflammatory processes (for a review, see [431]).
Lycium barbarum L. has recently been administered to patients with RP in a 12-month intervention CT (NCT02244996) [317], and was found to preserve the macular layer.

3.1.11. (Z)-7,4′-Dimethoxy-6-hydroxy-aurone-4-O-b-glucopyranoside

(Z)-7,4′-Dimethoxy-6-hydroxy-aurone-4-O-b-glucopyranoside (DHAG) is a compound isolated from the endophytic fungus Penicillium citrinum of mangrove plants with potent neuroprotective activity against oxidative damage [491]. The administration of DHAG in the rd10 mouse model by daily gavage from postnatal day 12 (P12) to P33 (rod cell death begins around P18 and is almost complete by P45) significantly improved photoreceptor survival [322]. DHAG reduced photoreceptor cell apoptosis in the rd10 retina by increasing the abundance of the antiapoptotic protein Bcl-2 and reducing the pro-apoptotic protein Bax and caspase 3/9 activities. In addition, DHAG activated Nrf2, which further triggered the expression of antioxidant genes to restore oxidative homeostasis, evidenced by the decreased protein expression of NOX1, reduced levels of MDA and ROS, and increased SOD activity and GSH levels. Furthermore, DHAG treatment inhibited inflammatory responses in rd10 mouse retinas, characterized by the decreased gene expression of Il1b, Il6 and Tnfa, and pro-inflammatory expression of NF-κB and p38-MAPK.

3.1.12. NRF2

NRF2 is the master transcriptional regulator of antioxidative responses in multiple tissues, including the retina. Adeno-associated virus (AAV) has emerged as the vector of choice for gene delivery to the retina, and several laboratories have tested the therapeutic potential of AAV-mediated gene overexpression to protect against oxidative stress. AAV-mediated Nrf2 gene delivery in the neural retina and RPE promoted the survival of cones and RPE cells and retention of vision in various mouse models of RP [492] and acute nerve damage [493]. Similarly, the subretinal injection of human oxidation stress resistance-1 (AAV8-hOXR1) in rd1 mice significantly improved photoreceptor survival and light response, delaying retinal degeneration [494]. OXR1 is a key player in protecting against oxidative stress and exerts its neuroprotective functions by directly upregulating the expression of myriad antioxidant genes, or by controlling the transcription factors that regulate genes involved in oxidative stress-resistance [495].

3.1.13. Multi-Target Iron Chelators

Combination therapies that target complementary mechanisms to promote synergism have shown promise for retinal diseases. Multi-target iron-chelating compounds, including VK28, M30 and VAR10303, have been shown to exert neuroprotective effects in the rd10 mouse retina via synergistic antioxidant, anti-inflammatory and antiapoptotic mechanisms, which morphologically and functionally preserve photoreceptors, consequently, maintaining the visual function in RP retinas [323,324].

3.1.14. Mitochondrial Nutrients and Metabolic Intermediates

Photoreceptor cells are highly metabolically active and require sufficient supplies of ATP, NADPH, and metabolites to ensure proper functioning. Accordingly, mitochondrial dysfunction and metabolic dysregulation play critical roles in the pathogenesis of retinal degenerative disorders [496,497]. Many genes associated with IRDs directly or indirectly affect the metabolic pathways and mitochondrial function. Importantly, the death of rod photoreceptors, which constitute approximately 70% of all cells in the retina of most mammals, causes an increase in the release of RONS in the outer retina, resulting in damage to cones [498]. Many efforts have been made to prolong cone survival and improve visual acuity after prominent rod loss. Recently, an α-arrestin family member protein encoded by Txnip was shown to be beneficial in RP retinas (AAV-delivery of Txnip) by rescuing cone cells through enhancing their lactate catabolism and mitochondrial health [499]. Along the same line, mitochondrial cofactors, also known as mitochondrial nutrients, have been utilized to alleviate retinal disease and protect retinal cells against the pro-oxidant and dysmetabolic state. Examples of these are alpha-lipoic acid, coenzyme Q10 and carnitine [500]. Numerous studies have shown that exogenous creatine is very effective in protecting cells from oxidative stress damage [501], and dietary creatine supplementation augments cone survival in rd1 retinas and improves visual function [327]. It is now recognized that many interdependent cellular metabolism and energy pathways are defective in IRDs. Thus, new treatments aiming to strengthen or restore the impaired mitochondrial function or to replenish metabolic insufficiencies by dietary supplementation are receiving increasing interest [502,503].

3.2. Antiapoptotic Agents

3.2.1. Synthetic Bile Acids: Ursodeoxycholic Acid and Tauroursodeoxycholic Acid

Ursodeoxycholic acid (UDCA) and its taurine conjugate derivative tauroursodeoxycholic acid (TUDCA) are bile acids with proven neuroprotective [365,504] and antiapoptotic, anti-inflammatory and antioxidant [505] actions. TUDCA exerts antiapoptotic effects in different models of retinal degeneration, not only photoreceptor loss secondary to IRD, oxidative stress or retinal detachment [361,363,364,365,366,367,504,506,507,508] but also in glaucoma [369] and other ocular diseases [509]. Its antiapoptotic actions are thought to involve the suppression of caspase-dependent and -independent pathways and reductions in ER stress. The main limitations of TUDCA as a potential therapy are the high doses that are needed and the limited bioavailability to the retina, which can be solved using different drug-delivery systems [507] with good results in animal models [510].
UDCA and TUDCA have been used in several models of neurodegenerative disease, and were found to preserve anatomy and function. Three CTs have evaluated their safety and efficacy to date, albeit for amyotrophic lateral sclerosis [511,512,513], with all showing that the drugs were well-tolerated and may have utility in slowing disease progression. To date, there is only one phase-1 CT with UDCA registered for the treatment of rhegmatogenous retinal detachment (NCT02841306).

3.2.2. Progesterone

Progesterone and other steroid hormones such as estrogen have demonstrated neuroprotective effects in animal models of IRD [514]. Progesterone increases the expression of antiapoptotic proteins (Bcl-2, Bcl-xL) and reduces the expression of pro-apoptotic factors (Bax, Bad, caspase-3) [515]. It also exhibits anti-inflammatory actions by decreasing microglial and macrophage activation [516,517] and reduces the levels of inflammatory cytokines [518]. It can also diminish excitotoxicity [519,520].
Progesterone has been shown to preserve photoreceptor degeneration in animal models of RP and light-induced damage [380,381,383]. However, its translation to human studies is challenging, especially regarding doses, which might limit the development of CTs for IRDs. Nevertheless, progesterone has been tested in a phase-3 CT for traumatic brain injury (NCT00822900, Progesterone for the Treatment of Traumatic Brain Injury III [ProTECT]), but with no evident benefits over placebo.

3.3. Other Compounds (Nutraceuticals and Compounds with Mixed Mechanisms of Action)

3.3.1. Vitamin A and E

Vitamins A and E have vital functions in photoreceptor maintenance. Given the evidence that patients with RP who take vitamin A and E and other nutrients show an attenuated decrease in ERG responses, several CTs have been launched to test the effectiveness of vitamin supplementation. One CT was developed using high doses of vitamin A to test for improvements in cone function measured with ERG (NCT00065455). The study was completed in 2009, but the results have not been published. Another CT investigated supplementation with both vitamins A and E (NCT00000114) [425]. These results were published in 1993. The authors treated 601 patients and found a beneficial effect of 15,000 IU/d of vitamin A on the disease course, but an adverse effect of vitamin E (400 IU/d) [439]. The same authors conducted a second CT in patients receiving vitamin A (15,000 IU/d) supplemented with DHA (1200 mg/d), which did not slow the disease course over a 4-year period [440].
Finally, the same authors tested the addition of lutein (12 mg/d) to patients with RP receiving vitamin A (NCT00346333), and reported that lutein slowed the loss of midperipheral visual field in non-smoking patients [430].

3.3.2. Docosahexaenoic Acid

DHA is the major polyunsaturated fatty acid in the retina, accounting for 50–70% of the fatty acids of the photoreceptor outer segment. DHA has an important role in the maintenance of retinal structure and function [521], not only in neurons but also in retinal vessels, and is necessary for phototransduction. DHA is also related to the increased production of GSH [430].
DHA metabolism is believed to be altered in retinopathies, due to pathogenic mutations in ABCA4, although no positive results have been found in patients treated with DHA supplements. For example, MacDonald and Sieving published the results of DHA supplementation in 11 patients with Stargardt disease, reporting no changes in macular function [441].
Several CTs have evaluated the effect of DHA supplementation in X-linked RP (XLRP). Hoffman and colleagues tested the ability of supplemented DHA (400 mg/d) to increase blood DHA levels and slow disease progression in 23 patients with XLRP. Results showed elevated DHA blood levels in patients receiving DHA, but no change in cone function measured by ERG versus placebo, although some benefits in rod/cone function were observed in subset analysis [522]. The same authors developed a phase-2, 4-year, follow-up CT (NCT00100230) including 78 patients receiving placebo or DHA. In this study, DHA was unable to slow the loss of ERG function in XLRP [436], although an analysis of ancillary visual function outcomes revealed a reduced rate of progression in dark-adapted thresholds and visual field sensitivities [438]. The authors suggested improvements in the study design, with a higher sample size and longer trial period, targeting a higher DHA blood level. Along this line, the authors found minor gastrointestinal discomfort in patients receiving 30 mg/kg DHA, and plasma and red blood cell DHA levels increased 4.4- and 3.6-fold, respectively, at year 4 [437]. A similar CT (NCT00004827) was designed to evaluate the potential of DHA supplementation to normalize DHA levels in red blood cells and retard the progression of visual function loss in patients with XLRP. The trial is completed but the results have not yet been published.
In a sub-group analysis of their original study, Berson et al. followed 221 patients receiving either vitamin A or vitamin A + DHA, finding no changes in the course of degeneration [440]. However, in those patients taking vitamin A prior to entry in the trial, the addition of DHA slowed the course of the disease for the first 2 years [440], but these differences were not preserved in years 3 and 4.
Macular degeneration omega-3 study (MADEOS) is a CT in the recruiting phase, testing the efficacy of omega-3 fatty acids in AMD and ABCA4-associated retinopathy.
Schwartz et al. performed a systematic review to evaluate the effect of vitamin A and fish oils in preventing the progression of RP [422]. They concluded that there is no clear evidence for treatment with either DHA alone or associated with vitamin A in the studied randomized CTs.

3.4. Drugs Interacting with Vitamin A in ABCA4-Associated Retinopathy

ABCA4-associated retinopathy is a highly prevalent IRDs. While no approved therapy is available to date, several therapeutic approaches have been investigated, including cell- and gene-based strategies. Different compounds with a variety of actions have been tested for therapeutic intervention in ABCA4-associated retinopathy [523]; some are related to antioxidant and anti-inflammatory actions, and others are based on the ability to halt/slow lipofuscin accumulation. Most studies use high doses of oral administration to reach the retina, which may lead to secondary effects. Here, we include not only antioxidants and inflammatory drugs, but also visual cycle modulators.
A common target for these approaches is N-retinylidene-N-retinylethanolamine (A2E), a major component of lipofuscin and a by-product of the retinoid visual cycle. The alcohol–dehydrogenase-inhibitor 4-methylpyrazole (4-MP) can inhibit the visual cycle in rodents and has been used in animal models to delay dark adaptation. 4-MP has been tested in a CT (NCT00346853) but failed to delay dark adaptation [442]; however, it did prevent the accumulation of lipofuscin by delaying the processing of vitamin A derivatives.
Another drug tested to prevent lipofuscin formation is ALK-001 (C20-D3-retinyl acetate), which is a deuterated form of vitamin A, slowing down vitamin A dimerization and A2E production. In mice, it diminishes the formation of A2E dimers and slows lipofuscinogenesis [524]. Based on these results, a phase-1 CT was launched in 40 healthy subjects (NCT02230228). There is an ongoing extension phase-2 CT examining the tolerability and effects of ALK-001 on Stargardt disease (TEASE), with 140 patients affected by ABCA4-associated retinopathy (NCT04239625), and another CT is in the recruiting phase (NCT02402660). The same drug is being used in a phase-3 study of geographic atrophy (NCT03845582).

3.4.1. Emixustat

The accumulation of toxic retinal by-products generated in the visual cycle by RPE65 can drive blindness. The generation of these products, including A2E, can thus be modulated by blocking RPE65 activity, which is a rate-limiting step in the visual cycle. Two such RPE65 inhibitors are emixustat and MB001. Emixustat hydrochloride (also known as ACU-4429) is a non-retinoid drug that exerts an inhibitory effect on RPE65, thus reducing the accumulation of vitamin A-based toxins. The inhibition should, however, be partial, to permit chromophore regeneration [525].
Emixustat and fenretinide, another visual cycle modulator, have been tested for the treatment of non-exudative AMD by oral administration [526]. In terms of safety, in a phase-1, placebo-controlled study (NCT00942240), emixustat had minimal systemic adverse events in healthy individuals, with 67% showing mild ocular side effects, which disappeared after withdrawal [527]. In patients with AMD, emixustat had a dose-dependent, reversible effect on rod function with dose-related mild and moderate ocular adverse events (NCT01002950) [528]. In a phase 2b/3 CT (NCT01802866, SEATTLE), emixustat failed to reduce the growth of the geographic atrophy [529]. Emixustat is currently being evaluated as a potential treatment in ABCA4-related retinopathy. The CT NCT03033108 (Pharmacodynamic Study of Emixustat Hydrochloride in Subjects with Macular Atrophy Secondary to Stargardt Disease) is examining 23 patients with Stargardt disease, treated with emixustat and assessed for ERG changes and adverse effects. Likewise, the CT NCT03772665 (SeaSTAR) is a phase-3 study including 194 patients (for 24 months), with an estimated study completion date of June 2022.

3.4.2. Zimura

The complement cascade is key to the immune response. Zimura (also known as avacincaptad pegol) is an aptamer that can inhibit the activity of complement factor C5 [530]. The proteolysis of C5 generates two fragments: C5a, an anaphylotoxin, and C5b, needed for the assembly of the membrane attack complex (MAC). The MAC can form a channel that penetrates the cell membrane of pathogens or damaged host cells, leading to cell death. Both C5a and MAC are implicated in tissue damage secondary to inflammation [531,532]. The inhibition of proteolytic C5 activation is a potential therapeutic approach in diseases that involve the overactivation or dysregulation of the complement pathway, such as certain retinal degenerative diseases [533].
Intravitreal administration of Zimura is being studied in both non-exudative AMD (NCT04435366) and in a phase-2 CT associated with ranibizumab in exudative AMD. NCT03364153 is a phase-2 CT used to evaluate the safety and efficacy of Zimura in 120 patients with Stargardt disease.

3.4.3. Soraprazan

Soraprazan is a fast-acting inhibitor of H+,K+-ATPase and is used in gastroesophageal reflux disease [534]. It is a small molecule that can remove lipofuscin from RPE cells. It has been tested in an animal model of lipofuscinogenis [535] and a multi-national, multi-center, double-masked, placebo-controlled, proof-of-concept trial is evaluating the safety and efficacy of oral soraprazam in Stargardt disease (EudraCT 2018-001496-20).

3.4.4. STG-001

STG-001 is an indirect visual cycle modulator that reduces plasma concentrations of retinol-binding protein 4 (RBP4), the major retinol transporter, and slows down the visual cycle and the accumulation of cytotoxic retinoids in the retina. RBP4 is correlated not only with retinal disease but also with cardiovascular diseases, insulin resistance related to type 2 diabetes mellitus, and obesity. Two RBP4 antagonists are currently in CTs. One of them, STG-001, is being tested in patients with Stargardt disease in a phase-2a CT investigating two different doses of STG-001 (NCT04489511).

4. Conclusions

Most IRDs, irrespective of the cause of the disease, result in photoreceptor loss and vision deterioration. Oxidative stress is a major contributor to cell death in photoreceptor cells, as they are constantly exposed to light and have a high metabolic demand to maintain normal function. Importantly, photoreceptors are post-mitotic cells and are unable to repair molecular damage through cell division, making these cells particularly vulnerable to molecular damage, metabolic alterations, genetic modifications, and environmental factors. Cell loss in IRDs leads to inflammatory responses that exacerbate the degenerative processes of the retina. A multitude of treatments aim to prevent, halt, or slow down the neuronal degeneration underlying IRDs by boosting the endogenous antioxidant defense system and/or providing exogenous antioxidant agents. Similarly, a number of anti-inflammatory therapies are being investigated.
Maintaining cell health is imperative to allow for the activation of intrinsic cytoprotective mechanisms to combat stress or damage and prevent disease progression. The healthier the status of retinal cells, the better the response to therapeutical approaches. Numerous therapeutic interventions are being tested at present to maintain cellular homeostasis by enhancing oxidative defenses and mitochondrial function to prevent ROS-induced damage linked to dysregulated signaling pathways. These strategies focus on targeting ROS production, aiming to decrease its levels and promote cell protection. However, several challenges need to be overcome to successfully achieve this goal. A key point to consider when treating IRDs is that there is an unstable balance between the antioxidant effect of the administered compounds and the total antioxidant capacity of the patients. Moreover, the additive effect of different drugs with different mechanisms of action does not always result in enhanced cell survival, possibly due to the interactions between different cellular pathways. Finally, the causative mutation of the disease can promote different responses to the same drugs in patients.
New or improved modalities of gene- and cell-based therapies are being developed to treat IRDs. Gene therapy has proven efficacy and is already in clinical use. The functional recovery of cells that have been genetically modified is very encouraging for patients; however, inflammation and microglia activation through oxidative stress persists in untreated areas, potentially compromising the long-term success of the therapy. A degenerated retina with a complete loss of vision needs to be healthy to maintain non-visual functions such as the control of circadian rhythms and pupil contraction. Thus, the maintenance of retinal cell health using neuroprotective compounds, in combination with gene therapy, may be key to long-term therapy success. The ability to maintain inflammation within normal ranges and finding the correct balance between endogenous and exogenous antioxidants in patients with IRDs are exciting challenges.
A successful therapeutical approach to IRDs will require a profound knowledge of the etiopathogenesis of the disease, the causative mutation, and the efficacy of drug treatments. Potential drug compounds should display good safety and tolerability profiles and be capable of crossing the blood–retinal barrier (providing suitable bioavailability in the retina) without the need for high systemic doses or, alternatively, be suitable for intraocular use.

Author Contributions

Conceptualization, I.P., V.M., L.C. and N.C.; methodology, I.P., V.M., L.C. and N.M.-G.; investigation, O.K., X.S.-S. and C.S.-C.; resources, writing—original draft preparation, L.F.-S. and P.L.; writing—review and editing, I.P., V.M., N.M.-G., L.C. and N.C.; funding acquisition, I.P. and N.C. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by DGA group B08_17R: Investigación en Retina y Sistema Visual and Fondo Europeo de Desarrollo Regional (FEDER) funds: “Una manera de hacer Europa”, Ministerio de Ciencia e Innovación (FEDER-PID 2019-106230RB-I00), Instituto de Salud Carlos III (PI20/00740-FEDER, RETICS-FEDER RD16/0008/0016), Generalitat Valenciana-FEDER (IDIFEDER/2017/064, PROMETEO/2021/024), Ministerio de Universidades (FPU16/04114), Es Retina Asturias (2019/00286/001). The APC was funded by DGA group B08_17R: Investigación en Retina y Sistema Visual (FEDER).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Kolb, H.; Nelson, R.; Ahnelt, P.; Cuenca, N. Cellular Organization of the Vertebrate Retina. Prog. Brain. Res. 2001, 131, 3–26. [Google Scholar] [CrossRef] [PubMed]
  2. Cuenca, N.; Ortuño-Lizarán, I.; Sánchez-Sáez, X.; Kutsyr, O.; Albertos-Arranz, H.; Fernández-Sánchez, L.; Martínez-Gil, N.; Noailles, A.; López-Garrido, J.A.; López-Gálvez, M.; et al. Interpretation of OCT and OCTA Images from a Histological Approach: Clinical and Experimental Implications. Prog. Retin. Eye Res. 2020, 77, 100828. [Google Scholar] [CrossRef] [PubMed]
  3. Cuenca, N.; Fernández-Sánchez, L.; Campello, L.; Maneu, V.; de la Villa, P.; Lax, P.; Pinilla, I. Cellular Responses Following Retinal Injuries and Therapeutic Approaches for Neurodegenerative Diseases. Prog. Retin. Eye Res. 2014, 43, 17–75. [Google Scholar] [CrossRef] [PubMed]
  4. Kolb, H.; Nelson, R.; Ahnelt, P.; Ortuño-Lizarán, I.; Cuenca, N. The Architecture of the Human Fovea. In Webvision: The Organization of the Retina and Visual System; Kolb, H., Fernandez, E., Nelson, R., Jones, B.W., Eds.; University of Utah Health Sciences Center: Salt Lake City, UT, USA, 2020. [Google Scholar]
  5. Sahel, J.-A.; Marazova, K.; Audo, I. Clinical Characteristics and Current Therapies for Inherited Retinal Degenerations. Cold Spring Harb. Perspect. Med. 2015, 5, a017111. [Google Scholar] [CrossRef] [PubMed]
  6. Daiger, S.P. RetNet, the Retinal Information Network; The University of Texas Health Science Center: Houston, TX, USA, 2022; Available online: https://sph.uth.edu/retnet/home.htm (accessed on 1 February 2022).
  7. Fernández-Sánchez, L.; Lax, P.; Noailles, A.; Angulo, A.; Maneu, V.; Cuenca, N. Natural Compounds from Saffron and Bear Bile Prevent Vision Loss and Retinal Degeneration. Molecules 2015, 20, 13875–13893. [Google Scholar] [CrossRef] [Green Version]
  8. Lax, P.; Ortuño-Lizarán, I.; Maneu, V.; Vidal-Sanz, M.; Cuenca, N. Photosensitive Melanopsin-Containing Retinal Ganglion Cells in Health and Disease: Implications for Circadian Rhythms. Int. J. Mol. Sci. 2019, 20, 3164. [Google Scholar] [CrossRef] [Green Version]
  9. Sies, H.; Cadenas, E. Oxidative Stress: Damage to Intact Cells and Organs. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1985, 311, 617–631. [Google Scholar] [CrossRef]
  10. Moldogazieva, N.T.; Mokhosoev, I.M.; Feldman, N.B.; Lutsenko, S.V. ROS and RNS Signalling: Adaptive Redox Switches through Oxidative/Nitrosative Protein Modifications. Free Radic. Res. 2018, 52, 507–543. [Google Scholar] [CrossRef]
  11. Holmström, K.M.; Finkel, T. Cellular Mechanisms and Physiological Consequences of Redox-Dependent Signalling. Nat. Rev. Mol. Cell Biol. 2014, 15, 411–421. [Google Scholar] [CrossRef]
  12. di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxidative Med. Cell. Longev. 2016, 2016, 1245049. [Google Scholar] [CrossRef]
  13. Sies, H.; Jones, D.P. Reactive Oxygen Species (ROS) as Pleiotropic Physiological Signalling Agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363–383. [Google Scholar] [CrossRef] [PubMed]
  14. Kowaltowski, A.J.; de Souza-Pinto, N.C.; Castilho, R.F.; Vercesi, A.E. Mitochondria and Reactive Oxygen Species. Free Radic. Biol. Med. 2009, 47, 333–343. [Google Scholar] [CrossRef] [PubMed]
  15. Schrader, M.; Fahimi, H.D. Peroxisomes and Oxidative Stress. Biochim. Biophys Acta 2006, 1763, 1755–1766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  16. Siegenthaler, K.D.; Sevier, C.S. Working Together: Redox Signaling between the Endoplasmic Reticulum and Mitochondria. Chem. Res. Toxicol. 2019, 32, 342–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  17. Wang, Y.; Branicky, R.; Noë, A.; Hekimi, S. Superoxide Dismutases: Dual Roles in Controlling ROS Damage and Regulating ROS Signaling. J. Cell Biol. 2018, 217, 1915–1928. [Google Scholar] [CrossRef]
  18. Nathan, C. Specificity of a Third Kind: Reactive Oxygen and Nitrogen Intermediates in Cell Signaling. J. Clin. Investig. 2003, 111, 769–778. [Google Scholar] [CrossRef]
  19. Fulton, D.; Fontana, J.; Sowa, G.; Gratton, J.-P.; Lin, M.; Li, K.-X.; Michell, B.; Kemp, B.E.; Rodman, D.; Sessa, W.C. Localization of Endothelial Nitric-Oxide Synthase Phosphorylated on Serine 1179 and Nitric Oxide in Golgi and Plasma Membrane Defines the Existence of Two Pools of Active Enzyme. J. Biol. Chem. 2002, 277, 4277–4284. [Google Scholar] [CrossRef] [Green Version]
  20. Choi, J.-Y.; Nam, S.-A.; Jin, D.-C.; Kim, J.; Cha, J.-H. Expression and Cellular Localization of Inducible Nitric Oxide Synthase in Lipopolysaccharide-Treated Rat Kidneys. J. Histochem. Cytochem. 2012, 60, 301–315. [Google Scholar] [CrossRef]
  21. Zhou, L.; Zhu, D.-Y. Neuronal Nitric Oxide Synthase: Structure, Subcellular Localization, Regulation, and Clinical Implications. Nitric Oxide 2009, 20, 223–230. [Google Scholar] [CrossRef]
  22. Nathan, C.; Xie, Q.W. Nitric Oxide Synthases: Roles, Tolls, and Controls. Cell 1994, 78, 915–918. [Google Scholar] [CrossRef]
  23. Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric Oxide and Peroxynitrite in Health and Disease. Physiol. Rev. 2007, 87, 315–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  24. Murakami, Y.; Ishikawa, K.; Nakao, S.; Sonoda, K.-H. Innate Immune Response in Retinal Homeostasis and Inflammatory Disorders. Prog. Retin. Eye Res. 2020, 74, 100778. [Google Scholar] [CrossRef] [PubMed]
  25. Kaur, G.; Singh, N.K. The Role of Inflammation in Retinal Neurodegeneration and Degenerative Diseases. Int. J. Mol. Sci. 2021, 23, 386. [Google Scholar] [CrossRef] [PubMed]
  26. Takeuchi, O.; Akira, S. Pattern Recognition Receptors and Inflammation. Cell 2010, 140, 805–820. [Google Scholar] [CrossRef] [Green Version]
  27. Kinuthia, U.M.; Wolf, A.; Langmann, T. Microglia and Inflammatory Responses in Diabetic Retinopathy. Front. Immunol. 2020, 11, 564077. [Google Scholar] [CrossRef]
  28. Olivares-González, L.; Velasco, S.; Campillo, I.; Rodrigo, R. Retinal Inflammation, Cell Death and Inherited Retinal Dystrophies. Int. J. Mol. Sci. 2021, 22, 2096. [Google Scholar] [CrossRef]
  29. Zeng, H.-Y.; Tso, M.O.M.; Lai, S.; Lai, H. Activation of Nuclear Factor-KappaB during Retinal Degeneration in Rd Mice. Mol. Vis. 2008, 14, 1075–1080. [Google Scholar]
  30. Hayden, M.S.; Ghosh, S. Shared Principles in NF-KappaB Signaling. Cell 2008, 132, 344–362. [Google Scholar] [CrossRef] [Green Version]
  31. Dresselhaus, E.C.; Meffert, M.K. Cellular Specificity of NF-κB Function in the Nervous System. Front. Immunol. 2019, 10, 1043. [Google Scholar] [CrossRef] [PubMed]
  32. Murray, P.J. The JAK-STAT Signaling Pathway: Input and Output Integration. J. Immunol. 2007, 178, 2623–2629. [Google Scholar] [CrossRef] [Green Version]
  33. Samardzija, M.; Wenzel, A.; Aufenberg, S.; Thiersch, M.; Remé, C.; Grimm, C.; Samardzija, M.; Wenzel, A.; Aufenberg, S.; Thiersch, M.; et al. Differential Role of Jak-STAT Signaling in Retinal Degenerations. FASEB J. 2006, 20, 2411–2413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  34. Ly, A.; Merl-Pham, J.; Priller, M.; Gruhn, F.; Senninger, N.; Ueffing, M.; Hauck, S.M. Proteomic Profiling Suggests Central Role Of STAT Signaling during Retinal Degeneration in the Rd10 Mouse Model. J. Proteome Res. 2016, 15, 1350–1359. [Google Scholar] [CrossRef] [PubMed]
  35. Kutsyr, O.; Noailles, A.; Martínez-Gil, N.; Maestre-Carballa, L.; Martinez-Garcia, M.; Maneu, V.; Cuenca, N.; Lax, P. Short-Term High-Fat Feeding Exacerbates Degeneration in Retinitis Pigmentosa by Promoting Retinal Oxidative Stress and Inflammation. Proc. Natl. Acad. Sci. USA 2021, 118, e2100566118. [Google Scholar] [CrossRef] [PubMed]
  36. Wu, J.; Gao, G.; Shi, F.; Xie, H.; Yang, Q.; Liu, D.; Qu, S.; Qin, H.; Zhang, C.; Xu, G.-T.; et al. Activated Microglia-Induced Neuroinflammatory Cytokines Lead to Photoreceptor Apoptosis in Aβ-Injected Mice. J. Mol. Med. 2021, 99, 713–728. [Google Scholar] [CrossRef] [PubMed]
  37. Klettner, A. Oxidative Stress Induced Cellular Signaling in RPE Cells. Front. Biosci. 2012, 4, 392. [Google Scholar] [CrossRef]
  38. Agca, C.; Gubler, A.; Traber, G.; Beck, C.; Imsand, C.; Ail, D.; Caprara, C.; Grimm, C. P38 MAPK Signaling Acts Upstream of LIF-Dependent Neuroprotection during Photoreceptor Degeneration. Cell Death Dis. 2013, 4, e785. [Google Scholar] [CrossRef] [Green Version]
  39. Yamada, E.; Himori, N.; Kunikata, H.; Omodaka, K.; Ogawa, H.; Ichinose, M.; Nakazawa, T. The Relationship between Increased Oxidative Stress and Visual Field Defect Progression in Glaucoma Patients with Sleep Apnoea Syndrome. Acta Ophthalmol. 2018, 96, e479–e484. [Google Scholar] [CrossRef]
  40. Aslan, M.; Cort, A.; Yucel, I. Oxidative and Nitrative Stress Markers in Glaucoma. Free. Radic. Biol. Med. 2008, 45, 367–376. [Google Scholar] [CrossRef]
  41. Toma, C.; de Cillà, S.; Palumbo, A.; Garhwal, D.P.; Grossini, E. Oxidative and Nitrosative Stress in Age-Related Macular Degeneration: A Review of Their Role in Different Stages of Disease. Antioxidants 2021, 10, 653. [Google Scholar] [CrossRef]
  42. Kaarniranta, K.; Uusitalo, H.; Blasiak, J.; Felszeghy, S.; Kannan, R.; Kauppinen, A.; Salminen, A.; Sinha, D.; Ferrington, D. Mechanisms of Mitochondrial Dysfunction and Their Impact on Age-Related Macular Degeneration. Prog. Retin. Eye Res. 2020, 79, 100858. [Google Scholar] [CrossRef]
  43. Kang, Q.; Yang, C. Oxidative Stress and Diabetic Retinopathy: Molecular Mechanisms, Pathogenetic Role and Therapeutic Implications. Redox Biol. 2020, 37, 101799. [Google Scholar] [CrossRef] [PubMed]
  44. Domènech, B.E.; Marfany, G. The Relevance of Oxidative Stress in the Pathogenesis and Therapy of Retinal Dystrophies. Antioxidants 2020, 9, 347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  45. Forman, H.J.; Zhang, H. Targeting Oxidative Stress in Disease: Promise and Limitations of Antioxidant Therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef] [PubMed]
  46. Noailles, A.; Maneu, V.; Campello, L.; Lax, P.; Cuenca, N. Systemic Inflammation Induced by Lipopolysaccharide Aggravates Inherited Retinal Dystrophy. Cell Death Dis. 2018, 9, 350. [Google Scholar] [CrossRef] [PubMed]
  47. Reichenbach, A.; Bringmann, A. Purinergic Signaling in Retinal Degeneration and Regeneration. Neuropharmacology 2016, 104, 194–211. [Google Scholar] [CrossRef] [PubMed]
  48. Freitas, H.R.; de Melo Reis, R.A. Glutathione Induces GABA Release through P2X7R Activation on Müller Glia. Neurogenesis 2017, 4, e1283188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  49. Kawamura, H.; Sugiyama, T.; Wu, D.M.; Kobayashi, M.; Yamanishi, S.; Katsumura, K.; Puro, D.G. ATP: A Vasoactive Signal in the Pericyte-Containing Microvasculature of the Rat Retina. J. Physiol. 2003, 551, 787–799. [Google Scholar] [CrossRef]
  50. Pannicke, T.; Fischer, W.; Biedermann, B.; Schädlich, H.; Grosche, J.; Faude, F.; Wiedemann, P.; Allgaier, C.; Illes, P.; Burnstock, G.; et al. P2X7 Receptors in Müller Glial Cells from the Human Retina. J. Neurosci. 2000, 20, 5965–5972. [Google Scholar] [CrossRef] [Green Version]
  51. Sanderson, J.; Dartt, D.A.; Trinkaus-Randall, V.; Pintor, J.; Civan, M.M.; Delamere, N.A.; Fletcher, E.L.; Salt, T.E.; Grosche, A.; Mitchell, C.H. Purines in the Eye: Recent Evidence for the Physiological and Pathological Role of Purines in the RPE, Retinal Neurons, Astrocytes, Müller Cells, Lens, Trabecular Meshwork, Cornea and Lacrimal Gland. Exp. Eye Res. 2014, 127, 270–279. [Google Scholar] [CrossRef]
  52. Vessey, K.A.; Fletcher, E.L. Rod and Cone Pathway Signalling Is Altered in the P2X7 Receptor Knock Out Mouse. PLoS ONE 2012, 7, e29990. [Google Scholar] [CrossRef]
  53. Wurm, A.; Pannicke, T.; Iandiev, I.; Francke, M.; Hollborn, M.; Wiedemann, P.; Reichenbach, A.; Osborne, N.N.; Bringmann, A. Purinergic Signaling Involved in Müller Cell Function in the Mammalian Retina. Prog. Retin. Eye Res. 2011, 30, 324–342. [Google Scholar] [CrossRef] [PubMed]
  54. Puthussery, T.; Fletcher, E.L. Synaptic Localization of P2X7 Receptors in the Rat Retina. J. Comp. Neurol. 2004, 472, 13–23. [Google Scholar] [CrossRef] [PubMed]
  55. Dong, L.; Hu, Y.; Zhou, L.; Cheng, X. P2X7 Receptor Antagonist Protects Retinal Ganglion Cells by Inhibiting Microglial Activation in a Rat Chronic Ocular Hypertension Model. Mol. Med. Rep. 2018, 17, 2289–2296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  56. Monif, M.; Burnstock, G.; Williams, D.A. Microglia: Proliferation and Activation Driven by the P2X7 Receptor. Int. J. Biochem. Cell Biol. 2010, 42, 1753–1756. [Google Scholar] [CrossRef] [PubMed]
  57. Calzaferri, F.; Ruiz-Ruiz, C.; Diego, A.M.G.; Pascual, R.; Méndez-López, I.; Cano-Abad, M.F.; Maneu, V.; Ríos, C.; Gandía, L.; García, A.G. The Purinergic P2X7 Receptor as a Potential Drug Target to Combat Neuroinflammation in Neurodegenerative Diseases. Med. Res. Rev. 2020, 40, 2427–2465. [Google Scholar] [CrossRef] [PubMed]
  58. Gallenga, C.E.; Lonardi, M.; Pacetti, S.; Violanti, S.S.; Tassinari, P.; di Virgilio, F.; Tognon, M.; Perri, P. Molecular Mechanisms Related to Oxidative Stress in Retinitis Pigmentosa. Antioxidants 2021, 10, 848. [Google Scholar] [CrossRef] [PubMed]
  59. Viringipurampeer, I.A.; Metcalfe, A.L.; Bashar, A.E.; Sivak, O.; Yanai, A.; Mohammadi, Z.; Moritz, O.L.; Gregory-Evans, C.Y.; Gregory-Evans, K. NLRP3 Inflammasome Activation Drives Bystander Cone Photoreceptor Cell Death in a P23H Rhodopsin Model of Retinal Degeneration. Hum. Mol. Genet. 2016, 25, 1501–1516. [Google Scholar] [CrossRef] [Green Version]
  60. Puthussery, T.; Fletcher, E. Extracellular ATP Induces Retinal Photoreceptor Apoptosis through Activation of Purinoceptors in Rodents. J. Comp. Neurol. 2009, 513, 430–440. [Google Scholar] [CrossRef]
  61. Shen, J.; Yang, X.; Dong, A.; Petters, R.M.; Peng, Y.-W.; Wong, F.; Campochiaro, P.A. Oxidative Damage Is a Potential Cause of Cone Cell Death in Retinitis Pigmentosa. J. Cell. Physiol. 2005, 203, 457–464. [Google Scholar] [CrossRef]
  62. Murakami, Y.; Matsumoto, H.; Roh, M.; Suzuki, J.; Hisatomi, T.; Ikeda, Y.; Miller, J.W.; Vavvas, D.G. Receptor Interacting Protein Kinase Mediates Necrotic Cone but Not Rod Cell Death in a Mouse Model of Inherited Degeneration. Proc. Natl. Acad. Sci. USA 2012, 109, 14598–14603. [Google Scholar] [CrossRef] [Green Version]
  63. Greenwald, S.H.; Pierce, E.A. Parthanatos as a Cell Death Pathway Underlying Retinal Disease. Adv. Exp. Med. Biol. 2019, 1185, 323–327. [Google Scholar] [PubMed]
  64. Sancho-Pelluz, J.; Arango-Gonzalez, B.; Kustermann, S.; Romero, F.J.; van Veen, T.; Zrenner, E.; Ekström, P.; Paquet-Durand, F. Photoreceptor Cell Death Mechanisms in Inherited Retinal Degeneration. Mol. Neurobiol. 2008, 38, 253–269. [Google Scholar] [CrossRef] [PubMed]
  65. Arango-Gonzalez, B.; Trifunović, D.; Sahaboglu, A.; Kranz, K.; Michalakis, S.; Farinelli, P.; Koch, S.; Koch, F.; Cottet, S.; Janssen-Bienhold, U.; et al. Identification of a Common Non-Apoptotic Cell Death Mechanism in Hereditary Retinal Degeneration. PLoS ONE 2014, 9, e112142. [Google Scholar] [CrossRef] [PubMed]
  66. Yan, J.; Chen, Y.; Zhu, Y.; Paquet-Durand, F. Programmed Non-Apoptotic Cell Death in Hereditary Retinal Degeneration: Crosstalk between CGMP-Dependent Pathways and PARthanatos? Int. J. Mol. Sci. 2021, 22, 10567. [Google Scholar] [CrossRef] [PubMed]
  67. Shi, J.; Zhao, Y.; Wang, K.; Shi, X.; Wang, Y.; Huang, H.; Zhuang, Y.; Cai, T.; Wang, F.; Shao, F. Cleavage of GSDMD by Inflammatory Caspases Determines Pyroptotic Cell Death. Nature 2015, 526, 660–665. [Google Scholar] [CrossRef] [PubMed]
  68. McKenzie, B.A.; Dixit, V.M.; Power, C. Fiery Cell Death: Pyroptosis in the Central Nervous System. Trends Neurosci. 2020, 43, 55–73. [Google Scholar] [CrossRef] [PubMed]
  69. Li, J.; Du, W.; Xu, N.; Tao, T.; Tang, X.; Huang, L. RNA-Seq Analysis for Exploring the Pathogenesis of Retinitis Pigmentosa in P23H Knock-In Mice. Ophthalmic Res. 2021, 64, 798–810. [Google Scholar] [CrossRef]
  70. Yang, M.; So, K.-F.; Lam, W.-C.; Lo, A.C.Y. Cell Ferroptosis: New Mechanism and New Hope for Retinitis Pigmentosa. Cells 2021, 10, 2153. [Google Scholar] [CrossRef]
  71. Chen, C.; Chen, J.; Wang, Y.; Liu, Z.; Wu, Y. Ferroptosis Drives Photoreceptor Degeneration in Mice with Defects in All-Trans-Retinal Clearance. J. Biol. Chem. 2021, 296, 100187. [Google Scholar] [CrossRef]
  72. Tan, Q.; Fang, Y.; Gu, Q. Mechanisms of Modulation of Ferroptosis and Its Role in Central Nervous System Diseases. Front. Pharmacol. 2021, 12, 657033. [Google Scholar] [CrossRef]
  73. Shahandeh, A.; Bui, B.V.; Finkelstein, D.I.; Nguyen, C.T.O. Therapeutic Applications of Chelating Drugs in Iron Metabolic Disorders of the Brain and Retina. J. Neurosci. Res. 2020, 98, 1889–1904. [Google Scholar] [CrossRef] [PubMed]
  74. Boya, P.; Esteban-Martínez, L.; Serrano-Puebla, A.; Gómez-Sintes, R.; Villarejo-Zori, B. Autophagy in the Eye: Development, Degeneration, and Aging. Prog. Retin. Eye Res. 2016, 55, 206–245. [Google Scholar] [CrossRef] [PubMed]
  75. Lin, W.; Xu, G. Autophagy: A Role in the Apoptosis, Survival, Inflammation, and Development of the Retina. Ophthalmic Res. 2019, 61, 65–72. [Google Scholar] [CrossRef] [PubMed]
  76. Trachsel-Moncho, L.; Benlloch-Navarro, S.; Fernández-Carbonell, Á.; Ramírez-Lamelas, D.T.; Olivar, T.; Silvestre, D.; Poch, E.; Miranda, M. Oxidative Stress and Autophagy-Related Changes during Retinal Degeneration and Development. Cell Death Dis. 2018, 9, 812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  77. Yao, J.; Jia, L.; Shelby, S.J.; Ganios, A.M.; Feathers, K.; Thompson, D.A.; Zacks, D.N. Circadian and Noncircadian Modulation of Autophagy in Photoreceptors and Retinal Pigment Epithelium. Investig. Opthalmol. Vis. Sci. 2014, 55, 3237. [Google Scholar] [CrossRef] [PubMed]
  78. Rodríguez-Muela, N.; Koga, H.; García-Ledo, L.; Villa, P.; Rosa, E.J.; Cuervo, A.M.; Boya, P. Balance between Autophagic Pathways Preserves Retinal Homeostasis. Aging Cell 2013, 12, 478–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  79. Wang, T.; Lao, U.; Edgar, B.A. TOR-Mediated Autophagy Regulates Cell Death in Drosophila Neurodegenerative Disease. J. Cell Biol. 2009, 186, 703–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  80. Villarejo-Zori, B.; Jiménez-Loygorri, J.I.; Zapata-Muñoz, J.; Bell, K.; Boya, P. New Insights into the Role of Autophagy in Retinal and Eye Diseases. Mol. Asp. Med. 2021, 82, 101038. [Google Scholar] [CrossRef]
  81. Barhoum, R.; Martínez-Navarrete, G.; Corrochano, S.; Germain, F.; Fernandez-Sanchez, L.; de la Rosa, E.J.; de la Villa, P.; Cuenca, N. Functional and Structural Modifications during Retinal Degeneration in the Rd10 Mouse. Neuroscience 2008, 155, 698–713. [Google Scholar] [CrossRef] [Green Version]
  82. Yao, J.; Qiu, Y.; Frontera, E.; Jia, L.; Khan, N.W.; Klionsky, D.J.; Ferguson, T.A.; Thompson, D.A.; Zacks, D.N. Inhibiting Autophagy Reduces Retinal Degeneration Caused by Protein Misfolding. Autophagy 2018, 14, 1226–1238. [Google Scholar] [CrossRef] [Green Version]
  83. Kakavand, K.; Jobling, A.I.; Greferath, U.; Vessey, K.A.; de Iongh, R.U.; Fletcher, E.L. Photoreceptor Degeneration in Pro23His Transgenic Rats (Line 3) Involves Autophagic and Necroptotic Mechanisms. Front. Neurosci. 2020, 14, 581579. [Google Scholar] [CrossRef] [PubMed]
  84. Nag, T.C. Pathogenic Mechanisms Contributing to the Vulnerability of Aging Human Photoreceptor Cells. Eye 2021, 35, 2917–2929. [Google Scholar] [CrossRef] [PubMed]
  85. de La Paz, M.; Anderson, R.E. Region and Age-Dependent Variation in Susceptibility of the Human Retina to Lipid Peroxidation. Investig. Ophthalmol. Vis. Sci. 1992, 33, 3497–3499. [Google Scholar] [CrossRef]
  86. Sun, M.; Finnemann, S.C.; Febbraio, M.; Shan, L.; Annangudi, S.P.; Podrez, E.A.; Hoppe, G.; Darrow, R.; Organisciak, D.T.; Salomon, R.G.; et al. Light-Induced Oxidation of Photoreceptor Outer Segment Phospholipids Generates Ligands for CD36-Mediated Phagocytosis by Retinal Pigment Epithelium. J. Biol. Chem. 2006, 281, 4222–4230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  87. Liu, Y.; Zhang, D.; Wu, Y.; Ji, B. Docosahexaenoic Acid Aggravates Photooxidative Damage in Retinal Pigment Epithelial Cells via Lipid Peroxidation. J. Photochem. Photobiol. B Biol. 2014, 140, 85–93. [Google Scholar] [CrossRef]
  88. Taubitz, T.; Tschulakow, A.V.; Tikhonovich, M.; Illing, B.; Fang, Y.; Biesemeier, A.; Julien-Schraermeyer, S.; Schraermeyer, U. Ultrastructural Alterations in the Retinal Pigment Epithelium and Photoreceptors of a Stargardt Patient and Three Stargardt Mouse Models: Indication for the Central Role of RPE Melanin in Oxidative Stress. PeerJ 2018, 6, e5215. [Google Scholar] [CrossRef] [Green Version]
  89. Lenis, T.L.; Hu, J.; Ng, S.Y.; Jiang, Z.; Sarfare, S.; Lloyd, M.B.; Esposito, N.J.; Samuel, W.; Jaworski, C.; Bok, D.; et al. Expression of ABCA4 in the Retinal Pigment Epithelium and Its Implications for Stargardt Macular Degeneration. Proc. Natl. Acad. Sci. USA 2018, 115, E11120–E11127. [Google Scholar] [CrossRef] [Green Version]
  90. Pole, C.; Ameri, H. Fundus Autofluorescence and Clinical Applications. J. Ophthalmic Vis. Res. 2021, 16, 432–461. [Google Scholar] [CrossRef]
  91. Su, L.-J.; Zhang, J.-H.; Gomez, H.; Murugan, R.; Hong, X.; Xu, D.; Jiang, F.; Peng, Z.-Y. Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis. Oxidative Med. Cell. Longev. 2019, 2019, 5080843. [Google Scholar] [CrossRef] [Green Version]
  92. Cortina, M.S.; Gordon, W.C.; Lukiw, W.J.; Bazan, N.G. Oxidative Stress-Induced Retinal Damage up-Regulates DNA Polymerase Gamma and 8-Oxoguanine-DNA-Glycosylase in Photoreceptor Synaptic Mitochondria. Exp. Eye Res. 2005, 81, 742–750. [Google Scholar] [CrossRef]
  93. Kong, Q.; Lin, C.G. Oxidative Damage to RNA: Mechanisms, Consequences, and Diseases. Cell. Mol. Life Sci. 2010, 67, 1817–1829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  94. Li, Z.; Chen, X.; Liu, Z.; Ye, W.; Li, L.; Qian, L.; Ding, H.; Li, P.; Aung, L.H.H. Recent Advances: Molecular Mechanism of RNA Oxidation and Its Role in Various Diseases. Front. Mol. Biosci. 2020, 7, 184. [Google Scholar] [CrossRef] [PubMed]
  95. Berlett, B.S.; Stadtman, E.R. Protein Oxidation in Aging, Disease, and Oxidative Stress. J. Biol. Chem. 1997, 272, 20313–20316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  96. Tzekov, R.; Stein, L.; Kaushal, S. Protein Misfolding and Retinal Degeneration. Cold Spring Harb. Perspect. Biol. 2011, 3, a007492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  97. Zhang, S.X.; Sanders, E.; Fliesler, S.J.; Wang, J.J. Endoplasmic Reticulum Stress and the Unfolded Protein Responses in Retinal Degeneration. Exp. Eye Res. 2014, 125, 30–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  98. Kang, C.; Scott, L.J. Voretigene Neparvovec: A Review in RPE65 Mutation-Associated Inherited Retinal Dystrophy. Mol. Diagn. Ther. 2020, 24, 487–495. [Google Scholar] [CrossRef] [PubMed]
  99. Botto, C.; Rucli, M.; Tekinsoy, M.D.; Pulman, J.; Sahel, J.A.; Dalkara, D. Early and Late Stage Gene Therapy Interventions for Inherited Retinal Degenerations. Prog. Retin. Eye Res. 2022, 86, 100975. [Google Scholar] [CrossRef]
  100. Chu-Tan, J.A.; Kirkby, M.; Natoli, R. Running to Save Sight: The Effects of Exercise on Retinal Health and Function. Clin. Exp. Ophthalmol. 2022, 50, 74–90. [Google Scholar] [CrossRef]
  101. Pardue, M.T.; Allen, R.S. Neuroprotective Strategies for Retinal Disease. Prog. Retin. Eye Res. 2018, 65, 50–76. [Google Scholar] [CrossRef]
  102. Wubben, T.J.; Zacks, D.N.; Besirli, C.G. Retinal Neuroprotection: Current Strategies and Future Directions. Curr. Opin. Ophthalmol. 2019, 30, 199–205. [Google Scholar] [CrossRef]
  103. Walter, P.; Ron, D. The Unfolded Protein Response: From Stress Pathway to Homeostatic Regulation. Science 2011, 334, 1081–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  104. Kroeger, H.; Chiang, W.C.; Felden, J.; Nguyen, A.; Lin, J.H. ER Stress and Unfolded Protein Response in Ocular Health and Disease. FEBS J. 2019, 286, 399–412. [Google Scholar] [CrossRef] [PubMed]
  105. Gorbatyuk, M.S.; Knox, T.; LaVail, M.M.; Gorbatyuk, O.S.; Noorwez, S.M.; Hauswirth, W.W.; Lin, J.H.; Muzyczka, N.; Lewin, A.S. Restoration of Visual Function in P23H Rhodopsin Transgenic Rats by Gene Delivery of BiP/Grp78. Proc. Natl. Acad. Sci. USA 2010, 107, 5961–5966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  106. Bhootada, Y.; Kotla, P.; Zolotukhin, S.; Gorbatyuk, O.; Bebok, Z.; Athar, M.; Gorbatyuk, M. Limited ATF4 Expression in Degenerating Retinas with Ongoing ER Stress Promotes Photoreceptor Survival in a Mouse Model of Autosomal Dominant Retinitis Pigmentosa. PLoS ONE 2016, 11, e0154779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  107. Donato, L.; Bramanti, P.; Scimone, C.; Rinaldi, C.; D’Angelo, R.; Sidoti, A. MiRNAexpression Profile of Retinal Pigment Epithelial Cells under Oxidative Stress Conditions. FEBS Open Bio 2018, 8, 219–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  108. Aldini, G.; Altomare, A.; Baron, G.; Vistoli, G.; Carini, M.; Borsani, L.; Sergio, F. N-Acetylcysteine as an Antioxidant and Disulphide Breaking Agent: The Reasons Why. Free Radic. Res. 2018, 52, 751–762. [Google Scholar] [CrossRef] [PubMed]
  109. Yoshida, N.; Ikeda, Y.; Notomi, S.; Ishikawa, K.; Murakami, Y.; Hisatomi, T.; Enaida, H.; Ishibashi, T. Laboratory Evidence of Sustained Chronic Inflammatory Reaction in Retinitis Pigmentosa. Ophthalmology 2013, 120, e5–e12. [Google Scholar] [CrossRef] [PubMed]
  110. Nakamura, M.; Kuse, Y.; Tsuruma, K.; Shimazawa, M.; Hara, H. The Involvement of the Oxidative Stress in Murine Blue LED Light-Induced Retinal Damage Model. Biol. Pharm. Bull. 2017, 40, 1219–1225. [Google Scholar] [CrossRef] [Green Version]
  111. Narimatsu, T.; Ozawa, Y.; Miyake, S.; Nagai, N.; Tsubota, K. Angiotensin II Type 1 Receptor Blockade Suppresses Light-Induced Neural Damage in the Mouse Retina. Free Radic. Biol. Med. 2014, 71, 176–185. [Google Scholar] [CrossRef] [Green Version]
  112. Saito, Y.; Tsuruma, K.; Shimazawa, M.; Nishimura, Y.; Tanaka, T.; Hara, H. Establishment of a Drug Evaluation Model against Light-Induced Retinal Degeneration Using Adult Pigmented Zebrafish. J. Pharmacol. Sci. 2016, 131, 215–218. [Google Scholar] [CrossRef] [Green Version]
  113. Issa, N.M.; Al-Gholam, M.A. The Effect of N-Acetylcysteine on the Sensory Retina of Male Albino Rats Exposed Prenatally to Cypermethrin. Folia Morphol. 2021, 80, 140–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  114. Ye, F.; Kaneko, H.; Nagasaka, Y.; Ijima, R.; Nakamura, K.; Nagaya, M.; Takayama, K.; Kajiyama, H.; Senga, T.; Tanaka, H.; et al. Plasma-Activated Medium Suppresses Choroidal Neovascularization in Mice: A New Therapeutic Concept for Age-Related Macular Degeneration. Sci. Rep. 2015, 5, 7705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  115. Hsu, S.M.; Yang, C.H.; Teng, Y.T.; Tsai, H.Y.; Lin, C.Y.; Lin, C.J.; Shieh, C.C.; Chen, S.H. Suppression of the Reactive Oxygen Response Alleviates Experimental Autoimmune Uveitis in Mice. Int. J. Mol. Sci. 2020, 21, 3261. [Google Scholar] [CrossRef] [PubMed]
  116. Daudin, J.B.; Monnet, D.; Kavian, N.; Espy, C.; Wang, A.; Chéreau, C.; Goulvestre, C.; Omri, S.; Brézin, A.; Weill, B.; et al. Protective Effect of Pristane on Experimental Autoimmune Uveitis. Immunol. Lett. 2011, 141, 83–93. [Google Scholar] [CrossRef] [PubMed]
  117. Miller, W.P.; Toro, A.L.; Barber, A.J.; Dennis, M.D. REDD1 Activates a ROS-Generating Feedback Loop in the Retina of Diabetic Mice. Investig. Ophthalmol. Vis. Sci. 2019, 60, 2369–2379. [Google Scholar] [CrossRef]
  118. Zhu, Y.; Zhang, X.L.; Zhu, B.F.; Ding, Y.N. Effect of Antioxidant N-Acetylcysteine on Diabetic Retinopathy and Expression of VEGF and ICAM-1 from Retinal Blood Vessels of Diabetic Rats. Mol. Biol. Rep. 2012, 39, 3727–3735. [Google Scholar] [CrossRef]
  119. Sano, H.; Namekata, K.; Kimura, A.; Shitara, H.; Guo, X.; Harada, C.; Mitamura, Y.; Harada, T. Differential Effects of N-Acetylcysteine on Retinal Degeneration in Two Mouse Models of Normal Tension Glaucoma. Cell Death Dis. 2019, 10, 75. [Google Scholar] [CrossRef]
  120. Kim, T.W.; Moon, J.W.; Yu, H.G. N-Acetylcysteine Protects against Chorioretinal Damage Induced by Photodynamic Therapy for Experimental Choroidal Neovascularization in a Rat Model. Photodiagnosis Photodyn. Ther. 2018, 23, 12–17. [Google Scholar] [CrossRef]
  121. Kong, X.; Hafiz, G.; Wehling, D.; Akhlaq, A.; Campochiaro, P.A. Locus-Level Changes in Macular Sensitivity in Patients with Retinitis Pigmentosa Treated with Oral N-Acetylcysteine. Am. J. Ophthalmol. 2021, 221, 105–114. [Google Scholar] [CrossRef]
  122. Campochiaro, P.A.; Iftikhar, M.; Hafiz, G.; Akhlaq, A.; Tsai, G.; Wehling, D.; Lu, L.; Wall, G.M.; Singh, M.S.; Kong, X. Oral N-Acetylcysteine Improves Cone Function in Retinitis Pigmentosa Patients in Phase I Trial. J. Clin. Investig. 2020, 130, 1527–1541. [Google Scholar] [CrossRef] [Green Version]
  123. Parravano, M.; Tedeschi, M.; Manca, D.; Costanzo, E.; Di Renzo, A.; Giorno, P.; Barbano, L.; Ziccardi, L.; Varano, M.; Parisi, V. Effects of Macuprev ® Supplementation in Age-Related Macular Degeneration: A Double-Blind Randomized Morpho-Functional Study Along 6 Months of Follow-Up. Adv. Ther. 2019, 36, 2493–2505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  124. Schimel, A.M.; Abraham, L.; Kraus, C.; Ercal, N.; Apte, R.S. A Novel Thiol Antioxidant, N-Acetylcysteine Amide, Prevents Retinal Degeneration in Rd10 Mice. Investig. Ophthalmol. Vis. Sci. 2010, 51, 2940. [Google Scholar] [CrossRef] [Green Version]
  125. Schimel, A.M.; Abraham, L.; Cox, D.; Sene, A.; Kraus, C.; Dace, D.S.; Ercal, N.; Apte, R.S. N-Acetylcysteine Amide (NACA) Prevents Retinal Degeneration by up-Regulating Reduced Glutathione Production and Reversing Lipid Peroxidation. Am. J. Pathol. 2011, 178, 2032–2043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  126. Gimeno-Hernández, R.; Cantó, A.; Fernández-Carbonell, A.; Olivar, T.; Hernández-Rabaza, V.; Almansa, I.; Miranda, M. Thioredoxin Delays Photoreceptor Degeneration, Oxidative and Inflammation Alterations in Retinitis Pigmentosa. Front. Pharmacol. 2020, 11, 590572. [Google Scholar] [CrossRef] [PubMed]
  127. Elachouri, G.; Lee-Rivera, I.; Clérin, E.; Argentini, M.; Fridlich, R.; Blond, F.; Ferracane, V.; Yang, Y.; Raffelsberger, W.; Wan, J.; et al. Thioredoxin Rod-Derived Cone Viability Factor Protects against Photooxidative Retinal Damage. Free Radic. Biol. Med. 2015, 81, 22–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  128. Kong, H.; Ren, X.; Zhang, H.; Wang, N.; Zhang, C.; Li, L.; Xia, X.; Kong, L.; Zhang, M.; Xu, M. Thioredoxin Is a Potential Therapy for Light-Induced Photoreceptor Degeneration in Diabetic Mice. Neuro Endocrinol. Lett. 2019, 39, 561–566. [Google Scholar]
  129. Natoli, R.; Zhu, Y.; Valter, K.; Bisti, S.; Eells, J.; Stone, J. Gene and Noncoding RNA Regulation Underlying Photoreceptor Protection: Microarray Study of Dietary Antioxidant Saffron and Photobiomodulation in Rat Retina. Mol. Vis. 2010, 16, 1801–1822. [Google Scholar]
  130. Maccarone, R.; Di Marco, S.; Bisti, S. Saffron Supplement Maintains Morphology and Function after Exposure to Damaging Light in Mammalian Retina. Investig. Ophthalmol. Vis. Sci. 2008, 49, 1254–1261. [Google Scholar] [CrossRef] [Green Version]
  131. Di Marco, F.; Romeo, S.; Nandasena, C.; Purushothuman, S.; Adams, C.; Bisti, S.; Stone, J. The Time Course of Action of Two Neuroprotectants, Dietary Saffron and Photobiomodulation, Assessed in the Rat Retina. Am. J. Neurodegener. Dis. 2013, 2, 208–220. [Google Scholar]
  132. Fernández-Sánchez, L.; Lax, P.; Esquiva, G.; Martín-Nieto, J.; Pinilla, I.; Cuenca, N. Safranal, a Saffron Constituent, Attenuates Retinal Degeneration in P23H Rats. PLoS ONE 2012, 7, e43074. [Google Scholar] [CrossRef] [Green Version]
  133. Ohno, Y.; Nakanishi, T.; Umigai, N.; Tsuruma, K.; Shimazawa, M.; Hara, H. Oral Administration of Crocetin Prevents Inner Retinal Damage Induced by N-Methyl-D-Aspartate in Mice. Eur. J. Pharmacol. 2012, 690, 84–89. [Google Scholar] [CrossRef] [PubMed]
  134. Falsini, B.; Piccardi, M.; Minnella, A.; Savastano, C.; Capoluongo, E.; Fadda, A.; Balestrazzi, E.; Maccarone, R.; Bisti, S. Influence of Saffron Supplementation on Retinal Flicker Sensitivity in Early Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2010, 51, 6118–6124. [Google Scholar] [CrossRef] [PubMed]
  135. Ozaki, E.; Delaney, C.; Campbell, M.; Doyle, S.L. Minocycline Suppresses Disease-Associated Microglia (DAM) in a Model of Photoreceptor Cell Degeneration. Exp. Eye Res. 2022, 217, 108953. [Google Scholar] [CrossRef] [PubMed]
  136. Terauchi, R.; Kohno, H.; Watanabe, S.; Saito, S.; Watanabe, A.; Nakano, T. Minocycline Decreases CCR2-Positive Monocytes in the Retina and Ameliorates Photoreceptor Degeneration in a Mouse Model of Retinitis Pigmentosa. PLoS ONE 2021, 16, e0239108. [Google Scholar] [CrossRef] [PubMed]
  137. Di Pierdomenico, J.; Scholz, R.; Valiente-Soriano, F.J.; Sánchez-Migallón, M.C.; Vidal-Sanz, M.; Langmann, T.; Agudo-Barriuso, M.; García-Ayuso, D.; Villegas-Pérez, M.P. Neuroprotective Effects of FGF2 and Minocycline in Two Animal Models of Inherited Retinal Degeneration. Investig. Ophthalmol. Vis. Sci. 2018, 59, 4392–4403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  138. Peng, B.; Xiao, J.; Wang, K.; So, K.-F.; Tipoe, G.L.; Lin, B. Suppression of Microglial Activation Is Neuroprotective in a Mouse Model of Human Retinitis Pigmentosa. J. Neurosci. 2014, 34, 8139–8150. [Google Scholar] [CrossRef] [Green Version]
  139. Hughes, E.H.; Schlichtenbrede, F.C.; Murphy, C.C.; Broderick, C.; van Rooijen, N.; Ali, R.R.; Dick, A.D. Minocycline Delays Photoreceptor Death in the Rds Mouse through a Microglia-Independent Mechanism. Exp. Eye Res. 2004, 78, 1077–1084. [Google Scholar] [CrossRef]
  140. Yang, L.; Li, Y.; Zhu, X.; Tso, M.O.M. Minocycline Delayed Photoreceptor Death in Rds Mice through INOS-Dependent Mechanism. Mol. Vis. 2007, 13, 1073–1082. [Google Scholar]
  141. Takeda, A.; Shinozaki, Y.; Kashiwagi, K.; Ohno, N.; Eto, K.; Wake, H.; Nabekura, J.; Koizumi, S. Microglia Mediate Non-Cell-Autonomous Cell Death of Retinal Ganglion Cells. Glia 2018, 66, 2366–2384. [Google Scholar] [CrossRef]
  142. Shimazawa, M.; Yamashima, T.; Agarwal, N.; Hara, H. Neuroprotective Effects of Minocycline against in Vitro and in Vivo Retinal Ganglion Cell Damage. Brain Res. 2005, 1053, 185–194. [Google Scholar] [CrossRef]
  143. Grotegut, P.; Perumal, N.; Kuehn, S.; Smit, A.; Dick, H.B.; Grus, F.H.; Joachim, S.C. Minocycline Reduces Inflammatory Response and Cell Death in a S100B Retina Degeneration Model. J. Neuroinflamm. 2020, 17, 375. [Google Scholar] [CrossRef] [PubMed]
  144. Sun, C.; Li, X.X.; He, X.J.; Zhang, Q.; Tao, Y. Neuroprotective Effect of Minocycline in a Rat Model of Branch Retinal Vein Occlusion. Exp. Eye Res. 2013, 113, 105–116. [Google Scholar] [CrossRef] [PubMed]
  145. Dannhausen, K.; Möhle, C.; Langmann, T. Immunomodulation with Minocycline Rescues Retinal Degeneration in Juvenile Neuronal Ceroid Lipofuscinosis Mice Highly Susceptible to Light Damage. Dis. Model. Mech. 2018, 11, dmm033597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  146. Miralles de Imperial-Ollero, J.A.; Gallego-Ortega, A.; Norte-Muñoz, M.; Di Pierdomenico, J.; Valiente-Soriano, F.J.; Vidal-Sanz, M. An In Vivo Model of Focal Light Emitting Diode-Induced Cone Photoreceptor Phototoxicity in Adult Pigmented Mice: Protection with BFGF. Exp. Eye Res. 2021, 211, 108746. [Google Scholar] [CrossRef] [PubMed]
  147. Scholz, R.; Sobotka, M.; Caramoy, A.; Stempfl, T.; Moehle, C.; Langmann, T. Minocycline Counter-Regulates pro-Inflammatory Microglia Responses in the Retina and Protects from Degeneration. J. Neuroinflamm. 2015, 12, 209. [Google Scholar] [CrossRef] [Green Version]
  148. Zhang, C.; Lei, B.; Lam, T.T.; Yang, F.; Sinha, D.; Tso, M.O.M. Neuroprotection of Photoreceptors by Minocycline in Light-Induced Retinal Degeneration. Investig. Ophthalmol. Vis. Sci. 2004, 45, 2753–2759. [Google Scholar] [CrossRef] [Green Version]
  149. Chang, C.J.; Cherng, C.H.; Liou, W.S.; Liao, C.L. Minocycline Partially Inhibits Caspase-3 Activation and Photoreceptor Degeneration after Photic Injury. Ophthalmic Res. 2005, 37, 202–213. [Google Scholar] [CrossRef]
  150. Rao, Y.Q.; Zhou, Y.T.; Zhou, W.; Li, J.K.; Li, B.; Li, J. MTORC1 Activation in Chx10-Specific Tsc1 Knockout Mice Accelerates Retina Aging and Degeneration. Oxidative Med. Cell. Longev. 2021, 2021, 6715758. [Google Scholar] [CrossRef]
  151. Zhao, L.; Ma, W.; Fariss, R.N.; Wong, W.T. Minocycline Attenuates Photoreceptor Degeneration in a Mouse Model of Subretinal Hemorrhage Microglial: Inhibition as a Potential Therapeutic Strategy. Am. J. Pathol. 2011, 179, 1265–1277. [Google Scholar] [CrossRef]
  152. Wang, W.; Sidoli, S.; Zhang, W.; Wang, Q.; Wang, L.; Jensen, O.N.; Guo, L.; Zhao, X.; Zheng, L. Abnormal Levels of Histone Methylation in the Retinas of Diabetic Rats Are Reversed by Minocycline Treatment. Sci Rep. 2017, 7. [Google Scholar] [CrossRef]
  153. Chen, W.; Zhao, M.; Zhao, S.; Lu, Q.; Ni, L.; Zou, C.; Lu, L.; Xu, X.; Guan, H.; Zheng, Z.; et al. Activation of the TXNIP/NLRP3 Inflammasome Pathway Contributes to Inflammation in Diabetic Retinopathy: A Novel Inhibitory Effect of Minocycline. Inflamm. Res. 2017, 66, 157–166. [Google Scholar] [CrossRef] [PubMed]
  154. Wu, Y.; Chen, Y.; Wu, Q.; Jia, L.; Du, X. Minocycline Inhibits PARP-1 Expression and Decreases Apoptosis in Diabetic Retinopathy. Mol. Med. Rep. 2015, 12, 4887–4894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  155. Levkovitch-Verbin, H.; Waserzoog, Y.; Vander, S.; Makarovsky, D.; Ilia, P. Minocycline Mechanism of Neuroprotection Involves the Bcl-2 Gene Family in Optic Nerve Transection. Int. J. Neurosci. 2014, 124, 755–761. [Google Scholar] [CrossRef] [PubMed]
  156. Levkovitch-Verbin, H.; Kalev-Landoy, M.; Habot-Wilner, Z.; Melamed, S. Minocycline Delays Death of Retinal Ganglion Cells in Experimental Glaucoma and after Optic Nerve Transection. Arch. Ophthalmol. 2006, 124, 520–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  157. Li, X.; Ye, Z.; Pei, S.; Zheng, D.; Zhu, L. Neuroprotective Effect of Minocycline on Rat Retinal Ischemia-Reperfusion Injury. Mol. Vis. 2021, 27, 438–456. [Google Scholar]
  158. Abcouwer, S.F.; Lin, C.M.; Shanmugam, S.; Muthusamy, A.; Barber, A.J.; Antonetti, D.A. Minocycline Prevents Retinal Inflammation and Vascular Permeability Following Ischemia-Reperfusion Injury. J. Neuroinflamm. 2013, 10, 149. [Google Scholar] [CrossRef]
  159. Chen, Y.I.; Lee, Y.J.; Wilkie, D.A.; Lin, C.T. Evaluation of Potential Topical and Systemic Neuroprotective Agents for Ocular Hypertension-Induced Retinal Ischemia-Reperfusion Injury. Vet. Ophthalmol. 2014, 17, 432–442. [Google Scholar] [CrossRef]
  160. Levkovitch-Verbin, H.; Waserzoog, Y.; Vander, S.; Makarovsky, D.; Piven, I. Minocycline Upregulates Pro-Survival Genes and Downregulates pro-Apoptotic Genes in Experimental Glaucoma. Graefe’s Arch. Clin. Exp. Ophthalmol. 2014, 252, 761–772. [Google Scholar] [CrossRef]
  161. Bordone, M.P.; González Fleitas, M.F.; Pasquini, L.A.; Bosco, A.; Sande, P.H.; Rosenstein, R.E.; Dorfman, D. Involvement of Microglia in Early Axoglial Alterations of the Optic Nerve Induced by Experimental Glaucoma. J. Neurochem. 2017, 142, 323–337. [Google Scholar] [CrossRef]
  162. Wang, K.; Peng, B.; Lin, B. Fractalkine Receptor Regulates Microglial Neurotoxicity in an Experimental Mouse Glaucoma Model. Glia 2014, 62, 1943–1954. [Google Scholar] [CrossRef]
  163. Bosco, A.; Inman, D.M.; Steele, M.R.; Wu, G.; Soto, I.; Marsh-Armstrong, N.; Hubbard, W.C.; Calkins, D.J.; Horner, P.J.; Vetter, M.L. Reduced Retina Microglial Activation and Improved Optic Nerve Integrity with Minocycline Treatment in the DBA/2J Mouse Model of Glaucoma. Investig. Ophthalmol. Vis. Sci. 2008, 49, 1437–1446. [Google Scholar] [CrossRef] [PubMed]
  164. Huang, R.; Liang, S.; Fang, L.; Wu, M.; Cheng, H.; Mi, X.; Ding, Y. Low-Dose Minocycline Mediated Neuroprotection on Retinal Ischemia-Reperfusion Injury of Mice. Mol. Vis. 2018, 24, 367–378. [Google Scholar] [PubMed]
  165. Jiao, X.; Peng, Y.; Yang, L. Minocycline Protects Retinal Ganglion Cells after Optic Nerve Crush Injury in Mice by Delaying Autophagy and Upregulating Nuclear Factor-ΚB2. Chin. Med. J. 2014, 127, 1749–1754. [Google Scholar] [PubMed]
  166. Baptiste, D.C.; Powell, K.J.; Jollimore, C.A.B.; Hamilton, C.; LeVatte, T.L.; Archibald, M.L.; Chauhan, B.C.; Robertson, G.S.; Kelly, M.E.M. Effects of Minocycline and Tetracycline on Retinal Ganglion Cell Survival after Axotomy. Neuroscience 2005, 134, 575–582. [Google Scholar] [CrossRef]
  167. Lax, P.; Otalora, B.B.; Esquiva, G.; Rol, M.D.L.Á.; Madrid, J.A.; Cuenca, N. Circadian Dysfunction in P23H Rhodopsin Transgenic Rats: Effects of Exogenous Melatonin. J. Pineal Res. 2011, 50, 183–191. [Google Scholar] [CrossRef]
  168. Fuentes-Broto, L.; Perdices, L.; Segura, F.; Orduna-Hospital, E.; Insa-Sánchez, G.; Sánchez-Cano, A.I.; Cuenca, N.; Pinilla, I. Effects of Daily Melatonin Supplementation on Visual Loss, Circadian Rhythms, and Hepatic Oxidative Damage in a Rodent Model of Retinitis Pigmentosa. Antioxidants 2021, 10, 1853. [Google Scholar] [CrossRef]
  169. Xu, X.J.; Wang, S.M.; Jin, Y.; Hu, Y.T.; Feng, K.; Ma, Z.Z. Melatonin Delays Photoreceptor Degeneration in a Mouse Model of Autosomal Recessive Retinitis Pigmentosa. J. Pineal Res. 2017, 63, e12428. [Google Scholar] [CrossRef]
  170. Liang, F.Q.; Aleman, T.S.; Yang, Z.; Cideciyan, A.V.; Jacobson, S.G.; Bennett, J. Melatonin Delays Photoreceptor Degeneration in the Rds/Rds Mouse. Neuroreport 2001, 12, 1011–1014. [Google Scholar] [CrossRef]
  171. Zhang, R.; Hrushesky, W.J.M.; Wood, P.A.; Lee, S.H.; Hunt, R.C.; Jahng, W.J. Melatonin Reprogrammes Proteomic Profile in Light-Exposed Retina In Vivo. Int. J. Biol. Macromol. 2010, 47, 255–260. [Google Scholar] [CrossRef] [Green Version]
  172. Li, C.; Tian, Y.; Yao, A.; Zha, X.; Zhang, J.; Tao, Y. Intravitreal Delivery of Melatonin Is Protective Against the Photoreceptor Loss in Mice: A Potential Therapeutic Strategy for Degenerative Retinopathy. Front. Pharmacol. 2020, 10, 1633. [Google Scholar] [CrossRef] [Green Version]
  173. Avunduk, A.M.; Avunduk, M.C.; Baltaci, A.K.; Moǧulkoç, R. Effect of Melatonin and Zinc on the Immune Response in Experimental Toxoplasma Retinochoroiditis. Ophthalmologica 2007, 221, 421–425. [Google Scholar] [CrossRef] [PubMed]
  174. Xu, Y.; Cui, K.; Li, J.; Tang, X.; Lin, J.; Lu, X.; Huang, R.; Yang, B.; Shi, Y.; Ye, D.; et al. Melatonin Attenuates Choroidal Neovascularization by Regulating Macrophage/Microglia Polarization via Inhibition of RhoA/ROCK Signaling Pathway. J. Pineal. Res. 2020, 69, e12660. [Google Scholar] [CrossRef] [PubMed]
  175. Diéguez, H.H.; González Fleitas, M.F.; Aranda, M.L.; Calanni, J.S.; Keller Sarmiento, M.I.; Chianelli, M.S.; Alaimo, A.; Sande, P.H.; Romeo, H.E.; Rosenstein, R.E.; et al. Melatonin Protects the Retina from Experimental Nonexudative Age-Related Macular Degeneration in Mice. J. Pineal Res. 2020, 68, e12643. [Google Scholar] [CrossRef] [PubMed]
  176. Jiang, T.; Chang, Q.; Cai, J.; Fan, J.; Zhang, X.; Xu, G. Protective Effects of Melatonin on Retinal Inflammation and Oxidative Stress in Experimental Diabetic Retinopathy. Oxidative Med. Cell. Longev. 2016, 2016, 3528274. [Google Scholar] [CrossRef] [Green Version]
  177. Özdemir, G.; Ergün, Y.; Bakariş, S.; Kilinç, M.; Durdu, H.; Ganiyusufoğlu, E. Melatonin Prevents Retinal Oxidative Stress and Vascular Changes in Diabetic Rats. Eye (Basingstoke) 2014, 28, 1020–1027. [Google Scholar] [CrossRef] [Green Version]
  178. Tang, L.; Zhang, C.; Yang, Q.; Xie, H.; Liu, D.; Tian, H.; Lu, L.; Xu, J.Y.; Li, W.; Xu, G.; et al. Melatonin Maintains Inner Blood-Retinal Barrier via Inhibition of P38/TXNIP/NF-κB Pathway in Diabetic Retinopathy. J. Cell. Physiol. 2021, 236, 5848–5864. [Google Scholar] [CrossRef]
  179. Mehrzadi, S.; Motevalian, M.; Rezaei Kanavi, M.; Fatemi, I.; Ghaznavi, H.; Shahriari, M. Protective Effect of Melatonin in the Diabetic Rat Retina. Fundam. Clin. Pharmacol. 2018, 32, 414–421. [Google Scholar] [CrossRef]
  180. Ferreira de Melo, I.M.; Martins Ferreira, C.G.; Lima da Silva Souza, E.H.; Almeida, L.L.; Bezerra de Sá, F.; Cavalcanti Lapa Neto, C.J.; Paz de Castro, M.V.; Teixeira, V.W.; Coelho Teixeira, Á.A. Melatonin Regulates the Expression of Inflammatory Cytokines, VEGF and Apoptosis in Diabetic Retinopathy in Rats. Chem. Biol. Interact. 2020, 327, 109183. [Google Scholar] [CrossRef]
  181. Salido, E.M.; Bordone, M.; De Laurentiis, A.; Chianelli, M.; Keller Sarmiento, M.I.; Dorfman, D.; Rosenstein, R.E. Therapeutic Efficacy of Melatonin in Reducing Retinal Damage in an Experimental Model of Early Type 2 Diabetes in Rats. J. Pineal Res. 2013, 54, 179–189. [Google Scholar] [CrossRef]
  182. Chang, J.Y.A.; Yu, F.; Shi, L.; Ko, M.L.; Ko, G.Y.P. Melatonin Affects Mitochondrial Fission/Fusion Dynamics in the Diabetic Retina. J. Diabetes Res. 2019, 2019, 8463125. [Google Scholar] [CrossRef] [Green Version]
  183. Li, X.; Zhang, M.; Tang, W. Effects of Melatonin on Streptozotocin-Induced Retina Neuronal Apoptosis in High Blood Glucose Rat. Neurochem. Res. 2013, 38, 669–676. [Google Scholar] [CrossRef] [PubMed]
  184. Djordjevic, B.; Cvetkovic, T.; Stoimenov, T.J.; Despotovic, M.; Zivanovic, S.; Basic, J.; Veljkovic, A.; Velickov, A.; Kocic, G.; Pavlovic, D.; et al. Oral Supplementation with Melatonin Reduces Oxidative Damage and Concentrations of Inducible Nitric Oxide Synthase, VEGF and Matrix Metalloproteinase 9 in the Retina of Rats with Streptozotocin/Nicotinamide Induced Pre-Diabetes. Eur. J. Pharmacol. 2018, 833, 290–297. [Google Scholar] [CrossRef] [PubMed]
  185. Tu, Y.; Song, E.; Wang, Z.; Ji, N.; Zhu, L.; Wang, K.; Sun, H.; Zhang, Y.; Zhu, Q.; Liu, X.; et al. Melatonin Attenuates Oxidative Stress and Inflammation of Müller Cells in Diabetic Retinopathy via Activating the Sirt1 Pathway. Biomed. Pharmacother. 2021, 137, 111274. [Google Scholar] [CrossRef] [PubMed]
  186. Oliveira-Abreu, K.; Cipolla-Neto, J.; Leal-Cardoso, J.H. Effects of Melatonin on Diabetic Neuropathy and Retinopathy. Int. J. Mol. Sci. 2021, 23, 100. [Google Scholar] [CrossRef] [PubMed]
  187. Huang, R.; Xu, Y.; Lu, X.; Tang, X.; Lin, J.; Cui, K.; Yu, S.; Shi, Y.; Ye, D.; Liu, Y.; et al. Melatonin Protects Inner Retinal Neurons of Newborn Mice after Hypoxia-Ischemia. J. Pineal Res. 2021, 71, e12716. [Google Scholar] [CrossRef]
  188. Yilmaz, T.; Çelebi, S.; Kükner, A.Ş. The Protective Effects of Melatonin, Vitamin E and Octreotide on Retinal Edema during Ischemia-Reperfusion in the Guinea Pig Retina. Eur. J. Ophthalmol. 2002, 12, 443–449. [Google Scholar] [CrossRef] [PubMed]
  189. Yi, C.; Pan, X.; Yan, H.; Guo, M.; Pierpaoli, W. Effects of Melatonin in Age-Related Macular Degeneration. Ann. N. Y. Acad. Sci. 2005, 1057, 384–392. [Google Scholar] [CrossRef]
  190. Scott, P.A.; Kaplan, H.J.; McCall, M.A. Prenatal Exposure to Curcumin Protects Rod Photoreceptors in a Transgenic Pro23His Swine Model of Retinitis Pigmentosa. Transl. Vis. Sci. Technol. 2015, 4, 5. [Google Scholar] [CrossRef] [Green Version]
  191. Vasireddy, V.; Chavali, V.R.M.; Joseph, V.T.; Kadam, R.; Lin, J.H.; Jamison, J.A.; Kompella, U.B.; Reddy, G.B.; Ayyagari, R. Rescue of Photoreceptor Degeneration by Curcumin in Transgenic Rats with P23H Rhodopsin Mutation. PLoS ONE 2011, 6, e21193. [Google Scholar] [CrossRef] [Green Version]
  192. Emoto, Y.; Yoshizawa, K.; Uehara, N.; Kinoshita, Y.; Yuri, T.; Shikata, N.; Tsubura, A. Curcumin Suppresses N-Methyl-N-Nitrosourea-Induced Photoreceptor Apoptosis in Sprague-Dawley Rats. In Vivo 2013, 27, 583–590. [Google Scholar]
  193. Mandal, M.N.A.; Patlolla, J.M.R.; Zheng, L.; Agbaga, M.P.; Tran, J.T.A.; Wicker, L.; Kasus-Jacobi, A.; Elliott, M.H.; Rao, C.V.; Anderson, R.E. Curcumin Protects Retinal Cells from Light-and Oxidant Stress-Induced Cell Death. Free Radic. Biol. Med. 2009, 46, 672–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  194. Xie, T.; Chen, X.; Chen, W.; Huang, S.; Peng, X.; Tian, L.; Wu, X.; Huang, Y. Curcumin Is a Potential Adjuvant to Alleviates Diabetic Retinal Injury via Reducing Oxidative Stress and Maintaining Nrf2 Pathway Homeostasis. Front. Pharmacol. 2021, 12, 796565. [Google Scholar] [CrossRef] [PubMed]
  195. Yang, F.; Yu, J.; Ke, F.; Lan, M.; Li, D.; Tan, K.; Ling, J.; Wang, Y.; Wu, K.; Li, D. Curcumin Alleviates Diabetic Retinopathy in Experimental Diabetic Rats. Ophthalmic Res. 2018, 60, 43–54. [Google Scholar] [CrossRef] [PubMed]
  196. Jariyapongskul, A.; Areebambud, C.; Hideyuki, N. Microhemodynamic Indices to Evaluate the Effectiveness of Herbal Medicine in Diabetes: A Comparison between Alpha-Mangostin and Curcumin in the Retina of Type 2 Diabetic Rats. Clin. Hemorheol. Microcirc. 2018, 69, 471–480. [Google Scholar] [CrossRef] [PubMed]
  197. Li, J.; Wang, P.; Ying, J.; Chen, Z.; Yu, S. Curcumin Attenuates Retinal Vascular Leakage by Inhibiting Calcium/Calmodulin-Dependent Protein Kinase II Activity in Streptozotocin-Induced Diabetes. Cell. Physiol. Biochem. 2016, 39, 1196–1208. [Google Scholar] [CrossRef]
  198. Li, J.; Wang, P.; Zhu, Y.; Chen, Z.; Shi, T.; Lei, W.; Yu, S. Curcumin Inhibits Neuronal Loss in the Retina and Elevates Ca2+/Calmodulin-Dependent Protein Kinase II Activity in Diabetic Rats. J. Ocul. Pharmacol. Ther. 2015, 31, 555–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  199. Zuo, Z.F.; Zhang, Q.; Liu, X.Z. Protective Effects of Curcumin on Retinal Müller Cell in Early Diabetic Rats. Int. J. Ophthalmol. 2013, 6, 422–424. [Google Scholar] [CrossRef]
  200. Wang, C.; George, B.; Chen, S.; Feng, B.; Li, X.; Chakrabarti, S. Genotoxic Stress and Activation of Novel DNA Repair Enzymes in Human Endothelial Cells and in the Retinas and Kidneys of Streptozotocin Diabetic Rats. Diabetes Metab. Res. Rev. 2012, 28, 329–337. [Google Scholar] [CrossRef]
  201. Gupta, S.K.; Kumar, B.; Nag, T.C.; Agrawal, S.S.; Agrawal, R.; Agrawal, P.; Saxena, R.; Srivastava, S. Curcumin Prevents Experimental Diabetic Retinopathy in Rats through Its Hypoglycemic, Antioxidant, and Anti-Inflammatory Mechanisms. J. Ocul. Pharmacol. Ther. 2011, 27, 123–130. [Google Scholar] [CrossRef]
  202. Mrudula, T.; Suryanarayana, P.; Srinivas, P.N.B.S.; Reddy, G.B. Effect of Curcumin on Hyperglycemia-Induced Vascular Endothelial Growth Factor Expression in Streptozotocin-Induced Diabetic Rat Retina. Biochem. Biophys. Res. Commun. 2007, 361, 528–532. [Google Scholar] [CrossRef]
  203. Kowluru, R.A.; Kanwar, M. Effects of Curcumin on Retinal Oxidative Stress and Inflammation in Diabetes. Nutr. Metab. 2007, 4, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  204. Kumar, P.A.; Haseeb, A.; Suryanarayana, P.; Ehtesham, N.Z.; Reddy, G.B. Elevated Expression of AlphaA- and AlphaB-Crystallins in Streptozotocin-Induced Diabetic Rat. Arch. Biochem. Biophys. 2005, 444, 77–83. [Google Scholar] [CrossRef] [PubMed]
  205. Mendes, T.S.; Novais, E.A.; Badaró, E.; de Oliveira Dias, J.R.; Kniggendorf, V.; Lima-Filho, A.A.S.; Watanabe, S.; Farah, M.E.; Rodrigues, E.B. Antiangiogenic Effect of Intravitreal Curcumin in Experimental Model of Proliferative Retinopathy. Acta Ophthalmol. 2020, 98, e132–e133. [Google Scholar] [CrossRef] [PubMed]
  206. Mirza, M.; Volz, C.; Karlstetter, M.; Langiu, M.; Somogyi, A.; Ruonala, M.O.; Tamm, E.R.; Jägle, H.; Langmann, T. Progressive Retinal Degeneration and Glial Activation in the CLN6 (Nclf) Mouse Model of Neuronal Ceroid Lipofuscinosis: A Beneficial Effect of DHA and Curcumin Supplementation. PLoS ONE 2013, 8, e75963. [Google Scholar] [CrossRef]
  207. Zhang, H.-J.; Xing, Y.-Q.; Jin, W.; Li, D.; Wu, K.; Lu, Y. Effects of Curcumin on Interleukin-23 and Interleukin-17 Expression in Rat Retina after Retinal Ischemia-Reperfusion Injury. Int. J. Clin. Exp. Pathol. 2015, 8, 9223–9231. [Google Scholar]
  208. Wang, L.; Li, C.; Guo, H.; Kern, T.S.; Huang, K.; Zheng, L. Curcumin Inhibits Neuronal and Vascular Degeneration in Retina after Ischemia and Reperfusion Injury. PLoS ONE 2011, 6, e23194. [Google Scholar] [CrossRef] [Green Version]
  209. Wang, S.; Ye, Q.; Tu, J.; Zhang, M.; Ji, B. Curcumin Protects against Hypertension Aggravated Retinal Ischemia/Reperfusion in a Rat Stroke Model. Clin. Exp. Hypertens. 2017, 39, 711–717. [Google Scholar] [CrossRef]
  210. Chirapapaisan, N.; Uiprasertkul, M.; Chuncharunee, A. The Effect of Coenzyme Q10 and Curcumin on Chronic Methanol Intoxication Induced Retinopathy in Rats. J. Med. Assoc. Thai. 2012, 95, S76–S81. [Google Scholar]
  211. Mazzolani, F.; Togni, S.; Giacomelli, L.; Eggenhoffner, R.; Franceschi, F. Oral Administration of a Curcumin-Phospholipid Formulation (Meriva®) for Treatment of Chronic Diabetic Macular Edema: A Pilot Study. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 3617–3625. [Google Scholar] [CrossRef]
  212. Piano, I.; D’antongiovanni, V.; Testai, L.; Calderone, V.; Gargini, C. A Nutraceutical Strategy to Slowing Down the Progression of Cone Death in an Animal Model of Retinitis Pigmentosa. Front. Neurosci. 2019, 13, 461. [Google Scholar] [CrossRef] [Green Version]
  213. Ortega, J.T.; Parmar, T.; Golczak, M.; Jastrzebska, B. Protective Effects of Flavonoids in Acute Models of Light-Induced Retinal Degeneration. Mol. Pharmacol. 2021, 99, 60–77. [Google Scholar] [CrossRef] [PubMed]
  214. Kim, J.K.; Park, S.U. Quercetin and Its Role in Biological Functions: An Updated Review. EXCLI J. 2018, 17, 856–863. [Google Scholar] [CrossRef] [PubMed]
  215. Koyama, Y.; Kaidzu, S.; Kim, Y.C.; Matsuoka, Y.; Ishihara, T.; Ohira, A.; Tanito, M. Suppression of Light-Induced Retinal Degeneration by Quercetin via the AP-1 Pathway in Rats. Antioxidants 2019, 8, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  216. Shao, Y.; Yu, H.; Yang, Y.; Li, M.; Hang, L.; Xu, X. A Solid Dispersion of Quercetin Shows Enhanced Nrf2 Activation and Protective Effects against Oxidative Injury in a Mouse Model of Dry Age-Related Macular Degeneration. Oxidative Med. Cell. Longev. 2019, 2019, 1479571. [Google Scholar] [CrossRef] [PubMed]
  217. Wang, S.; Du, S.; Wang, W.; Zhang, F. Therapeutic Investigation of Quercetin Nanomedicine in a Zebrafish Model of Diabetic Retinopathy. Biomed. Pharmacother. 2020, 130, 110573. [Google Scholar] [CrossRef]
  218. Ola, M.S.; Ahmed, M.M.; Shams, S.; Al-Rejaie, S.S. Neuroprotective Effects of Quercetin in Diabetic Rat Retina. Saudi J. Biol. Sci. 2017, 24, 1186–1194. [Google Scholar] [CrossRef]
  219. Kumar, B.; Gupta, S.K.; Nag, T.C.; Srivastava, S.; Saxena, R.; Jha, K.A.; Srinivasan, B.P. Retinal Neuroprotective Effects of Quercetin in Streptozotocin-Induced Diabetic Rats. Exp. Eye Res. 2014, 125, 193–202. [Google Scholar] [CrossRef]
  220. Chen, Y.; Li, F.; Meng, X.; Li, X. Suppression of Retinal Angiogenesis by Quercetin in a Rodent Model of Retinopathy of Prematurity. Zhonghua Yi Xue Za Zhi 2015, 95, 1113–1115. [Google Scholar] [CrossRef]
  221. Zhou, X.; Li, G.; Yang, B.; Wu, J. Quercetin Enhances Inhibitory Synaptic Inputs and Reduces Excitatory Synaptic Inputs to OFF- and ON-Type Retinal Ganglion Cells in a Chronic Glaucoma Rat Model. Front. Neurosci. 2019, 13, 672. [Google Scholar] [CrossRef]
  222. Arikan, S.; Ersan, I.; Karaca, T.; Kara, S.; Gencer, B.; Karaboga, I.; Tufan, H.A. Quercetin Protects the Retina by Reducing Apoptosis Due to Ischemia-Reperfusion Injury in a Rat Model. Arq. Bras. Oftalmol. 2015, 78, 100–104. [Google Scholar] [CrossRef] [Green Version]
  223. Thomson, L.R.; Toyoda, Y.; Langner, A.; Delori, F.C.; Garnett, K.M.; Craft, N.; Nichols, C.R.; Cheng, K.M.; Dorey, C.K. Elevated Retinal Zeaxanthin and Prevention of Light-Induced Photoreceptor Cell Death in Quail. Investig. Ophthalmol. Vis. Sci. 2002, 43, 3538–3549. [Google Scholar]
  224. Yu, M.; Yan, W.; Beight, C. Lutein and Zeaxanthin Isomers Reduce Photoreceptor Degeneration in the Pde6b Rd10 Mouse Model of Retinitis Pigmentosa. Biomed. Res. Int. 2018, 2018, 4374087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  225. Sahin, K.; Gencoglu, H.; Akdemir, F.; Orhan, C.; Tuzcu, M.; Sahin, N.; Yilmaz, I.; Juturu, V. Lutein and Zeaxanthin Isomers May Attenuate Photo-Oxidative Retinal Damage via Modulation of G Protein-Coupled Receptors and Growth Factors in Rats. Biochem. Biophys. Res. Commun. 2019, 516, 163–170. [Google Scholar] [CrossRef] [PubMed]
  226. Miranda, M.; Arnal, E.; Ahuja, S.; Alvarez-Nölting, R.; López-Pedrajas, R.; Ekström, P.; Bosch-Morell, F.; van Veen, T.; Romero, F.J. Antioxidants Rescue Photoreceptors in Rd1 Mice: Relationship with Thiol Metabolism. Free Radic. Biol. Med. 2010, 48, 216–222. [Google Scholar] [CrossRef] [PubMed]
  227. Yu, M.; Yan, W.; Beight, C. Lutein and Zeaxanthin Isomers Protect against Light-Induced Retinopathy via Decreasing Oxidative and Endoplasmic Reticulum Stress in BALB/CJ Mice. Nutrients 2018, 10, 842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  228. Kowluru, R.A.; Menon, B.; Gierhart, D.L. Beneficial Effect of Zeaxanthin on Retinal Metabolic Abnormalities in Diabetic Rats. Investig. Ophthalmol. Vis. Sci. 2008, 49, 1645–1651. [Google Scholar] [CrossRef]
  229. Sasaki, M.; Yuki, K.; Kurihara, T.; Miyake, S.; Noda, K.; Kobayashi, S.; Ishida, S.; Tsubota, K.; Ozawa, Y. Biological Role of Lutein in the Light-Induced Retinal Degeneration. J. Nutr. Biochem. 2012, 23, 423–429. [Google Scholar] [CrossRef]
  230. Tuzcu, M.; Orhan, C.; Muz, O.E.; Sahin, N.; Juturu, V.; Sahin, K. Lutein and Zeaxanthin Isomers Modulates Lipid Metabolism and the Inflammatory State of Retina in Obesity-Induced High-Fat Diet Rodent Model. BMC Ophthalmol. 2017, 17, 129. [Google Scholar] [CrossRef] [Green Version]
  231. Biswal, M.R.; Justis, B.D.; Han, P.; Li, H.; Gierhart, D.; Dorey, C.K.; Lewin, A.S. Daily Zeaxanthin Supplementation Prevents Atrophy of the Retinal Pigment Epithelium (RPE) in a Mouse Model of Mitochondrial Oxidative Stress. PLoS ONE 2018, 13, e0203816. [Google Scholar] [CrossRef]
  232. Dorrell, M.I.; Aguilar, E.; Jacobson, R.; Yanes, O.; Gariano, R.; Heckenlively, J.; Banin, E.; Ramirez, G.A.; Gasmi, M.; Bird, A.; et al. Antioxidant or Neurotrophic Factor Treatment Preserves Function in a Mouse Model of Neovascularization-Associated Oxidative Stress. J. Clin. Investig. 2009, 119, 611–623. [Google Scholar] [CrossRef] [Green Version]
  233. Toomey, M.B.; McGraw, K.J. The Effects of Dietary Carotenoid Supplementation and Retinal Carotenoid Accumulation on Vision-Mediated Foraging in the House Finch. PLoS ONE 2011, 6, e21653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  234. Perdices, L.; Fuentes-Broto, L.; Segura, F.; Cavero, A.; Orduna-Hospital, E.; Insa-Sánchez, G.; Sánchez-Cano, A.; Fernández-Sánchez, L.; Cuenca, N.; Pinilla, I. Systemic Epigallocatechin Gallate Protects against Retinal Degeneration and Hepatic Oxidative Stress in the P23H-1 Rat. Neural Regen. Res. 2022, 17, 625–631. [Google Scholar] [CrossRef] [PubMed]
  235. Perdices, L.; Fuentes-Broto, L.; Segura, F.; Cuenca, N.; Orduna-Hospital, E.; Pinilla, I. Epigallocatechin Gallate Slows Retinal Degeneration, Reduces Oxidative Damage, and Modifies Circadian Rhythms in P23H Rats. Antioxidants 2020, 9, 718. [Google Scholar] [CrossRef] [PubMed]
  236. Qi, S.; Wang, C.; Song, D.; Song, Y.; Dunaief, J.L. Intraperitoneal Injection of (−)-Epigallocatechin-3-Gallate Protects against Light-Induced Photoreceptor Degeneration in the Mouse Retina. Mol. Vis. 2017, 23, 171–178. [Google Scholar] [PubMed]
  237. Costa, B.L. da S.A. da; Fawcett, R.; Li, G.Y.; Safa, R.; Osborne, N.N. Orally Administered Epigallocatechin Gallate Attenuates Light-Induced Photoreceptor Damage. Brain Res. Bull. 2008, 76, 412–423. [Google Scholar] [CrossRef] [PubMed]
  238. Zhang, B.; Osborne, N.N. Oxidative-Induced Retinal Degeneration Is Attenuated by Epigallocatechin Gallate. Brain Res. 2006, 1124, 176–187. [Google Scholar] [CrossRef] [PubMed]
  239. Yang, Y.; Qin, Y.J.; Yip, Y.W.Y.; Chan, K.P.; Chu, K.O.; Chu, W.K.; Ng, T.K.; Pang, C.P.; Chan, S.O. Green Tea Catechins Are Potent Anti-Oxidants That Ameliorate Sodium Iodate-Induced Retinal Degeneration in Rats. Sci. Rep. 2016, 6, 29546. [Google Scholar] [CrossRef] [Green Version]
  240. Emoto, Y.; Yoshizawa, K.; Kinoshita, Y.; Yuri, T.; Yuki, M.; Sayama, K.; Shikata, N.; Tsubura, A. Green Tea Extract Suppresses N-Methyl-N-Nitrosourea-Induced Photoreceptor Apoptosis in Sprague-Dawley Rats. Graefe’s Arch. Clin. Exp. Ophthalmol. 2014, 252, 1377–1384. [Google Scholar] [CrossRef]
  241. Chen, F.; Jiang, L.; Shen, C.; Wan, H.; Xu, L.; Wang, N.; Jonas, J.B. Neuroprotective Effect of Epigallocatechin-3-Gallate against N-Methyl-D-Aspartate-Induced Excitotoxicity in the Adult Rat Retina. Acta Ophthalmol. 2012, 90, e609–e615. [Google Scholar] [CrossRef]
  242. Al-Gayyar, M.M.H.; Matragoon, S.; Pillai, B.A.; Ali, T.K.; Abdelsaid, M.A.; El-Remessy, A.B. Epicatechin Blocks Pro-Nerve Growth Factor (ProNGF)-Mediated Retinal Neurodegeneration via Inhibition of P75 Neurotrophin Receptor Expression in a Rat Model of Diabetes [Corrected]. Diabetologia 2011, 54, 669–680. [Google Scholar] [CrossRef] [Green Version]
  243. Yang, Y.; Xu, C.; Chen, Y.; Liang, J.J.; Xu, Y.; Chen, S.L.; Huang, S.; Yang, Q.; Cen, L.P.; Pang, C.P.; et al. Green Tea Extract Ameliorates Ischemia-Induced Retinal Ganglion Cell Degeneration in Rats. Oxidative Med. Cell Longev. 2019, 2019, 8407206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  244. Shen, C.; Chen, L.; Jiang, L.; Lai, T.Y.Y. Neuroprotective Effect of Epigallocatechin-3-Gallate in a Mouse Model of Chronic Glaucoma. Neurosci. Lett. 2015, 600, 132–136. [Google Scholar] [CrossRef] [PubMed]
  245. Detaram, H.D.; Liew, G.; Lewis, J.R.; Bondonno, N.P.; Bondonno, C.P.; Van Vu, K.; Burlutsky, G.; Hodgson, J.M.; Mitchell, P.; Gopinath, B. Dietary Flavonoids Are Associated with Longitudinal Treatment Outcomes in Neovascular Age-Related Macular Degeneration. Eur. J. Nutr. 2021, 60, 4243–4250. [Google Scholar] [CrossRef] [PubMed]
  246. Valdés-Sánchez, L.; García-Delgado, A.B.; Montero-Sánchez, A.; de la Cerda, B.; Lucas, R.; Peñalver, P.; Morales, J.C.; Bhattacharya, S.S.; Díaz-Corrales, F.J. The Resveratrol Prodrug JC19 Delays Retinal Degeneration in Rd10 Mice. Adv. Exp. Med. Biol. 2019, 1185, 457–462. [Google Scholar] [CrossRef] [PubMed]
  247. Qi, L.S.; Yao, L.; Liu, W.; Duan, W.X.; Wang, B.; Zhang, L.; Zhang, Z.M. Sirtuin Type 1 Mediates the Retinal Protective Effect of Hydrogen-Rich Saline Against Light-Induced Damage in Rats. Investig. Ophthalmol. Vis. Sci. 2015, 56, 8268–8279. [Google Scholar] [CrossRef]
  248. Kubota, S.; Kurihara, T.; Ebinuma, M.; Kubota, M.; Yuki, K.; Sasaki, M.; Noda, K.; Ozawa, Y.; Oike, Y.; Ishida, S.; et al. Resveratrol Prevents Light-Induced Retinal Degeneration via Suppressing Activator Protein-1 Activation. Am. J. Pathol. 2010, 177, 1725–1731. [Google Scholar] [CrossRef] [PubMed]
  249. Wang, N.; Luo, Z.; Jin, M.; Sheng, W.; Wang, H.T.; Long, X.; Wu, Y.; Hu, P.; Xu, H.; Zhang, X. Exploration of Age-Related Mitochondrial Dysfunction and the Anti-Aging Effects of Resveratrol in Zebrafish Retina. Aging 2019, 11, 3117–3137. [Google Scholar] [CrossRef]
  250. Sheng, W.; Lu, Y.; Mei, F.; Wang, N.; Liu, Z.Z.; Han, Y.Y.; Wang, H.T.; Zou, S.; Xu, H.; Zhang, X. Effect of Resveratrol on Sirtuins, OPA1, and Fis1 Expression in Adult Zebrafish Retina. Investig. Ophthalmol. Vis. Sci. 2018, 59, 4542–4551. [Google Scholar] [CrossRef] [Green Version]
  251. Liu, Z.; Wu, Z.; Li, J.; Marmalidou, A.; Zhang, R.; Yu, M. Protective Effect of Resveratrol against Light-Induced Retinal Degeneration in Aged SAMP8 Mice. Oncotarget 2017, 8, 65778–65788. [Google Scholar] [CrossRef] [Green Version]
  252. Courtaut, F.; Aires, V.; Acar, N.; Bretillon, L.; Guerrera, I.C.; Chhuon, C.; de Barros, J.P.P.; Olmiere, C.; Delmas, D. RESVEGA, a Nutraceutical Omega-3/Resveratrol Supplementation, Reduces Angiogenesis in a Preclinical Mouse Model of Choroidal Neovascularization. Int. J. Mol. Sci. 2021, 22, 11023. [Google Scholar] [CrossRef]
  253. Nagai, N.; Kubota, S.; Tsubota, K.; Ozawa, Y. Resveratrol Prevents the Development of Choroidal Neovascularization by Modulating AMP-Activated Protein Kinase in Macrophages and Other Cell Types. J. Nutr. Biochem. 2014, 25, 1218–1225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  254. Kubota, S.; Ozawa, Y.; Kurihara, T.; Sasaki, M.; Yuki, K.; Miyake, S.; Noda, K.; Ishida, S.; Tsubota, K. Roles of AMP-Activated Protein Kinase in Diabetes-Induced Retinal Inflammation. Investig. Ophthalmol. Vis. Sci. 2011, 52, 9142–9148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  255. Kim, Y.H.; Kim, Y.S.; Roh, G.S.; Choi, W.S.; Cho, G.J. Resveratrol Blocks Diabetes-Induced Early Vascular Lesions and Vascular Endothelial Growth Factor Induction in Mouse Retinas. Acta Ophthalmol. 2012, 90, e31–e37. [Google Scholar] [CrossRef] [PubMed]
  256. Kim, Y.H.; Kim, Y.S.; Kang, S.S.; Cho, G.J.; Choi, W.S. Resveratrol Inhibits Neuronal Apoptosis and Elevated Ca2+/Calmodulin-Dependent Protein Kinase II Activity in Diabetic Mouse Retina. Diabetes 2010, 59, 1825–1835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  257. Zeng, K.; Wang, Y.; Huang, L.; Song, Y.; Yu, X.; Deng, B.; Zhou, X. Resveratrol Inhibits Neural Apoptosis and Regulates RAX/P-PKR Expression in Retina of Diabetic Rats. Nutr. Neurosci. 2021, 25, 1–10. [Google Scholar] [CrossRef] [PubMed]
  258. Soufi, F.G.; Mohammad-nejad, D.; Ahmadieh, H. Resveratrol Improves Diabetic Retinopathy Possibly through Oxidative Stress—Nuclear Factor ΚB—Apoptosis Pathway. Pharmacol. Rep. 2012, 64, 1505–1514. [Google Scholar] [CrossRef]
  259. Ghadiri Soufi, F.; Arbabi-Aval, E.; Rezaei Kanavi, M.; Ahmadieh, H. Anti-Inflammatory Properties of Resveratrol in the Retinas of Type 2 Diabetic Rats. Clin. Exp. Pharmacol. Physiol. 2015, 42, 63–68. [Google Scholar] [CrossRef]
  260. Al-Hussaini, H.; Kilarkaje, N. Effects of Trans-Resveratrol on Type 1 Diabetes-Induced Inhibition of Retinoic Acid Metabolism Pathway in Retinal Pigment Epithelium of Dark Agouti Rats. Eur. J. Pharmacol. 2018, 834, 142–151. [Google Scholar] [CrossRef]
  261. Al-Hussaini, H.; Kittaneh, R.S.; Kilarkaje, N. Effects of Trans-Resveratrol on Type 1 Diabetes-Induced up-Regulation of Apoptosis and Mitogen-Activated Protein Kinase Signaling in Retinal Pigment Epithelium of Dark Agouti Rats. Eur. J. Pharmacol. 2021, 904, 174167. [Google Scholar] [CrossRef]
  262. Liu, X.Q.; Wu, B.J.; Pan, W.H.T.; Zhang, X.M.; Liu, J.H.; Chen, M.M.; Chao, F.P.; Chao, H.M. Resveratrol Mitigates Rat Retinal Ischemic Injury: The Roles of Matrix Metalloproteinase-9, Inducible Nitric Oxide, and Heme Oxygenase-1. J. Ocul. Pharmacol. Ther. 2013, 29, 33–40. [Google Scholar] [CrossRef] [Green Version]
  263. Dong, Y.; Wan, G.; Yan, P.; Qian, C.; Li, F.; Peng, G. Fabrication of Resveratrol Coated Gold Nanoparticles and Investigation of Their Effect on Diabetic Retinopathy in Streptozotocin Induced Diabetic Rats. J. Photochem. Photobiol. B 2019, 195, 51–57. [Google Scholar] [CrossRef] [PubMed]
  264. Chen, Y.; Meng, J.; Li, H.; Wei, H.; Bi, F.; Liu, S.; Tang, K.; Guo, H.; Liu, W. Resveratrol Exhibits an Effect on Attenuating Retina Inflammatory Condition and Damage of Diabetic Retinopathy via PON1. Exp. Eye Res. 2019, 181, 356–366. [Google Scholar] [CrossRef] [PubMed]
  265. Huang, W.; Li, G.; Qiu, J.; Gonzalez, P.; Challa, P. Protective Effects of Resveratrol in Experimental Retinal Detachment. PLoS ONE 2013, 8, e75735. [Google Scholar] [CrossRef] [PubMed]
  266. Hsu, Y.A.; Chen, C.S.; Wang, Y.C.; Lin, E.S.; Chang, C.Y.; Chen, J.J.Y.; Wu, M.Y.; Lin, H.J.; Wan, L. Anti-Inflammatory Effects of Resveratrol on Human Retinal Pigment Cells and a Myopia Animal Model. Curr. Issues Mol. Biol. 2021, 43, 716–727. [Google Scholar] [CrossRef] [PubMed]
  267. Hua, J.; Guerin, K.I.; Chen, J.; Michán, S.; Stahl, A.; Krah, N.M.; Seaward, M.R.; Dennison, R.J.; Juan, A.M.; Hatton, C.J.; et al. Resveratrol Inhibits Pathologic Retinal Neovascularization in Vldlr(-/-) Mice. Investig. Ophthalmol. Vis. Sci. 2011, 52, 2809–2816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  268. Li, C.; Wang, L.; Huang, K.; Zheng, L. Endoplasmic Reticulum Stress in Retinal Vascular Degeneration: Protective Role of Resveratrol. Investig. Ophthalmol. Vis. Sci. 2012, 53, 3241–3249. [Google Scholar] [CrossRef] [Green Version]
  269. Kim, W.T.; Suh, E.S. Retinal Protective Effects of Resveratrol via Modulation of Nitric Oxide Synthase on Oxygen-Induced Retinopathy. Korean J. Ophthalmol. 2010, 24, 108–118. [Google Scholar] [CrossRef] [Green Version]
  270. Ji, K.; Li, Z.; Lei, Y.; Xu, W.; Ouyang, L.; He, T.; Xing, Y. Resveratrol Attenuates Retinal Ganglion Cell Loss in a Mouse Model of Retinal Ischemia Reperfusion Injury via Multiple Pathways. Exp. Eye Res. 2021, 209, 108683. [Google Scholar] [CrossRef]
  271. Luo, J.; He, T.; Yang, J.; Yang, N.; Li, Z.; Xing, Y. SIRT1 Is Required for the Neuroprotection of Resveratrol on Retinal Ganglion Cells after Retinal Ischemia-Reperfusion Injury in Mice. Graefe’s Arch. Clin. Exp. Ophthalmol. 2020, 258, 335–344. [Google Scholar] [CrossRef]
  272. Seong, H.; Ryu, J.; Yoo, W.S.; Kim, S.J.; Han, Y.S.; Park, J.M.; Kang, S.S.; Seo, S.W. Resveratrol Ameliorates Retinal Ischemia/Reperfusion Injury in C57BL/6J Mice via Downregulation of Caspase-3. Curr. Eye Res. 2017, 42, 1650–1658. [Google Scholar] [CrossRef]
  273. Pang, Y.; Qin, M.; Hu, P.; Ji, K.; Xiao, R.; Sun, N.; Pan, X.; Zhang, X. Resveratrol Protects Retinal Ganglion Cells against Ischemia Induced Damage by Increasing Opa1 Expression. Int. J. Mol. Med. 2020, 46, 1707–1720. [Google Scholar] [CrossRef] [PubMed]
  274. Vin, A.P.; Hu, H.; Zhai, Y.; Von Zee, C.L.; Logeman, A.; Stubbs, E.B.; Perlman, J.I.; Bu, P. Neuroprotective Effect of Resveratrol Prophylaxis on Experimental Retinal Ischemic Injury. Exp. Eye Res. 2013, 108, 72–75. [Google Scholar] [CrossRef] [PubMed]
  275. Deng, C.; Chen, S.; Li, X.; Luo, H.; Zhang, Q.; Hu, P.; Wang, F.; Xiong, C.; Sun, T.; Zhang, X. Role of the PGE2 Receptor in Ischemia-Reperfusion Injury of the Rat Retina. Mol. Vis. 2020, 26, 36–47. [Google Scholar] [PubMed]
  276. Luo, H.; Zhuang, J.; Hu, P.; Ye, W.; Chen, S.; Pang, Y.; Li, N.; Deng, C.; Zhang, X. Resveratrol Delays Retinal Ganglion Cell Loss and Attenuates Gliosis-Related Inflammation From Ischemia-Reperfusion Injury. Investig. Ophthalmol. Vis. Sci. 2018, 59, 3879–3888. [Google Scholar] [CrossRef] [Green Version]
  277. Cao, K.; Ishida, T.; Fang, Y.; Shinohara, K.; Li, X.; Nagaoka, N.; Ohno-Matsui, K.; Yoshida, T. Protection of the Retinal Ganglion Cells: Intravitreal Injection of Resveratrol in Mouse Model of Ocular Hypertension. Investig. Ophthalmol. Vis. Sci. 2020, 61, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  278. Zhang, X.; Feng, Y.; Wang, Y.; Wang, J.; Xiang, D.; Niu, W.; Yuan, F. Resveratrol Ameliorates Disorders of Mitochondrial Biogenesis and Dynamics in a Rat Chronic Ocular Hypertension Model. Life Sci. 2018, 207, 234–245. [Google Scholar] [CrossRef] [PubMed]
  279. Razali, N.; Agarwal, R.; Agarwal, P.; Tripathy, M.; Kapitonova, M.Y.; Kutty, M.K.; Smirnov, A.; Khalid, Z.; Ismail, N.M. Topical Trans-Resveratrol Ameliorates Steroid-Induced Anterior and Posterior Segment Changes in Rats. Exp. Eye Res. 2016, 143, 9–16. [Google Scholar] [CrossRef]
  280. Pirhan, D.; Yüksel, N.; Emre, E.; Cengiz, A.; Kürşat Yildiz, D. Riluzole- and Resveratrol-Induced Delay of Retinal Ganglion Cell Death in an Experimental Model of Glaucoma. Curr. Eye Res. 2016, 41, 59–69. [Google Scholar] [CrossRef]
  281. Lindsey, J.D.; Duong-Polk, K.X.; Hammond, D.; Leung, C.K.-S.; Weinreb, R.N. Protection of Injured Retinal Ganglion Cell Dendrites and Unfolded Protein Response Resolution after Long-Term Dietary Resveratrol. Neurobiol. Aging 2015, 36, 1969–1981. [Google Scholar] [CrossRef]
  282. Kim, S.H.; Park, J.H.; Kim, Y.J.; Park, K.H. The Neuroprotective Effect of Resveratrol on Retinal Ganglion Cells after Optic Nerve Transection. Mol. Vis. 2013, 19, 1667–1676. [Google Scholar]
  283. Kubota, S.; Kurihara, T.; Mochimar, H.; Satofuka, S.; Noda, K.; Ozawa, Y.; Oike, Y.; Ishida, S.; Tsubota, K. Prevention of Ocular Inflammation in Endotoxin-Induced Uveitis with Resveratrol by Inhibiting Oxidative Damage and Nuclear Factor-KappaB Activation. Investig. Ophthalmol. Vis. Sci. 2009, 50, 3512–3519. [Google Scholar] [CrossRef] [PubMed]
  284. García-Layana, A.; Recalde, S.; Hernandez, M.; Abraldes, M.J.; Nascimento, J.; Hernández-Galilea, E.; Olmedilla-Alonso, B.; Escobar-Barranco, J.J.; Zapata, M.A.; Silva, R.; et al. A Randomized Study of Nutritional Supplementation in Patients with Unilateral Wet Age-Related Macular Degeneration. Nutrients 2021, 13, 1253. [Google Scholar] [CrossRef] [PubMed]
  285. Pinelli, R.; Bertelli, M.; Scaffidi, E.; Polzella, M.; Fulceri, F.; Biagioni, F.; Fornai, F. Nutraceuticals for Dry Age-Related Macular Degeneration: A Case Report Based on Novel Pathogenic and Morphological Insights. Arch. Ital. Biol. 2020, 158, 24–34. [Google Scholar] [CrossRef] [PubMed]
  286. Richer, S.; Stiles, W.; Ulanski, L.; Carroll, D.; Podella, C. Observation of Human Retinal Remodeling in Octogenarians with a Resveratrol Based Nutritional Supplement. Nutrients 2013, 5, 1989–2005. [Google Scholar] [CrossRef] [PubMed]
  287. Baltã, F.; Cristescu, I.E.; Mirescu, A.E.; Baltã, G.; Tofolean, I.T. Effect of A Multinutrient Complex on Retinal Microcirculation in Diabetic Patients Investigated Using an Adaptive Optics Retinal Camera. Acta Endocrinol. 2020, 16, 389–395. [Google Scholar] [CrossRef]
  288. Eckhert, C.D. Differential Effects of Riboflavin and RRR-Alpha-Tocopheryl Acetate on the Survival of Newborn RCS Rats with Inheritable Retinal Degeneration. J. Nutr. 1987, 117, 208–211. [Google Scholar] [CrossRef]
  289. Orhan, C.; Tuzcu, M.; Gencoglu, H.; Sahin, E.; Sahin, N.; Ozercan, I.H.; Namjoshi, T.; Srivastava, V.; Morde, A.; Rai, D.; et al. Different Doses of β-Cryptoxanthin May Secure the Retina from Photooxidative Injury Resulted from Common LED Sources. Oxid Med. Cell. Longev. 2021, 2021, 6672525. [Google Scholar] [CrossRef]
  290. Wong, P.; Markey, M.; Rapp, C.M.; Darrow, R.M.; Ziesel, A.; Organisciak, D.T. Enhancing the Efficacy of AREDS Antioxidants in Light-Induced Retinal Degeneration. Mol. Vis. 2017, 23, 718–739. [Google Scholar]
  291. Ramchani-Ben Othman, K.; Cercy, C.; Amri, M.; Doly, M.; Ranchon-Cole, I. Dietary Supplement Enriched in Antioxidants and Omega-3 Protects from Progressive Light-Induced Retinal Degeneration. PLoS ONE 2015, 10, e0128395. [Google Scholar] [CrossRef] [Green Version]
  292. Rapp, L.M.; Fisher, P.L.; Suh, D.W. Evaluation of Retinal Susceptibility to Light Damage in Pigmented Rats Supplemented with Beta-Carotene. Curr. Eye Res. 1996, 15, 219–223. [Google Scholar] [CrossRef]
  293. Liu, Y.; Zhang, D.; Hu, J.; Liu, G.; Chen, J.; Sun, L.; Jiang, Z.; Zhang, X.; Chen, Q.; Ji, B. Visible Light-Induced Lipid Peroxidation of Unsaturated Fatty Acids in the Retina and the Inhibitory Effects of Blueberry Polyphenols. J. Agric. Food Chem. 2015, 63, 9295–9305. [Google Scholar] [CrossRef] [PubMed]
  294. Chu, Z.; Ma, G.; Sun, X.; Xu, Z.; Zhang, J. Grape Seed Extracts Inhibit the Overexpression of Inflammatory Cytokines in Mouse Retinas and ARPE-19 Cells: Potentially Useful Dietary Supplement for Age-Related Eye Dysfunction. J. Med. Food 2020, 23, 499–507. [Google Scholar] [CrossRef] [PubMed]
  295. Yu, C.C.; Nandrot, E.F.; Dun, Y.; Finnemann, S.C. Dietary Antioxidants Prevent Age-Related Retinal Pigment Epithelium Actin Damage and Blindness in Mice Lacking Avβ5 Integrin. Free Radic. Biol. Med. 2012, 52, 660–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  296. Fliesler, S.J.; Peachey, N.S.; Herron, J.; Hines, K.M.; Weinstock, N.I.; Ramachandra Rao, S.; Xu, L. Prevention of Retinal Degeneration in a Rat Model of Smith-Lemli-Opitz Syndrome. Sci. Rep. 2018, 8, 1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  297. Fernández-Robredo, P.; Sádaba, L.M.; Salinas-Alamán, A.; Recalde, S.; Rodríguez, J.A.; García-Layana, A. Effect of Lutein and Antioxidant Supplementation on VEGF Expression, MMP-2 Activity, and Ultrastructural Alterations in Apolipoprotein E-Deficient Mouse. Oxidative Med. Cell. Longev. 2013, 2013, 213505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  298. Kowluru, R.A.; Kanwar, M.; Chan, P.S.; Zhang, J.P. Inhibition of Retinopathy and Retinal Metabolic Abnormalities in Diabetic Rats with AREDS-Based Micronutrients. Arch. Ophthalmol. 2008, 126, 1266–1272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  299. McClinton, K.J.; Aliani, M.; Kuny, S.; Sauvé, Y.; Suh, M. Differential Effect of a Carotenoid-Rich Diet on Retina Function in Non-Diabetic and Diabetic Rats. Nutr. Neurosci. 2020, 23, 838–848. [Google Scholar] [CrossRef]
  300. Kowluru, R.A.; Tang, J.; Kern, T.S. Abnormalities of Retinal Metabolism in Diabetes and Experimental Galactosemia. VII. Effect of Long-Term Administration of Antioxidants on the Development of Retinopathy. Diabetes 2001, 50, 1938–1942. [Google Scholar] [CrossRef] [Green Version]
  301. Kowluru, R.A.; Engerman, R.L.; Kern, T.S. Abnormalities of Retinal Metabolism in Diabetes or Experimental Galactosemia. VI. Comparison of Retinal and Cerebral Cortex Metabolism, and Effects of Antioxidant Therapy. Free Radic. Biol. Med. 1999, 26, 371–378. [Google Scholar] [CrossRef]
  302. Ju, W.K.; Shim, M.S.; Kim, K.Y.; Bu, J.H.; Park, T.L.; Ahn, S.; Weinreb, R.N. Ubiquinol Promotes Retinal Ganglion Cell Survival and Blocks the Apoptotic Pathway in Ischemic Retinal Degeneration. Biochem. Biophys. Res. Commun. 2018, 503, 2639–2645. [Google Scholar] [CrossRef]
  303. Bernardo-Colon, A.; Vest, V.; Clark, A.; Cooper, M.L.; Calkins, D.J.; Harrison, F.E.; Rex, T.S. Antioxidants Prevent Inflammation and Preserve the Optic Projection and Visual Function in Experimental Neurotrauma. Cell Death Dis. 2018, 9, 1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  304. Braakhuis, A.; Raman, R.; Vaghefi, E. The Association between Dietary Intake of Antioxidants and Ocular Disease. Diseases 2017, 5, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  305. Ou, C.; Jiang, P.; Tian, Y.; Yao, Z.; Yang, Y.; Peng, J.; Zeng, M.; Song, H.; Peng, Q. Fructus Lycii and Salvia Miltiorrhiza Bunge Extract Alleviate Retinitis Pigmentosa through Nrf2/HO-1 Signaling Pathway. J. Ethnopharmacol. 2021, 273, 113993. [Google Scholar] [CrossRef] [PubMed]
  306. Chang, J.S.; Lee, Y.J.; Wilkie, D.A.; Lin, C.T. The Neuroprotective and Antioxidative Effects of Submicron and Blended Lycium Barbarum in Experimental Retinal Degeneration in Rats. J. Vet. Med. Sci. 2018, 80, 1108–1115. [Google Scholar] [CrossRef] [PubMed]
  307. Tang, L.; Bao, S.; Du, Y.; Jiang, Z.; Wuliji, A.O.; Ren, X.; Zhang, C.; Chu, H.; Kong, L.; Ma, H. Antioxidant Effects of Lycium Barbarum Polysaccharides on Photoreceptor Degeneration in the Light-Exposed Mouse Retina. Biomed. Pharmacother. 2018, 103, 829–837. [Google Scholar] [CrossRef] [PubMed]
  308. Yeh, P.T.; Chen, Y.J.; Lin, N.C.; Yeh, A.I.; Yang, C.H. The Ocular Protective Effects of Nano/Submicron Particles Prepared from Lycium Barbarum Fruits Against Oxidative Stress in an Animal Model. J. Ocul. Pharmacol. Ther. 2020, 36, 179–189. [Google Scholar] [CrossRef] [PubMed]
  309. Wang, J.; Yao, Y.; Liu, X.; Wang, K.; Zhou, Q.; Tang, Y. Protective Effects of Lycium Barbarum Polysaccharides on Blood-Retinal Barrier via ROCK1 Pathway in Diabetic Rats. Am. J. Transl. Res. 2019, 11, 6304–6315. [Google Scholar]
  310. Liu, J.; Baum, L.; Yu, S.; Lin, Y.; Xiong, G.; Chang, R.C.-C.; So, K.F.; Chiu, K. Preservation of Retinal Function Through Synaptic Stabilization in Alzheimer’s Disease Model Mouse Retina by Lycium Barbarum Extracts. Front. Aging Neurosci. 2022, 13, 788798. [Google Scholar] [CrossRef]
  311. Wu, I.H.; Chan, S.M.; Lin, C.T. The Neuroprotective Effect of Submicron and Blended Lycium Barbarum for Experiment Retinal Ischemia and Reperfusion Injury in Rats. J. Vet. Med. Sci. 2020, 82, 1719–1728. [Google Scholar] [CrossRef]
  312. Mi, X.S.; Feng, Q.; Lo, A.; Chang, R.; Chung, S.; So, K.F. Lycium Barbarum Polysaccharides Related RAGE and Aβ Levels in the Retina of Mice with Acute Ocular Hypertension and Promote Maintenance of Blood Retinal Barrier. Neural Regen. Res. 2020, 15, 2344–2352. [Google Scholar] [CrossRef]
  313. Mi, X.S.; Feng, Q.; Lo, A.C.Y.; Chang, R.C.C.; Lin, B.; Chung, S.K.; So, K.F. Protection of Retinal Ganglion Cells and Retinal Vasculature by Lycium Barbarum Polysaccharides in a Mouse Model of Acute Ocular Hypertension. PLoS ONE 2012, 7, e45469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  314. Chan, H.C.; Chang, R.C.C.; Koon-Ching Ip, A.; Chiu, K.; Yuen, W.H.; Zee, S.Y.; So, K.F. Neuroprotective Effects of Lycium Barbarum Lynn on Protecting Retinal Ganglion Cells in an Ocular Hypertension Model of Glaucoma. Exp. Neurol. 2007, 203, 269–273. [Google Scholar] [CrossRef] [PubMed]
  315. Lakshmanan, Y.; Wong, F.S.Y.; Yu, W.Y.; Li, S.Z.C.; Choi, K.Y.; So, K.F.; Chan, H.H.L. Lycium Barbarum Polysaccharides Rescue Neurodegeneration in an Acute Ocular Hypertension Rat Model under Pre- and Posttreatment Conditions. Investig. Ophthalmol. Vis. Sci. 2019, 60, 2023–2033. [Google Scholar] [CrossRef] [PubMed]
  316. Lakshmanan, Y.; Wong, F.S.Y.; Zuo, B.; So, K.F.; Bui, B.V.; Chan, H.H.L. Posttreatment Intervention With Lycium Barbarum Polysaccharides Is Neuroprotective in a Rat Model of Chronic Ocular Hypertension. Investig. Ophthalmol. Vis. Sci. 2019, 60, 4606–4618. [Google Scholar] [CrossRef] [PubMed]
  317. Chan, H.H.-l.; Lam, H.-i.; Choi, K.-y.; Li, S.Z.-c.; Lakshmanan, Y.; Yu, W.-y.; Chang, R.C.-c.; Lai, J.S.-m.; So, K.-f. Delay of Cone Degeneration in Retinitis Pigmentosa Using a 12-Month Treatment with Lycium Barbarum Supplement. J. Ethnopharmacol. 2019, 236, 336–344. [Google Scholar] [CrossRef]
  318. Li, X.; Holt, R.R.; Keen, C.L.; Morse, L.S.; Yiu, G.; Hackman, R.M.; Brown, L.L. Goji Berry Intake Increases Macular Pigment Optical Density in Healthy Adults: A Randomized Pilot Trial. Nutrients 2021, 13, 4409. [Google Scholar] [CrossRef]
  319. Komeima, K.; Rogers, B.S.; Lu, L.; Campochiaro, P.A. Antioxidants Reduce Cone Cell Death in a Model of Retinitis Pigmentosa. Proc. Natl. Acad. Sci. USA 2006, 103, 11300–11305. [Google Scholar] [CrossRef] [Green Version]
  320. Komeima, K.; Rogers, B.S.; Campochiaro, P.A. Antioxidants Slow Photoreceptor Cell Death in Mouse Models of Retinitis Pigmentosa. J. Cell. Physiol. 2007, 213, 809–815. [Google Scholar] [CrossRef]
  321. Ramírez-Lamelas, D.T.; Benlloch-Navarro, S.; López-Pedrajas, R.; Gimeno-Hernández, R.; Olivar, T.; Silvestre, D.; Miranda, M. Lipoic Acid and Progesterone Alone or in Combination Ameliorate Retinal Degeneration in an Experimental Model of Hereditary Retinal Degeneration. Front. Pharmacol. 2018, 9, 469. [Google Scholar] [CrossRef] [Green Version]
  322. Chen, Y.; Yang, M.; Wang, Z.J. (Z)-7,4′-Dimethoxy-6-Hydroxy-Aurone-4-O-β-Glucopyranoside Mitigates Retinal Degeneration in Rd10 Mouse Model through Inhibiting Oxidative Stress and Inflammatory Responses. Cutan. Ocul. Toxicol. 2020, 39, 36–42. [Google Scholar] [CrossRef]
  323. Lin, B.; Youdim, M.B.H. The Protective, Rescue and Therapeutic Potential of Multi-Target Iron-Chelators for Retinitis Pigmentosa. Free Radic. Biol. Med. 2021, 174, 1–11. [Google Scholar] [CrossRef] [PubMed]
  324. Wang, K.; Peng, B.; Xiao, J.; Weinreb, O.; Youdim, M.B.H.; Lin, B. Iron-Chelating Drugs Enhance Cone Photoreceptor Survival in a Mouse Model of Retinitis Pigmentosa. Investig. Ophthalmol. Vis. Sci. 2017, 58, 5287–5297. [Google Scholar] [CrossRef] [PubMed]
  325. Obolensky, A.; Berenshtein, E.; Lederman, M.; Bulvik, B.; Alper-Pinus, R.; Yaul, R.; Deleon, E.; Chowers, I.; Chevion, M.; Banin, E. Zinc-Desferrioxamine Attenuates Retinal Degeneration in the Rd10 Mouse Model of Retinitis Pigmentosa. Free Radic. Biol. Med. 2011, 51, 1482–1491. [Google Scholar] [CrossRef] [PubMed]
  326. Sakamoto, K.; Suzuki, T.; Takahashi, K.; Koguchi, T.; Hirayama, T.; Mori, A.; Nakahara, T.; Nagasawa, H.; Ishii, K. Iron-Chelating Agents Attenuate NMDA-Induced Neuronal Injury via Reduction of Oxidative Stress in the Rat Retina. Exp. Eye Res. 2018, 171, 30–36. [Google Scholar] [CrossRef] [PubMed]
  327. Narayan, D.S.; Chidlow, G.; Wood, J.P.M.; Casson, R.J. Investigations Into Bioenergetic Neuroprotection of Cone Photoreceptors: Relevance to Retinitis Pigmentosa. Front. Neurosci. 2019, 13, 1234. [Google Scholar] [CrossRef] [PubMed]
  328. Heinänen, K.; Näntö-Salonen, K.; Komu, M.; Erkintalo, M.; Alanen, A.; Heinonen, O.J.; Pulkki, K.; Nikoskelainen, E.; Sipilä, I.; Simell, O. Creatine Corrects Muscle 31P Spectrum in Gyrate Atrophy with Hyperornithinaemia. Eur. J. Clin. Investig. 1999, 29, 1060–1065. [Google Scholar] [CrossRef]
  329. Sipilä, I.; Rapola, J.; Simell, O.; Vannas, A. Supplementary Creatine as a Treatment for Gyrate Atrophy of the Choroid and Retina. N. Engl. J. Med. 1981, 304, 867–870. [Google Scholar] [CrossRef]
  330. Kang, K.; Yu, M. Protective Effect of Sulforaphane against Retinal Degeneration in the Pde6 Rd10 Mouse Model of Retinitis Pigmentosa. Curr. Eye Res. 2017, 42, 1684–1688. [Google Scholar] [CrossRef] [Green Version]
  331. Tanito, M.; Masutani, H.; Kim, Y.C.; Nishikawa, M.; Ohira, A.; Yodoi, J. Sulforaphane Induces Thioredoxin through the Antioxidant-Responsive Element and Attenuates Retinal Light Damage in Mice. Investig. Ophthalmol. Vis. Sci. 2005, 46, 979–987. [Google Scholar] [CrossRef] [Green Version]
  332. Kong, L.; Liu, B.; Zhang, C.; Wang, B.; Wang, H.; Song, X.; Yang, Y.; Ren, X.; Yin, L.; Kong, H.; et al. The Therapeutic Potential of Sulforaphane on Light-Induced Photoreceptor Degeneration through Antiapoptosis and Antioxidant Protection. Neurochem. Int. 2016, 100, 52–61. [Google Scholar] [CrossRef]
  333. Kong, L.; Tanito, M.; Huang, Z.; Li, F.; Zhou, X.; Zaharia, A.; Yodoi, J.; McGinnis, J.F.; Cao, W. Delay of Photoreceptor Degeneration in Tubby Mouse by Sulforaphane. J. Neurochem. 2007, 101, 1041–1052. [Google Scholar] [CrossRef] [PubMed]
  334. Li, S.; Yang, H.; Chen, X. Protective Effects of Sulforaphane on Diabetic Retinopathy: Activation of the Nrf2 Pathway and Inhibition of NLRP3 Inflammasome Formation. Exp. Anim. 2019, 68, 221–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  335. Gong, Y.; Cao, X.; Gong, L.; Li, W. Sulforaphane Alleviates Retinal Ganglion Cell Death and Inflammation by Suppressing NLRP3 Inflammasome Activation in a Rat Model of Retinal Ischemia/Reperfusion Injury. Int. J. Immunopathol. Pharmacol. 2019, 33, 2058738419861777. [Google Scholar] [CrossRef] [PubMed]
  336. Ambrecht, L.A.; Perlman, J.I.; McDonnell, J.F.; Zhai, Y.; Qiao, L.; Bu, P. Protection of Retinal Function by Sulforaphane Following Retinal Ischemic Injury. Exp. Eye Res. 2015, 138, 66–69. [Google Scholar] [CrossRef] [PubMed]
  337. Komeima, K.; Usui, S.; Shen, J.; Rogers, B.S.; Campochiaro, P.A. Blockade of Neuronal Nitric Oxide Synthase Reduces Cone Cell Death in a Model of Retinitis Pigmentosa. Free. Radic. Biol. Med. 2008, 45, 905–912. [Google Scholar] [CrossRef] [Green Version]
  338. Vargas, A.; Yamamoto, K.L.; Craft, C.M.; Lee, E.J. Clusterin Enhances Cell Survival by Suppressing Neuronal Nitric-Oxide Synthase Expression in the Rhodopsin S334ter-Line3 Retinitis Pigmentosa Model. Brain Res. 2021, 1768, 147575. [Google Scholar] [CrossRef]
  339. Goureau, O.; Claude Jeanny, J.; Becquet, F.; Paule Hartmann, M.; Courtois, Y. Protection against Light-Induced Retinal Degeneration by an Inhibitor of NO Synthase. Neuroreport 1993, 5, 233–236. [Google Scholar] [CrossRef]
  340. Park, S.H.; Kim, J.H.; Kim, Y.H.; Park, C.K. Expression of Neuronal Nitric Oxide Synthase in the Retina of a Rat Model of Chronic Glaucoma. Vis. Res. 2007, 47, 2732–2740. [Google Scholar] [CrossRef] [Green Version]
  341. Neufeld, A.H.; Sawada, A.; Becker, B. Inhibition of Nitric-Oxide Synthase 2 by Aminoguanidine Provides Neuroprotection of Retinal Ganglion Cells in a Rat Model of Chronic Glaucoma. Proc. Natl. Acad. Sci. USA 1999, 96, 9944–9948. [Google Scholar] [CrossRef] [Green Version]
  342. Koeberle, P.D.; Ball, A.K. Nitric Oxide Synthase Inhibition Delays Axonal Degeneration and Promotes the Survival of Axotomized Retinal Ganglion Cells. Exp. Neurol. 1999, 158, 366–381. [Google Scholar] [CrossRef]
  343. Wang, J.; Saul, A.; Smith, S.B. Activation of Sigma 1 Receptor Extends Survival of Cones and Improves Visual Acuity in a Murine Model of Retinitis Pigmentosa. Investig. Ophthalmol. Vis. Sci. 2019, 60, 4397–4407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  344. Xiao, H.; Wang, J.; Saul, A.; Smith, S.B. Comparison of Neuroprotective Effects of Monomethylfumarate to the Sigma 1 Receptor Ligand (+)-Pentazocine in a Murine Model of Retinitis Pigmentosa. Investig. Ophthalmol. Vis. Sci. 2020, 61, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  345. Wang, J.; Xiao, H.; Barwick, S.R.; Smith, S.B. Comparison of Sigma 1 Receptor Ligands SA4503 and PRE084 to (+)-Pentazocine in the Rd10 Mouse Model of RP. Investig. Ophthalmol. Vis. Sci. 2020, 61, 3. [Google Scholar] [CrossRef] [PubMed]
  346. Wang, J.; Xiao, H.; Barwick, S.; Liu, Y.; Smith, S.B. Optimal Timing for Activation of Sigma 1 Receptor in the Pde6b rd10/J (Rd10) Mouse Model of Retinitis Pigmentosa. Exp. Eye Res. 2021, 202, 108397. [Google Scholar] [CrossRef] [PubMed]
  347. Wang, J.; Saul, A.; Roon, P.; Smith, S.B. Activation of the Molecular Chaperone, Sigma 1 Receptor, Preserves Cone Function in a Murine Model of Inherited Retinal Degeneration. Proc. Natl. Acad. Sci. USA 2016, 113, E3764–E3772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  348. Zhao, J.; Mysona, B.A.; Qureshi, A.; Kim, L.; Fields, T.; Gonsalvez, G.B.; Smith, S.B.; Bollinger, K.E. (+)-Pentazocine Reduces NMDA-Induced Murine Retinal Ganglion Cell Death Through a ΣR1-Dependent Mechanism. Investig. Ophthalmol. Vis. Sci. 2016, 57, 453–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  349. Smith, S.B.; Duplantier, J.; Dun, Y.; Mysona, B.; Roon, P.; Martin, P.M.; Ganapathy, V. In Vivo Protection against Retinal Neurodegeneration by Sigma Receptor 1 Ligand (+)-Pentazocine. Investig. Ophthalmol. Vis. Sci. 2008, 49, 4154–4161. [Google Scholar] [CrossRef] [Green Version]
  350. Wang, J.; Cui, X.; Roon, P.; Smith, S.B. Role of Sigma 1 Receptor in Retinal Degeneration of the Ins2Akita/+ Murine Model of Diabetic Retinopathy. Investig. Ophthalmol. Vis. Sci. 2016, 57, 2770–2781. [Google Scholar] [CrossRef] [Green Version]
  351. Li, L.; He, S.; Liu, Y.; Yorio, T.; Ellis, D.Z. Sigma-1R Protects Retinal Ganglion Cells in Optic Nerve Crush Model for Glaucoma. Investig. Ophthalmol. Vis. Sci. 2021, 62, 17. [Google Scholar] [CrossRef]
  352. Fontaine, V.; Monteiro, E.; Brazhnikova, E.; Lesage, L.; Balducci, C.; Guibout, L.; Feraille, L.; Elena, P.P.; Sahel, J.A.; Veillet, S.; et al. Norbixin Protects Retinal Pigmented Epithelium Cells and Photoreceptors against A2E-Mediated Phototoxicity In Vitro and In Vivo. PLoS ONE 2016, 11, e0167793. [Google Scholar] [CrossRef]
  353. Fontaine, V.; Monteiro, E.; Fournié, M.; Brazhnikova, E.; Boumedine, T.; Vidal, C.; Balducci, C.; Guibout, L.; Latil, M.; Dilda, P.J.; et al. Systemic Administration of the Di-Apocarotenoid Norbixin (BIO201) Is Neuroprotective, Preserves Photoreceptor Function and Inhibits A2E and Lipofuscin Accumulation in Animal Models of Age-Related Macular Degeneration and Stargardt Disease. Aging 2020, 12, 6151–6171. [Google Scholar] [CrossRef] [PubMed]
  354. Hu, S.L.; Zheng, C.P. (3R)-5,6,7-Trihydroxy-3-Isopropyl-3-Methylisochroman-1-One Ameliorates Retinal Degeneration in Pde6b Rd10 Mice. Cutan. Ocul. Toxicol. 2018, 37, 245–251. [Google Scholar] [CrossRef] [PubMed]
  355. Liu, L.; Jiang, Y.; Steinle, J.J. Glycyrrhizin Protects IGFBP-3 Knockout Mice from Retinal Damage. Cytokine 2020, 125, 154856. [Google Scholar] [CrossRef] [PubMed]
  356. Kim, G.H.; Paik, S.-S.; Park, Y.S.; Kim, H.G.; Kim, I.-B. Amelioration of Mouse Retinal Degeneration After Blue LED Exposure by Glycyrrhizic Acid-Mediated Inhibition of Inflammation. Front. Cell. Neurosci. 2019, 13, 319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  357. Abu El-Asrar, A.M.; Nawaz, M.I.; Siddiquei, M.M.; Al-Kharashi, A.S.; Kangave, D.; Mohammad, G. High-Mobility Group Box-1 Induces Decreased Brain-Derived Neurotrophic Factor-Mediated Neuroprotection in the Diabetic Retina. Mediat. Inflamm. 2013, 2013, 863036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  358. Mohammad, G.; Siddiquei, M.M.; Othman, A.; Al-Shabrawey, M.; Abu El-Asrar, A.M. High-Mobility Group Box-1 Protein Activates Inflammatory Signaling Pathway Components and Disrupts Retinal Vascular-Barrier in the Diabetic Retina. Exp. Eye Res. 2013, 107, 101–109. [Google Scholar] [CrossRef]
  359. Chi, W.; Chen, H.; Li, F.; Zhu, Y.; Yin, W.; Zhuo, Y. HMGB1 Promotes the Activation of NLRP3 and Caspase-8 Inflammasomes via NF-κB Pathway in Acute Glaucoma. J. Neuroinflamm. 2015, 12, 137. [Google Scholar] [CrossRef] [Green Version]
  360. Liu, L.; Jiang, Y.; Steinle, J.J. Inhibition of HMGB1 Protects the Retina from Ischemia-Reperfusion, as Well as Reduces Insulin Resistance Proteins. PLoS ONE 2017, 12, e0178236. [Google Scholar] [CrossRef]
  361. Fernández-Sánchez, L.; Lax, P.; Pinilla, I.; Martín-Nieto, J.; Cuenca, N. Tauroursodeoxycholic Acid Prevents Retinal Degeneration in Transgenic P23H Rats. Investig. Ophthalmol. Vis. Sci. 2011, 52, 4998–5008. [Google Scholar] [CrossRef]
  362. Tao, Y.; Dong, X.; Lu, X.; Qu, Y.; Wang, C.; Peng, G.; Zhang, J. Subcutaneous Delivery of Tauroursodeoxycholic Acid Rescues the Cone Photoreceptors in Degenerative Retina: A Promising Therapeutic Molecule for Retinopathy. Biomed. Pharmacother. 2019, 117, 109021. [Google Scholar] [CrossRef]
  363. Zhang, T.; Baehr, W.; Fu, Y. Chemical Chaperone TUDCA Preserves Cone Photoreceptors in a Mouse Model of Leber Congenital Amaurosis. Investig. Ophthalmol. Vis. Sci. 2012, 53, 3349–3356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  364. Lawson, E.C.; Bhatia, S.K.; Han, M.K.; Aung, M.H.; Ciavatta, V.; Boatright, J.H.; Pardue, M.T. Tauroursodeoxycholic Acid Protects Retinal Function and Structure in Rd1 Mice. Adv. Exp. Med. Biol. 2016, 854, 431–436. [Google Scholar] [CrossRef] [PubMed]
  365. Phillips, M.J.; Walker, T.A.; Choi, H.-Y.; Faulkner, A.E.; Kim, M.K.; Sidney, S.S.; Boyd, A.P.; Nickerson, J.M.; Boatright, J.H.; Pardue, M.T. Tauroursodeoxycholic Acid Preservation of Photoreceptor Structure and Function in the Rd10 Mouse through Postnatal Day 30. Investig. Ophthalmol. Vis. Sci. 2008, 49, 2148–2155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  366. Drack, A.V.; Dumitrescu, A.V.; Bhattarai, S.; Gratie, D.; Stone, E.M.; Mullins, R.; Sheffield, V.C. TUDCA Slows Retinal Degeneration in Two Different Mouse Models of Retinitis Pigmentosa and Prevents Obesity in Bardet-Biedl Syndrome Type 1 Mice. Investig. Ophthalmol. Vis. Sci. 2012, 53, 100–106. [Google Scholar] [CrossRef] [PubMed]
  367. Oveson, B.C.; Iwase, T.; Hackett, S.F.; Lee, S.Y.; Usui, S.; Sedlak, T.W.; Snyder, S.H.; Campochiaro, P.A.; Sung, J.U. Constituents of Bile, Bilirubin and TUDCA, Protect against Oxidative Stress-Induced Retinal Degeneration. J. Neurochem. 2011, 116, 144–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  368. Zhang, X.; Shahani, U.; Reilly, J.; Shu, X. Disease Mechanisms and Neuroprotection by Tauroursodeoxycholic Acid in Rpgr Knockout Mice. J. Cell. Physiol. 2019, 234, 18801–18812. [Google Scholar] [CrossRef]
  369. Gómez-Vicente, V.; Lax, P.; Fernández-Sánchez, L.; Rondón, N.; Esquiva, G.; Germain, F.; de la Villa, P.; Cuenca, N. Neuroprotective Effect of Tauroursodeoxycholic Acid on N-Methyl-D-Aspartate-Induced Retinal Ganglion Cell Degeneration. PLoS ONE 2015, 10, e0137826. [Google Scholar] [CrossRef] [Green Version]
  370. Woo, S.J.; Kim, J.H.; Yu, H.G. Ursodeoxycholic Acid and Tauroursodeoxycholic Acid Suppress Choroidal Neovascularization in a Laser-Treated Rat Model. J. Ocul. Pharmacol. Ther. 2010, 26, 223–229. [Google Scholar] [CrossRef]
  371. Fu, J.; Aung, M.H.; Prunty, M.C.; Hanif, A.M.; Hutson, L.M.; Boatright, J.H.; Pardue, M.T. Tauroursodeoxycholic Acid Protects Retinal and Visual Function in a Mouse Model of Type 1 Diabetes. Pharmaceutics 2021, 13, 1154. [Google Scholar] [CrossRef]
  372. Daruich, A.; Jaworski, T.; Henry, H.; Zola, M.; Youale, J.; Parenti, L.; Naud, M.C.; Delaunay, K.; Bertrand, M.; Berdugo, M.; et al. Oral Ursodeoxycholic Acid Crosses the Blood Retinal Barrier in Patients with Retinal Detachment and Protects Against Retinal Degeneration in an Ex Vivo Model. Neurotherapeutics 2021, 18, 1325–1338. [Google Scholar] [CrossRef]
  373. Mantopoulos, D.; Murakami, Y.; Comander, J.; Thanos, A.; Roh, M.; Miller, J.W.; Vavvas, D.G. Tauroursodeoxycholic Acid (TUDCA) Protects Photoreceptors from Cell Death after Experimental Retinal Detachment. PLoS ONE 2011, 6, e24245. [Google Scholar] [CrossRef] [PubMed]
  374. Kitamura, Y.; Bikbova, G.; Baba, T.; Yamamoto, S.; Oshitari, T. In Vivo Effects of Single or Combined Topical Neuroprotective and Regenerative Agents on Degeneration of Retinal Ganglion Cells in Rat Optic Nerve Crush Model. Sci. Rep. 2019, 9, 101. [Google Scholar] [CrossRef] [PubMed]
  375. Garcia-Delgado, A.B.; Valdés-Sánchez, L.; Calado, S.M.; Diaz-Corrales, F.J.; Bhattacharya, S.S. Rasagiline Delays Retinal Degeneration in a Mouse Model of Retinitis Pigmentosa via Modulation of Bax/Bcl-2 Expression. CNS Neurosci. Ther. 2018, 24, 448–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  376. Eigeldinger-Berthou, S.; Meier, C.; Zulliger, R.; Lecaudé, S.; Enzmann, V.; Sarra, G.M. Rasagiline Interferes with Neurodegeneration in the Prph2/Rds Mouse. Retina 2012, 32, 617–628. [Google Scholar] [CrossRef] [PubMed]
  377. Levkovitch-Verbin, H.; Vander, S.; Melamed, S. Rasagiline-Induced Delay of Retinal Ganglion Cell Death in Experimental Glaucoma in Rats. J. Glaucoma 2011, 20, 273–277. [Google Scholar] [CrossRef]
  378. Lei, D.; Shao, Z.; Zhou, X.; Yuan, H. Synergistic Neuroprotective Effect of Rasagiline and Idebenone against Retinal Ischemia-Reperfusion Injury via the Lin28-Let-7-Dicer Pathway. Oncotarget 2018, 9, 12137–12153. [Google Scholar] [CrossRef] [Green Version]
  379. Yu, S.; Framme, C.; Menke, M.N.; Berger, L.E.; Zinkernagel, M.S.; Munk, M.R.; Wolf, S.; Ebneter, A. Neuroprotection with Rasagiline in Patients with Macula-off Retinal Detachment: A Randomized Controlled Pilot Study. Sci. Rep. 2020, 10, 4948. [Google Scholar] [CrossRef]
  380. Benlloch-Navarro, S.; Trachsel-Moncho, L.; Fernández-Carbonell, Á.; Olivar, T.; Soria, J.M.; Almansa, I.; Miranda, M. Progesterone Anti-Inflammatory Properties in Hereditary Retinal Degeneration. J. Steroid Biochem. Mol. Biol. 2019, 189, 291–301. [Google Scholar] [CrossRef]
  381. Lopez, A.M.R.; Roche, S.L.; Jackson, A.C.W.; Moloney, J.N.; Byrne, A.M.; Cotter, T.G. Pro-Survival Redox Signalling in Progesterone-Mediated Retinal Neuroprotection. Eur. J. Neurosci. 2017, 46, 1663–1672. [Google Scholar] [CrossRef]
  382. Doonan, F.; O’Driscoll, C.; Kenna, P.; Cotter, T.G. Enhancing Survival of Photoreceptor Cells in Vivo Using the Synthetic Progestin Norgestrel. J. Neurochem. 2011, 118, 915–927. [Google Scholar] [CrossRef]
  383. Sánchez-Vallejo, V.; Benlloch-Navarro, S.; López-Pedrajas, R.; Romero, F.J.; Miranda, M. Neuroprotective Actions of Progesterone in an In Vivo Model of Retinitis Pigmentosa. Pharmacol. Res. 2015, 99, 276–288. [Google Scholar] [CrossRef] [PubMed]
  384. Roche, S.L.; Wyse-Jackson, A.C.; Gómez-Vicente, V.; Lax, P.; Ruiz-Lopez, A.M.; Byrne, A.M.; Cuenca, N.; Cotter, T.G. Progesterone Attenuates Microglial-Driven Retinal Degeneration and Stimulates Protective Fractalkine-CX3CR1 Signaling. PLoS ONE 2016, 11, e0165197. [Google Scholar] [CrossRef] [PubMed]
  385. Byrne, A.M.; Ruiz-Lopez, A.M.; Roche, S.L.; Moloney, J.N.; Wyse-Jackson, A.C.; Cotter, T.G. The Synthetic Progestin Norgestrel Modulates Nrf2 Signaling and Acts as an Antioxidant in a Model of Retinal Degeneration. Redox Biol. 2016, 10, 128–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  386. Allen, R.S.; Olsen, T.W.; Sayeed, I.; Cale, H.A.; Morrison, K.C.; Oumarbaeva, Y.; Lucaciu, I.; Boatright, J.H.; Pardue, M.T.; Stein, D.G. Progesterone Treatment in Two Rat Models of Ocular Ischemia. Investig. Ophthalmol. Vis. Sci. 2015, 56, 2880–2891. [Google Scholar] [CrossRef] [Green Version]
  387. Hernández-Rabaza, V.; López-Pedrajas, R.; Almansa, I. Progesterone, Lipoic Acid, and Sulforaphane as Promising Antioxidants for Retinal Diseases: A Review. Antioxidants 2019, 8, 53. [Google Scholar] [CrossRef] [Green Version]
  388. Corrochano, S.; Barhoum, R.; Boya, P.; Arroba, A.I.; Rodríguez-Muela, N.; Gómez-Vicente, V.; Bosch, F.; De Pablo, F.; De La Villa, P.; De La Rosa, E.J. Attenuation of Vision Loss and Delay in Apoptosis of Photoreceptors Induced by Proinsulin in a Mouse Model of Retinitis Pigmentosa. Investig. Ophthalmol. Vis. Sci. 2008, 49, 4188–4194. [Google Scholar] [CrossRef] [Green Version]
  389. Fernández-Sánchez, L.; Lax, P.; Isiegas, C.; Ayuso, E.; Ruiz, J.M.; De La Villa, P.; Bosch, F.; De La Rosa, E.J.; Cuenca, N. Proinsulin Slows Retinal Degeneration and Vision Loss in the P23H Rat Model of Retinitis Pigmentosa. Hum. Gene Ther. 2012, 23, 1290–1300. [Google Scholar] [CrossRef] [Green Version]
  390. Amato, R.; Canovai, A.; Melecchi, A.; Pezzino, S.; Corsaro, R.; Dal Monte, M.; Rusciano, D.; Bagnoli, P.; Cammalleri, M. Dietary Supplementation of Antioxidant Compounds Prevents Light-Induced Retinal Damage in a Rat Model. Biomedicines 2021, 9, 1177. [Google Scholar] [CrossRef]
  391. Wang, Y.; Qi, W.; Huo, Y.; Song, G.; Sun, H.; Guo, X.; Wang, C. Cyanidin-3-Glucoside Attenuates 4-Hydroxynonenal- and Visible Light-Induced Retinal Damage in Vitro and in Vivo. Food Funct. 2019, 10, 2871–2880. [Google Scholar] [CrossRef]
  392. Lee, S.H.; Jeong, E.; Paik, S.S.; Jeon, J.H.; Jung, S.W.; Kim, H.B.; Kim, M.; Chun, M.H.; Kim, I.B. Cyanidin-3-Glucoside Extracted from Mulberry Fruit Can Reduce N-Methyl-N-Nitrosourea-Induced Retinal Degeneration in Rats. Curr. Eye Res. 2014, 39, 79–87. [Google Scholar] [CrossRef]
  393. Ercan, Z.; Haberal, N.; Helvacioglu, F.; Daǧdeviren, A.; Yilmaz, G. Effect of Intravitreal and Intraperitoneal Cyanidin-3-Glucoside Injection in Oxygen-Induced Retinopathy Mouse Model. Indian J. Ophthalmol. 2019, 67, 801–805. [Google Scholar] [CrossRef] [PubMed]
  394. Osada, H.; Okamoto, T.; Kawashima, H.; Toda, E.; Miyake, S.; Nagai, N.; Kobayashi, S.; Tsubota, K.; Ozawa, Y. Neuroprotective Effect of Bilberry Extract in a Murine Model of Photo-Stressed Retina. PLoS ONE 2017, 12, e0178627. [Google Scholar] [CrossRef] [PubMed]
  395. Wang, Y.; Zhao, L.; Lu, F.; Yang, X.; Deng, Q.; Ji, B.; Huang, F.; Kitts, D.D. Retinoprotective Effects of Bilberry Anthocyanins via Antioxidant, Anti-Inflammatory, and Anti-Apoptotic Mechanisms in a Visible Light-Induced Retinal Degeneration Model in Pigmented Rabbits. Molecules 2015, 20, 22395–22410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  396. Fursova, A.Z.; Gesarevich, O.G.; Gonchar, A.M.; Trofimova, N.A.; Kolosova, N.G. Dietary supplementation with bilberry extract prevents macular degeneration and cataracts in senesce-accelerated OXYS rats. Adv. Gerontol. 2005, 16, 76–79. [Google Scholar]
  397. Kim, J.; Kim, C.S.; Lee, Y.M.; Sohn, E.; Jo, K.; Kim, J.S. Vaccinium Myrtillus Extract Prevents or Delays the Onset of Diabetes--Induced Blood-Retinal Barrier Breakdown. Int. J. Food Sci. Nutr. 2015, 66, 236–242. [Google Scholar] [CrossRef]
  398. Matsunaga, N.; Chikaraishi, Y.; Shimazawa, M.; Yokota, S.; Hara, H. Vaccinium Myrtillus (Bilberry) Extracts Reduce Angiogenesis In Vitro and In Vivo. Evid. Based Complement. Altern. Med. 2010, 7, 47–56. [Google Scholar] [CrossRef]
  399. Nakamura, O.; Moritoh, S.; Sato, K.; Maekawa, S.; Murayama, N.; Himori, N.; Omodaka, K.; Sogon, T.; Nakazawa, T. Bilberry Extract Administration Prevents Retinal Ganglion Cell Death in Mice via the Regulation of Chaperone Molecules under Conditions of Endoplasmic Reticulum Stress. Clin. Ophthalmol. 2017, 11, 1825–1834. [Google Scholar] [CrossRef] [Green Version]
  400. Miyake, S.; Takahashi, N.; Sasaki, M.; Kobayashi, S.; Tsubota, K.; Ozawa, Y. Vision Preservation during Retinal Inflammation by Anthocyanin-Rich Bilberry Extract: Cellular and Molecular Mechanism. Lab. Investig. 2012, 92, 102–109. [Google Scholar] [CrossRef]
  401. Kalt, W.; McDonald, J.E.; Fillmore, S.A.E.; Tremblay, F. Blueberry Effects on Dark Vision and Recovery after Photobleaching: Placebo-Controlled Crossover Studies. J. Agric. Food Chem. 2014, 62, 11180–11189. [Google Scholar] [CrossRef]
  402. Guzmán Mendoza, N.A.; Homma, K.; Osada, H.; Toda, E.; Ban, N.; Nagai, N.; Negishi, K.; Tsubota, K.; Ozawa, Y. Neuroprotective Effect of 4-Phenylbutyric Acid against Photo-Stress in the Retina. Antioxidants 2021, 10, 1147. [Google Scholar] [CrossRef]
  403. Qiu, Y.; Yao, J.; Jia, L.; Thompson, D.A.; Zacks, D.N. Shifting the Balance of Autophagy and Proteasome Activation Reduces Proteotoxic Cell Death: A Novel Therapeutic Approach for Restoring Photoreceptor Homeostasis. Cell Death Dis. 2019, 10, 547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  404. Li, S.; Samardzija, M.; Yang, Z.; Grimm, C.; Jin, M. Pharmacological Amelioration of Cone Survival and Vision in a Mouse Model for Leber Congenital Amaurosis. J. Neurosci. 2016, 36, 5808–5819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  405. Mesentier-Louro, L.A.; Shariati, M.A.; Dalal, R.; Camargo, A.; Kumar, V.; Shamskhou, E.A.; de Jesus Perez, V.; Liao, Y.J. Systemic Hypoxia Led to Little Retinal Neuronal Loss and Dramatic Optic Nerve Glial Response. Exp. Eye Res. 2020, 193, 107957. [Google Scholar] [CrossRef] [PubMed]
  406. Kumar, V.; Mesentier-Louro, L.A.; Oh, A.J.; Heng, K.; Shariati, M.A.; Huang, H.; Hu, Y.; Liao, Y.J. Increased ER Stress After Experimental Ischemic Optic Neuropathy and Improved RGC and Oligodendrocyte Survival After Treatment With Chemical Chaperon. Investig. Ophthalmol. Vis. Sci. 2019, 60, 1953–1966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  407. Jeng, Y.Y.; Lin, N.T.; Chang, P.H.; Huang, Y.P.; Pang, V.F.; Liu, C.H.; Lin, C.T. Retinal Ischemic Injury Rescued by Sodium 4-Phenylbutyrate in a Rat Model. Exp. Eye Res. 2007, 84, 486–492. [Google Scholar] [CrossRef]
  408. Bian, M.; Du, X.; Cui, J.; Wang, P.; Wang, W.; Zhu, W.; Zhang, T.; Chen, Y. Celastrol Protects Mouse Retinas from Bright Light-Induced Degeneration through Inhibition of Oxidative Stress and Inflammation. J. Neuroinflamm. 2016, 13, 50. [Google Scholar] [CrossRef] [Green Version]
  409. Gu, L.; Kwong, J.M.K.; Yadegari, D.; Yu, F.; Caprioli, J.; Piri, N. The Effect of Celastrol on the Ocular Hypertension-Induced Degeneration of Retinal Ganglion Cells. Neurosci. Lett. 2018, 670, 89–93. [Google Scholar] [CrossRef] [Green Version]
  410. Kyung, H.; Kwong, J.M.K.; Bekerman, V.; Gu, L.; Yadegari, D.; Caprioli, J.; Piri, N. Celastrol Supports Survival of Retinal Ganglion Cells Injured by Optic Nerve Crush. Brain Res. 2015, 1609, 21–30. [Google Scholar] [CrossRef] [Green Version]
  411. Chen, Y.W.; Huang, Y.P.; Wu, P.C.; Chiang, W.Y.; Wang, P.H.; Chen, B.Y. The Functional Vision Protection Effect of Danshensu via Dopamine D1 Receptors: In Vivo Study. Nutrients 2021, 13, 978. [Google Scholar] [CrossRef]
  412. Perusek, L.; Maeda, A.; Maeda, T. Supplementation with Vitamin a Derivatives to Rescue Vision in Animal Models of Degenerative Retinal Diseases. Methods Mol. Biol. 2015, 1271, 345–362. [Google Scholar] [CrossRef]
  413. Li, T.; Sandberg, M.A.; Pawlyk, B.S.; Rosner, B.; Hayes, K.C.; Dryja, T.P.; Berson, E.L. Effect of Vitamin A Supplementation on Rhodopsin Mutants Threonine-17 --> Methionine and Proline-347 --> Serine in Transgenic Mice and in Cell Cultures. Proc. Natl. Acad. Sci. USA 1998, 95, 11933–11938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  414. El-Mansi, A.A.; Al-Kahtani, M.A.; Rady, A.M.; El-Bealy, E.A.; Al-Asmari, A.M. Vitamin A and Daucus Carota Root Extract Mitigate STZ-Induced Diabetic Retinal Degeneration in Wistar Albino Rats by Modulating Neurotransmission and Downregulation of Apoptotic Pathways. J. Food Biochem. 2021, 45, e13688. [Google Scholar] [CrossRef] [PubMed]
  415. Nishimura, C.; Kuriyama, K. Alteration of Lipid Peroxide and Endogenous Antioxidant Contents in Retina of Streptozotocin-Induced Diabetic Rats: Effect of Vitamin A Administration. Jpn. J. Pharmacol. 1985, 37, 365–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  416. Tiruvalluru, M.; Ananthathmakula, P.; Ayyalasomayajula, V.; Nappanveettil, G.; Ayyagari, R.; Reddy, G.B. Vitamin A Supplementation Ameliorates Obesity-Associated Retinal Degeneration in WNIN/Ob Rats. Nutrition 2013, 29, 298–304. [Google Scholar] [CrossRef] [PubMed]
  417. Sezen, O.; Ertekin, M.V.; Demircan, B.; Karslioǧlu, I.; Erdoǧan, F.; Koçer, I.; Çalik, I.; Gepdiremen, A. Vitamin E and L-Carnitine, Separately or in Combination, in the Prevention of Radiation-Induced Brain and Retinal Damages. Neurosurg. Rev. 2008, 31, 205–213. [Google Scholar] [CrossRef] [PubMed]
  418. Yilmaz, T.; Aydemir, O.; Özercan, I.H.; Üstündaǧ, B. Effects of Vitamin e, Pentoxifylline and Aprotinin on Light-Induced Retinal Injury. Ophthalmologica 2007, 221, 159–166. [Google Scholar] [CrossRef]
  419. Ueda, K.; Zhao, J.; Kim, H.J.; Sparrow, J.R. Photodegradation of Retinal Bisretinoids in Mouse Models and Implications for Macular Degeneration. Proc. Natl. Acad. Sci. USA 2016, 113, 6904–6909. [Google Scholar] [CrossRef] [Green Version]
  420. Di Leo, M.A.S.; Ghirlanda, G.; Silveri, N.G.; Giardina, B.; Franconi, F.; Santini, S.A. Potential Therapeutic Effect of Antioxidants in Experimental Diabetic Retina: A Comparison between Chronic Taurine and Vitamin E plus Selenium Supplementations. Free Radic. Res. 2003, 37, 323–330. [Google Scholar] [CrossRef]
  421. Fernandez-Robredo, P.; Moya, D.; Rodriguez, J.A.; Garcia-Layana, A. Vitamins C and e Reduce Retinal Oxidative Stress and Nitric Oxide Metabolites and Prevent Ultrastructural Alterations in Porcine Hypercholesterolemia. Investig. Ophthalmol. Vis. Sci. 2005, 46, 1140–1146. [Google Scholar] [CrossRef]
  422. Schwartz, S.G.; Wang, X.; Chavis, P.; Kuriyan, A.E.; Abariga, S.A. Vitamin A and Fish Oils for Preventing the Progression of Retinitis Pigmentosa. Cochrane Database Syst. Rev. 2020, 6, CD008428. [Google Scholar] [CrossRef]
  423. Jacobson, S.G.; Cideciyan, A.V.; Regunath, G.; Rodriguez, F.J.; Vandenburgh, K.; Sheffield, V.C.; Stone, E.M. Night Blindness in Sorsby’s Fundus Dystrophy Reversed by Vitamin A. Nat. Genet. 1995, 11, 27–32. [Google Scholar] [CrossRef] [PubMed]
  424. Evans, J.R.; Lawrenson, J.G. Antioxidant Vitamin and Mineral Supplements for Slowing the Progression of Age-Related Macular Degeneration. Cochrane Database Syst. Rev. 2012, 11, CD000254. [Google Scholar] [CrossRef] [PubMed]
  425. Berson, E.L. A Randomized Trial of Vitamin A and Vitamin E Supplementation for Retinitis Pigmentosa. Arch. Ophthalmol. 1993, 111, 761–772. [Google Scholar] [CrossRef] [PubMed]
  426. Domanico, D.; Fragiotta, S.; Cutini, A.; Carnevale, C.; Zompatori, L.; Vingolo, E. Circulating Levels of Reactive Oxygen Species in Patients with Nonproliferative Diabetic Retinopathy and the Influence of Antioxidant Supplementation: 6-Month Follow-Up. Indian J. Ophthalmol. 2015, 63, 9–14. [Google Scholar] [CrossRef] [PubMed]
  427. Piccardi, M.; Fadda, A.; Martelli, F.; Marangoni, D.; Magli, A.; Minnella, A.M.; Bertelli, M.; Di Marco, S.; Bisti, S.; Falsini, B. Antioxidant Saffron and Central Retinal Function in ABCA4-Related Stargardt Macular Dystrophy. Nutrients 2019, 11, 2461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  428. Cukras, C.A.; Singaravelu, J.; Alvarez, J.; Wong, W.T. Pilot Study to Evaluate Oral Minocycline as a Treatment for Cystoid Macular Edema Associated with Retinitis Pigmentosa. Investig. Ophthalmol. Vis. Sci. 2017, 58, 3261. [Google Scholar]
  429. Bahrami, H.; Melia, M.; Dagnelie, G. Lutein Supplementation in Retinitis Pigmentosa: PC-Based Vision Assessment in a Randomized Double-Masked Placebo-Controlled Clinical Trial [NCT00029289]. BMC Ophthalmol 2006, 6, 23. [Google Scholar] [CrossRef] [Green Version]
  430. Berson, E.L.; Rosner, B.; Sandberg, M.A.; Weigel-DiFranco, C.; Brockhurst, R.J.; Hayes, K.C.; Johnson, E.J.; Anderson, E.J.; Johnson, C.A.; Gaudio, A.R.; et al. Clinical Trial of Lutein in Patients with Retinitis Pigmentosa Receiving Vitamin A. Arch. Ophthalmol. 2010, 128, 403–411. [Google Scholar] [CrossRef] [Green Version]
  431. Vidović, B.B.; Milinčić, D.D.; Marčetić, M.D.; Djuriš, J.D.; Ilić, T.D.; Kostić, A.Ž.; Pešić, M.B. Health Benefits and Applications of Goji Berries in Functional Food Products Development: A Review. Antioxidants 2022, 11, 248. [Google Scholar] [CrossRef]
  432. Scholl, H.P.N.; Moore, A.T.; Koenekoop, R.K.; Wen, Y.; Fishman, G.A.; van den Born, L.I.; Bittner, A.; Bowles, K.; Fletcher, E.C.; Collison, F.T.; et al. Safety and Proof-of-Concept Study of Oral QLT091001 in Retinitis Pigmentosa Due to Inherited Deficiencies of Retinal Pigment Epithelial 65 Protein (RPE65) or Lecithin: Retinol Acyltransferase (LRAT). PLoS ONE 2015, 10, e0143846. [Google Scholar] [CrossRef] [Green Version]
  433. Wen, Y.; Birch, D.G. Outer Segment Thickness Predicts Visual Field Response to QLT091001 in Patients with RPE65 or LRAT Mutations. Transl. Vis. Sci. Technol. 2015, 4, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  434. Koenekoop, R.K.; Sui, R.; Sallum, J.; van den Born, L.I.; Ajlan, R.; Khan, A.; den Hollander, A.I.; Cremers, F.P.M.; Mendola, J.D.; Bittner, A.K.; et al. Oral 9-Cis Retinoid for Childhood Blindness Due to Leber Congenital Amaurosis Caused by RPE65 or LRAT Mutations: An Open-Label Phase 1b Trial. Lancet 2014, 384, 1513–1520. [Google Scholar] [CrossRef]
  435. Scholl, H.P.; Koenekoop, R.K.; Moore, A.T.; Zrenner, E.; van den Born, L.I.; Fishman, G.A.; Dagnelie, G.; Schuchard, R.A.; Saperstein, D.A.; Mallick, S.; et al. Vision Improvement After Retreatment with an Oral Synthetic Cis-Retinoid (QLT091001) in Subjects with LCA or RP Due to Mutations in RPE65 or LRAT. Investig. Ophthalmol. Vis. Sci. 2015, 56, 1285. [Google Scholar]
  436. Hoffman, D.R.; Hughbanks-Wheaton, D.K.; Pearson, N.S.; Fish, G.E.; Spencer, R.; Takacs, A.; Klein, M.; Locke, K.G.; Birch, D.G. Four-Year Placebo-Controlled Trial of Docosahexaenoic Acid in X-Linked Retinitis Pigmentosa (DHAX Trial): A Randomized Clinical Trial. JAMA Ophthalmol. 2014, 132, 866–873. [Google Scholar] [CrossRef] [PubMed]
  437. Hughbanks-Wheaton, D.K.; Birch, D.G.; Fish, G.E.; Spencer, R.; Shirlene Pearson, N.; Takacs, A.; Hoffman, D.R. Safety Assessment of Docosahexaenoic Acid in X-Linked Retinitis Pigmentosa: The 4-Year DHAX Trial. Investig. Ophthalmol. Vis. Sci. 2014, 55, 4958–4966. [Google Scholar] [CrossRef] [Green Version]
  438. Hoffman, D.R.; Hughbanks-Wheaton, D.K.; Spencer, R.; Fish, G.E.; Pearson, N.S.; Wang, Y.Z.; Klein, M.; Takacs, A.; Locke, K.G.; Birch, D.G. Docosahexaenoic Acid Slows Visual Field Progression in X-Linked Retinitis Pigmentosa: Ancillary Outcomes of the DHAX Trial. Investig. Ophthalmol. Vis. Sci. 2015, 56, 6646–6653. [Google Scholar] [CrossRef]
  439. Berson, E.L.; Rosner, B.; Sandberg, M.A.; Weigel-DiFranco, C.; Moser, A.; Brockhurst, R.J.; Hayes, K.C.; Johnson, C.A.; Anderson, E.J.; Gaudio, A.R.; et al. Clinical Trial of Docosahexaenoic Acid in Patients with Retinitis Pigmentosa Receiving Vitamin A Treatment. Arch. Ophthalmol. 2004, 122, 1297–1305. [Google Scholar] [CrossRef]
  440. Berson, E.L. Further Evaluation of Docosahexaenoic Acid in Patients With Retinitis Pigmentosa Receiving Vitamin A Treatment. Arch. Ophthalmol. 2004, 122, 1306–1314. [Google Scholar] [CrossRef]
  441. MacDonald, I.M.; Sieving, P.A. Investigation of the Effect of Dietary Docosahexaenoic Acid (DHA) Supplementation on Macular Function in Subjects with Autosomal Recessive Stargardt Macular Dystrophy. Ophthalmic Genet. 2018, 39, 477–486. [Google Scholar] [CrossRef]
  442. Jurgensmeier, C.; Bhosale, P.; Bernstein, P.S. Evaluation of 4-Methylpyrazole as a Potential Therapeutic Dark Adaptation Inhibitor. Curr. Eye Res. 2007, 32, 911–915. [Google Scholar] [CrossRef]
  443. Birch, D.G.; Bernstein, P.S.; Iannacone, A.; Pennesi, M.E.; Lam, B.L.; Heckenlively, J.; Csaky, K.; Hartnett, M.E.; Winthrop, K.L.; Jayasundera, T.; et al. Effect of Oral Valproic Acid vs Placebo for Vision Loss in Patients With Autosomal Dominant Retinitis Pigmentosa. JAMA Ophthalmol. 2018, 136, 849–856. [Google Scholar] [CrossRef] [PubMed]
  444. Rotenstreich, Y.; Belkin, M.; Sadetzki, S.; Chetrit, A.; Ferman-Attar, G.; Sher, I.; Harari, A.; Shaish, A.; Harats, D. Treatment With 9- Cis β-Carotene–Rich Powder in Patients With Retinitis Pigmentosa. JAMA Ophthalmol. 2013, 131, 985–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  445. Lee, S.Y.; Usui, S.; Zafar, A.B.; Oveson, B.C.; Jo, Y.J.; Lu, L.; Masoudi, S.; Campochiaro, P.A. N-Acetylcysteine Promotes Long-Term Survival of Cones in a Model of Retinitis Pigmentosa. J. Cell. Physiol. 2011, 226, 1843–1849. [Google Scholar] [CrossRef] [PubMed]
  446. Schwalfenberg, G.K. N-Acetylcysteine: A Review of Clinical Usefulness (an Old Drug with New Tricks). J. Nutr. Metab. 2021, 2021, 9949453. [Google Scholar] [CrossRef]
  447. Sunitha, K.; Hemshekhar, M.; Thushara, R.M.; Santhosh, M.S.; Yariswamy, M.; Kemparaju, K.; Girish, K.S. N-Acetylcysteine Amide: A Derivative to Fulfill the Promises of N-Acetylcysteine. Free Radic. Res. 2013, 47, 357–367. [Google Scholar] [CrossRef]
  448. Grinberg, L.; Fibach, E.; Amer, J.; Atlas, D. N-Acetylcysteine Amide, a Novel Cell-Permeating Thiol, Restores Cellular Glutathione and Protects Human Red Blood Cells from Oxidative Stress. Free Radic. Biol. Med. 2005, 38, 136–145. [Google Scholar] [CrossRef]
  449. Holmgren, A. Antioxidant Function of Thioredoxin and Glutaredoxin Systems. Antioxid. Redox Signal. 2000, 2, 811–820. [Google Scholar] [CrossRef]
  450. Nakamura, H.; Herzenberg, L.A.; Bai, J.; Araya, S.; Kondo, N.; Nishinaka, Y.; Herzenberg, L.A.; Yodoi, J. Circulating Thioredoxin Suppresses Lipopolysaccharide-Induced Neutrophil Chemotaxis. Proc. Natl. Acad. Sci. USA 2001, 98, 15143–15148. [Google Scholar] [CrossRef] [Green Version]
  451. Nakamura, H.; Hoshino, Y.; Okuyama, H.; Matsuo, Y.; Yodoi, J. Thioredoxin 1 Delivery as New Therapeutics. Adv. Drug Deliv. Rev. 2009, 61, 303–309. [Google Scholar] [CrossRef]
  452. Léveillard, T.; Mohand-Saïd, S.; Lorentz, O.; Hicks, D.; Fintz, A.C.; Clérin, E.; Simonutti, M.; Forster, V.; Cavusoglu, N.; Chalmel, F.; et al. Identification and Characterization of Rod-Derived Cone Viability Factor. Nat. Genet. 2004, 36, 755–759. [Google Scholar] [CrossRef]
  453. Léveillard, T.; Sahel, J.A. Rod-Derived Cone Viability Factor for Treating Blinding Diseases: From Clinic to Redox Signaling. Sci. Transl. Med. 2010, 2, 26ps16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  454. Chalmel, F.; Léveillard, T.; Jaillard, C.; Lardenois, A.; Berdugo, N.; Morel, E.; Koehl, P.; Lambrou, G.; Holmgren, A.; Sahel, J.A.; et al. Rod-Derived Cone Viability Factor-2 Is a Novel Bifunctional-Thioredoxin-like Protein with Therapeutic Potential. BMC Mol. Biol. 2007, 8, 74. [Google Scholar] [CrossRef] [PubMed]
  455. Clérin, E.; Marussig, M.; Sahel, J.A.; Léveillard, T. Metabolic and Redox Signaling of the Nucleoredoxin-Like-1 Gene for the Treatment of Genetic Retinal Diseases. Int. J. Mol. Sci. 2020, 21, 1625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  456. Cronin, T.; Raffelsberger, W.; Lee-Rivera, I.; Jaillard, C.; Niepon, M.L.; Kinzel, B.; Clérin, E.; Petrosian, A.; Picaud, S.; Poch, O.; et al. The Disruption of the Rod-Derived Cone Viability Gene Leads to Photoreceptor Dysfunction and Susceptibility to Oxidative Stress. Cell Death Differ. 2010, 17, 1199–1210. [Google Scholar] [CrossRef] [PubMed]
  457. Stone, J.; Mitrofanis, J.; Johnstone, D.M.; Falsini, B.; Bisti, S.; Adam, P.; Nuevo, A.B.; George-Weinstein, M.; Mason, R.; Eells, J. Acquired Resilience: An Evolved System of Tissue Protection in Mammals. Dose Response 2018, 16, 1559325818803428. [Google Scholar] [CrossRef]
  458. Yamauchi, M.; Tsuruma, K.; Imai, S.; Nakanishi, T.; Umigai, N.; Shimazawa, M.; Hara, H. Crocetin Prevents Retinal Degeneration Induced by Oxidative and Endoplasmic Reticulum Stresses via Inhibition of Caspase Activity. Eur. J. Pharmacol. 2011, 650, 110–119. [Google Scholar] [CrossRef]
  459. Laabich, A.; Vissvesvaran, G.P.; Lieu, K.L.; Murata, K.; McGinn, T.E.; Manmoto, C.C.; Sinclair, J.R.; Karliga, I.; Leung, D.W.; Fawzi, A.; et al. Protective Effect of Crocin against Blue Light- and White Light-Mediated Photoreceptor Cell Death in Bovine and Primate Retinal Primary Cell Culture. Investig. Ophthalmol. Vis. Sci. 2006, 47, 3156–3163. [Google Scholar] [CrossRef]
  460. Giaccio, M. Crocetin from Saffron: An Active Component of an Ancient Spice. Crit. Rev. Food Sci. Nutr. 2004, 44, 155–172. [Google Scholar] [CrossRef]
  461. Kanakis, C.D.; Tarantilis, P.A.; Tajmir-Riahi, H.A.; Polissiou, M.G. DNA Interaction with Saffron’s Secondary Metabolites Safranal, Crocetin, and Dimethylcrocetin. DNA Cell Biol. 2007, 26, 63–70. [Google Scholar] [CrossRef]
  462. Garrido-Mesa, N.; Zarzuelo, A.; Gálvez, J. Minocycline: Far beyond an Antibiotic. Br. J. Pharmacol. 2013, 169, 337–352. [Google Scholar] [CrossRef] [Green Version]
  463. Ataie-Kachoie, P.; Badar, S.; Morris, D.L.; Pourgholami, M.H. Minocycline Targets the NF-κB Nexus through Suppression of TGF-Β1-TAK1-IκB Signaling in Ovarian Cancer. Mol. Cancer Res. 2013, 11, 1279–1291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  464. Blum, D.; Chtarto, A.; Tenenbaum, L.; Brotchi, J.; Levivier, M. Clinical Potential of Minocycline for Neurodegenerative Disorders. Neurobiol. Dis. 2004, 17, 359–366. [Google Scholar] [CrossRef] [PubMed]
  465. Romero-Miguel, D.; Lamanna-Rama, N.; Casquero-Veiga, M.; Gómez-Rangel, V.; Desco, M.; Soto-Montenegro, M.L. Minocycline in Neurodegenerative and Psychiatric Diseases: An Update. Eur. J. Neurol. 2021, 28, 1056–1081. [Google Scholar] [CrossRef] [PubMed]
  466. Nazarian, S.; Akhondi, H. Minocycline. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar] [PubMed]
  467. Acuña-Castroviejo, D.; Escames, G.; Venegas, C.; Díaz-Casado, M.E.; Lima-Cabello, E.; López, L.C.; Rosales-Corral, S.; Tan, D.X.; Reiter, R.J. Extrapineal Melatonin: Sources, Regulation, and Potential Functions. Cell. Mol. Life Sci. 2014, 71, 2997–3025. [Google Scholar] [CrossRef]
  468. Meng, X.; Li, Y.; Li, S.; Zhou, Y.; Gan, R.Y.; Xu, D.P.; Li, H. Bin Dietary Sources and Bioactivities of Melatonin. Nutrients 2017, 9, 367. [Google Scholar] [CrossRef] [Green Version]
  469. Reiter, R.J.; Coto-Montes, A.; Boga, J.A.; Fuentes-Broto, L.; Rosales-Corral, S.; Tan, D.X. Melatonin: New Applications in Clinical and Veterinary Medicine, Plant Physiology and Industry. Neuro Endocrinol. Lett. 2011, 32, 575–587. [Google Scholar]
  470. Tordjman, S.; Chokron, S.; Delorme, R.; Charrier, A.; Bellissant, E.; Jaafari, N.; Fougerou, C. Melatonin: Pharmacology, Functions and Therapeutic Benefits. Curr. Neuropharmacol. 2017, 15, 434–443. [Google Scholar] [CrossRef]
  471. Dehdashtian, E.; Mehrzadi, S.; Yousefi, B.; Hosseinzadeh, A.; Reiter, R.J.; Safa, M.; Ghaznavi, H.; Naseripour, M. Diabetic Retinopathy Pathogenesis and the Ameliorating Effects of Melatonin; Involvement of Autophagy, Inflammation and Oxidative Stress. Life Sci. 2018, 193, 20–33. [Google Scholar] [CrossRef]
  472. Peddada, K.V.; Brown, A.; Verma, V.; Nebbioso, M. Therapeutic Potential of Curcumin in Major Retinal Pathologies. Int. Ophthalmol. 2019, 39, 725–734. [Google Scholar] [CrossRef]
  473. Chandrasekaran, P.R.; Madanagopalan, V.G. Role of Curcumin in Retinal Diseases-A Review. Graefe’s Arch. Clin. Exp. Ophthalmol. 2022, 260, 1457–1473. [Google Scholar] [CrossRef]
  474. Lou, J.; Hu, W.; Tian, R.; Zhang, H.; Jia, Y.; Zhang, J.; Zhang, L. Optimization and Evaluation of a Thermoresponsive Ophthalmic in Situ Gel Containing Curcumin-Loaded Albumin Nanoparticles. Int. J. Nanomed. 2014, 9, 2517–2525. [Google Scholar] [CrossRef]
  475. Duan, Y.; Cai, X.; Du, H.; Zhai, G. Novel in Situ Gel Systems Based on P123/TPGS Mixed Micelles and Gellan Gum for Ophthalmic Delivery of Curcumin. Colloids Surf. B Biointerfaces 2015, 128, 322–330. [Google Scholar] [CrossRef] [PubMed]
  476. Howell, J.C.; Chun, E.; Farrell, A.N.; Hur, E.Y.; Caroti, C.M.; Iuvone, P.M.; Haque, R. Global MicroRNA Expression Profiling: Curcumin (Diferuloylmethane) Alters Oxidative Stress-Responsive MicroRNAs in Human ARPE-19 Cells. Mol. Vis. 2013, 19, 544–560. [Google Scholar] [PubMed]
  477. Landrum, J.T.; Bone, R.A. Lutein, Zeaxanthin, and the Macular Pigment. Arch. Biochem. Biophys. 2001, 385, 28–40. [Google Scholar] [CrossRef] [PubMed]
  478. Bone, R.A.; Landrum, J.T.; Friedes, L.M.; Gomez, C.M.; Kilburn, M.D.; Menendez, E.; Vidal, I.; Wang, W. Distribution of Lutein and Zeaxanthin Stereoisomers in the Human Retina. Exp. Eye Res. 1997, 64, 211–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  479. Mewborn, C.M.; Lindbergh, C.A.; Robinson, T.L.; Gogniat, M.A.; Terry, D.P.; Jean, K.R.; Hammond, B.R.; Renzi-Hammond, L.M.; Miller, L.S. Lutein and Zeaxanthin Are Positively Associated with Visual-Spatial Functioning in Older Adults: An FMRI Study. Nutrients 2018, 10, 458. [Google Scholar] [CrossRef] [Green Version]
  480. Kijlstra, A.; Tian, Y.; Kelly, E.R.; Berendschot, T.T.J.M. Lutein: More than Just a Filter for Blue Light. Prog. Retin. Eye Res. 2012, 31, 303–315. [Google Scholar] [CrossRef] [PubMed]
  481. Chew, E.Y.; Clemons, T.E.; SanGiovanni, J.P.; Danis, R.P.; Ferris, F.L.; Elman, M.J.; Antoszyk, A.N.; Ruby, A.J.; Orth, D.; Bressler, S.B.; et al. Secondary Analyses of the Effects of Lutein/Zeaxanthin on Age-Related Macular Degeneration Progression: AREDS2 Report No. 3. JAMA Ophthalmol. 2014, 132, 142–149. [Google Scholar] [CrossRef]
  482. Chakrawarti, L.; Agrawal, R.; Dang, S.; Gupta, S.; Gabrani, R. Therapeutic Effects of EGCG: A Patent Review. Expert Opin Pat. 2016, 26, 907–916. [Google Scholar] [CrossRef]
  483. He, J.; Xu, L.; Yang, L.; Wang, X. Epigallocatechin Gallate Is the Most Effective Catechin Against Antioxidant Stress via Hydrogen Peroxide and Radical Scavenging Activity. Med. Sci. Monit. 2018, 24, 8198–8206. [Google Scholar] [CrossRef]
  484. Chu, K.O.; Chan, K.P.; Yang, Y.P.; Qin, Y.J.; Li, W.Y.; Chan, S.O.; Wang, C.C.; Pang, C.P. Effects of EGCG Content in Green Tea Extract on Pharmacokinetics, Oxidative Status and Expression of Inflammatory and Apoptotic Genes in the Rat Ocular Tissues. J. Nutr. Biochem. 2015, 26, 1357–1367. [Google Scholar] [CrossRef] [PubMed]
  485. Lee, J.H.; Song, D.K.; Jung, C.H.; Shin, D.H.; Park, J.W.; Taeg, K.K.; Jang, B.C.; Mun, K.C.; Kim, S.P.; Suh, S.I.; et al. (−)-Epigallocatechin Gallate Attenuates Glutamate-Induced Cytotoxicity via Intracellular Ca Modulation in PC12 Cells. Clin. Exp. Pharmacol. Physiol. 2004, 31, 530–536. [Google Scholar] [CrossRef] [PubMed]
  486. Chou, C.W.; Huang, W.J.; Tien, L.T.; Wang, S.J. (−)-Epigallocatechin Gallate, the Most Active Polyphenolic Catechin in Green Tea, Presynaptically Facilitates Ca2+-Dependent Glutamate Release via Activation of Protein Kinase C in Rat Cerebral Cortex. Synapse 2007, 61, 889–902. [Google Scholar] [CrossRef] [PubMed]
  487. Yu, J.; Jia, Y.; Guo, Y.; Chang, G.; Duan, W.; Sun, M.; Li, B.; Li, C. Epigallocatechin-3-Gallate Protects Motor Neurons and Regulates Glutamate Level. FEBS Lett. 2010, 584, 2921–2925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  488. Tang, G.Y.; Meng, X.; Gan, R.Y.; Zhao, C.N.; Liu, Q.; Feng, Y.B.; Li, S.; Wei, X.L.; Atanasov, A.G.; Corke, H.; et al. Health Functions and Related Molecular Mechanisms of Tea Components: An Update Review. Int. J. Mol. Sci. 2019, 20, 6196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  489. Neelam, K.; Dey, S.; Sim, R.; Lee, J.; Au Eong, K.G. Fructus Lycii: A Natural Dietary Supplement for Amelioration of Retinal Diseases. Nutrients 2021, 13, 246. [Google Scholar] [CrossRef]
  490. Liu, F.; Liu, X.; Zhou, Y.; Yu, Y.; Wang, K.; Zhou, Z.; Gao, H.; So, K.F.; Vardi, N.; Xu, Y. Wolfberry-Derived Zeaxanthin Dipalmitate Delays Retinal Degeneration in a Mouse Model of Retinitis Pigmentosa through Modulating STAT3, CCL2 and MAPK Pathways. J. Neurochem. 2021, 158, 1131–1150. [Google Scholar] [CrossRef]
  491. Wu, Y.Z.; Qiao, F.; Xu, G.W.; Zhao, J.; Teng, J.F.; Li, C.; Deng, W.J. Neuroprotective Metabolites from the Endophytic Fungus Penicillium Citrinum of the Mangrove Bruguiera Gymnorrhiza. Phytochem. Lett. 2015, 12, 148–152. [Google Scholar] [CrossRef]
  492. Wu, D.M.; Ji, X.; Ivanchenko, M.V.; Chung, M.; Piper, M.; Rana, P.; Wang, S.K.; Xue, Y.; West, E.; Zhao, S.R.; et al. Nrf2 Overexpression Rescues the RPE in Mouse Models of Retinitis Pigmentosa. JCI Insightig. 2021, 6, e145029. [Google Scholar] [CrossRef]
  493. Xiong, W.; Garfinkel, A.E.M.C.; Li, Y.; Benowitz, L.I.; Cepko, C.L. NRF2 Promotes Neuronal Survival in Neurodegeneration and Acute Nerve Damage. J. Clin. Investig. 2015, 125, 1433–1445. [Google Scholar] [CrossRef] [Green Version]
  494. Sahu, B.; Leon, L.M.; Zhang, W.; Puranik, N.; Periasamy, R.; Khanna, H.; Volkert, M. Oxidative Stress Resistance 1 Gene Therapy Retards Neurodegeneration in the Rd1 Mutant Mouse Model of Retinopathy. Investig. Ophthalmol. Vis. Sci. 2021, 62, 8. [Google Scholar] [CrossRef] [PubMed]
  495. Volkert, M.R.; Crowley, D.J. Preventing Neurodegeneration by Controlling Oxidative Stress: The Role of OXR1. Front. Neurosci. 2020, 14, 611904. [Google Scholar] [CrossRef] [PubMed]
  496. Jiang, K.; Mondal, A.K.; Adlakha, Y.K.; Gumerson, J.; Aponte, A.; Gieser, L.; Kim, J.-W.; Boleda, A.; Brooks, M.J.; Nellissery, J.; et al. Multiomics Analyses Reveal Early Metabolic Imbalance and Mitochondrial Stress in Neonatal Photoreceptors Leading to Cell Death in Pde6brd1/Rd1 Mouse Model of Retinal Degeneration. Hum. Mol. Genet. 2022, ddac013. [Google Scholar] [CrossRef] [PubMed]
  497. Punzo, C.; Xiong, W.; Cepko, C.L. Loss of Daylight Vision in Retinal Degeneration: Are Oxidative Stress and Metabolic Dysregulation to Blame? J. Biol. Chem. 2012, 287, 1642–1648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  498. Yu, D.-Y.; Cringle, S.; Valter, K.; Walsh, N.; Lee, D.; Stone, J. Photoreceptor Death, Trophic Factor Expression, Retinal Oxygen Status, and Photoreceptor Function in the P23H Rat. Investig. Opthalmol. Vis. Sci. 2004, 45, 2013–2019. [Google Scholar] [CrossRef] [PubMed]
  499. Xue, Y.; Wang, S.K.; Rana, P.; West, E.R.; Hong, C.M.; Feng, H.; Wu, D.M.; Cepko, C.L. AAV-Txnip Prolongs Cone Survival and Vision in Mouse Models of Retinitis Pigmentosa. Elife 2021, 10, e66240. [Google Scholar] [CrossRef]
  500. Pagano, G.; Pallardó, F.V.; Lyakhovich, A.; Tiano, L.; Trifuoggi, M. Mitigating the Pro-Oxidant State and Melanogenesis of Retinitis Pigmentosa: By Counteracting Mitochondrial Dysfunction. Cell. Mol. Life Sci. 2021, 78, 7491–7503. [Google Scholar] [CrossRef]
  501. Wallimann, T.; Tokarska-Schlattner, M.; Schlattner, U. The Creatine Kinase System and Pleiotropic Effects of Creatine. Amino Acids 2011, 40, 1271–1296. [Google Scholar] [CrossRef] [Green Version]
  502. Rowe, A.A.; Patel, P.D.; Gordillo, R.; Wert, K.J. Replenishment of TCA Cycle Intermediates Provides Photoreceptor Resilience against Neurodegeneration during Progression of Retinitis Pigmentosa. JCI Insight 2021, 6, e150898. [Google Scholar] [CrossRef]
  503. Wert, K.J.; Velez, G.; Kanchustambham, V.L.; Shankar, V.; Evans, L.P.; Sengillo, J.D.; Zare, R.N.; Bassuk, A.G.; Tsang, S.H.; Mahajan, V.B. Metabolite Therapy Guided by Liquid Biopsy Proteomics Delays Retinal Neurodegeneration. EBioMedicine 2020, 52, 102636. [Google Scholar] [CrossRef] [Green Version]
  504. Boatright, J.H.; Moring, A.G.; McElroy, C.; Phillips, M.J.; Do, V.T.; Chang, B.; Hawes, N.L.; Boyd, A.P.; Sidney, S.S.; Stewart, R.E.; et al. Tool from Ancient Pharmacopoeia Prevents Vision Loss. Mol. Vis. 2006, 12, 1706–1714. [Google Scholar] [PubMed]
  505. Daruich, A.; Picard, E.; Boatright, J.H.; Behar-Cohen, F. Review: The Bile Acids Urso- and Tauroursodeoxycholic Acid as Neuroprotective Therapies in Retinal Disease. Mol. Vis. 2019, 25, 610–624. [Google Scholar] [PubMed]
  506. Boatright, J.H.; Nickerson, J.M.; Moring, A.G.; Pardue, M.T. Bile Acids in Treatment of Ocular Disease. J. Ocul. Biol. Dis. Infor. 2009, 2, 149–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  507. Fernández-Sánchez, L.; Bravo-Osuna, I.; Lax, P.; Arranz-Romera, A.; Maneu, V.; Esteban-Pérez, S.; Pinilla, I.; Puebla-González, M.D.M.; Herrero-Vanrell, R.; Cuenca, N. Controlled Delivery of Tauroursodeoxycholic Acid from Biodegradable Microspheres Slows Retinal Degeneration and Vision Loss in P23H Rats. PLoS ONE 2017, 12, e0177998. [Google Scholar] [CrossRef]
  508. Fu, Y.; Zhang, T. Pathophysilogical Mechanism and Treatment Strategies for Leber Congenital Amaurosis. Adv. Exp. Med. Biol. 2014, 801, 791–796. [Google Scholar] [CrossRef] [Green Version]
  509. Gaspar, J.M.; Martins, A.; Cruz, R.; Rodrigues, C.M.P.; Ambrósio, A.F.; Santiago, A.R. Tauroursodeoxycholic Acid Protects Retinal Neural Cells from Cell Death Induced by Prolonged Exposure to Elevated Glucose. Neuroscience 2013, 253, 380–388. [Google Scholar] [CrossRef]
  510. Fernández-Sánchez, L.; Esquiva, G.; Pinilla, I.; Lax, P.; Cuenca, N. Retinal Vascular Degeneration in the Transgenic P23H Rat Model of Retinitis Pigmentosa. Front. Neuroanat. 2018, 12, 55. [Google Scholar] [CrossRef]
  511. Parry, G.J.; Rodrigues, C.M.P.; Aranha, M.M.; Hilbert, S.J.; Davey, C.; Kelkar, P.; Low, W.C.; Steer, C.J. Safety, Tolerability, and Cerebrospinal Fluid Penetration of Ursodeoxycholic Acid in Patients with Amyotrophic Lateral Sclerosis. Clin. Neuropharmacol. 2010, 33, 17–21. [Google Scholar] [CrossRef] [Green Version]
  512. Elia, A.E.; Lalli, S.; Monsurrò, M.R.; Sagnelli, A.; Taiello, A.C.; Reggiori, B.; La Bella, V.; Tedeschi, G.; Albanese, A. Tauroursodeoxycholic Acid in the Treatment of Patients with Amyotrophic Lateral Sclerosis. Eur. J. Neurol. 2016, 23, 45–52. [Google Scholar] [CrossRef]
  513. Min, J.H.; Hong, Y.H.; Sung, J.J.; Kim, S.M.; Lee, J.B.; Lee, K.W. Oral Solubilized Ursodeoxycholic Acid Therapy in Amyotrophic Lateral Sclerosis: A Randomized Cross-over Trial. J. Korean Med. Sci. 2012, 27, 200–206. [Google Scholar] [CrossRef] [Green Version]
  514. Roche, S.L.; Ruiz-Lopez, A.M.; Moloney, J.N.; Byrne, A.M.; Cotter, T.G. Microglial-Induced Müller Cell Gliosis Is Attenuated by Progesterone in a Mouse Model of Retinitis Pigmentosa. Glia 2018, 66, 295–310. [Google Scholar] [CrossRef] [PubMed]
  515. Djebaili, M.; Guo, Q.; Pettus, E.H.; Hoffman, S.W.; Stein, D.G. The Neurosteroids Progesterone and Allopregnanolone Reduce Cell Death, Gliosis, and Functional Deficits after Traumatic Brain Injury in Rats. J. Neurotrauma 2005, 22, 106–118. [Google Scholar] [CrossRef] [PubMed]
  516. Drew, P.D.; Chavis, J.A. Female Sex Steroids: Effects upon Microglial Cell Activation. J. Neuroimmunol. 2000, 111, 77–85. [Google Scholar] [CrossRef]
  517. Miller, L.; Hunt, J.S. Regulation of TNF-Alpha Production in Activated Mouse Macrophages by Progesterone. J. Immunol. 1998, 160, 5098–5104. [Google Scholar] [PubMed]
  518. Cutler, S.M.; Cekic, M.; Miller, D.M.; Wali, B.; VanLandingham, J.W.; Stein, D.G. Progesterone Improves Acute Recovery after Traumatic Brain Injury in the Aged Rat. J. Neurotrauma 2007, 24, 1475–1486. [Google Scholar] [CrossRef] [PubMed]
  519. Puia, G.; Belelli, D. Neurosteroids on Our Minds. Trends Pharm. Sci 2001, 22, 266–267. [Google Scholar] [CrossRef]
  520. Reddy, D.S.; O’Malley, B.W.; Rogawski, M.A. Anxiolytic Activity of Progesterone in Progesterone Receptor Knockout Mice. Neuropharmacology 2005, 48, 14–24. [Google Scholar] [CrossRef]
  521. Fliesler, A.J.; Anderson, R.E. Chemistry and Metabolism of Lipids in the Vertebrate Retina. Prog. Lipid Res. 1983, 22, 79–131. [Google Scholar] [CrossRef]
  522. Hoffman, D.R.; Locke, K.G.; Wheaton, D.H.; Fish, G.E.; Spencer, R.; Birch, D.G. A Randomized, Placebo-Controlled Clinical Trial of Docosahexaenoic Acid Supplementation for X-Linked Retinitis Pigmentosa. Am. J. Ophthalmol. 2004, 137, 704–718. [Google Scholar] [CrossRef]
  523. Cremers, F.P.M.; Lee, W.; Collin, R.W.J.; Allikmets, R. Clinical Spectrum, Genetic Complexity and Therapeutic Approaches for Retinal Disease Caused by ABCA4 Mutations. Prog. Retin. Eye Res. 2020, 79, 100861. [Google Scholar] [CrossRef]
  524. Issa, P.C.; Barnard, A.R.; Herrmann, P.; Washington, I.; MacLaren, R.E. Rescue of the Stargardt Phenotype in Abca4 Knockout Mice through Inhibition of Vitamin A Dimerization. Proc. Natl. Acad. Sci. USA 2015, 112, 8415–8420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  525. Blum, E.; Zhang, J.; Zaluski, J.; Einstein, D.E.; Korshin, E.E.; Kubas, A.; Gruzman, A.; Tochtrop, G.P.; Kiser, P.D.; Palczewski, K. Rational Alteration of Pharmacokinetics of Chiral Fluorinated and Deuterated Derivatives of Emixustat for Retinal Therapy. J. Med. Chem. 2021, 64, 8287–8302. [Google Scholar] [CrossRef] [PubMed]
  526. Yeong, J.L.; Loveman, E.; Colquitt, J.L.; Royle, P.; Waugh, N.; Lois, N. Visual Cycle Modulators versus Placebo or Observation for the Prevention and Treatment of Geographic Atrophy Due to Age-Related Macular Degeneration. Cochrane Database Syst. Rev. 2020, 12, CD013154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  527. Kubota, R.; Al-Fayoumi, S.; Mallikaarjun, S.; Patil, S.; Bavik, C.; Chandler, J.W. Phase 1, Dose-Ranging Study of Emixustat Hydrochloride (ACU-4429), a Novel Visual Cycle Modulator, in Healthy Volunteers. Retina 2014, 34, 603–609. [Google Scholar] [CrossRef] [PubMed]
  528. Dugel, P.U.; Novack, R.L.; Csaky, K.G.; Richmond, P.P.; Birch, D.G.; Kubota, R. Phase Ii, Randomized, Placebo-Controlled, 90-Day Study of Emixustat Hydrochloride in Geographic Atrophy Associated with Dry Age-Related Macular Degeneration. Retina 2015, 35, 1173–1183. [Google Scholar] [CrossRef] [Green Version]
  529. Rosenfeld, P.J.; Dugel, P.U.; Holz, F.G.; Heier, J.S.; Pearlman, J.A.; Novack, R.L.; Csaky, K.G.; Koester, J.M.; Gregory, J.K.; Kubota, R. Emixustat Hydrochloride for Geographic Atrophy Secondary to Age-Related Macular Degeneration: A Randomized Clinical Trial. Ophthalmology 2018, 125, 1556–1567. [Google Scholar] [CrossRef] [Green Version]
  530. Drolet, D.W.; Green, L.S.; Gold, L.; Janjic, N. Reviews Fit for the Eye: Aptamers in Ocular Disorders. Nucleic Acid Ther. 2016, 26, 127–146. [Google Scholar] [CrossRef] [Green Version]
  531. Ricklin, D.; Lambris, J.D. Complement in Immune and Inflammatory Disorders: Therapeutic Interventions. J. Immunol. 2013, 190, 3839–3847. [Google Scholar] [CrossRef]
  532. Biesecker, G.; Dihel, L.; Enney, K.; Bendele, R.A. Derivation of RNA Aptamer Inhibitors of Human Complement C5. Immunopharmacology 1999, 42, 219–230. [Google Scholar] [CrossRef]
  533. Park, Y.G.; Park, Y.S.; Kim, I.B. Complement System and Potential Therapeutics in Age-Related Macular Degeneration. Int. J. Mol. Sci. 2021, 22, 6851. [Google Scholar] [CrossRef]
  534. Simon, W.A.; Herrmann, M.; Klein, T.; Shin, J.M.; Huber, R.; Senn-Bilfinger, J.; Postius, S. Soraprazan: Setting New Standards in Inhibition of Gastric Acid Secretion. J. Pharmacol. Exp. Ther. 2007, 321, 866–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  535. Julien-Schraermeyer, S.; Illing, B.; Tschulakow, A.; Taubitz, T.; Guezguez, J.; Burnet, M.; Schraermeyer, U. Penetration, Distribution, and Elimination of Remofuscin/Soraprazan in Stargardt Mouse Eyes Following a Single Intravitreal Injection Using Pharmacokinetics and Transmission Electron Microscopic Autoradiography: Implication for the Local Treatment of Stargardt’s Disease and Dry Age-Related Macular Degeneration. Pharmacol. Res. Perspect. 2020, 8, e00683. [Google Scholar] [CrossRef] [PubMed]
Table 1. Antioxidant, antiapoptotic and anti-inflammatory compounds with demonstrated efficacy in retinal disease. The table compiles proven therapeutic interventions for inherited and induced retinal damage models.
Table 1. Antioxidant, antiapoptotic and anti-inflammatory compounds with demonstrated efficacy in retinal disease. The table compiles proven therapeutic interventions for inherited and induced retinal damage models.
CompoundsAnimal Models of Photoreceptor Degeneration, Diabetic Retinopathy or Retinal Ganglion Cell DeathClinical Use in
Ophthalmology
Antioxidant and
anti-inflammatory
N-acetylcysteineIRD and retinal damage models:
Rd10 mouse [108,109]
P23H rats (studying NLRP3 inflammasome) [59]
Blue-light damage in mice [110]
Light damage in mice (with angiotensin II type 1 receptor blockade) [111]
Light damage in zebrafish [112]
Cypermethrin-induced damage in rats [113]
AMD:
Choroidal neovascularization in mice (studying plasma-activated medium) [114]
Autoimmune uveitis in mice [115,116]
Diabetic mice (Redd1−/−) [117]
Diabetic rats [118]
Mouse normal tension glaucoma [119]
Choroidal neovascularization in rats [120]
IRD:
RP: NCT03063021 (FIGHT-RP1), NCT04864496 (NAC) [121,122]
AMD:
NCT03919019
(Macuprev) [123]
N-acetylcysteine
amide
IRD and retinal damage models:
Rd10 mice [124]
Light injury in mice [125]
IRD:
Usher syndrome: NCT04355689 (SLO RP)
ThioredoxinIRD and retinal damage models:
Rd1 mice [126]
Nxlnl1−/− mice after light damage [127]
DR models:
Diabetic mice with light damage [128]
Ganglion cell damage models:
Perinatal hypoxia-ischemia retina damage in rats
SaffronIRD and retinal damage models:
Light-induced photoreceptor degeneration in rats [129,130,131]
P23H rats [132]
NMDA-induced damage in mice [133]
IRD:
Stargardt disease: NCT01278277
(STARSAF02)
AMD:
NCT00951288 [134]
MinocyclineIRD and retinal damage models:
Rhodopsin−/− mice [135]
(Mertk)−/− Cx3cr1GFP/+ Ccr2RFP/+ mice [136]
P23H and RC rats [137]
rd10 mice [138]
Rds mice [139,140]
NMDA-induced damage in mice [141,142]
S100B retina degeneration model [143]
Branch retinal vein occlusion in rats [144]
Lipofuscinosis: Cln3Δex7/8 mouse [145]
Focal light damage in mouse [146]
Light damage in mice [147,148]
Light damage in rats [149]
AMD models:
Aging: Chx10-Cre;Tsc1fx/fx mouse (Tsc1-cKO) [150]
Subretinal hemorrhage in mouse [151]
DR models:
Diabetes rats (histone levels) [152]
Diabetes rats (STZ) [153,154]
Ganglion cell damage models:
Ischemia/reperfusion mice [155,156]
Ischemia/reperfusion rats [157,158,159]
Glaucoma model in rats [160,161] and mice [162]
DBA/2J mouse model of glaucoma [163,164]
Optic nerve transection in rats [156] and mice [155]
Optic nerve crush mice [165]
Axotomy in rat [166]
IRD:
RP: NCT04068207; NCT02140164
AMD:
NCT02564978
NCT00893724
DR:
Diabetic macular edema: NCT01120899
MelatoninIRD and retinal damage models:
P23H rats [167,168]
Rd10 mice [169]
Rds mice [170]
Light damage in mice [171]
MNU-induced photoreceptor degeneration in mice [172]
Toxoplasma retinochoroiditis in SD rats (melatonin + zinc) [173]
AMD models:
Laser-induced CNV in mice [174]
Non-exudative AMD after cervical ganglionectomy in mice [175]
DR models:
STZ rats [176,177,178,179,180,181,182,183]
STZ-nicotinamide rats [184]
High-fat diet + STZ in mice [185]
For review [186]
Ganglion cell-damage models:
Hypoxia-ischemia mice [187]
Ischemia-reperfusion guinea pig [188]
AMD:
Effect of melatonin on AMD [189]
Macular damage with blue filtering IOL: NCT00444249
DR:
NCT04547439
NCT03478306
CurcuminIRD and retinal damage models:
P23H swine model of RP [190]
P23H rat [191]
MNU-induced photoreceptor apoptosis in SD rats [192]
Light-induced retinal degeneration in rats [193]
DR models:
Diabetic rats [194,195,196,197,198,199,200,201,202,203,204]
Rabbit model of proliferative retinopathy [205]
Other retinal diseases models:
CLN6 (neuronal ceroid lipofuscinosis) mice [206]
Ganglion cell damage models:
Rat ischemia/reperfusion [207,208]
Retinal ischemia/reperfusion in a rat stroke model [209]
Chronic methanol intoxication in rats [210]
AMD:
NCT04590196
NCT05062486 (resveratrol + quercetin + curcumin)
DR:
Chronic diabetic macular edema [211]
In DR, NCT04378972 (curcumin + homotaurine + vitamin D3)
In diabetic macular edema, NCT03598205 (Curcumin + dexamethasone)
QuercetinIRD and retinal damage models:
Rd10 mice (+ naringenin) [212]
P23H rats
Light damage in mice (quercertin + myricetin) [213]
Blue-light damage in Balb-c mice [214]
Light damage in rats [215]
AMD models:
Nrf2−/− mice [216]
DR models:
Zebrafish model of DR [217]
Diabetic rat retina [218,219]
Other retinal disease models:
Rodent model of retinopathy of prematurity [220]
Ganglion cell damage models:
Chronic glaucoma rat model [221]
Ischemia/reperfusion in rats [222]
Lutein (L)
Zeaxanthin (Z)
IRD and retinal damage models:
Light damage retinopathy in quails (L) [223] and rodents (Z&L) [224,225]
Rd1 mice (L + Z + lipoic acid + glutathione + Lycium barbarum) [226]
Pde6b rd10 mice [224]
Light-induced retinopathy (L&Z) [227]
DR models:
Diabetic rats, zeaxanthin [228]
Light-exposed retinas of mice [229]
Other retinal disease models:
Inflammatory state of retina in obesity-induced high-fat diet [230]
Sod2−/− mice (Z) [231]
Vldlr−/− mice [232]
House finch vision with carotenoids supplementation
(Z or astaxanthin) [233]
AMD:
NCT03919019; NCT00121589; NCT00527553; NCT00564902; NCT01269697; NCT01648660; NCT00763659; NCT01646047; NCT04741763; NCT01694680; NCT00879671 (L)
Dietary supplement for AMD: NCT04496817; NCT00345176; NCT01404845; NCT00902408 (L); NCT01527435 (Z); NCT02287298 (Z); NCT02113254 (Z)
Aging:
NCT02147171
DR:
NCT04496817; NCT01627977
Multiple compounds: NCT04117022; NCT04071977; NCT03702374
Other diseases:
Corioretinopathy: NCT00963131
Albinism: NCT02200263
Juxtafoveal telangiectasia: NCT01354093
Glaucoma: NCT04460365; NCT03959592; NCT01646047 (Multiple compounds)
CatechinsIRD and retinal damage models:
P23H1 rats [234,235]
Light-induced photoreceptor degeneration in mice [236]
Light damage in albino rats [237]
Oxidative damage by SNP injection in rats [238]
Sodium-iodate-induced retinal degeneration in rats [239]
Photoreceptor apoptosis by injection of MNU in SD rats [240]
NMDA excitotoxicity in rats [241]
DR models:
Diabetic rats [242]
Ganglion cell damage models:
Ischemia/reperfusion in rats [243]
Glaucoma model in mice [244]
Ischemia/reperfusion in albino rabbits [238]
AMD:
NCT03205202 (Cocoa supplement with 80 mg epicatechins)
Supplementation with flavonoids (epigallocatechin, quercetin, etc.) [245]
ResveratrolIRD and retinal damage models:
Rd10 mice [246]
Light-damaged rat retinas [247]
Light damage, mouse [248]
Zebrafish model of retinal neurodegeneration by NMDA [249,250]
AMD and CNV models:
Aging zebrafish retinas [249]
Aged SAMP8 mice [251]
Choroidal neovascularization mouse model [252]; resveratrol + omega 3 [253]
DR models:
STZ-induced diabetes in mice [254,255,256]
Diabetic rats [257,258,259,260,261,262,263,264]
Other retinal disease models:
Retinal detachment in Brown Norway rats by subretinal injection of sodium hyaluronate [265]
Induced myopia in golden Syrian hamsters [266]
Vldlr−/− mice, model of macular telangiectasia [267]
Rats with oxygen-induced retinopathy of prematurity [268]
Oxygen-induced retinopathy model, SD rats [269]
Ganglion cell-damage models:
Mouse model ischemia/reperfusion [268,270,271,272]
Ischemia/reperfusion Sprague-Dawley rats [273,274,275,276]
Mouse model ocular of hypertension (ischemia/reperfusion) [277]
Rat chronic ocular hypertension model [278]
Steroid-induced ocular hypertensive rats [279]
Glaucoma model by injecting hyaluronic acid, Wistar albino rats [280]: riluzole + resveratrol
Optic nerve crush in mice [281]
Optic nerve transection in SD rats [282]
Uveitis models:
Inflammation model by LPS injection in mice [283]
NCT02321176 (pharmacokinetics of resveratrol in the eye)
AMD:
NCT02625376; NCT04756310: supplementation in AMD [284]
Observer-blinded trial in wet AMD patients (lutein, zeaxanthin, resveratrol, hydroxytyrosol and DHA+ the AREDS EU recommended doses) [284]
NCT05062486: resveratrol + quercetin + curcumin for AMD
Case report (resveratrol + lutein + Vac. myrtilus) in AMD patient [285]
Octogenarians + resveratrol supplement [286]
DR:
Observational study with diabetic patients. Supplementation with multinutrient complex (resveratrol + vitamins, L, Z, etc.) [287]
NCT04117022: diabetic retinopathy (rich formula)
NCT03866005: Adjunctive Carotenoids Plus Antioxidants in Anti-VEGF Treated Diabetic Macular Edema (PROACTIVEDME)Other:Effect on choroidal thickness, in young and healthy:NCT02321189
Dietary antioxidantsIRD and retinal damage models:
Tested individual effects of vitamins in dystrophic RCS rats [288]
LED light damage rats (β-Cryptoxanthin) [289]
Light damage in SD rats (AREDS ± antioxidants) [290]
Light damage in rats (suppl antioxidants and omega 3) [291]
Light damage in rats (Beta carotene) [292]
Light rabbit (blueberry polyphenols) [293]
AMD and CNV models:
CNV mice (Resvega: omega 3 + resveratrol) [252]
𝛽Amyloid mice (grape seed extracts) [294]
β5−/− mice [295]
Other retinal disease models:
Smith–Lemli–Opitz syndrome (defective cholesterol synthesis) [296]
ApoE−/− mice. Suppl L vs. multivitamin [297]
DR models:
Diabetes, rats (ascorbic acid, vitamin E, beta-carotene, zinc, and
copper) [298]
Diabetes rats (carrot powder) [299]
Diabetes and experimental galactosemia in rats (antioxidants,
ascorbic acid, alpha-tocopherol) [300]
Diabetes and experimental galactosemia in rats VI (ascorbic acid + trolox + alpha-tocopherol + NAC+ beta-carotene + selenium) [301]
Ganglion cell damage models:
Ischemia/reperfusion mice with ubiquinol [302]
Pressure trauma in mice [303]
AMD:
AMD prevention [304]
NCT03326401; NCT04756310; NCT02264938; NCT00121589; NCT00800995
NCT00000145 (AREDS); NCT00345176 (AREDS2)
DR:
NCT04496817
Other diseases:
Retinopathy of prematurity NCT03866005
Hyperoxia-induced retinal reduced blow flow: NCT00712907
Oxygen-induced retinal vasoconstriction: NCT02221089ithout DR
Fructus lyciiIRD and retinal damage models:
Rd10 mouse [305]
Methyl-N-nitrosurea photoreceptor degeneration mouse model
Rd1 mice (L + Z+ lipoic acid + glutathione + Lycium barbarum) [226]
Light damage in rats [306]
Light damage in mice [307]
Intravitreal paraquat in rats [308]
DR models:
Diabetic rats [309]
Other retinal diseases models:
Alzheimer’s Disease Model Mouse Retina [310]
Ganglion cell damage models:
Ischemia/reperfusion in rats [311]
Acute hypertension in mice [312,313]
Ocular hypertension in rats [314,315,316]
IRD:
RP: NCT02244996 (Lycium barbarum) [317]
AMD:
Goji berry intakes and macular pigment in healthy adults (randomized pilot study) [318]
Alpha-lipoic acidIRD and retinal damage models:
Rd1 mice (L + Z + lipoic acid + glutathione + Lycium barbarum) [226]
Rd1 mouse (mixture) [319].
Rd10 model (α-tocopherol, ascorbid acid, α-lipoic acid) [320]
Q334 model (α-tocopherol, ascorbid acid, α-lipoic acid) [320]
Rd1 model (LA and/or progesterone) [321]
AMD:
NCT02613572
DR:
NCT01880372
(Z)-7,4′-Dimethoxy-6-hydroxy-aurone-4-O-β-glucopyranoside (DHAG)IRD and retinal damage models:
Rd10 mouse [322]
Multi-target iron chelatorsIRD and retinal damage models:
Mouse model of RP [323]
Rd 10 mice [324,325]
NMDA damage in rats [326]
CreatineIRD and retinal damage models:
Rd1 mice [327]
Gyrate atrophy with hyperornithinaemia (4 patients) [328]
Gyrate atrophy (7 patients) [329]
SulforaphaneIRD and retinal damage models:
Phd6b rd10 mice [330]
Light damage mice (sulforaphane induces TRX) [331]
Light damage mice [332]
Tubby mouse [333]
DR models:
Diabetic STZ rats [334]
Ganglion cell damage models:
Rat model ischemia reperfusion [335]
Ischemia in mice [336]
NOS inhibitorsIRD and retinal damage models:
Rd1 mice [337]
S334ter-3 rat [338]
Light damage in rats [339]
Ganglion cell damage models:
Rat model of chronic glaucoma [340,341]
Rat axotomy [342]
Sigma1R ligand (+)-
Pentazocine (PTZ)
IRD and retinal damage models:
Rd10 mice [343,344,345,346,347]
NMDA damage in mice [348]
DR models:
Diabetic mice Ins2(Akita/+) [349,350]
Ganglion cell damage models:
Optic nerve crush in mice [351]
Norbixin
(bixin extracted from Bixa Orellana)
IRD and retinal damage models:
Blue-light model of photodamage in rats [352]
Abca4−/− Rdh8−/− mice [353]
(3R)-5,6,7-trihydroxy-3-isopropyl-3-methylisochroman-1-oneIRD and retinal damage models:
Pde6b rd10 mice [354]
Glycyrrhizic acid/GlycyrrhizinIRD and retinal damage models:
IGFB-3 KO mouse [355]
Blue-light-induced damage in mouse [356]
DR models:
Diabetic rats [357,358]
Ganglion cell damage models:
Acute model of glaucoma in mice [359]
Ischemia-reperfusion in mice [360]
Antiapoptotic agents
TudcaIRD and retinal damage models:
P23H AD rat model [361]
MNU-induced photoreceptor degeneration mouse model [362]
Leber Congenital Amaurosis mouse [363]
Rd1 mice [364]
Rd10 mice [365]
Rd1, Rd10, Rd16 (Bardet–Biedl Syndrome type 1) [366]
Light-induced damage in mice [367]
RPGR conditional knockout (cko) mouse [368]
NMDA-induced damage in mice [369]
AMD and CNV models:
CNV laser-induced rat [370]
DR models:
Mouse model of type 1 diabetes [371]
Ex vivo model of RD in rats [372]
Other retinal diseases models:
Retinal detachment rat model [373]
Ganglion cell damage models:
Rat optic nerve crush [374]
Others:
Rhegmatogenous RD: NCT02841306 URSO
RasagilineIRD and retinal damage models:
Rd10 mice (RP) [375]
Prph2/rds mouse [376]
Ganglion cell damage models:
Glaucoma model in rats [377]
Mouse, ischemia/reperfusion [378] (rasagiline + idebenone)
Others:
Retinal detachment: NCT02068625 (Macula off- retinal detachment) [379]
Norgestrel/
Progesterone
IRD and retinal damage models:
Pde6b Rd10 mouse [380,381,382]
Rd1 mice (L + Z + lipoic acid + glutathione + Lycium barbarum)
Rd1 mouse [383]
Rd10 mice [384]
Acute light-induced degeneration model in mice [382,385]
Ganglion cell damage models:
Rat models of ocular ischemia [386]
Review: [387]
ProinsulinIRD and retinal damage models:
Rd10 mice [388]
P23H RP rats [389]
Others:
Glaucoma NCT05206877, NCT04118920
Nutraceuticals and other compounds
Anthocyanin
Cyanidin-3-glucoside (C3G)
Bilberry extract
IRD and retinal damage models:
Light-induced photoreceptor degeneration in rats (+L) [390]
Light damage in rabbits [391]
MNU-induced damage in rats [392]
Other retinal disease models:
Oxygen-induced retinopathy in mice [393]
IRD and retinal damage models:
Photo-stressed murine model [394]
Light damage in rabbits [395]
AMD models:
OXYS rats [396]
DR models:
STZ rats [397]
Other retinal disease models:
Oxygen-induced retinopathy in mice [398]
Ganglion cell damage models:
Optic nerve crush in mice [399]
Uveitis models:
Endotoxin-induced uveitis in mice [400]
Metabolism and Clearance of Cyanidin 3 Glucoside: NCT01106729
NCT01942746: Blueberry Effects on Dark Vision and Glare Recovery [401]
4-Phenylbutyric acidIRD and retinal damage models:
Photo-stressed murine model [402]
P23H mice [403]
Leber congenital amaurosis mice [404]
Other retinal disease models:
Hypoxia mice [405]
Ganglion cell damage models:
Ischemic optic neuropathy in mice [406]
Ischemic rats [407]
IRD:
Achromatopsia NCT04041232
CelastrolIRD and retinal damage models:
Light-induced retinal degeneration mice [408]
Ganglion cell damage models:
Ocular hypertension in mice [409]
Optic nerve crush [410]
Salvia miltiorrhiza BungeIRD and retinal damage models:
Light damage in mice [411]
Rd10 mice (+ Fructus lycii)
DR models:
DR rats (FXST Chinese medicine + various compounds)
Vitamin A and/or EVitamin A
IRD and retinal damage models:
Lrat−/−, Rpe65−/−, and Gnat1−/− mouse models, supplemented
with Vit A derivatives [412]
T17M mouse [413]
DR models:
DR rat [414,415]
Other retinal pathology models:
Obesity-associated retinal degeneration in WNIN/Ob rats [416]
Vitamin E
IRD and retinal damage models:
Radiation induced retinal damage in a rat model [417]
Light-induced damage in guinea pig [418]
Light damage in albino mice [419]
DR models:
Diabetic rats (taurine, Vit E + selenium) [420]
Other retinal pathology models:
Porcine hypercholesterolemia [421]
Vitamin A
IRD:
RP: NCT00000116 (vitamin A + fish oils) [422];
NCT00346333 (L + vit A); NCT04499820 (flavonoids, L, Z)
Choroidemia: NCT05045703
Stargardt disease (ALK-001): NCT02230228; NCT04239625; NCT02402660
LCA, RP Drug: QLT091001, NCT01014052
Night blindness in Sorsby’s fundus dystrophy [423]
AMD:
AMD Review [424]
AMD, reticular pseudodrusen: NCT03478878
AMD: NCT03478865
Geographic atrophy: NCT03845582
AMD (Phase I): NCT02230228
Others:
Retinopathy of Prematurity: NCT00417404; NCT03154723; NCT03779776 (Vit AD); NCT02102711
DR: NCT04000789 (Vit A, Vit E); NCT04000789
Vitamin E
IRD:
RP: NCT00000114 (Vit A + Vit E) [425]
AMD:
NCT00784225; NCT00000161; NCT00893724; NCT00893724; NCT00000145 (various antioxidants)
DR:
NPDR (various compounds) [426]
Others:
Glaucoma: NCT01544192
Retinopathy of Prematurity: NCT03274596
Abbreviations: IRD, inherited retinal dystrophies; AMD, age-related macular degeneration; DR, diabetic retinopathy; CNV, choroidal neovascularization; RP, retinitis pigmentosa; LCA, Leber Congenital Amaurosis; STZ, streptozotocin, MNU, N-methyl-N-nitrosourea; NMDA, N-methyl-D-aspartate; L, Lutein; Z, Zeaxanthin; NAC, N-acetylcysteine; DHA, docosahexaenoic acid; NOS, nitric oxide synthase.
Table 2. Clinical trials in IRD using molecules with antioxidant, antiapoptotic, anti-inflammatory and/or visual cycle modulator properties.
Table 2. Clinical trials in IRD using molecules with antioxidant, antiapoptotic, anti-inflammatory and/or visual cycle modulator properties.
CompoundMechanismDiseaseParticipants
(Number)
Follow-Up TimeTrial IDPhase/
Status
ReferencesResults
N-acetylcysteine
(NAC)
Antioxidant
Stabilizes protein structure
RP3010 mNCT03063021
(FIGHT-RP)
1/
Completed (2019)
Campochiaro et al., 2020 and
Kong et al., 2021 [121,122]
NAC is safe and well-tolerated
Improvement in macular functioning cones
NAC RP306 mNCT048644962/Active
NACA
(NPI-001)
Antioxidant
Stabilizes protein structure
Usher syndrome4824 mNCT04355689
(SLO RP)
1, 2/
Recruiting
SaffronNeuroprotective and antioxidant effectsStargardt Disease30 (31)6 mNCT01278277
(STARSAF02)
1,2/
Unknown
Piccardi et al., 2019 [427]No detrimental effects on ERG and visual acuity
MinocyclinAnti-inflammatory, antiapoptotic and neuroprotective
effects
RP3524 wkNCT040682072/
Recruiting
Minocyclin Cystoid macular edema associated with RP712 mNCT021401641, 2/
Completed (2015)
Cukras et al., 2017 [428]
Well tolerated. No significant changes in mean visual acuity. Small but progressive decrease in mean central macular thickness.
LuteinRemoves ROS; protection against photo-oxidative stress
RP3448 wkNCT000292891,2/
Completed (2008)
Bahrami et al., 2006 [429]Lutein supplementation improves visual field
Lutein in patients receiving vitamin A RP2405 yrNCT003463333/
Completed (2008)
Berson et al., 2010 [430]12 mg/d of lutein slows visual field loss among nonsmoking patients with RP with vitamin A
Lycium
barbarum
Antioxidative, anti-inflammatory, and antiapoptotic
mechanisms
RP50 (42)1 yrNCT02244996NA/
Completed (2017)
Chan et al., 2019 and Vidović et al., 2022 [317]
For review: [431]
Preservation of photopic vision
4-Phenylbutyric acidER stress-regulated transmembrane proteinAchromatopsia26 mNCT04041232Early phase 1/
Not yet
recruiting
Vitamin AImprovement in cone photoreceptor
function
RP (RHO1 mutation)10 (5 RP)6 wkNCT000654551/
Completed (2009)
Vitamin A and/or
Vitamin E
RP601 (572)4 yr.NCT000001143/
Completed (1987)
Berson et al., 1993 [425] Beneficial effect of 15,000 IU/d of vitamin A
Adverse effect of 400 IU/d of vitamin E
Vitamin A RP 5 yrNCT000001163/
Completed (1997)
Vitamin A Choroideremia108 mNCT05045703 (DARC)Not yet recruiting
QLT091001Replaces chromophore in visual cycleLeber congenital amaurosis (mutation RPE65, LRAT)3212 mNCT01014052
(RET IRD 01)
1b/
Completed (2012)
Scholl H et al., 2015 [432]
Wen & Birch 2015 [433]
Koenekoop et al., 2014 [434]
Improvements in visual field and/or visual acuity. Cortical activation
QLT091001
(retreatment)
Leber congenital amaurosis (mutation RPE65, LRAT)2712 mNCT01521793
(RET IRD 01 extension)
1/
Completed (2014)
Scholl et al., 2015 [435]
Sustained visual improvements
QLT091001 ADRP (RPE65 mutation)512 mNCT015439061/
Completed (2014)
ALK-001Chemically modified vitamin A (replacement of vitamin A)Healthy
volunteers
404 wkNCT022302281/
Completed
ALK-001 Stargardt
Disease
14024 mNCT02402660
(TEASE)
2/
Recruiting
ALK-001 Stargardt
Disease
14024 mNCT04239625
(TEASE-2, an open-label extension of TEASE)
2/
Enrolling by
invitation
DHA (docosahexaenoic acid; omega 3)Key cell
membrane
component
involved in multiple metabolic pathways
X-linked RP221 (208)4 yrNCT001002302/
Completed
(2014)
Hoffman et al., 2014 [436]
Hughbanks- Wheaton et al., 2014 [437]
Hoffman et al., 2015 [438]
DHA X-linked RP463 yrNCT000048272/
Completed (2002)
For review see: Schwartz et al., 2020 [422]
DHA Usher Syndrome100 NCT00004345NA/
Terminated
DHA in
patients
receiving
Vit A
RP2214 yr NABerson et al., 2004 [439]
Berson et al. 2004 [440]
No improvement with DHA in patients with RP receiving Vit A 4 yr
Improvements in the first 2 yr
DHA Stargardt or Stargardt-like Macular
Dystrophy
2215 mNCT000607491/
Completed (2007)
MacDonald & Sieving 2018 [441]
DHA Stargardt and dry AMD3224 wkNCT03297515
(MADEOS)
NA/
Completed (2020)
HydroxychloroquineTargets
autophagy pathway
P23H-RHO RP1218 mNCT041208831, 2/
Recruiting
4-Methylpyrazole (4-MP) (alcohol dehydrogenase inhibitor)Slows down processing of
vitamin A
derivatives
Healthy
volunteers
106 wkNCT003468531/
Completed
Jurgensmeier et al., 2007 [442]4-MP does not inhibit
human visual cycle sufficiently to be evaluated for Stargardt
disease
treatment
EmixustatRPE65
inhibitor
Stargardt231 mNCT03033108
(SeaSTAR)
2A
Dose
scalation/
Completed
(2017)
No SAES
Frequent ocular side effects
Emixustat Stargardt1942 yrNCT037726653/Active
SoraprazanH,K+-ATPase inhibitor
Removes
retinal lipofuscine accumulation
Stargardt9012 mEudraCT 2018-001496-202/Active
Zimura (avacincaptad pegol)Aptamer that inhibits the activity of complement factor C5Stargardt 112018 mNCT033641532b/
Recruiting
STG-001RBP4
antagonist
Visual cycle regulator
Stargardt 1104 wkNCT044895112a
(2 doses)/
Completed (2021)
L-DOPAUpregulates PDEF
Downregulates VEGF
RP505 yrNCT028376402/NA
Valproic acidNeuroprotective
Induces
microglial apoptosis
ADRP9052 wkNCT012336092/
Completed (2015)
Birch et al., 2018 [443]No efficacy was found
Valproic acid RP20048 wkNCT013995152/
Completed (2015)
Dunaliella
Bardawil powder (oral)
Beta caroteneRP341 yrNCT01256697NA/
Completed (2009)
Rotenstreich et al., 2013 [444]Increase
retinal
function in RP
Dunaliella Bardawil powder RP in
adolescents
3072 wkNCT020186921, 2/Not yet recruiting
Dunaliella Bardawil powder RP10072 wkNCT016805102, 3/
Recruiting
rhNGF
(recombinant human nerve growth factor) (drops)
NeuroprotectionRP5048 wkNCT021102251, 2/
Completed (2015)
Cannabis (cannabidiol:THC, 1:1)NeuroprotectionRP503 h.NCT030783091/
Recruiting
NP-001 (oral)Inactivates macrophages. Anti-inflammatoryUsher syndrome4824 m.NCT04355689 (SLO RP)1, 2/
Recruiting
Abbreviations: RP, retinosis pigmentaria; ADRP, autosomal dominant retinosis pigmentaria; h, hour(s); wk, week(s); m, month(s); yr, year(s). Clinical trial information was retrieved from ClinicalTrials.gov (http://www.clinicaltrials.gov, accessed on 1 February 2022) and EU Clinical Trials Register (https://www.clinicaltrialsregister.eu/, accessed on 1 February 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Pinilla, I.; Maneu, V.; Campello, L.; Fernández-Sánchez, L.; Martínez-Gil, N.; Kutsyr, O.; Sánchez-Sáez, X.; Sánchez-Castillo, C.; Lax, P.; Cuenca, N. Inherited Retinal Dystrophies: Role of Oxidative Stress and Inflammation in Their Physiopathology and Therapeutic Implications. Antioxidants 2022, 11, 1086. https://doi.org/10.3390/antiox11061086

AMA Style

Pinilla I, Maneu V, Campello L, Fernández-Sánchez L, Martínez-Gil N, Kutsyr O, Sánchez-Sáez X, Sánchez-Castillo C, Lax P, Cuenca N. Inherited Retinal Dystrophies: Role of Oxidative Stress and Inflammation in Their Physiopathology and Therapeutic Implications. Antioxidants. 2022; 11(6):1086. https://doi.org/10.3390/antiox11061086

Chicago/Turabian Style

Pinilla, Isabel, Victoria Maneu, Laura Campello, Laura Fernández-Sánchez, Natalia Martínez-Gil, Oksana Kutsyr, Xavier Sánchez-Sáez, Carla Sánchez-Castillo, Pedro Lax, and Nicolás Cuenca. 2022. "Inherited Retinal Dystrophies: Role of Oxidative Stress and Inflammation in Their Physiopathology and Therapeutic Implications" Antioxidants 11, no. 6: 1086. https://doi.org/10.3390/antiox11061086

APA Style

Pinilla, I., Maneu, V., Campello, L., Fernández-Sánchez, L., Martínez-Gil, N., Kutsyr, O., Sánchez-Sáez, X., Sánchez-Castillo, C., Lax, P., & Cuenca, N. (2022). Inherited Retinal Dystrophies: Role of Oxidative Stress and Inflammation in Their Physiopathology and Therapeutic Implications. Antioxidants, 11(6), 1086. https://doi.org/10.3390/antiox11061086

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop