Inherited Retinal Dystrophies: Role of Oxidative Stress and Inflammation in Their Physiopathology and Therapeutic Implications
Abstract
:1. Introduction
2. Definition of Oxidative Stress and Inflammation
2.1. Oxidative Stress
2.2. Inflammation
2.3. Effects of Oxidative Stress and Inflammation in Inherited Retinal Dystrophies
2.3.1. Purinergic Signaling Activation
2.3.2. Cell Death
Apoptosis
Necroptosis
Parthanatos
Pyroptosis
Ferroptosis
2.3.3. Autophagy/Mitophagy and Mitochondrial Effects
2.3.4. Lipid Peroxidation
2.3.5. Nucleic Acid Damage
2.3.6. Protein Damage and Endoplasmic Reticulum Stress
3. Therapeutic Strategies to Reduce Oxidative Stress and Inflammation: Antioxidants and Anti-Inflammatory Agents and Other Strategies
3.1. Antioxidants and Anti-Inflammatory Agents
3.1.1. N-Acetylcysteine
3.1.2. NPI-001 (N-Acetylcysteine Amide)
3.1.3. Thioredoxin
3.1.4. Saffron
3.1.5. Minocycline
3.1.6. Melatonin
3.1.7. Curcumin
3.1.8. Carotenoids
3.1.9. Catechins
3.1.10. Wolfberry-Derived Zeaxanthine Dipalmitate
3.1.11. (Z)-7,4′-Dimethoxy-6-hydroxy-aurone-4-O-b-glucopyranoside
3.1.12. NRF2
3.1.13. Multi-Target Iron Chelators
3.1.14. Mitochondrial Nutrients and Metabolic Intermediates
3.2. Antiapoptotic Agents
3.2.1. Synthetic Bile Acids: Ursodeoxycholic Acid and Tauroursodeoxycholic Acid
3.2.2. Progesterone
3.3. Other Compounds (Nutraceuticals and Compounds with Mixed Mechanisms of Action)
3.3.1. Vitamin A and E
3.3.2. Docosahexaenoic Acid
3.4. Drugs Interacting with Vitamin A in ABCA4-Associated Retinopathy
3.4.1. Emixustat
3.4.2. Zimura
3.4.3. Soraprazan
3.4.4. STG-001
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kolb, H.; Nelson, R.; Ahnelt, P.; Cuenca, N. Cellular Organization of the Vertebrate Retina. Prog. Brain. Res. 2001, 131, 3–26. [Google Scholar] [CrossRef] [PubMed]
- Cuenca, N.; Ortuño-Lizarán, I.; Sánchez-Sáez, X.; Kutsyr, O.; Albertos-Arranz, H.; Fernández-Sánchez, L.; Martínez-Gil, N.; Noailles, A.; López-Garrido, J.A.; López-Gálvez, M.; et al. Interpretation of OCT and OCTA Images from a Histological Approach: Clinical and Experimental Implications. Prog. Retin. Eye Res. 2020, 77, 100828. [Google Scholar] [CrossRef] [PubMed]
- Cuenca, N.; Fernández-Sánchez, L.; Campello, L.; Maneu, V.; de la Villa, P.; Lax, P.; Pinilla, I. Cellular Responses Following Retinal Injuries and Therapeutic Approaches for Neurodegenerative Diseases. Prog. Retin. Eye Res. 2014, 43, 17–75. [Google Scholar] [CrossRef] [PubMed]
- Kolb, H.; Nelson, R.; Ahnelt, P.; Ortuño-Lizarán, I.; Cuenca, N. The Architecture of the Human Fovea. In Webvision: The Organization of the Retina and Visual System; Kolb, H., Fernandez, E., Nelson, R., Jones, B.W., Eds.; University of Utah Health Sciences Center: Salt Lake City, UT, USA, 2020. [Google Scholar]
- Sahel, J.-A.; Marazova, K.; Audo, I. Clinical Characteristics and Current Therapies for Inherited Retinal Degenerations. Cold Spring Harb. Perspect. Med. 2015, 5, a017111. [Google Scholar] [CrossRef] [PubMed]
- Daiger, S.P. RetNet, the Retinal Information Network; The University of Texas Health Science Center: Houston, TX, USA, 2022; Available online: https://sph.uth.edu/retnet/home.htm (accessed on 1 February 2022).
- Fernández-Sánchez, L.; Lax, P.; Noailles, A.; Angulo, A.; Maneu, V.; Cuenca, N. Natural Compounds from Saffron and Bear Bile Prevent Vision Loss and Retinal Degeneration. Molecules 2015, 20, 13875–13893. [Google Scholar] [CrossRef] [Green Version]
- Lax, P.; Ortuño-Lizarán, I.; Maneu, V.; Vidal-Sanz, M.; Cuenca, N. Photosensitive Melanopsin-Containing Retinal Ganglion Cells in Health and Disease: Implications for Circadian Rhythms. Int. J. Mol. Sci. 2019, 20, 3164. [Google Scholar] [CrossRef] [Green Version]
- Sies, H.; Cadenas, E. Oxidative Stress: Damage to Intact Cells and Organs. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1985, 311, 617–631. [Google Scholar] [CrossRef]
- Moldogazieva, N.T.; Mokhosoev, I.M.; Feldman, N.B.; Lutsenko, S.V. ROS and RNS Signalling: Adaptive Redox Switches through Oxidative/Nitrosative Protein Modifications. Free Radic. Res. 2018, 52, 507–543. [Google Scholar] [CrossRef]
- Holmström, K.M.; Finkel, T. Cellular Mechanisms and Physiological Consequences of Redox-Dependent Signalling. Nat. Rev. Mol. Cell Biol. 2014, 15, 411–421. [Google Scholar] [CrossRef]
- di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxidative Med. Cell. Longev. 2016, 2016, 1245049. [Google Scholar] [CrossRef]
- Sies, H.; Jones, D.P. Reactive Oxygen Species (ROS) as Pleiotropic Physiological Signalling Agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363–383. [Google Scholar] [CrossRef] [PubMed]
- Kowaltowski, A.J.; de Souza-Pinto, N.C.; Castilho, R.F.; Vercesi, A.E. Mitochondria and Reactive Oxygen Species. Free Radic. Biol. Med. 2009, 47, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Schrader, M.; Fahimi, H.D. Peroxisomes and Oxidative Stress. Biochim. Biophys Acta 2006, 1763, 1755–1766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegenthaler, K.D.; Sevier, C.S. Working Together: Redox Signaling between the Endoplasmic Reticulum and Mitochondria. Chem. Res. Toxicol. 2019, 32, 342–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Branicky, R.; Noë, A.; Hekimi, S. Superoxide Dismutases: Dual Roles in Controlling ROS Damage and Regulating ROS Signaling. J. Cell Biol. 2018, 217, 1915–1928. [Google Scholar] [CrossRef]
- Nathan, C. Specificity of a Third Kind: Reactive Oxygen and Nitrogen Intermediates in Cell Signaling. J. Clin. Investig. 2003, 111, 769–778. [Google Scholar] [CrossRef]
- Fulton, D.; Fontana, J.; Sowa, G.; Gratton, J.-P.; Lin, M.; Li, K.-X.; Michell, B.; Kemp, B.E.; Rodman, D.; Sessa, W.C. Localization of Endothelial Nitric-Oxide Synthase Phosphorylated on Serine 1179 and Nitric Oxide in Golgi and Plasma Membrane Defines the Existence of Two Pools of Active Enzyme. J. Biol. Chem. 2002, 277, 4277–4284. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.-Y.; Nam, S.-A.; Jin, D.-C.; Kim, J.; Cha, J.-H. Expression and Cellular Localization of Inducible Nitric Oxide Synthase in Lipopolysaccharide-Treated Rat Kidneys. J. Histochem. Cytochem. 2012, 60, 301–315. [Google Scholar] [CrossRef]
- Zhou, L.; Zhu, D.-Y. Neuronal Nitric Oxide Synthase: Structure, Subcellular Localization, Regulation, and Clinical Implications. Nitric Oxide 2009, 20, 223–230. [Google Scholar] [CrossRef]
- Nathan, C.; Xie, Q.W. Nitric Oxide Synthases: Roles, Tolls, and Controls. Cell 1994, 78, 915–918. [Google Scholar] [CrossRef]
- Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric Oxide and Peroxynitrite in Health and Disease. Physiol. Rev. 2007, 87, 315–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, Y.; Ishikawa, K.; Nakao, S.; Sonoda, K.-H. Innate Immune Response in Retinal Homeostasis and Inflammatory Disorders. Prog. Retin. Eye Res. 2020, 74, 100778. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Singh, N.K. The Role of Inflammation in Retinal Neurodegeneration and Degenerative Diseases. Int. J. Mol. Sci. 2021, 23, 386. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, O.; Akira, S. Pattern Recognition Receptors and Inflammation. Cell 2010, 140, 805–820. [Google Scholar] [CrossRef] [Green Version]
- Kinuthia, U.M.; Wolf, A.; Langmann, T. Microglia and Inflammatory Responses in Diabetic Retinopathy. Front. Immunol. 2020, 11, 564077. [Google Scholar] [CrossRef]
- Olivares-González, L.; Velasco, S.; Campillo, I.; Rodrigo, R. Retinal Inflammation, Cell Death and Inherited Retinal Dystrophies. Int. J. Mol. Sci. 2021, 22, 2096. [Google Scholar] [CrossRef]
- Zeng, H.-Y.; Tso, M.O.M.; Lai, S.; Lai, H. Activation of Nuclear Factor-KappaB during Retinal Degeneration in Rd Mice. Mol. Vis. 2008, 14, 1075–1080. [Google Scholar]
- Hayden, M.S.; Ghosh, S. Shared Principles in NF-KappaB Signaling. Cell 2008, 132, 344–362. [Google Scholar] [CrossRef] [Green Version]
- Dresselhaus, E.C.; Meffert, M.K. Cellular Specificity of NF-κB Function in the Nervous System. Front. Immunol. 2019, 10, 1043. [Google Scholar] [CrossRef] [PubMed]
- Murray, P.J. The JAK-STAT Signaling Pathway: Input and Output Integration. J. Immunol. 2007, 178, 2623–2629. [Google Scholar] [CrossRef] [Green Version]
- Samardzija, M.; Wenzel, A.; Aufenberg, S.; Thiersch, M.; Remé, C.; Grimm, C.; Samardzija, M.; Wenzel, A.; Aufenberg, S.; Thiersch, M.; et al. Differential Role of Jak-STAT Signaling in Retinal Degenerations. FASEB J. 2006, 20, 2411–2413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ly, A.; Merl-Pham, J.; Priller, M.; Gruhn, F.; Senninger, N.; Ueffing, M.; Hauck, S.M. Proteomic Profiling Suggests Central Role Of STAT Signaling during Retinal Degeneration in the Rd10 Mouse Model. J. Proteome Res. 2016, 15, 1350–1359. [Google Scholar] [CrossRef] [PubMed]
- Kutsyr, O.; Noailles, A.; Martínez-Gil, N.; Maestre-Carballa, L.; Martinez-Garcia, M.; Maneu, V.; Cuenca, N.; Lax, P. Short-Term High-Fat Feeding Exacerbates Degeneration in Retinitis Pigmentosa by Promoting Retinal Oxidative Stress and Inflammation. Proc. Natl. Acad. Sci. USA 2021, 118, e2100566118. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Gao, G.; Shi, F.; Xie, H.; Yang, Q.; Liu, D.; Qu, S.; Qin, H.; Zhang, C.; Xu, G.-T.; et al. Activated Microglia-Induced Neuroinflammatory Cytokines Lead to Photoreceptor Apoptosis in Aβ-Injected Mice. J. Mol. Med. 2021, 99, 713–728. [Google Scholar] [CrossRef] [PubMed]
- Klettner, A. Oxidative Stress Induced Cellular Signaling in RPE Cells. Front. Biosci. 2012, 4, 392. [Google Scholar] [CrossRef]
- Agca, C.; Gubler, A.; Traber, G.; Beck, C.; Imsand, C.; Ail, D.; Caprara, C.; Grimm, C. P38 MAPK Signaling Acts Upstream of LIF-Dependent Neuroprotection during Photoreceptor Degeneration. Cell Death Dis. 2013, 4, e785. [Google Scholar] [CrossRef] [Green Version]
- Yamada, E.; Himori, N.; Kunikata, H.; Omodaka, K.; Ogawa, H.; Ichinose, M.; Nakazawa, T. The Relationship between Increased Oxidative Stress and Visual Field Defect Progression in Glaucoma Patients with Sleep Apnoea Syndrome. Acta Ophthalmol. 2018, 96, e479–e484. [Google Scholar] [CrossRef]
- Aslan, M.; Cort, A.; Yucel, I. Oxidative and Nitrative Stress Markers in Glaucoma. Free. Radic. Biol. Med. 2008, 45, 367–376. [Google Scholar] [CrossRef]
- Toma, C.; de Cillà, S.; Palumbo, A.; Garhwal, D.P.; Grossini, E. Oxidative and Nitrosative Stress in Age-Related Macular Degeneration: A Review of Their Role in Different Stages of Disease. Antioxidants 2021, 10, 653. [Google Scholar] [CrossRef]
- Kaarniranta, K.; Uusitalo, H.; Blasiak, J.; Felszeghy, S.; Kannan, R.; Kauppinen, A.; Salminen, A.; Sinha, D.; Ferrington, D. Mechanisms of Mitochondrial Dysfunction and Their Impact on Age-Related Macular Degeneration. Prog. Retin. Eye Res. 2020, 79, 100858. [Google Scholar] [CrossRef]
- Kang, Q.; Yang, C. Oxidative Stress and Diabetic Retinopathy: Molecular Mechanisms, Pathogenetic Role and Therapeutic Implications. Redox Biol. 2020, 37, 101799. [Google Scholar] [CrossRef] [PubMed]
- Domènech, B.E.; Marfany, G. The Relevance of Oxidative Stress in the Pathogenesis and Therapy of Retinal Dystrophies. Antioxidants 2020, 9, 347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forman, H.J.; Zhang, H. Targeting Oxidative Stress in Disease: Promise and Limitations of Antioxidant Therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef] [PubMed]
- Noailles, A.; Maneu, V.; Campello, L.; Lax, P.; Cuenca, N. Systemic Inflammation Induced by Lipopolysaccharide Aggravates Inherited Retinal Dystrophy. Cell Death Dis. 2018, 9, 350. [Google Scholar] [CrossRef] [PubMed]
- Reichenbach, A.; Bringmann, A. Purinergic Signaling in Retinal Degeneration and Regeneration. Neuropharmacology 2016, 104, 194–211. [Google Scholar] [CrossRef] [PubMed]
- Freitas, H.R.; de Melo Reis, R.A. Glutathione Induces GABA Release through P2X7R Activation on Müller Glia. Neurogenesis 2017, 4, e1283188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawamura, H.; Sugiyama, T.; Wu, D.M.; Kobayashi, M.; Yamanishi, S.; Katsumura, K.; Puro, D.G. ATP: A Vasoactive Signal in the Pericyte-Containing Microvasculature of the Rat Retina. J. Physiol. 2003, 551, 787–799. [Google Scholar] [CrossRef]
- Pannicke, T.; Fischer, W.; Biedermann, B.; Schädlich, H.; Grosche, J.; Faude, F.; Wiedemann, P.; Allgaier, C.; Illes, P.; Burnstock, G.; et al. P2X7 Receptors in Müller Glial Cells from the Human Retina. J. Neurosci. 2000, 20, 5965–5972. [Google Scholar] [CrossRef] [Green Version]
- Sanderson, J.; Dartt, D.A.; Trinkaus-Randall, V.; Pintor, J.; Civan, M.M.; Delamere, N.A.; Fletcher, E.L.; Salt, T.E.; Grosche, A.; Mitchell, C.H. Purines in the Eye: Recent Evidence for the Physiological and Pathological Role of Purines in the RPE, Retinal Neurons, Astrocytes, Müller Cells, Lens, Trabecular Meshwork, Cornea and Lacrimal Gland. Exp. Eye Res. 2014, 127, 270–279. [Google Scholar] [CrossRef]
- Vessey, K.A.; Fletcher, E.L. Rod and Cone Pathway Signalling Is Altered in the P2X7 Receptor Knock Out Mouse. PLoS ONE 2012, 7, e29990. [Google Scholar] [CrossRef]
- Wurm, A.; Pannicke, T.; Iandiev, I.; Francke, M.; Hollborn, M.; Wiedemann, P.; Reichenbach, A.; Osborne, N.N.; Bringmann, A. Purinergic Signaling Involved in Müller Cell Function in the Mammalian Retina. Prog. Retin. Eye Res. 2011, 30, 324–342. [Google Scholar] [CrossRef] [PubMed]
- Puthussery, T.; Fletcher, E.L. Synaptic Localization of P2X7 Receptors in the Rat Retina. J. Comp. Neurol. 2004, 472, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Hu, Y.; Zhou, L.; Cheng, X. P2X7 Receptor Antagonist Protects Retinal Ganglion Cells by Inhibiting Microglial Activation in a Rat Chronic Ocular Hypertension Model. Mol. Med. Rep. 2018, 17, 2289–2296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monif, M.; Burnstock, G.; Williams, D.A. Microglia: Proliferation and Activation Driven by the P2X7 Receptor. Int. J. Biochem. Cell Biol. 2010, 42, 1753–1756. [Google Scholar] [CrossRef] [PubMed]
- Calzaferri, F.; Ruiz-Ruiz, C.; Diego, A.M.G.; Pascual, R.; Méndez-López, I.; Cano-Abad, M.F.; Maneu, V.; Ríos, C.; Gandía, L.; García, A.G. The Purinergic P2X7 Receptor as a Potential Drug Target to Combat Neuroinflammation in Neurodegenerative Diseases. Med. Res. Rev. 2020, 40, 2427–2465. [Google Scholar] [CrossRef] [PubMed]
- Gallenga, C.E.; Lonardi, M.; Pacetti, S.; Violanti, S.S.; Tassinari, P.; di Virgilio, F.; Tognon, M.; Perri, P. Molecular Mechanisms Related to Oxidative Stress in Retinitis Pigmentosa. Antioxidants 2021, 10, 848. [Google Scholar] [CrossRef] [PubMed]
- Viringipurampeer, I.A.; Metcalfe, A.L.; Bashar, A.E.; Sivak, O.; Yanai, A.; Mohammadi, Z.; Moritz, O.L.; Gregory-Evans, C.Y.; Gregory-Evans, K. NLRP3 Inflammasome Activation Drives Bystander Cone Photoreceptor Cell Death in a P23H Rhodopsin Model of Retinal Degeneration. Hum. Mol. Genet. 2016, 25, 1501–1516. [Google Scholar] [CrossRef] [Green Version]
- Puthussery, T.; Fletcher, E. Extracellular ATP Induces Retinal Photoreceptor Apoptosis through Activation of Purinoceptors in Rodents. J. Comp. Neurol. 2009, 513, 430–440. [Google Scholar] [CrossRef]
- Shen, J.; Yang, X.; Dong, A.; Petters, R.M.; Peng, Y.-W.; Wong, F.; Campochiaro, P.A. Oxidative Damage Is a Potential Cause of Cone Cell Death in Retinitis Pigmentosa. J. Cell. Physiol. 2005, 203, 457–464. [Google Scholar] [CrossRef]
- Murakami, Y.; Matsumoto, H.; Roh, M.; Suzuki, J.; Hisatomi, T.; Ikeda, Y.; Miller, J.W.; Vavvas, D.G. Receptor Interacting Protein Kinase Mediates Necrotic Cone but Not Rod Cell Death in a Mouse Model of Inherited Degeneration. Proc. Natl. Acad. Sci. USA 2012, 109, 14598–14603. [Google Scholar] [CrossRef] [Green Version]
- Greenwald, S.H.; Pierce, E.A. Parthanatos as a Cell Death Pathway Underlying Retinal Disease. Adv. Exp. Med. Biol. 2019, 1185, 323–327. [Google Scholar] [PubMed]
- Sancho-Pelluz, J.; Arango-Gonzalez, B.; Kustermann, S.; Romero, F.J.; van Veen, T.; Zrenner, E.; Ekström, P.; Paquet-Durand, F. Photoreceptor Cell Death Mechanisms in Inherited Retinal Degeneration. Mol. Neurobiol. 2008, 38, 253–269. [Google Scholar] [CrossRef] [PubMed]
- Arango-Gonzalez, B.; Trifunović, D.; Sahaboglu, A.; Kranz, K.; Michalakis, S.; Farinelli, P.; Koch, S.; Koch, F.; Cottet, S.; Janssen-Bienhold, U.; et al. Identification of a Common Non-Apoptotic Cell Death Mechanism in Hereditary Retinal Degeneration. PLoS ONE 2014, 9, e112142. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Chen, Y.; Zhu, Y.; Paquet-Durand, F. Programmed Non-Apoptotic Cell Death in Hereditary Retinal Degeneration: Crosstalk between CGMP-Dependent Pathways and PARthanatos? Int. J. Mol. Sci. 2021, 22, 10567. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Zhao, Y.; Wang, K.; Shi, X.; Wang, Y.; Huang, H.; Zhuang, Y.; Cai, T.; Wang, F.; Shao, F. Cleavage of GSDMD by Inflammatory Caspases Determines Pyroptotic Cell Death. Nature 2015, 526, 660–665. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, B.A.; Dixit, V.M.; Power, C. Fiery Cell Death: Pyroptosis in the Central Nervous System. Trends Neurosci. 2020, 43, 55–73. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Du, W.; Xu, N.; Tao, T.; Tang, X.; Huang, L. RNA-Seq Analysis for Exploring the Pathogenesis of Retinitis Pigmentosa in P23H Knock-In Mice. Ophthalmic Res. 2021, 64, 798–810. [Google Scholar] [CrossRef]
- Yang, M.; So, K.-F.; Lam, W.-C.; Lo, A.C.Y. Cell Ferroptosis: New Mechanism and New Hope for Retinitis Pigmentosa. Cells 2021, 10, 2153. [Google Scholar] [CrossRef]
- Chen, C.; Chen, J.; Wang, Y.; Liu, Z.; Wu, Y. Ferroptosis Drives Photoreceptor Degeneration in Mice with Defects in All-Trans-Retinal Clearance. J. Biol. Chem. 2021, 296, 100187. [Google Scholar] [CrossRef]
- Tan, Q.; Fang, Y.; Gu, Q. Mechanisms of Modulation of Ferroptosis and Its Role in Central Nervous System Diseases. Front. Pharmacol. 2021, 12, 657033. [Google Scholar] [CrossRef]
- Shahandeh, A.; Bui, B.V.; Finkelstein, D.I.; Nguyen, C.T.O. Therapeutic Applications of Chelating Drugs in Iron Metabolic Disorders of the Brain and Retina. J. Neurosci. Res. 2020, 98, 1889–1904. [Google Scholar] [CrossRef] [PubMed]
- Boya, P.; Esteban-Martínez, L.; Serrano-Puebla, A.; Gómez-Sintes, R.; Villarejo-Zori, B. Autophagy in the Eye: Development, Degeneration, and Aging. Prog. Retin. Eye Res. 2016, 55, 206–245. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Xu, G. Autophagy: A Role in the Apoptosis, Survival, Inflammation, and Development of the Retina. Ophthalmic Res. 2019, 61, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Trachsel-Moncho, L.; Benlloch-Navarro, S.; Fernández-Carbonell, Á.; Ramírez-Lamelas, D.T.; Olivar, T.; Silvestre, D.; Poch, E.; Miranda, M. Oxidative Stress and Autophagy-Related Changes during Retinal Degeneration and Development. Cell Death Dis. 2018, 9, 812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, J.; Jia, L.; Shelby, S.J.; Ganios, A.M.; Feathers, K.; Thompson, D.A.; Zacks, D.N. Circadian and Noncircadian Modulation of Autophagy in Photoreceptors and Retinal Pigment Epithelium. Investig. Opthalmol. Vis. Sci. 2014, 55, 3237. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Muela, N.; Koga, H.; García-Ledo, L.; Villa, P.; Rosa, E.J.; Cuervo, A.M.; Boya, P. Balance between Autophagic Pathways Preserves Retinal Homeostasis. Aging Cell 2013, 12, 478–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Lao, U.; Edgar, B.A. TOR-Mediated Autophagy Regulates Cell Death in Drosophila Neurodegenerative Disease. J. Cell Biol. 2009, 186, 703–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villarejo-Zori, B.; Jiménez-Loygorri, J.I.; Zapata-Muñoz, J.; Bell, K.; Boya, P. New Insights into the Role of Autophagy in Retinal and Eye Diseases. Mol. Asp. Med. 2021, 82, 101038. [Google Scholar] [CrossRef]
- Barhoum, R.; Martínez-Navarrete, G.; Corrochano, S.; Germain, F.; Fernandez-Sanchez, L.; de la Rosa, E.J.; de la Villa, P.; Cuenca, N. Functional and Structural Modifications during Retinal Degeneration in the Rd10 Mouse. Neuroscience 2008, 155, 698–713. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Qiu, Y.; Frontera, E.; Jia, L.; Khan, N.W.; Klionsky, D.J.; Ferguson, T.A.; Thompson, D.A.; Zacks, D.N. Inhibiting Autophagy Reduces Retinal Degeneration Caused by Protein Misfolding. Autophagy 2018, 14, 1226–1238. [Google Scholar] [CrossRef] [Green Version]
- Kakavand, K.; Jobling, A.I.; Greferath, U.; Vessey, K.A.; de Iongh, R.U.; Fletcher, E.L. Photoreceptor Degeneration in Pro23His Transgenic Rats (Line 3) Involves Autophagic and Necroptotic Mechanisms. Front. Neurosci. 2020, 14, 581579. [Google Scholar] [CrossRef] [PubMed]
- Nag, T.C. Pathogenic Mechanisms Contributing to the Vulnerability of Aging Human Photoreceptor Cells. Eye 2021, 35, 2917–2929. [Google Scholar] [CrossRef] [PubMed]
- de La Paz, M.; Anderson, R.E. Region and Age-Dependent Variation in Susceptibility of the Human Retina to Lipid Peroxidation. Investig. Ophthalmol. Vis. Sci. 1992, 33, 3497–3499. [Google Scholar] [CrossRef]
- Sun, M.; Finnemann, S.C.; Febbraio, M.; Shan, L.; Annangudi, S.P.; Podrez, E.A.; Hoppe, G.; Darrow, R.; Organisciak, D.T.; Salomon, R.G.; et al. Light-Induced Oxidation of Photoreceptor Outer Segment Phospholipids Generates Ligands for CD36-Mediated Phagocytosis by Retinal Pigment Epithelium. J. Biol. Chem. 2006, 281, 4222–4230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Zhang, D.; Wu, Y.; Ji, B. Docosahexaenoic Acid Aggravates Photooxidative Damage in Retinal Pigment Epithelial Cells via Lipid Peroxidation. J. Photochem. Photobiol. B Biol. 2014, 140, 85–93. [Google Scholar] [CrossRef]
- Taubitz, T.; Tschulakow, A.V.; Tikhonovich, M.; Illing, B.; Fang, Y.; Biesemeier, A.; Julien-Schraermeyer, S.; Schraermeyer, U. Ultrastructural Alterations in the Retinal Pigment Epithelium and Photoreceptors of a Stargardt Patient and Three Stargardt Mouse Models: Indication for the Central Role of RPE Melanin in Oxidative Stress. PeerJ 2018, 6, e5215. [Google Scholar] [CrossRef] [Green Version]
- Lenis, T.L.; Hu, J.; Ng, S.Y.; Jiang, Z.; Sarfare, S.; Lloyd, M.B.; Esposito, N.J.; Samuel, W.; Jaworski, C.; Bok, D.; et al. Expression of ABCA4 in the Retinal Pigment Epithelium and Its Implications for Stargardt Macular Degeneration. Proc. Natl. Acad. Sci. USA 2018, 115, E11120–E11127. [Google Scholar] [CrossRef] [Green Version]
- Pole, C.; Ameri, H. Fundus Autofluorescence and Clinical Applications. J. Ophthalmic Vis. Res. 2021, 16, 432–461. [Google Scholar] [CrossRef]
- Su, L.-J.; Zhang, J.-H.; Gomez, H.; Murugan, R.; Hong, X.; Xu, D.; Jiang, F.; Peng, Z.-Y. Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis. Oxidative Med. Cell. Longev. 2019, 2019, 5080843. [Google Scholar] [CrossRef] [Green Version]
- Cortina, M.S.; Gordon, W.C.; Lukiw, W.J.; Bazan, N.G. Oxidative Stress-Induced Retinal Damage up-Regulates DNA Polymerase Gamma and 8-Oxoguanine-DNA-Glycosylase in Photoreceptor Synaptic Mitochondria. Exp. Eye Res. 2005, 81, 742–750. [Google Scholar] [CrossRef]
- Kong, Q.; Lin, C.G. Oxidative Damage to RNA: Mechanisms, Consequences, and Diseases. Cell. Mol. Life Sci. 2010, 67, 1817–1829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Chen, X.; Liu, Z.; Ye, W.; Li, L.; Qian, L.; Ding, H.; Li, P.; Aung, L.H.H. Recent Advances: Molecular Mechanism of RNA Oxidation and Its Role in Various Diseases. Front. Mol. Biosci. 2020, 7, 184. [Google Scholar] [CrossRef] [PubMed]
- Berlett, B.S.; Stadtman, E.R. Protein Oxidation in Aging, Disease, and Oxidative Stress. J. Biol. Chem. 1997, 272, 20313–20316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzekov, R.; Stein, L.; Kaushal, S. Protein Misfolding and Retinal Degeneration. Cold Spring Harb. Perspect. Biol. 2011, 3, a007492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.X.; Sanders, E.; Fliesler, S.J.; Wang, J.J. Endoplasmic Reticulum Stress and the Unfolded Protein Responses in Retinal Degeneration. Exp. Eye Res. 2014, 125, 30–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, C.; Scott, L.J. Voretigene Neparvovec: A Review in RPE65 Mutation-Associated Inherited Retinal Dystrophy. Mol. Diagn. Ther. 2020, 24, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Botto, C.; Rucli, M.; Tekinsoy, M.D.; Pulman, J.; Sahel, J.A.; Dalkara, D. Early and Late Stage Gene Therapy Interventions for Inherited Retinal Degenerations. Prog. Retin. Eye Res. 2022, 86, 100975. [Google Scholar] [CrossRef]
- Chu-Tan, J.A.; Kirkby, M.; Natoli, R. Running to Save Sight: The Effects of Exercise on Retinal Health and Function. Clin. Exp. Ophthalmol. 2022, 50, 74–90. [Google Scholar] [CrossRef]
- Pardue, M.T.; Allen, R.S. Neuroprotective Strategies for Retinal Disease. Prog. Retin. Eye Res. 2018, 65, 50–76. [Google Scholar] [CrossRef]
- Wubben, T.J.; Zacks, D.N.; Besirli, C.G. Retinal Neuroprotection: Current Strategies and Future Directions. Curr. Opin. Ophthalmol. 2019, 30, 199–205. [Google Scholar] [CrossRef]
- Walter, P.; Ron, D. The Unfolded Protein Response: From Stress Pathway to Homeostatic Regulation. Science 2011, 334, 1081–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kroeger, H.; Chiang, W.C.; Felden, J.; Nguyen, A.; Lin, J.H. ER Stress and Unfolded Protein Response in Ocular Health and Disease. FEBS J. 2019, 286, 399–412. [Google Scholar] [CrossRef] [PubMed]
- Gorbatyuk, M.S.; Knox, T.; LaVail, M.M.; Gorbatyuk, O.S.; Noorwez, S.M.; Hauswirth, W.W.; Lin, J.H.; Muzyczka, N.; Lewin, A.S. Restoration of Visual Function in P23H Rhodopsin Transgenic Rats by Gene Delivery of BiP/Grp78. Proc. Natl. Acad. Sci. USA 2010, 107, 5961–5966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhootada, Y.; Kotla, P.; Zolotukhin, S.; Gorbatyuk, O.; Bebok, Z.; Athar, M.; Gorbatyuk, M. Limited ATF4 Expression in Degenerating Retinas with Ongoing ER Stress Promotes Photoreceptor Survival in a Mouse Model of Autosomal Dominant Retinitis Pigmentosa. PLoS ONE 2016, 11, e0154779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donato, L.; Bramanti, P.; Scimone, C.; Rinaldi, C.; D’Angelo, R.; Sidoti, A. MiRNAexpression Profile of Retinal Pigment Epithelial Cells under Oxidative Stress Conditions. FEBS Open Bio 2018, 8, 219–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aldini, G.; Altomare, A.; Baron, G.; Vistoli, G.; Carini, M.; Borsani, L.; Sergio, F. N-Acetylcysteine as an Antioxidant and Disulphide Breaking Agent: The Reasons Why. Free Radic. Res. 2018, 52, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, N.; Ikeda, Y.; Notomi, S.; Ishikawa, K.; Murakami, Y.; Hisatomi, T.; Enaida, H.; Ishibashi, T. Laboratory Evidence of Sustained Chronic Inflammatory Reaction in Retinitis Pigmentosa. Ophthalmology 2013, 120, e5–e12. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Kuse, Y.; Tsuruma, K.; Shimazawa, M.; Hara, H. The Involvement of the Oxidative Stress in Murine Blue LED Light-Induced Retinal Damage Model. Biol. Pharm. Bull. 2017, 40, 1219–1225. [Google Scholar] [CrossRef] [Green Version]
- Narimatsu, T.; Ozawa, Y.; Miyake, S.; Nagai, N.; Tsubota, K. Angiotensin II Type 1 Receptor Blockade Suppresses Light-Induced Neural Damage in the Mouse Retina. Free Radic. Biol. Med. 2014, 71, 176–185. [Google Scholar] [CrossRef] [Green Version]
- Saito, Y.; Tsuruma, K.; Shimazawa, M.; Nishimura, Y.; Tanaka, T.; Hara, H. Establishment of a Drug Evaluation Model against Light-Induced Retinal Degeneration Using Adult Pigmented Zebrafish. J. Pharmacol. Sci. 2016, 131, 215–218. [Google Scholar] [CrossRef] [Green Version]
- Issa, N.M.; Al-Gholam, M.A. The Effect of N-Acetylcysteine on the Sensory Retina of Male Albino Rats Exposed Prenatally to Cypermethrin. Folia Morphol. 2021, 80, 140–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, F.; Kaneko, H.; Nagasaka, Y.; Ijima, R.; Nakamura, K.; Nagaya, M.; Takayama, K.; Kajiyama, H.; Senga, T.; Tanaka, H.; et al. Plasma-Activated Medium Suppresses Choroidal Neovascularization in Mice: A New Therapeutic Concept for Age-Related Macular Degeneration. Sci. Rep. 2015, 5, 7705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, S.M.; Yang, C.H.; Teng, Y.T.; Tsai, H.Y.; Lin, C.Y.; Lin, C.J.; Shieh, C.C.; Chen, S.H. Suppression of the Reactive Oxygen Response Alleviates Experimental Autoimmune Uveitis in Mice. Int. J. Mol. Sci. 2020, 21, 3261. [Google Scholar] [CrossRef] [PubMed]
- Daudin, J.B.; Monnet, D.; Kavian, N.; Espy, C.; Wang, A.; Chéreau, C.; Goulvestre, C.; Omri, S.; Brézin, A.; Weill, B.; et al. Protective Effect of Pristane on Experimental Autoimmune Uveitis. Immunol. Lett. 2011, 141, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.P.; Toro, A.L.; Barber, A.J.; Dennis, M.D. REDD1 Activates a ROS-Generating Feedback Loop in the Retina of Diabetic Mice. Investig. Ophthalmol. Vis. Sci. 2019, 60, 2369–2379. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, X.L.; Zhu, B.F.; Ding, Y.N. Effect of Antioxidant N-Acetylcysteine on Diabetic Retinopathy and Expression of VEGF and ICAM-1 from Retinal Blood Vessels of Diabetic Rats. Mol. Biol. Rep. 2012, 39, 3727–3735. [Google Scholar] [CrossRef]
- Sano, H.; Namekata, K.; Kimura, A.; Shitara, H.; Guo, X.; Harada, C.; Mitamura, Y.; Harada, T. Differential Effects of N-Acetylcysteine on Retinal Degeneration in Two Mouse Models of Normal Tension Glaucoma. Cell Death Dis. 2019, 10, 75. [Google Scholar] [CrossRef]
- Kim, T.W.; Moon, J.W.; Yu, H.G. N-Acetylcysteine Protects against Chorioretinal Damage Induced by Photodynamic Therapy for Experimental Choroidal Neovascularization in a Rat Model. Photodiagnosis Photodyn. Ther. 2018, 23, 12–17. [Google Scholar] [CrossRef]
- Kong, X.; Hafiz, G.; Wehling, D.; Akhlaq, A.; Campochiaro, P.A. Locus-Level Changes in Macular Sensitivity in Patients with Retinitis Pigmentosa Treated with Oral N-Acetylcysteine. Am. J. Ophthalmol. 2021, 221, 105–114. [Google Scholar] [CrossRef]
- Campochiaro, P.A.; Iftikhar, M.; Hafiz, G.; Akhlaq, A.; Tsai, G.; Wehling, D.; Lu, L.; Wall, G.M.; Singh, M.S.; Kong, X. Oral N-Acetylcysteine Improves Cone Function in Retinitis Pigmentosa Patients in Phase I Trial. J. Clin. Investig. 2020, 130, 1527–1541. [Google Scholar] [CrossRef] [Green Version]
- Parravano, M.; Tedeschi, M.; Manca, D.; Costanzo, E.; Di Renzo, A.; Giorno, P.; Barbano, L.; Ziccardi, L.; Varano, M.; Parisi, V. Effects of Macuprev ® Supplementation in Age-Related Macular Degeneration: A Double-Blind Randomized Morpho-Functional Study Along 6 Months of Follow-Up. Adv. Ther. 2019, 36, 2493–2505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schimel, A.M.; Abraham, L.; Kraus, C.; Ercal, N.; Apte, R.S. A Novel Thiol Antioxidant, N-Acetylcysteine Amide, Prevents Retinal Degeneration in Rd10 Mice. Investig. Ophthalmol. Vis. Sci. 2010, 51, 2940. [Google Scholar] [CrossRef] [Green Version]
- Schimel, A.M.; Abraham, L.; Cox, D.; Sene, A.; Kraus, C.; Dace, D.S.; Ercal, N.; Apte, R.S. N-Acetylcysteine Amide (NACA) Prevents Retinal Degeneration by up-Regulating Reduced Glutathione Production and Reversing Lipid Peroxidation. Am. J. Pathol. 2011, 178, 2032–2043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gimeno-Hernández, R.; Cantó, A.; Fernández-Carbonell, A.; Olivar, T.; Hernández-Rabaza, V.; Almansa, I.; Miranda, M. Thioredoxin Delays Photoreceptor Degeneration, Oxidative and Inflammation Alterations in Retinitis Pigmentosa. Front. Pharmacol. 2020, 11, 590572. [Google Scholar] [CrossRef] [PubMed]
- Elachouri, G.; Lee-Rivera, I.; Clérin, E.; Argentini, M.; Fridlich, R.; Blond, F.; Ferracane, V.; Yang, Y.; Raffelsberger, W.; Wan, J.; et al. Thioredoxin Rod-Derived Cone Viability Factor Protects against Photooxidative Retinal Damage. Free Radic. Biol. Med. 2015, 81, 22–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, H.; Ren, X.; Zhang, H.; Wang, N.; Zhang, C.; Li, L.; Xia, X.; Kong, L.; Zhang, M.; Xu, M. Thioredoxin Is a Potential Therapy for Light-Induced Photoreceptor Degeneration in Diabetic Mice. Neuro Endocrinol. Lett. 2019, 39, 561–566. [Google Scholar]
- Natoli, R.; Zhu, Y.; Valter, K.; Bisti, S.; Eells, J.; Stone, J. Gene and Noncoding RNA Regulation Underlying Photoreceptor Protection: Microarray Study of Dietary Antioxidant Saffron and Photobiomodulation in Rat Retina. Mol. Vis. 2010, 16, 1801–1822. [Google Scholar]
- Maccarone, R.; Di Marco, S.; Bisti, S. Saffron Supplement Maintains Morphology and Function after Exposure to Damaging Light in Mammalian Retina. Investig. Ophthalmol. Vis. Sci. 2008, 49, 1254–1261. [Google Scholar] [CrossRef] [Green Version]
- Di Marco, F.; Romeo, S.; Nandasena, C.; Purushothuman, S.; Adams, C.; Bisti, S.; Stone, J. The Time Course of Action of Two Neuroprotectants, Dietary Saffron and Photobiomodulation, Assessed in the Rat Retina. Am. J. Neurodegener. Dis. 2013, 2, 208–220. [Google Scholar]
- Fernández-Sánchez, L.; Lax, P.; Esquiva, G.; Martín-Nieto, J.; Pinilla, I.; Cuenca, N. Safranal, a Saffron Constituent, Attenuates Retinal Degeneration in P23H Rats. PLoS ONE 2012, 7, e43074. [Google Scholar] [CrossRef] [Green Version]
- Ohno, Y.; Nakanishi, T.; Umigai, N.; Tsuruma, K.; Shimazawa, M.; Hara, H. Oral Administration of Crocetin Prevents Inner Retinal Damage Induced by N-Methyl-D-Aspartate in Mice. Eur. J. Pharmacol. 2012, 690, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Falsini, B.; Piccardi, M.; Minnella, A.; Savastano, C.; Capoluongo, E.; Fadda, A.; Balestrazzi, E.; Maccarone, R.; Bisti, S. Influence of Saffron Supplementation on Retinal Flicker Sensitivity in Early Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2010, 51, 6118–6124. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, E.; Delaney, C.; Campbell, M.; Doyle, S.L. Minocycline Suppresses Disease-Associated Microglia (DAM) in a Model of Photoreceptor Cell Degeneration. Exp. Eye Res. 2022, 217, 108953. [Google Scholar] [CrossRef] [PubMed]
- Terauchi, R.; Kohno, H.; Watanabe, S.; Saito, S.; Watanabe, A.; Nakano, T. Minocycline Decreases CCR2-Positive Monocytes in the Retina and Ameliorates Photoreceptor Degeneration in a Mouse Model of Retinitis Pigmentosa. PLoS ONE 2021, 16, e0239108. [Google Scholar] [CrossRef] [PubMed]
- Di Pierdomenico, J.; Scholz, R.; Valiente-Soriano, F.J.; Sánchez-Migallón, M.C.; Vidal-Sanz, M.; Langmann, T.; Agudo-Barriuso, M.; García-Ayuso, D.; Villegas-Pérez, M.P. Neuroprotective Effects of FGF2 and Minocycline in Two Animal Models of Inherited Retinal Degeneration. Investig. Ophthalmol. Vis. Sci. 2018, 59, 4392–4403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, B.; Xiao, J.; Wang, K.; So, K.-F.; Tipoe, G.L.; Lin, B. Suppression of Microglial Activation Is Neuroprotective in a Mouse Model of Human Retinitis Pigmentosa. J. Neurosci. 2014, 34, 8139–8150. [Google Scholar] [CrossRef] [Green Version]
- Hughes, E.H.; Schlichtenbrede, F.C.; Murphy, C.C.; Broderick, C.; van Rooijen, N.; Ali, R.R.; Dick, A.D. Minocycline Delays Photoreceptor Death in the Rds Mouse through a Microglia-Independent Mechanism. Exp. Eye Res. 2004, 78, 1077–1084. [Google Scholar] [CrossRef]
- Yang, L.; Li, Y.; Zhu, X.; Tso, M.O.M. Minocycline Delayed Photoreceptor Death in Rds Mice through INOS-Dependent Mechanism. Mol. Vis. 2007, 13, 1073–1082. [Google Scholar]
- Takeda, A.; Shinozaki, Y.; Kashiwagi, K.; Ohno, N.; Eto, K.; Wake, H.; Nabekura, J.; Koizumi, S. Microglia Mediate Non-Cell-Autonomous Cell Death of Retinal Ganglion Cells. Glia 2018, 66, 2366–2384. [Google Scholar] [CrossRef]
- Shimazawa, M.; Yamashima, T.; Agarwal, N.; Hara, H. Neuroprotective Effects of Minocycline against in Vitro and in Vivo Retinal Ganglion Cell Damage. Brain Res. 2005, 1053, 185–194. [Google Scholar] [CrossRef]
- Grotegut, P.; Perumal, N.; Kuehn, S.; Smit, A.; Dick, H.B.; Grus, F.H.; Joachim, S.C. Minocycline Reduces Inflammatory Response and Cell Death in a S100B Retina Degeneration Model. J. Neuroinflamm. 2020, 17, 375. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Li, X.X.; He, X.J.; Zhang, Q.; Tao, Y. Neuroprotective Effect of Minocycline in a Rat Model of Branch Retinal Vein Occlusion. Exp. Eye Res. 2013, 113, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Dannhausen, K.; Möhle, C.; Langmann, T. Immunomodulation with Minocycline Rescues Retinal Degeneration in Juvenile Neuronal Ceroid Lipofuscinosis Mice Highly Susceptible to Light Damage. Dis. Model. Mech. 2018, 11, dmm033597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miralles de Imperial-Ollero, J.A.; Gallego-Ortega, A.; Norte-Muñoz, M.; Di Pierdomenico, J.; Valiente-Soriano, F.J.; Vidal-Sanz, M. An In Vivo Model of Focal Light Emitting Diode-Induced Cone Photoreceptor Phototoxicity in Adult Pigmented Mice: Protection with BFGF. Exp. Eye Res. 2021, 211, 108746. [Google Scholar] [CrossRef] [PubMed]
- Scholz, R.; Sobotka, M.; Caramoy, A.; Stempfl, T.; Moehle, C.; Langmann, T. Minocycline Counter-Regulates pro-Inflammatory Microglia Responses in the Retina and Protects from Degeneration. J. Neuroinflamm. 2015, 12, 209. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Lei, B.; Lam, T.T.; Yang, F.; Sinha, D.; Tso, M.O.M. Neuroprotection of Photoreceptors by Minocycline in Light-Induced Retinal Degeneration. Investig. Ophthalmol. Vis. Sci. 2004, 45, 2753–2759. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.J.; Cherng, C.H.; Liou, W.S.; Liao, C.L. Minocycline Partially Inhibits Caspase-3 Activation and Photoreceptor Degeneration after Photic Injury. Ophthalmic Res. 2005, 37, 202–213. [Google Scholar] [CrossRef]
- Rao, Y.Q.; Zhou, Y.T.; Zhou, W.; Li, J.K.; Li, B.; Li, J. MTORC1 Activation in Chx10-Specific Tsc1 Knockout Mice Accelerates Retina Aging and Degeneration. Oxidative Med. Cell. Longev. 2021, 2021, 6715758. [Google Scholar] [CrossRef]
- Zhao, L.; Ma, W.; Fariss, R.N.; Wong, W.T. Minocycline Attenuates Photoreceptor Degeneration in a Mouse Model of Subretinal Hemorrhage Microglial: Inhibition as a Potential Therapeutic Strategy. Am. J. Pathol. 2011, 179, 1265–1277. [Google Scholar] [CrossRef]
- Wang, W.; Sidoli, S.; Zhang, W.; Wang, Q.; Wang, L.; Jensen, O.N.; Guo, L.; Zhao, X.; Zheng, L. Abnormal Levels of Histone Methylation in the Retinas of Diabetic Rats Are Reversed by Minocycline Treatment. Sci Rep. 2017, 7. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, M.; Zhao, S.; Lu, Q.; Ni, L.; Zou, C.; Lu, L.; Xu, X.; Guan, H.; Zheng, Z.; et al. Activation of the TXNIP/NLRP3 Inflammasome Pathway Contributes to Inflammation in Diabetic Retinopathy: A Novel Inhibitory Effect of Minocycline. Inflamm. Res. 2017, 66, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Chen, Y.; Wu, Q.; Jia, L.; Du, X. Minocycline Inhibits PARP-1 Expression and Decreases Apoptosis in Diabetic Retinopathy. Mol. Med. Rep. 2015, 12, 4887–4894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levkovitch-Verbin, H.; Waserzoog, Y.; Vander, S.; Makarovsky, D.; Ilia, P. Minocycline Mechanism of Neuroprotection Involves the Bcl-2 Gene Family in Optic Nerve Transection. Int. J. Neurosci. 2014, 124, 755–761. [Google Scholar] [CrossRef] [PubMed]
- Levkovitch-Verbin, H.; Kalev-Landoy, M.; Habot-Wilner, Z.; Melamed, S. Minocycline Delays Death of Retinal Ganglion Cells in Experimental Glaucoma and after Optic Nerve Transection. Arch. Ophthalmol. 2006, 124, 520–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Ye, Z.; Pei, S.; Zheng, D.; Zhu, L. Neuroprotective Effect of Minocycline on Rat Retinal Ischemia-Reperfusion Injury. Mol. Vis. 2021, 27, 438–456. [Google Scholar]
- Abcouwer, S.F.; Lin, C.M.; Shanmugam, S.; Muthusamy, A.; Barber, A.J.; Antonetti, D.A. Minocycline Prevents Retinal Inflammation and Vascular Permeability Following Ischemia-Reperfusion Injury. J. Neuroinflamm. 2013, 10, 149. [Google Scholar] [CrossRef]
- Chen, Y.I.; Lee, Y.J.; Wilkie, D.A.; Lin, C.T. Evaluation of Potential Topical and Systemic Neuroprotective Agents for Ocular Hypertension-Induced Retinal Ischemia-Reperfusion Injury. Vet. Ophthalmol. 2014, 17, 432–442. [Google Scholar] [CrossRef]
- Levkovitch-Verbin, H.; Waserzoog, Y.; Vander, S.; Makarovsky, D.; Piven, I. Minocycline Upregulates Pro-Survival Genes and Downregulates pro-Apoptotic Genes in Experimental Glaucoma. Graefe’s Arch. Clin. Exp. Ophthalmol. 2014, 252, 761–772. [Google Scholar] [CrossRef]
- Bordone, M.P.; González Fleitas, M.F.; Pasquini, L.A.; Bosco, A.; Sande, P.H.; Rosenstein, R.E.; Dorfman, D. Involvement of Microglia in Early Axoglial Alterations of the Optic Nerve Induced by Experimental Glaucoma. J. Neurochem. 2017, 142, 323–337. [Google Scholar] [CrossRef]
- Wang, K.; Peng, B.; Lin, B. Fractalkine Receptor Regulates Microglial Neurotoxicity in an Experimental Mouse Glaucoma Model. Glia 2014, 62, 1943–1954. [Google Scholar] [CrossRef]
- Bosco, A.; Inman, D.M.; Steele, M.R.; Wu, G.; Soto, I.; Marsh-Armstrong, N.; Hubbard, W.C.; Calkins, D.J.; Horner, P.J.; Vetter, M.L. Reduced Retina Microglial Activation and Improved Optic Nerve Integrity with Minocycline Treatment in the DBA/2J Mouse Model of Glaucoma. Investig. Ophthalmol. Vis. Sci. 2008, 49, 1437–1446. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Liang, S.; Fang, L.; Wu, M.; Cheng, H.; Mi, X.; Ding, Y. Low-Dose Minocycline Mediated Neuroprotection on Retinal Ischemia-Reperfusion Injury of Mice. Mol. Vis. 2018, 24, 367–378. [Google Scholar] [PubMed]
- Jiao, X.; Peng, Y.; Yang, L. Minocycline Protects Retinal Ganglion Cells after Optic Nerve Crush Injury in Mice by Delaying Autophagy and Upregulating Nuclear Factor-ΚB2. Chin. Med. J. 2014, 127, 1749–1754. [Google Scholar] [PubMed]
- Baptiste, D.C.; Powell, K.J.; Jollimore, C.A.B.; Hamilton, C.; LeVatte, T.L.; Archibald, M.L.; Chauhan, B.C.; Robertson, G.S.; Kelly, M.E.M. Effects of Minocycline and Tetracycline on Retinal Ganglion Cell Survival after Axotomy. Neuroscience 2005, 134, 575–582. [Google Scholar] [CrossRef]
- Lax, P.; Otalora, B.B.; Esquiva, G.; Rol, M.D.L.Á.; Madrid, J.A.; Cuenca, N. Circadian Dysfunction in P23H Rhodopsin Transgenic Rats: Effects of Exogenous Melatonin. J. Pineal Res. 2011, 50, 183–191. [Google Scholar] [CrossRef]
- Fuentes-Broto, L.; Perdices, L.; Segura, F.; Orduna-Hospital, E.; Insa-Sánchez, G.; Sánchez-Cano, A.I.; Cuenca, N.; Pinilla, I. Effects of Daily Melatonin Supplementation on Visual Loss, Circadian Rhythms, and Hepatic Oxidative Damage in a Rodent Model of Retinitis Pigmentosa. Antioxidants 2021, 10, 1853. [Google Scholar] [CrossRef]
- Xu, X.J.; Wang, S.M.; Jin, Y.; Hu, Y.T.; Feng, K.; Ma, Z.Z. Melatonin Delays Photoreceptor Degeneration in a Mouse Model of Autosomal Recessive Retinitis Pigmentosa. J. Pineal Res. 2017, 63, e12428. [Google Scholar] [CrossRef]
- Liang, F.Q.; Aleman, T.S.; Yang, Z.; Cideciyan, A.V.; Jacobson, S.G.; Bennett, J. Melatonin Delays Photoreceptor Degeneration in the Rds/Rds Mouse. Neuroreport 2001, 12, 1011–1014. [Google Scholar] [CrossRef]
- Zhang, R.; Hrushesky, W.J.M.; Wood, P.A.; Lee, S.H.; Hunt, R.C.; Jahng, W.J. Melatonin Reprogrammes Proteomic Profile in Light-Exposed Retina In Vivo. Int. J. Biol. Macromol. 2010, 47, 255–260. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Tian, Y.; Yao, A.; Zha, X.; Zhang, J.; Tao, Y. Intravitreal Delivery of Melatonin Is Protective Against the Photoreceptor Loss in Mice: A Potential Therapeutic Strategy for Degenerative Retinopathy. Front. Pharmacol. 2020, 10, 1633. [Google Scholar] [CrossRef] [Green Version]
- Avunduk, A.M.; Avunduk, M.C.; Baltaci, A.K.; Moǧulkoç, R. Effect of Melatonin and Zinc on the Immune Response in Experimental Toxoplasma Retinochoroiditis. Ophthalmologica 2007, 221, 421–425. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Cui, K.; Li, J.; Tang, X.; Lin, J.; Lu, X.; Huang, R.; Yang, B.; Shi, Y.; Ye, D.; et al. Melatonin Attenuates Choroidal Neovascularization by Regulating Macrophage/Microglia Polarization via Inhibition of RhoA/ROCK Signaling Pathway. J. Pineal. Res. 2020, 69, e12660. [Google Scholar] [CrossRef] [PubMed]
- Diéguez, H.H.; González Fleitas, M.F.; Aranda, M.L.; Calanni, J.S.; Keller Sarmiento, M.I.; Chianelli, M.S.; Alaimo, A.; Sande, P.H.; Romeo, H.E.; Rosenstein, R.E.; et al. Melatonin Protects the Retina from Experimental Nonexudative Age-Related Macular Degeneration in Mice. J. Pineal Res. 2020, 68, e12643. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Chang, Q.; Cai, J.; Fan, J.; Zhang, X.; Xu, G. Protective Effects of Melatonin on Retinal Inflammation and Oxidative Stress in Experimental Diabetic Retinopathy. Oxidative Med. Cell. Longev. 2016, 2016, 3528274. [Google Scholar] [CrossRef] [Green Version]
- Özdemir, G.; Ergün, Y.; Bakariş, S.; Kilinç, M.; Durdu, H.; Ganiyusufoğlu, E. Melatonin Prevents Retinal Oxidative Stress and Vascular Changes in Diabetic Rats. Eye (Basingstoke) 2014, 28, 1020–1027. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; Zhang, C.; Yang, Q.; Xie, H.; Liu, D.; Tian, H.; Lu, L.; Xu, J.Y.; Li, W.; Xu, G.; et al. Melatonin Maintains Inner Blood-Retinal Barrier via Inhibition of P38/TXNIP/NF-κB Pathway in Diabetic Retinopathy. J. Cell. Physiol. 2021, 236, 5848–5864. [Google Scholar] [CrossRef]
- Mehrzadi, S.; Motevalian, M.; Rezaei Kanavi, M.; Fatemi, I.; Ghaznavi, H.; Shahriari, M. Protective Effect of Melatonin in the Diabetic Rat Retina. Fundam. Clin. Pharmacol. 2018, 32, 414–421. [Google Scholar] [CrossRef]
- Ferreira de Melo, I.M.; Martins Ferreira, C.G.; Lima da Silva Souza, E.H.; Almeida, L.L.; Bezerra de Sá, F.; Cavalcanti Lapa Neto, C.J.; Paz de Castro, M.V.; Teixeira, V.W.; Coelho Teixeira, Á.A. Melatonin Regulates the Expression of Inflammatory Cytokines, VEGF and Apoptosis in Diabetic Retinopathy in Rats. Chem. Biol. Interact. 2020, 327, 109183. [Google Scholar] [CrossRef]
- Salido, E.M.; Bordone, M.; De Laurentiis, A.; Chianelli, M.; Keller Sarmiento, M.I.; Dorfman, D.; Rosenstein, R.E. Therapeutic Efficacy of Melatonin in Reducing Retinal Damage in an Experimental Model of Early Type 2 Diabetes in Rats. J. Pineal Res. 2013, 54, 179–189. [Google Scholar] [CrossRef]
- Chang, J.Y.A.; Yu, F.; Shi, L.; Ko, M.L.; Ko, G.Y.P. Melatonin Affects Mitochondrial Fission/Fusion Dynamics in the Diabetic Retina. J. Diabetes Res. 2019, 2019, 8463125. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, M.; Tang, W. Effects of Melatonin on Streptozotocin-Induced Retina Neuronal Apoptosis in High Blood Glucose Rat. Neurochem. Res. 2013, 38, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Djordjevic, B.; Cvetkovic, T.; Stoimenov, T.J.; Despotovic, M.; Zivanovic, S.; Basic, J.; Veljkovic, A.; Velickov, A.; Kocic, G.; Pavlovic, D.; et al. Oral Supplementation with Melatonin Reduces Oxidative Damage and Concentrations of Inducible Nitric Oxide Synthase, VEGF and Matrix Metalloproteinase 9 in the Retina of Rats with Streptozotocin/Nicotinamide Induced Pre-Diabetes. Eur. J. Pharmacol. 2018, 833, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.; Song, E.; Wang, Z.; Ji, N.; Zhu, L.; Wang, K.; Sun, H.; Zhang, Y.; Zhu, Q.; Liu, X.; et al. Melatonin Attenuates Oxidative Stress and Inflammation of Müller Cells in Diabetic Retinopathy via Activating the Sirt1 Pathway. Biomed. Pharmacother. 2021, 137, 111274. [Google Scholar] [CrossRef] [PubMed]
- Oliveira-Abreu, K.; Cipolla-Neto, J.; Leal-Cardoso, J.H. Effects of Melatonin on Diabetic Neuropathy and Retinopathy. Int. J. Mol. Sci. 2021, 23, 100. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Xu, Y.; Lu, X.; Tang, X.; Lin, J.; Cui, K.; Yu, S.; Shi, Y.; Ye, D.; Liu, Y.; et al. Melatonin Protects Inner Retinal Neurons of Newborn Mice after Hypoxia-Ischemia. J. Pineal Res. 2021, 71, e12716. [Google Scholar] [CrossRef]
- Yilmaz, T.; Çelebi, S.; Kükner, A.Ş. The Protective Effects of Melatonin, Vitamin E and Octreotide on Retinal Edema during Ischemia-Reperfusion in the Guinea Pig Retina. Eur. J. Ophthalmol. 2002, 12, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Yi, C.; Pan, X.; Yan, H.; Guo, M.; Pierpaoli, W. Effects of Melatonin in Age-Related Macular Degeneration. Ann. N. Y. Acad. Sci. 2005, 1057, 384–392. [Google Scholar] [CrossRef]
- Scott, P.A.; Kaplan, H.J.; McCall, M.A. Prenatal Exposure to Curcumin Protects Rod Photoreceptors in a Transgenic Pro23His Swine Model of Retinitis Pigmentosa. Transl. Vis. Sci. Technol. 2015, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Vasireddy, V.; Chavali, V.R.M.; Joseph, V.T.; Kadam, R.; Lin, J.H.; Jamison, J.A.; Kompella, U.B.; Reddy, G.B.; Ayyagari, R. Rescue of Photoreceptor Degeneration by Curcumin in Transgenic Rats with P23H Rhodopsin Mutation. PLoS ONE 2011, 6, e21193. [Google Scholar] [CrossRef] [Green Version]
- Emoto, Y.; Yoshizawa, K.; Uehara, N.; Kinoshita, Y.; Yuri, T.; Shikata, N.; Tsubura, A. Curcumin Suppresses N-Methyl-N-Nitrosourea-Induced Photoreceptor Apoptosis in Sprague-Dawley Rats. In Vivo 2013, 27, 583–590. [Google Scholar]
- Mandal, M.N.A.; Patlolla, J.M.R.; Zheng, L.; Agbaga, M.P.; Tran, J.T.A.; Wicker, L.; Kasus-Jacobi, A.; Elliott, M.H.; Rao, C.V.; Anderson, R.E. Curcumin Protects Retinal Cells from Light-and Oxidant Stress-Induced Cell Death. Free Radic. Biol. Med. 2009, 46, 672–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, T.; Chen, X.; Chen, W.; Huang, S.; Peng, X.; Tian, L.; Wu, X.; Huang, Y. Curcumin Is a Potential Adjuvant to Alleviates Diabetic Retinal Injury via Reducing Oxidative Stress and Maintaining Nrf2 Pathway Homeostasis. Front. Pharmacol. 2021, 12, 796565. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Yu, J.; Ke, F.; Lan, M.; Li, D.; Tan, K.; Ling, J.; Wang, Y.; Wu, K.; Li, D. Curcumin Alleviates Diabetic Retinopathy in Experimental Diabetic Rats. Ophthalmic Res. 2018, 60, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Jariyapongskul, A.; Areebambud, C.; Hideyuki, N. Microhemodynamic Indices to Evaluate the Effectiveness of Herbal Medicine in Diabetes: A Comparison between Alpha-Mangostin and Curcumin in the Retina of Type 2 Diabetic Rats. Clin. Hemorheol. Microcirc. 2018, 69, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, P.; Ying, J.; Chen, Z.; Yu, S. Curcumin Attenuates Retinal Vascular Leakage by Inhibiting Calcium/Calmodulin-Dependent Protein Kinase II Activity in Streptozotocin-Induced Diabetes. Cell. Physiol. Biochem. 2016, 39, 1196–1208. [Google Scholar] [CrossRef]
- Li, J.; Wang, P.; Zhu, Y.; Chen, Z.; Shi, T.; Lei, W.; Yu, S. Curcumin Inhibits Neuronal Loss in the Retina and Elevates Ca2+/Calmodulin-Dependent Protein Kinase II Activity in Diabetic Rats. J. Ocul. Pharmacol. Ther. 2015, 31, 555–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuo, Z.F.; Zhang, Q.; Liu, X.Z. Protective Effects of Curcumin on Retinal Müller Cell in Early Diabetic Rats. Int. J. Ophthalmol. 2013, 6, 422–424. [Google Scholar] [CrossRef]
- Wang, C.; George, B.; Chen, S.; Feng, B.; Li, X.; Chakrabarti, S. Genotoxic Stress and Activation of Novel DNA Repair Enzymes in Human Endothelial Cells and in the Retinas and Kidneys of Streptozotocin Diabetic Rats. Diabetes Metab. Res. Rev. 2012, 28, 329–337. [Google Scholar] [CrossRef]
- Gupta, S.K.; Kumar, B.; Nag, T.C.; Agrawal, S.S.; Agrawal, R.; Agrawal, P.; Saxena, R.; Srivastava, S. Curcumin Prevents Experimental Diabetic Retinopathy in Rats through Its Hypoglycemic, Antioxidant, and Anti-Inflammatory Mechanisms. J. Ocul. Pharmacol. Ther. 2011, 27, 123–130. [Google Scholar] [CrossRef]
- Mrudula, T.; Suryanarayana, P.; Srinivas, P.N.B.S.; Reddy, G.B. Effect of Curcumin on Hyperglycemia-Induced Vascular Endothelial Growth Factor Expression in Streptozotocin-Induced Diabetic Rat Retina. Biochem. Biophys. Res. Commun. 2007, 361, 528–532. [Google Scholar] [CrossRef]
- Kowluru, R.A.; Kanwar, M. Effects of Curcumin on Retinal Oxidative Stress and Inflammation in Diabetes. Nutr. Metab. 2007, 4, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, P.A.; Haseeb, A.; Suryanarayana, P.; Ehtesham, N.Z.; Reddy, G.B. Elevated Expression of AlphaA- and AlphaB-Crystallins in Streptozotocin-Induced Diabetic Rat. Arch. Biochem. Biophys. 2005, 444, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Mendes, T.S.; Novais, E.A.; Badaró, E.; de Oliveira Dias, J.R.; Kniggendorf, V.; Lima-Filho, A.A.S.; Watanabe, S.; Farah, M.E.; Rodrigues, E.B. Antiangiogenic Effect of Intravitreal Curcumin in Experimental Model of Proliferative Retinopathy. Acta Ophthalmol. 2020, 98, e132–e133. [Google Scholar] [CrossRef] [PubMed]
- Mirza, M.; Volz, C.; Karlstetter, M.; Langiu, M.; Somogyi, A.; Ruonala, M.O.; Tamm, E.R.; Jägle, H.; Langmann, T. Progressive Retinal Degeneration and Glial Activation in the CLN6 (Nclf) Mouse Model of Neuronal Ceroid Lipofuscinosis: A Beneficial Effect of DHA and Curcumin Supplementation. PLoS ONE 2013, 8, e75963. [Google Scholar] [CrossRef]
- Zhang, H.-J.; Xing, Y.-Q.; Jin, W.; Li, D.; Wu, K.; Lu, Y. Effects of Curcumin on Interleukin-23 and Interleukin-17 Expression in Rat Retina after Retinal Ischemia-Reperfusion Injury. Int. J. Clin. Exp. Pathol. 2015, 8, 9223–9231. [Google Scholar]
- Wang, L.; Li, C.; Guo, H.; Kern, T.S.; Huang, K.; Zheng, L. Curcumin Inhibits Neuronal and Vascular Degeneration in Retina after Ischemia and Reperfusion Injury. PLoS ONE 2011, 6, e23194. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Ye, Q.; Tu, J.; Zhang, M.; Ji, B. Curcumin Protects against Hypertension Aggravated Retinal Ischemia/Reperfusion in a Rat Stroke Model. Clin. Exp. Hypertens. 2017, 39, 711–717. [Google Scholar] [CrossRef]
- Chirapapaisan, N.; Uiprasertkul, M.; Chuncharunee, A. The Effect of Coenzyme Q10 and Curcumin on Chronic Methanol Intoxication Induced Retinopathy in Rats. J. Med. Assoc. Thai. 2012, 95, S76–S81. [Google Scholar]
- Mazzolani, F.; Togni, S.; Giacomelli, L.; Eggenhoffner, R.; Franceschi, F. Oral Administration of a Curcumin-Phospholipid Formulation (Meriva®) for Treatment of Chronic Diabetic Macular Edema: A Pilot Study. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 3617–3625. [Google Scholar] [CrossRef]
- Piano, I.; D’antongiovanni, V.; Testai, L.; Calderone, V.; Gargini, C. A Nutraceutical Strategy to Slowing Down the Progression of Cone Death in an Animal Model of Retinitis Pigmentosa. Front. Neurosci. 2019, 13, 461. [Google Scholar] [CrossRef] [Green Version]
- Ortega, J.T.; Parmar, T.; Golczak, M.; Jastrzebska, B. Protective Effects of Flavonoids in Acute Models of Light-Induced Retinal Degeneration. Mol. Pharmacol. 2021, 99, 60–77. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Park, S.U. Quercetin and Its Role in Biological Functions: An Updated Review. EXCLI J. 2018, 17, 856–863. [Google Scholar] [CrossRef] [PubMed]
- Koyama, Y.; Kaidzu, S.; Kim, Y.C.; Matsuoka, Y.; Ishihara, T.; Ohira, A.; Tanito, M. Suppression of Light-Induced Retinal Degeneration by Quercetin via the AP-1 Pathway in Rats. Antioxidants 2019, 8, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, Y.; Yu, H.; Yang, Y.; Li, M.; Hang, L.; Xu, X. A Solid Dispersion of Quercetin Shows Enhanced Nrf2 Activation and Protective Effects against Oxidative Injury in a Mouse Model of Dry Age-Related Macular Degeneration. Oxidative Med. Cell. Longev. 2019, 2019, 1479571. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Du, S.; Wang, W.; Zhang, F. Therapeutic Investigation of Quercetin Nanomedicine in a Zebrafish Model of Diabetic Retinopathy. Biomed. Pharmacother. 2020, 130, 110573. [Google Scholar] [CrossRef]
- Ola, M.S.; Ahmed, M.M.; Shams, S.; Al-Rejaie, S.S. Neuroprotective Effects of Quercetin in Diabetic Rat Retina. Saudi J. Biol. Sci. 2017, 24, 1186–1194. [Google Scholar] [CrossRef]
- Kumar, B.; Gupta, S.K.; Nag, T.C.; Srivastava, S.; Saxena, R.; Jha, K.A.; Srinivasan, B.P. Retinal Neuroprotective Effects of Quercetin in Streptozotocin-Induced Diabetic Rats. Exp. Eye Res. 2014, 125, 193–202. [Google Scholar] [CrossRef]
- Chen, Y.; Li, F.; Meng, X.; Li, X. Suppression of Retinal Angiogenesis by Quercetin in a Rodent Model of Retinopathy of Prematurity. Zhonghua Yi Xue Za Zhi 2015, 95, 1113–1115. [Google Scholar] [CrossRef]
- Zhou, X.; Li, G.; Yang, B.; Wu, J. Quercetin Enhances Inhibitory Synaptic Inputs and Reduces Excitatory Synaptic Inputs to OFF- and ON-Type Retinal Ganglion Cells in a Chronic Glaucoma Rat Model. Front. Neurosci. 2019, 13, 672. [Google Scholar] [CrossRef]
- Arikan, S.; Ersan, I.; Karaca, T.; Kara, S.; Gencer, B.; Karaboga, I.; Tufan, H.A. Quercetin Protects the Retina by Reducing Apoptosis Due to Ischemia-Reperfusion Injury in a Rat Model. Arq. Bras. Oftalmol. 2015, 78, 100–104. [Google Scholar] [CrossRef] [Green Version]
- Thomson, L.R.; Toyoda, Y.; Langner, A.; Delori, F.C.; Garnett, K.M.; Craft, N.; Nichols, C.R.; Cheng, K.M.; Dorey, C.K. Elevated Retinal Zeaxanthin and Prevention of Light-Induced Photoreceptor Cell Death in Quail. Investig. Ophthalmol. Vis. Sci. 2002, 43, 3538–3549. [Google Scholar]
- Yu, M.; Yan, W.; Beight, C. Lutein and Zeaxanthin Isomers Reduce Photoreceptor Degeneration in the Pde6b Rd10 Mouse Model of Retinitis Pigmentosa. Biomed. Res. Int. 2018, 2018, 4374087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahin, K.; Gencoglu, H.; Akdemir, F.; Orhan, C.; Tuzcu, M.; Sahin, N.; Yilmaz, I.; Juturu, V. Lutein and Zeaxanthin Isomers May Attenuate Photo-Oxidative Retinal Damage via Modulation of G Protein-Coupled Receptors and Growth Factors in Rats. Biochem. Biophys. Res. Commun. 2019, 516, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Miranda, M.; Arnal, E.; Ahuja, S.; Alvarez-Nölting, R.; López-Pedrajas, R.; Ekström, P.; Bosch-Morell, F.; van Veen, T.; Romero, F.J. Antioxidants Rescue Photoreceptors in Rd1 Mice: Relationship with Thiol Metabolism. Free Radic. Biol. Med. 2010, 48, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Yan, W.; Beight, C. Lutein and Zeaxanthin Isomers Protect against Light-Induced Retinopathy via Decreasing Oxidative and Endoplasmic Reticulum Stress in BALB/CJ Mice. Nutrients 2018, 10, 842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowluru, R.A.; Menon, B.; Gierhart, D.L. Beneficial Effect of Zeaxanthin on Retinal Metabolic Abnormalities in Diabetic Rats. Investig. Ophthalmol. Vis. Sci. 2008, 49, 1645–1651. [Google Scholar] [CrossRef]
- Sasaki, M.; Yuki, K.; Kurihara, T.; Miyake, S.; Noda, K.; Kobayashi, S.; Ishida, S.; Tsubota, K.; Ozawa, Y. Biological Role of Lutein in the Light-Induced Retinal Degeneration. J. Nutr. Biochem. 2012, 23, 423–429. [Google Scholar] [CrossRef]
- Tuzcu, M.; Orhan, C.; Muz, O.E.; Sahin, N.; Juturu, V.; Sahin, K. Lutein and Zeaxanthin Isomers Modulates Lipid Metabolism and the Inflammatory State of Retina in Obesity-Induced High-Fat Diet Rodent Model. BMC Ophthalmol. 2017, 17, 129. [Google Scholar] [CrossRef] [Green Version]
- Biswal, M.R.; Justis, B.D.; Han, P.; Li, H.; Gierhart, D.; Dorey, C.K.; Lewin, A.S. Daily Zeaxanthin Supplementation Prevents Atrophy of the Retinal Pigment Epithelium (RPE) in a Mouse Model of Mitochondrial Oxidative Stress. PLoS ONE 2018, 13, e0203816. [Google Scholar] [CrossRef]
- Dorrell, M.I.; Aguilar, E.; Jacobson, R.; Yanes, O.; Gariano, R.; Heckenlively, J.; Banin, E.; Ramirez, G.A.; Gasmi, M.; Bird, A.; et al. Antioxidant or Neurotrophic Factor Treatment Preserves Function in a Mouse Model of Neovascularization-Associated Oxidative Stress. J. Clin. Investig. 2009, 119, 611–623. [Google Scholar] [CrossRef] [Green Version]
- Toomey, M.B.; McGraw, K.J. The Effects of Dietary Carotenoid Supplementation and Retinal Carotenoid Accumulation on Vision-Mediated Foraging in the House Finch. PLoS ONE 2011, 6, e21653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perdices, L.; Fuentes-Broto, L.; Segura, F.; Cavero, A.; Orduna-Hospital, E.; Insa-Sánchez, G.; Sánchez-Cano, A.; Fernández-Sánchez, L.; Cuenca, N.; Pinilla, I. Systemic Epigallocatechin Gallate Protects against Retinal Degeneration and Hepatic Oxidative Stress in the P23H-1 Rat. Neural Regen. Res. 2022, 17, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Perdices, L.; Fuentes-Broto, L.; Segura, F.; Cuenca, N.; Orduna-Hospital, E.; Pinilla, I. Epigallocatechin Gallate Slows Retinal Degeneration, Reduces Oxidative Damage, and Modifies Circadian Rhythms in P23H Rats. Antioxidants 2020, 9, 718. [Google Scholar] [CrossRef] [PubMed]
- Qi, S.; Wang, C.; Song, D.; Song, Y.; Dunaief, J.L. Intraperitoneal Injection of (−)-Epigallocatechin-3-Gallate Protects against Light-Induced Photoreceptor Degeneration in the Mouse Retina. Mol. Vis. 2017, 23, 171–178. [Google Scholar] [PubMed]
- Costa, B.L. da S.A. da; Fawcett, R.; Li, G.Y.; Safa, R.; Osborne, N.N. Orally Administered Epigallocatechin Gallate Attenuates Light-Induced Photoreceptor Damage. Brain Res. Bull. 2008, 76, 412–423. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Osborne, N.N. Oxidative-Induced Retinal Degeneration Is Attenuated by Epigallocatechin Gallate. Brain Res. 2006, 1124, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Qin, Y.J.; Yip, Y.W.Y.; Chan, K.P.; Chu, K.O.; Chu, W.K.; Ng, T.K.; Pang, C.P.; Chan, S.O. Green Tea Catechins Are Potent Anti-Oxidants That Ameliorate Sodium Iodate-Induced Retinal Degeneration in Rats. Sci. Rep. 2016, 6, 29546. [Google Scholar] [CrossRef] [Green Version]
- Emoto, Y.; Yoshizawa, K.; Kinoshita, Y.; Yuri, T.; Yuki, M.; Sayama, K.; Shikata, N.; Tsubura, A. Green Tea Extract Suppresses N-Methyl-N-Nitrosourea-Induced Photoreceptor Apoptosis in Sprague-Dawley Rats. Graefe’s Arch. Clin. Exp. Ophthalmol. 2014, 252, 1377–1384. [Google Scholar] [CrossRef]
- Chen, F.; Jiang, L.; Shen, C.; Wan, H.; Xu, L.; Wang, N.; Jonas, J.B. Neuroprotective Effect of Epigallocatechin-3-Gallate against N-Methyl-D-Aspartate-Induced Excitotoxicity in the Adult Rat Retina. Acta Ophthalmol. 2012, 90, e609–e615. [Google Scholar] [CrossRef]
- Al-Gayyar, M.M.H.; Matragoon, S.; Pillai, B.A.; Ali, T.K.; Abdelsaid, M.A.; El-Remessy, A.B. Epicatechin Blocks Pro-Nerve Growth Factor (ProNGF)-Mediated Retinal Neurodegeneration via Inhibition of P75 Neurotrophin Receptor Expression in a Rat Model of Diabetes [Corrected]. Diabetologia 2011, 54, 669–680. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Xu, C.; Chen, Y.; Liang, J.J.; Xu, Y.; Chen, S.L.; Huang, S.; Yang, Q.; Cen, L.P.; Pang, C.P.; et al. Green Tea Extract Ameliorates Ischemia-Induced Retinal Ganglion Cell Degeneration in Rats. Oxidative Med. Cell Longev. 2019, 2019, 8407206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, C.; Chen, L.; Jiang, L.; Lai, T.Y.Y. Neuroprotective Effect of Epigallocatechin-3-Gallate in a Mouse Model of Chronic Glaucoma. Neurosci. Lett. 2015, 600, 132–136. [Google Scholar] [CrossRef] [PubMed]
- Detaram, H.D.; Liew, G.; Lewis, J.R.; Bondonno, N.P.; Bondonno, C.P.; Van Vu, K.; Burlutsky, G.; Hodgson, J.M.; Mitchell, P.; Gopinath, B. Dietary Flavonoids Are Associated with Longitudinal Treatment Outcomes in Neovascular Age-Related Macular Degeneration. Eur. J. Nutr. 2021, 60, 4243–4250. [Google Scholar] [CrossRef] [PubMed]
- Valdés-Sánchez, L.; García-Delgado, A.B.; Montero-Sánchez, A.; de la Cerda, B.; Lucas, R.; Peñalver, P.; Morales, J.C.; Bhattacharya, S.S.; Díaz-Corrales, F.J. The Resveratrol Prodrug JC19 Delays Retinal Degeneration in Rd10 Mice. Adv. Exp. Med. Biol. 2019, 1185, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.S.; Yao, L.; Liu, W.; Duan, W.X.; Wang, B.; Zhang, L.; Zhang, Z.M. Sirtuin Type 1 Mediates the Retinal Protective Effect of Hydrogen-Rich Saline Against Light-Induced Damage in Rats. Investig. Ophthalmol. Vis. Sci. 2015, 56, 8268–8279. [Google Scholar] [CrossRef]
- Kubota, S.; Kurihara, T.; Ebinuma, M.; Kubota, M.; Yuki, K.; Sasaki, M.; Noda, K.; Ozawa, Y.; Oike, Y.; Ishida, S.; et al. Resveratrol Prevents Light-Induced Retinal Degeneration via Suppressing Activator Protein-1 Activation. Am. J. Pathol. 2010, 177, 1725–1731. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Luo, Z.; Jin, M.; Sheng, W.; Wang, H.T.; Long, X.; Wu, Y.; Hu, P.; Xu, H.; Zhang, X. Exploration of Age-Related Mitochondrial Dysfunction and the Anti-Aging Effects of Resveratrol in Zebrafish Retina. Aging 2019, 11, 3117–3137. [Google Scholar] [CrossRef]
- Sheng, W.; Lu, Y.; Mei, F.; Wang, N.; Liu, Z.Z.; Han, Y.Y.; Wang, H.T.; Zou, S.; Xu, H.; Zhang, X. Effect of Resveratrol on Sirtuins, OPA1, and Fis1 Expression in Adult Zebrafish Retina. Investig. Ophthalmol. Vis. Sci. 2018, 59, 4542–4551. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Wu, Z.; Li, J.; Marmalidou, A.; Zhang, R.; Yu, M. Protective Effect of Resveratrol against Light-Induced Retinal Degeneration in Aged SAMP8 Mice. Oncotarget 2017, 8, 65778–65788. [Google Scholar] [CrossRef] [Green Version]
- Courtaut, F.; Aires, V.; Acar, N.; Bretillon, L.; Guerrera, I.C.; Chhuon, C.; de Barros, J.P.P.; Olmiere, C.; Delmas, D. RESVEGA, a Nutraceutical Omega-3/Resveratrol Supplementation, Reduces Angiogenesis in a Preclinical Mouse Model of Choroidal Neovascularization. Int. J. Mol. Sci. 2021, 22, 11023. [Google Scholar] [CrossRef]
- Nagai, N.; Kubota, S.; Tsubota, K.; Ozawa, Y. Resveratrol Prevents the Development of Choroidal Neovascularization by Modulating AMP-Activated Protein Kinase in Macrophages and Other Cell Types. J. Nutr. Biochem. 2014, 25, 1218–1225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubota, S.; Ozawa, Y.; Kurihara, T.; Sasaki, M.; Yuki, K.; Miyake, S.; Noda, K.; Ishida, S.; Tsubota, K. Roles of AMP-Activated Protein Kinase in Diabetes-Induced Retinal Inflammation. Investig. Ophthalmol. Vis. Sci. 2011, 52, 9142–9148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.H.; Kim, Y.S.; Roh, G.S.; Choi, W.S.; Cho, G.J. Resveratrol Blocks Diabetes-Induced Early Vascular Lesions and Vascular Endothelial Growth Factor Induction in Mouse Retinas. Acta Ophthalmol. 2012, 90, e31–e37. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Kim, Y.S.; Kang, S.S.; Cho, G.J.; Choi, W.S. Resveratrol Inhibits Neuronal Apoptosis and Elevated Ca2+/Calmodulin-Dependent Protein Kinase II Activity in Diabetic Mouse Retina. Diabetes 2010, 59, 1825–1835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, K.; Wang, Y.; Huang, L.; Song, Y.; Yu, X.; Deng, B.; Zhou, X. Resveratrol Inhibits Neural Apoptosis and Regulates RAX/P-PKR Expression in Retina of Diabetic Rats. Nutr. Neurosci. 2021, 25, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Soufi, F.G.; Mohammad-nejad, D.; Ahmadieh, H. Resveratrol Improves Diabetic Retinopathy Possibly through Oxidative Stress—Nuclear Factor ΚB—Apoptosis Pathway. Pharmacol. Rep. 2012, 64, 1505–1514. [Google Scholar] [CrossRef]
- Ghadiri Soufi, F.; Arbabi-Aval, E.; Rezaei Kanavi, M.; Ahmadieh, H. Anti-Inflammatory Properties of Resveratrol in the Retinas of Type 2 Diabetic Rats. Clin. Exp. Pharmacol. Physiol. 2015, 42, 63–68. [Google Scholar] [CrossRef]
- Al-Hussaini, H.; Kilarkaje, N. Effects of Trans-Resveratrol on Type 1 Diabetes-Induced Inhibition of Retinoic Acid Metabolism Pathway in Retinal Pigment Epithelium of Dark Agouti Rats. Eur. J. Pharmacol. 2018, 834, 142–151. [Google Scholar] [CrossRef]
- Al-Hussaini, H.; Kittaneh, R.S.; Kilarkaje, N. Effects of Trans-Resveratrol on Type 1 Diabetes-Induced up-Regulation of Apoptosis and Mitogen-Activated Protein Kinase Signaling in Retinal Pigment Epithelium of Dark Agouti Rats. Eur. J. Pharmacol. 2021, 904, 174167. [Google Scholar] [CrossRef]
- Liu, X.Q.; Wu, B.J.; Pan, W.H.T.; Zhang, X.M.; Liu, J.H.; Chen, M.M.; Chao, F.P.; Chao, H.M. Resveratrol Mitigates Rat Retinal Ischemic Injury: The Roles of Matrix Metalloproteinase-9, Inducible Nitric Oxide, and Heme Oxygenase-1. J. Ocul. Pharmacol. Ther. 2013, 29, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Wan, G.; Yan, P.; Qian, C.; Li, F.; Peng, G. Fabrication of Resveratrol Coated Gold Nanoparticles and Investigation of Their Effect on Diabetic Retinopathy in Streptozotocin Induced Diabetic Rats. J. Photochem. Photobiol. B 2019, 195, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Meng, J.; Li, H.; Wei, H.; Bi, F.; Liu, S.; Tang, K.; Guo, H.; Liu, W. Resveratrol Exhibits an Effect on Attenuating Retina Inflammatory Condition and Damage of Diabetic Retinopathy via PON1. Exp. Eye Res. 2019, 181, 356–366. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Li, G.; Qiu, J.; Gonzalez, P.; Challa, P. Protective Effects of Resveratrol in Experimental Retinal Detachment. PLoS ONE 2013, 8, e75735. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.A.; Chen, C.S.; Wang, Y.C.; Lin, E.S.; Chang, C.Y.; Chen, J.J.Y.; Wu, M.Y.; Lin, H.J.; Wan, L. Anti-Inflammatory Effects of Resveratrol on Human Retinal Pigment Cells and a Myopia Animal Model. Curr. Issues Mol. Biol. 2021, 43, 716–727. [Google Scholar] [CrossRef] [PubMed]
- Hua, J.; Guerin, K.I.; Chen, J.; Michán, S.; Stahl, A.; Krah, N.M.; Seaward, M.R.; Dennison, R.J.; Juan, A.M.; Hatton, C.J.; et al. Resveratrol Inhibits Pathologic Retinal Neovascularization in Vldlr(-/-) Mice. Investig. Ophthalmol. Vis. Sci. 2011, 52, 2809–2816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Wang, L.; Huang, K.; Zheng, L. Endoplasmic Reticulum Stress in Retinal Vascular Degeneration: Protective Role of Resveratrol. Investig. Ophthalmol. Vis. Sci. 2012, 53, 3241–3249. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.T.; Suh, E.S. Retinal Protective Effects of Resveratrol via Modulation of Nitric Oxide Synthase on Oxygen-Induced Retinopathy. Korean J. Ophthalmol. 2010, 24, 108–118. [Google Scholar] [CrossRef] [Green Version]
- Ji, K.; Li, Z.; Lei, Y.; Xu, W.; Ouyang, L.; He, T.; Xing, Y. Resveratrol Attenuates Retinal Ganglion Cell Loss in a Mouse Model of Retinal Ischemia Reperfusion Injury via Multiple Pathways. Exp. Eye Res. 2021, 209, 108683. [Google Scholar] [CrossRef]
- Luo, J.; He, T.; Yang, J.; Yang, N.; Li, Z.; Xing, Y. SIRT1 Is Required for the Neuroprotection of Resveratrol on Retinal Ganglion Cells after Retinal Ischemia-Reperfusion Injury in Mice. Graefe’s Arch. Clin. Exp. Ophthalmol. 2020, 258, 335–344. [Google Scholar] [CrossRef]
- Seong, H.; Ryu, J.; Yoo, W.S.; Kim, S.J.; Han, Y.S.; Park, J.M.; Kang, S.S.; Seo, S.W. Resveratrol Ameliorates Retinal Ischemia/Reperfusion Injury in C57BL/6J Mice via Downregulation of Caspase-3. Curr. Eye Res. 2017, 42, 1650–1658. [Google Scholar] [CrossRef]
- Pang, Y.; Qin, M.; Hu, P.; Ji, K.; Xiao, R.; Sun, N.; Pan, X.; Zhang, X. Resveratrol Protects Retinal Ganglion Cells against Ischemia Induced Damage by Increasing Opa1 Expression. Int. J. Mol. Med. 2020, 46, 1707–1720. [Google Scholar] [CrossRef] [PubMed]
- Vin, A.P.; Hu, H.; Zhai, Y.; Von Zee, C.L.; Logeman, A.; Stubbs, E.B.; Perlman, J.I.; Bu, P. Neuroprotective Effect of Resveratrol Prophylaxis on Experimental Retinal Ischemic Injury. Exp. Eye Res. 2013, 108, 72–75. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Chen, S.; Li, X.; Luo, H.; Zhang, Q.; Hu, P.; Wang, F.; Xiong, C.; Sun, T.; Zhang, X. Role of the PGE2 Receptor in Ischemia-Reperfusion Injury of the Rat Retina. Mol. Vis. 2020, 26, 36–47. [Google Scholar] [PubMed]
- Luo, H.; Zhuang, J.; Hu, P.; Ye, W.; Chen, S.; Pang, Y.; Li, N.; Deng, C.; Zhang, X. Resveratrol Delays Retinal Ganglion Cell Loss and Attenuates Gliosis-Related Inflammation From Ischemia-Reperfusion Injury. Investig. Ophthalmol. Vis. Sci. 2018, 59, 3879–3888. [Google Scholar] [CrossRef] [Green Version]
- Cao, K.; Ishida, T.; Fang, Y.; Shinohara, K.; Li, X.; Nagaoka, N.; Ohno-Matsui, K.; Yoshida, T. Protection of the Retinal Ganglion Cells: Intravitreal Injection of Resveratrol in Mouse Model of Ocular Hypertension. Investig. Ophthalmol. Vis. Sci. 2020, 61, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Feng, Y.; Wang, Y.; Wang, J.; Xiang, D.; Niu, W.; Yuan, F. Resveratrol Ameliorates Disorders of Mitochondrial Biogenesis and Dynamics in a Rat Chronic Ocular Hypertension Model. Life Sci. 2018, 207, 234–245. [Google Scholar] [CrossRef] [PubMed]
- Razali, N.; Agarwal, R.; Agarwal, P.; Tripathy, M.; Kapitonova, M.Y.; Kutty, M.K.; Smirnov, A.; Khalid, Z.; Ismail, N.M. Topical Trans-Resveratrol Ameliorates Steroid-Induced Anterior and Posterior Segment Changes in Rats. Exp. Eye Res. 2016, 143, 9–16. [Google Scholar] [CrossRef]
- Pirhan, D.; Yüksel, N.; Emre, E.; Cengiz, A.; Kürşat Yildiz, D. Riluzole- and Resveratrol-Induced Delay of Retinal Ganglion Cell Death in an Experimental Model of Glaucoma. Curr. Eye Res. 2016, 41, 59–69. [Google Scholar] [CrossRef]
- Lindsey, J.D.; Duong-Polk, K.X.; Hammond, D.; Leung, C.K.-S.; Weinreb, R.N. Protection of Injured Retinal Ganglion Cell Dendrites and Unfolded Protein Response Resolution after Long-Term Dietary Resveratrol. Neurobiol. Aging 2015, 36, 1969–1981. [Google Scholar] [CrossRef]
- Kim, S.H.; Park, J.H.; Kim, Y.J.; Park, K.H. The Neuroprotective Effect of Resveratrol on Retinal Ganglion Cells after Optic Nerve Transection. Mol. Vis. 2013, 19, 1667–1676. [Google Scholar]
- Kubota, S.; Kurihara, T.; Mochimar, H.; Satofuka, S.; Noda, K.; Ozawa, Y.; Oike, Y.; Ishida, S.; Tsubota, K. Prevention of Ocular Inflammation in Endotoxin-Induced Uveitis with Resveratrol by Inhibiting Oxidative Damage and Nuclear Factor-KappaB Activation. Investig. Ophthalmol. Vis. Sci. 2009, 50, 3512–3519. [Google Scholar] [CrossRef] [PubMed]
- García-Layana, A.; Recalde, S.; Hernandez, M.; Abraldes, M.J.; Nascimento, J.; Hernández-Galilea, E.; Olmedilla-Alonso, B.; Escobar-Barranco, J.J.; Zapata, M.A.; Silva, R.; et al. A Randomized Study of Nutritional Supplementation in Patients with Unilateral Wet Age-Related Macular Degeneration. Nutrients 2021, 13, 1253. [Google Scholar] [CrossRef] [PubMed]
- Pinelli, R.; Bertelli, M.; Scaffidi, E.; Polzella, M.; Fulceri, F.; Biagioni, F.; Fornai, F. Nutraceuticals for Dry Age-Related Macular Degeneration: A Case Report Based on Novel Pathogenic and Morphological Insights. Arch. Ital. Biol. 2020, 158, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Richer, S.; Stiles, W.; Ulanski, L.; Carroll, D.; Podella, C. Observation of Human Retinal Remodeling in Octogenarians with a Resveratrol Based Nutritional Supplement. Nutrients 2013, 5, 1989–2005. [Google Scholar] [CrossRef] [PubMed]
- Baltã, F.; Cristescu, I.E.; Mirescu, A.E.; Baltã, G.; Tofolean, I.T. Effect of A Multinutrient Complex on Retinal Microcirculation in Diabetic Patients Investigated Using an Adaptive Optics Retinal Camera. Acta Endocrinol. 2020, 16, 389–395. [Google Scholar] [CrossRef]
- Eckhert, C.D. Differential Effects of Riboflavin and RRR-Alpha-Tocopheryl Acetate on the Survival of Newborn RCS Rats with Inheritable Retinal Degeneration. J. Nutr. 1987, 117, 208–211. [Google Scholar] [CrossRef]
- Orhan, C.; Tuzcu, M.; Gencoglu, H.; Sahin, E.; Sahin, N.; Ozercan, I.H.; Namjoshi, T.; Srivastava, V.; Morde, A.; Rai, D.; et al. Different Doses of β-Cryptoxanthin May Secure the Retina from Photooxidative Injury Resulted from Common LED Sources. Oxid Med. Cell. Longev. 2021, 2021, 6672525. [Google Scholar] [CrossRef]
- Wong, P.; Markey, M.; Rapp, C.M.; Darrow, R.M.; Ziesel, A.; Organisciak, D.T. Enhancing the Efficacy of AREDS Antioxidants in Light-Induced Retinal Degeneration. Mol. Vis. 2017, 23, 718–739. [Google Scholar]
- Ramchani-Ben Othman, K.; Cercy, C.; Amri, M.; Doly, M.; Ranchon-Cole, I. Dietary Supplement Enriched in Antioxidants and Omega-3 Protects from Progressive Light-Induced Retinal Degeneration. PLoS ONE 2015, 10, e0128395. [Google Scholar] [CrossRef] [Green Version]
- Rapp, L.M.; Fisher, P.L.; Suh, D.W. Evaluation of Retinal Susceptibility to Light Damage in Pigmented Rats Supplemented with Beta-Carotene. Curr. Eye Res. 1996, 15, 219–223. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, D.; Hu, J.; Liu, G.; Chen, J.; Sun, L.; Jiang, Z.; Zhang, X.; Chen, Q.; Ji, B. Visible Light-Induced Lipid Peroxidation of Unsaturated Fatty Acids in the Retina and the Inhibitory Effects of Blueberry Polyphenols. J. Agric. Food Chem. 2015, 63, 9295–9305. [Google Scholar] [CrossRef] [PubMed]
- Chu, Z.; Ma, G.; Sun, X.; Xu, Z.; Zhang, J. Grape Seed Extracts Inhibit the Overexpression of Inflammatory Cytokines in Mouse Retinas and ARPE-19 Cells: Potentially Useful Dietary Supplement for Age-Related Eye Dysfunction. J. Med. Food 2020, 23, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.C.; Nandrot, E.F.; Dun, Y.; Finnemann, S.C. Dietary Antioxidants Prevent Age-Related Retinal Pigment Epithelium Actin Damage and Blindness in Mice Lacking Avβ5 Integrin. Free Radic. Biol. Med. 2012, 52, 660–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fliesler, S.J.; Peachey, N.S.; Herron, J.; Hines, K.M.; Weinstock, N.I.; Ramachandra Rao, S.; Xu, L. Prevention of Retinal Degeneration in a Rat Model of Smith-Lemli-Opitz Syndrome. Sci. Rep. 2018, 8, 1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Robredo, P.; Sádaba, L.M.; Salinas-Alamán, A.; Recalde, S.; Rodríguez, J.A.; García-Layana, A. Effect of Lutein and Antioxidant Supplementation on VEGF Expression, MMP-2 Activity, and Ultrastructural Alterations in Apolipoprotein E-Deficient Mouse. Oxidative Med. Cell. Longev. 2013, 2013, 213505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowluru, R.A.; Kanwar, M.; Chan, P.S.; Zhang, J.P. Inhibition of Retinopathy and Retinal Metabolic Abnormalities in Diabetic Rats with AREDS-Based Micronutrients. Arch. Ophthalmol. 2008, 126, 1266–1272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClinton, K.J.; Aliani, M.; Kuny, S.; Sauvé, Y.; Suh, M. Differential Effect of a Carotenoid-Rich Diet on Retina Function in Non-Diabetic and Diabetic Rats. Nutr. Neurosci. 2020, 23, 838–848. [Google Scholar] [CrossRef]
- Kowluru, R.A.; Tang, J.; Kern, T.S. Abnormalities of Retinal Metabolism in Diabetes and Experimental Galactosemia. VII. Effect of Long-Term Administration of Antioxidants on the Development of Retinopathy. Diabetes 2001, 50, 1938–1942. [Google Scholar] [CrossRef] [Green Version]
- Kowluru, R.A.; Engerman, R.L.; Kern, T.S. Abnormalities of Retinal Metabolism in Diabetes or Experimental Galactosemia. VI. Comparison of Retinal and Cerebral Cortex Metabolism, and Effects of Antioxidant Therapy. Free Radic. Biol. Med. 1999, 26, 371–378. [Google Scholar] [CrossRef]
- Ju, W.K.; Shim, M.S.; Kim, K.Y.; Bu, J.H.; Park, T.L.; Ahn, S.; Weinreb, R.N. Ubiquinol Promotes Retinal Ganglion Cell Survival and Blocks the Apoptotic Pathway in Ischemic Retinal Degeneration. Biochem. Biophys. Res. Commun. 2018, 503, 2639–2645. [Google Scholar] [CrossRef]
- Bernardo-Colon, A.; Vest, V.; Clark, A.; Cooper, M.L.; Calkins, D.J.; Harrison, F.E.; Rex, T.S. Antioxidants Prevent Inflammation and Preserve the Optic Projection and Visual Function in Experimental Neurotrauma. Cell Death Dis. 2018, 9, 1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braakhuis, A.; Raman, R.; Vaghefi, E. The Association between Dietary Intake of Antioxidants and Ocular Disease. Diseases 2017, 5, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ou, C.; Jiang, P.; Tian, Y.; Yao, Z.; Yang, Y.; Peng, J.; Zeng, M.; Song, H.; Peng, Q. Fructus Lycii and Salvia Miltiorrhiza Bunge Extract Alleviate Retinitis Pigmentosa through Nrf2/HO-1 Signaling Pathway. J. Ethnopharmacol. 2021, 273, 113993. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.S.; Lee, Y.J.; Wilkie, D.A.; Lin, C.T. The Neuroprotective and Antioxidative Effects of Submicron and Blended Lycium Barbarum in Experimental Retinal Degeneration in Rats. J. Vet. Med. Sci. 2018, 80, 1108–1115. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Bao, S.; Du, Y.; Jiang, Z.; Wuliji, A.O.; Ren, X.; Zhang, C.; Chu, H.; Kong, L.; Ma, H. Antioxidant Effects of Lycium Barbarum Polysaccharides on Photoreceptor Degeneration in the Light-Exposed Mouse Retina. Biomed. Pharmacother. 2018, 103, 829–837. [Google Scholar] [CrossRef] [PubMed]
- Yeh, P.T.; Chen, Y.J.; Lin, N.C.; Yeh, A.I.; Yang, C.H. The Ocular Protective Effects of Nano/Submicron Particles Prepared from Lycium Barbarum Fruits Against Oxidative Stress in an Animal Model. J. Ocul. Pharmacol. Ther. 2020, 36, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yao, Y.; Liu, X.; Wang, K.; Zhou, Q.; Tang, Y. Protective Effects of Lycium Barbarum Polysaccharides on Blood-Retinal Barrier via ROCK1 Pathway in Diabetic Rats. Am. J. Transl. Res. 2019, 11, 6304–6315. [Google Scholar]
- Liu, J.; Baum, L.; Yu, S.; Lin, Y.; Xiong, G.; Chang, R.C.-C.; So, K.F.; Chiu, K. Preservation of Retinal Function Through Synaptic Stabilization in Alzheimer’s Disease Model Mouse Retina by Lycium Barbarum Extracts. Front. Aging Neurosci. 2022, 13, 788798. [Google Scholar] [CrossRef]
- Wu, I.H.; Chan, S.M.; Lin, C.T. The Neuroprotective Effect of Submicron and Blended Lycium Barbarum for Experiment Retinal Ischemia and Reperfusion Injury in Rats. J. Vet. Med. Sci. 2020, 82, 1719–1728. [Google Scholar] [CrossRef]
- Mi, X.S.; Feng, Q.; Lo, A.; Chang, R.; Chung, S.; So, K.F. Lycium Barbarum Polysaccharides Related RAGE and Aβ Levels in the Retina of Mice with Acute Ocular Hypertension and Promote Maintenance of Blood Retinal Barrier. Neural Regen. Res. 2020, 15, 2344–2352. [Google Scholar] [CrossRef]
- Mi, X.S.; Feng, Q.; Lo, A.C.Y.; Chang, R.C.C.; Lin, B.; Chung, S.K.; So, K.F. Protection of Retinal Ganglion Cells and Retinal Vasculature by Lycium Barbarum Polysaccharides in a Mouse Model of Acute Ocular Hypertension. PLoS ONE 2012, 7, e45469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, H.C.; Chang, R.C.C.; Koon-Ching Ip, A.; Chiu, K.; Yuen, W.H.; Zee, S.Y.; So, K.F. Neuroprotective Effects of Lycium Barbarum Lynn on Protecting Retinal Ganglion Cells in an Ocular Hypertension Model of Glaucoma. Exp. Neurol. 2007, 203, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Lakshmanan, Y.; Wong, F.S.Y.; Yu, W.Y.; Li, S.Z.C.; Choi, K.Y.; So, K.F.; Chan, H.H.L. Lycium Barbarum Polysaccharides Rescue Neurodegeneration in an Acute Ocular Hypertension Rat Model under Pre- and Posttreatment Conditions. Investig. Ophthalmol. Vis. Sci. 2019, 60, 2023–2033. [Google Scholar] [CrossRef] [PubMed]
- Lakshmanan, Y.; Wong, F.S.Y.; Zuo, B.; So, K.F.; Bui, B.V.; Chan, H.H.L. Posttreatment Intervention With Lycium Barbarum Polysaccharides Is Neuroprotective in a Rat Model of Chronic Ocular Hypertension. Investig. Ophthalmol. Vis. Sci. 2019, 60, 4606–4618. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.H.-l.; Lam, H.-i.; Choi, K.-y.; Li, S.Z.-c.; Lakshmanan, Y.; Yu, W.-y.; Chang, R.C.-c.; Lai, J.S.-m.; So, K.-f. Delay of Cone Degeneration in Retinitis Pigmentosa Using a 12-Month Treatment with Lycium Barbarum Supplement. J. Ethnopharmacol. 2019, 236, 336–344. [Google Scholar] [CrossRef]
- Li, X.; Holt, R.R.; Keen, C.L.; Morse, L.S.; Yiu, G.; Hackman, R.M.; Brown, L.L. Goji Berry Intake Increases Macular Pigment Optical Density in Healthy Adults: A Randomized Pilot Trial. Nutrients 2021, 13, 4409. [Google Scholar] [CrossRef]
- Komeima, K.; Rogers, B.S.; Lu, L.; Campochiaro, P.A. Antioxidants Reduce Cone Cell Death in a Model of Retinitis Pigmentosa. Proc. Natl. Acad. Sci. USA 2006, 103, 11300–11305. [Google Scholar] [CrossRef] [Green Version]
- Komeima, K.; Rogers, B.S.; Campochiaro, P.A. Antioxidants Slow Photoreceptor Cell Death in Mouse Models of Retinitis Pigmentosa. J. Cell. Physiol. 2007, 213, 809–815. [Google Scholar] [CrossRef]
- Ramírez-Lamelas, D.T.; Benlloch-Navarro, S.; López-Pedrajas, R.; Gimeno-Hernández, R.; Olivar, T.; Silvestre, D.; Miranda, M. Lipoic Acid and Progesterone Alone or in Combination Ameliorate Retinal Degeneration in an Experimental Model of Hereditary Retinal Degeneration. Front. Pharmacol. 2018, 9, 469. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Yang, M.; Wang, Z.J. (Z)-7,4′-Dimethoxy-6-Hydroxy-Aurone-4-O-β-Glucopyranoside Mitigates Retinal Degeneration in Rd10 Mouse Model through Inhibiting Oxidative Stress and Inflammatory Responses. Cutan. Ocul. Toxicol. 2020, 39, 36–42. [Google Scholar] [CrossRef]
- Lin, B.; Youdim, M.B.H. The Protective, Rescue and Therapeutic Potential of Multi-Target Iron-Chelators for Retinitis Pigmentosa. Free Radic. Biol. Med. 2021, 174, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Peng, B.; Xiao, J.; Weinreb, O.; Youdim, M.B.H.; Lin, B. Iron-Chelating Drugs Enhance Cone Photoreceptor Survival in a Mouse Model of Retinitis Pigmentosa. Investig. Ophthalmol. Vis. Sci. 2017, 58, 5287–5297. [Google Scholar] [CrossRef] [PubMed]
- Obolensky, A.; Berenshtein, E.; Lederman, M.; Bulvik, B.; Alper-Pinus, R.; Yaul, R.; Deleon, E.; Chowers, I.; Chevion, M.; Banin, E. Zinc-Desferrioxamine Attenuates Retinal Degeneration in the Rd10 Mouse Model of Retinitis Pigmentosa. Free Radic. Biol. Med. 2011, 51, 1482–1491. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, K.; Suzuki, T.; Takahashi, K.; Koguchi, T.; Hirayama, T.; Mori, A.; Nakahara, T.; Nagasawa, H.; Ishii, K. Iron-Chelating Agents Attenuate NMDA-Induced Neuronal Injury via Reduction of Oxidative Stress in the Rat Retina. Exp. Eye Res. 2018, 171, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Narayan, D.S.; Chidlow, G.; Wood, J.P.M.; Casson, R.J. Investigations Into Bioenergetic Neuroprotection of Cone Photoreceptors: Relevance to Retinitis Pigmentosa. Front. Neurosci. 2019, 13, 1234. [Google Scholar] [CrossRef] [PubMed]
- Heinänen, K.; Näntö-Salonen, K.; Komu, M.; Erkintalo, M.; Alanen, A.; Heinonen, O.J.; Pulkki, K.; Nikoskelainen, E.; Sipilä, I.; Simell, O. Creatine Corrects Muscle 31P Spectrum in Gyrate Atrophy with Hyperornithinaemia. Eur. J. Clin. Investig. 1999, 29, 1060–1065. [Google Scholar] [CrossRef]
- Sipilä, I.; Rapola, J.; Simell, O.; Vannas, A. Supplementary Creatine as a Treatment for Gyrate Atrophy of the Choroid and Retina. N. Engl. J. Med. 1981, 304, 867–870. [Google Scholar] [CrossRef]
- Kang, K.; Yu, M. Protective Effect of Sulforaphane against Retinal Degeneration in the Pde6 Rd10 Mouse Model of Retinitis Pigmentosa. Curr. Eye Res. 2017, 42, 1684–1688. [Google Scholar] [CrossRef] [Green Version]
- Tanito, M.; Masutani, H.; Kim, Y.C.; Nishikawa, M.; Ohira, A.; Yodoi, J. Sulforaphane Induces Thioredoxin through the Antioxidant-Responsive Element and Attenuates Retinal Light Damage in Mice. Investig. Ophthalmol. Vis. Sci. 2005, 46, 979–987. [Google Scholar] [CrossRef] [Green Version]
- Kong, L.; Liu, B.; Zhang, C.; Wang, B.; Wang, H.; Song, X.; Yang, Y.; Ren, X.; Yin, L.; Kong, H.; et al. The Therapeutic Potential of Sulforaphane on Light-Induced Photoreceptor Degeneration through Antiapoptosis and Antioxidant Protection. Neurochem. Int. 2016, 100, 52–61. [Google Scholar] [CrossRef]
- Kong, L.; Tanito, M.; Huang, Z.; Li, F.; Zhou, X.; Zaharia, A.; Yodoi, J.; McGinnis, J.F.; Cao, W. Delay of Photoreceptor Degeneration in Tubby Mouse by Sulforaphane. J. Neurochem. 2007, 101, 1041–1052. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yang, H.; Chen, X. Protective Effects of Sulforaphane on Diabetic Retinopathy: Activation of the Nrf2 Pathway and Inhibition of NLRP3 Inflammasome Formation. Exp. Anim. 2019, 68, 221–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, Y.; Cao, X.; Gong, L.; Li, W. Sulforaphane Alleviates Retinal Ganglion Cell Death and Inflammation by Suppressing NLRP3 Inflammasome Activation in a Rat Model of Retinal Ischemia/Reperfusion Injury. Int. J. Immunopathol. Pharmacol. 2019, 33, 2058738419861777. [Google Scholar] [CrossRef] [PubMed]
- Ambrecht, L.A.; Perlman, J.I.; McDonnell, J.F.; Zhai, Y.; Qiao, L.; Bu, P. Protection of Retinal Function by Sulforaphane Following Retinal Ischemic Injury. Exp. Eye Res. 2015, 138, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Komeima, K.; Usui, S.; Shen, J.; Rogers, B.S.; Campochiaro, P.A. Blockade of Neuronal Nitric Oxide Synthase Reduces Cone Cell Death in a Model of Retinitis Pigmentosa. Free. Radic. Biol. Med. 2008, 45, 905–912. [Google Scholar] [CrossRef] [Green Version]
- Vargas, A.; Yamamoto, K.L.; Craft, C.M.; Lee, E.J. Clusterin Enhances Cell Survival by Suppressing Neuronal Nitric-Oxide Synthase Expression in the Rhodopsin S334ter-Line3 Retinitis Pigmentosa Model. Brain Res. 2021, 1768, 147575. [Google Scholar] [CrossRef]
- Goureau, O.; Claude Jeanny, J.; Becquet, F.; Paule Hartmann, M.; Courtois, Y. Protection against Light-Induced Retinal Degeneration by an Inhibitor of NO Synthase. Neuroreport 1993, 5, 233–236. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, J.H.; Kim, Y.H.; Park, C.K. Expression of Neuronal Nitric Oxide Synthase in the Retina of a Rat Model of Chronic Glaucoma. Vis. Res. 2007, 47, 2732–2740. [Google Scholar] [CrossRef] [Green Version]
- Neufeld, A.H.; Sawada, A.; Becker, B. Inhibition of Nitric-Oxide Synthase 2 by Aminoguanidine Provides Neuroprotection of Retinal Ganglion Cells in a Rat Model of Chronic Glaucoma. Proc. Natl. Acad. Sci. USA 1999, 96, 9944–9948. [Google Scholar] [CrossRef] [Green Version]
- Koeberle, P.D.; Ball, A.K. Nitric Oxide Synthase Inhibition Delays Axonal Degeneration and Promotes the Survival of Axotomized Retinal Ganglion Cells. Exp. Neurol. 1999, 158, 366–381. [Google Scholar] [CrossRef]
- Wang, J.; Saul, A.; Smith, S.B. Activation of Sigma 1 Receptor Extends Survival of Cones and Improves Visual Acuity in a Murine Model of Retinitis Pigmentosa. Investig. Ophthalmol. Vis. Sci. 2019, 60, 4397–4407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, H.; Wang, J.; Saul, A.; Smith, S.B. Comparison of Neuroprotective Effects of Monomethylfumarate to the Sigma 1 Receptor Ligand (+)-Pentazocine in a Murine Model of Retinitis Pigmentosa. Investig. Ophthalmol. Vis. Sci. 2020, 61, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Xiao, H.; Barwick, S.R.; Smith, S.B. Comparison of Sigma 1 Receptor Ligands SA4503 and PRE084 to (+)-Pentazocine in the Rd10 Mouse Model of RP. Investig. Ophthalmol. Vis. Sci. 2020, 61, 3. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xiao, H.; Barwick, S.; Liu, Y.; Smith, S.B. Optimal Timing for Activation of Sigma 1 Receptor in the Pde6b rd10/J (Rd10) Mouse Model of Retinitis Pigmentosa. Exp. Eye Res. 2021, 202, 108397. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Saul, A.; Roon, P.; Smith, S.B. Activation of the Molecular Chaperone, Sigma 1 Receptor, Preserves Cone Function in a Murine Model of Inherited Retinal Degeneration. Proc. Natl. Acad. Sci. USA 2016, 113, E3764–E3772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Mysona, B.A.; Qureshi, A.; Kim, L.; Fields, T.; Gonsalvez, G.B.; Smith, S.B.; Bollinger, K.E. (+)-Pentazocine Reduces NMDA-Induced Murine Retinal Ganglion Cell Death Through a ΣR1-Dependent Mechanism. Investig. Ophthalmol. Vis. Sci. 2016, 57, 453–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, S.B.; Duplantier, J.; Dun, Y.; Mysona, B.; Roon, P.; Martin, P.M.; Ganapathy, V. In Vivo Protection against Retinal Neurodegeneration by Sigma Receptor 1 Ligand (+)-Pentazocine. Investig. Ophthalmol. Vis. Sci. 2008, 49, 4154–4161. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Cui, X.; Roon, P.; Smith, S.B. Role of Sigma 1 Receptor in Retinal Degeneration of the Ins2Akita/+ Murine Model of Diabetic Retinopathy. Investig. Ophthalmol. Vis. Sci. 2016, 57, 2770–2781. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; He, S.; Liu, Y.; Yorio, T.; Ellis, D.Z. Sigma-1R Protects Retinal Ganglion Cells in Optic Nerve Crush Model for Glaucoma. Investig. Ophthalmol. Vis. Sci. 2021, 62, 17. [Google Scholar] [CrossRef]
- Fontaine, V.; Monteiro, E.; Brazhnikova, E.; Lesage, L.; Balducci, C.; Guibout, L.; Feraille, L.; Elena, P.P.; Sahel, J.A.; Veillet, S.; et al. Norbixin Protects Retinal Pigmented Epithelium Cells and Photoreceptors against A2E-Mediated Phototoxicity In Vitro and In Vivo. PLoS ONE 2016, 11, e0167793. [Google Scholar] [CrossRef]
- Fontaine, V.; Monteiro, E.; Fournié, M.; Brazhnikova, E.; Boumedine, T.; Vidal, C.; Balducci, C.; Guibout, L.; Latil, M.; Dilda, P.J.; et al. Systemic Administration of the Di-Apocarotenoid Norbixin (BIO201) Is Neuroprotective, Preserves Photoreceptor Function and Inhibits A2E and Lipofuscin Accumulation in Animal Models of Age-Related Macular Degeneration and Stargardt Disease. Aging 2020, 12, 6151–6171. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.L.; Zheng, C.P. (3R)-5,6,7-Trihydroxy-3-Isopropyl-3-Methylisochroman-1-One Ameliorates Retinal Degeneration in Pde6b Rd10 Mice. Cutan. Ocul. Toxicol. 2018, 37, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Jiang, Y.; Steinle, J.J. Glycyrrhizin Protects IGFBP-3 Knockout Mice from Retinal Damage. Cytokine 2020, 125, 154856. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.H.; Paik, S.-S.; Park, Y.S.; Kim, H.G.; Kim, I.-B. Amelioration of Mouse Retinal Degeneration After Blue LED Exposure by Glycyrrhizic Acid-Mediated Inhibition of Inflammation. Front. Cell. Neurosci. 2019, 13, 319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abu El-Asrar, A.M.; Nawaz, M.I.; Siddiquei, M.M.; Al-Kharashi, A.S.; Kangave, D.; Mohammad, G. High-Mobility Group Box-1 Induces Decreased Brain-Derived Neurotrophic Factor-Mediated Neuroprotection in the Diabetic Retina. Mediat. Inflamm. 2013, 2013, 863036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammad, G.; Siddiquei, M.M.; Othman, A.; Al-Shabrawey, M.; Abu El-Asrar, A.M. High-Mobility Group Box-1 Protein Activates Inflammatory Signaling Pathway Components and Disrupts Retinal Vascular-Barrier in the Diabetic Retina. Exp. Eye Res. 2013, 107, 101–109. [Google Scholar] [CrossRef]
- Chi, W.; Chen, H.; Li, F.; Zhu, Y.; Yin, W.; Zhuo, Y. HMGB1 Promotes the Activation of NLRP3 and Caspase-8 Inflammasomes via NF-κB Pathway in Acute Glaucoma. J. Neuroinflamm. 2015, 12, 137. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Jiang, Y.; Steinle, J.J. Inhibition of HMGB1 Protects the Retina from Ischemia-Reperfusion, as Well as Reduces Insulin Resistance Proteins. PLoS ONE 2017, 12, e0178236. [Google Scholar] [CrossRef]
- Fernández-Sánchez, L.; Lax, P.; Pinilla, I.; Martín-Nieto, J.; Cuenca, N. Tauroursodeoxycholic Acid Prevents Retinal Degeneration in Transgenic P23H Rats. Investig. Ophthalmol. Vis. Sci. 2011, 52, 4998–5008. [Google Scholar] [CrossRef]
- Tao, Y.; Dong, X.; Lu, X.; Qu, Y.; Wang, C.; Peng, G.; Zhang, J. Subcutaneous Delivery of Tauroursodeoxycholic Acid Rescues the Cone Photoreceptors in Degenerative Retina: A Promising Therapeutic Molecule for Retinopathy. Biomed. Pharmacother. 2019, 117, 109021. [Google Scholar] [CrossRef]
- Zhang, T.; Baehr, W.; Fu, Y. Chemical Chaperone TUDCA Preserves Cone Photoreceptors in a Mouse Model of Leber Congenital Amaurosis. Investig. Ophthalmol. Vis. Sci. 2012, 53, 3349–3356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawson, E.C.; Bhatia, S.K.; Han, M.K.; Aung, M.H.; Ciavatta, V.; Boatright, J.H.; Pardue, M.T. Tauroursodeoxycholic Acid Protects Retinal Function and Structure in Rd1 Mice. Adv. Exp. Med. Biol. 2016, 854, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.J.; Walker, T.A.; Choi, H.-Y.; Faulkner, A.E.; Kim, M.K.; Sidney, S.S.; Boyd, A.P.; Nickerson, J.M.; Boatright, J.H.; Pardue, M.T. Tauroursodeoxycholic Acid Preservation of Photoreceptor Structure and Function in the Rd10 Mouse through Postnatal Day 30. Investig. Ophthalmol. Vis. Sci. 2008, 49, 2148–2155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drack, A.V.; Dumitrescu, A.V.; Bhattarai, S.; Gratie, D.; Stone, E.M.; Mullins, R.; Sheffield, V.C. TUDCA Slows Retinal Degeneration in Two Different Mouse Models of Retinitis Pigmentosa and Prevents Obesity in Bardet-Biedl Syndrome Type 1 Mice. Investig. Ophthalmol. Vis. Sci. 2012, 53, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Oveson, B.C.; Iwase, T.; Hackett, S.F.; Lee, S.Y.; Usui, S.; Sedlak, T.W.; Snyder, S.H.; Campochiaro, P.A.; Sung, J.U. Constituents of Bile, Bilirubin and TUDCA, Protect against Oxidative Stress-Induced Retinal Degeneration. J. Neurochem. 2011, 116, 144–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Shahani, U.; Reilly, J.; Shu, X. Disease Mechanisms and Neuroprotection by Tauroursodeoxycholic Acid in Rpgr Knockout Mice. J. Cell. Physiol. 2019, 234, 18801–18812. [Google Scholar] [CrossRef]
- Gómez-Vicente, V.; Lax, P.; Fernández-Sánchez, L.; Rondón, N.; Esquiva, G.; Germain, F.; de la Villa, P.; Cuenca, N. Neuroprotective Effect of Tauroursodeoxycholic Acid on N-Methyl-D-Aspartate-Induced Retinal Ganglion Cell Degeneration. PLoS ONE 2015, 10, e0137826. [Google Scholar] [CrossRef] [Green Version]
- Woo, S.J.; Kim, J.H.; Yu, H.G. Ursodeoxycholic Acid and Tauroursodeoxycholic Acid Suppress Choroidal Neovascularization in a Laser-Treated Rat Model. J. Ocul. Pharmacol. Ther. 2010, 26, 223–229. [Google Scholar] [CrossRef]
- Fu, J.; Aung, M.H.; Prunty, M.C.; Hanif, A.M.; Hutson, L.M.; Boatright, J.H.; Pardue, M.T. Tauroursodeoxycholic Acid Protects Retinal and Visual Function in a Mouse Model of Type 1 Diabetes. Pharmaceutics 2021, 13, 1154. [Google Scholar] [CrossRef]
- Daruich, A.; Jaworski, T.; Henry, H.; Zola, M.; Youale, J.; Parenti, L.; Naud, M.C.; Delaunay, K.; Bertrand, M.; Berdugo, M.; et al. Oral Ursodeoxycholic Acid Crosses the Blood Retinal Barrier in Patients with Retinal Detachment and Protects Against Retinal Degeneration in an Ex Vivo Model. Neurotherapeutics 2021, 18, 1325–1338. [Google Scholar] [CrossRef]
- Mantopoulos, D.; Murakami, Y.; Comander, J.; Thanos, A.; Roh, M.; Miller, J.W.; Vavvas, D.G. Tauroursodeoxycholic Acid (TUDCA) Protects Photoreceptors from Cell Death after Experimental Retinal Detachment. PLoS ONE 2011, 6, e24245. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, Y.; Bikbova, G.; Baba, T.; Yamamoto, S.; Oshitari, T. In Vivo Effects of Single or Combined Topical Neuroprotective and Regenerative Agents on Degeneration of Retinal Ganglion Cells in Rat Optic Nerve Crush Model. Sci. Rep. 2019, 9, 101. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Delgado, A.B.; Valdés-Sánchez, L.; Calado, S.M.; Diaz-Corrales, F.J.; Bhattacharya, S.S. Rasagiline Delays Retinal Degeneration in a Mouse Model of Retinitis Pigmentosa via Modulation of Bax/Bcl-2 Expression. CNS Neurosci. Ther. 2018, 24, 448–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eigeldinger-Berthou, S.; Meier, C.; Zulliger, R.; Lecaudé, S.; Enzmann, V.; Sarra, G.M. Rasagiline Interferes with Neurodegeneration in the Prph2/Rds Mouse. Retina 2012, 32, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Levkovitch-Verbin, H.; Vander, S.; Melamed, S. Rasagiline-Induced Delay of Retinal Ganglion Cell Death in Experimental Glaucoma in Rats. J. Glaucoma 2011, 20, 273–277. [Google Scholar] [CrossRef]
- Lei, D.; Shao, Z.; Zhou, X.; Yuan, H. Synergistic Neuroprotective Effect of Rasagiline and Idebenone against Retinal Ischemia-Reperfusion Injury via the Lin28-Let-7-Dicer Pathway. Oncotarget 2018, 9, 12137–12153. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Framme, C.; Menke, M.N.; Berger, L.E.; Zinkernagel, M.S.; Munk, M.R.; Wolf, S.; Ebneter, A. Neuroprotection with Rasagiline in Patients with Macula-off Retinal Detachment: A Randomized Controlled Pilot Study. Sci. Rep. 2020, 10, 4948. [Google Scholar] [CrossRef]
- Benlloch-Navarro, S.; Trachsel-Moncho, L.; Fernández-Carbonell, Á.; Olivar, T.; Soria, J.M.; Almansa, I.; Miranda, M. Progesterone Anti-Inflammatory Properties in Hereditary Retinal Degeneration. J. Steroid Biochem. Mol. Biol. 2019, 189, 291–301. [Google Scholar] [CrossRef]
- Lopez, A.M.R.; Roche, S.L.; Jackson, A.C.W.; Moloney, J.N.; Byrne, A.M.; Cotter, T.G. Pro-Survival Redox Signalling in Progesterone-Mediated Retinal Neuroprotection. Eur. J. Neurosci. 2017, 46, 1663–1672. [Google Scholar] [CrossRef]
- Doonan, F.; O’Driscoll, C.; Kenna, P.; Cotter, T.G. Enhancing Survival of Photoreceptor Cells in Vivo Using the Synthetic Progestin Norgestrel. J. Neurochem. 2011, 118, 915–927. [Google Scholar] [CrossRef]
- Sánchez-Vallejo, V.; Benlloch-Navarro, S.; López-Pedrajas, R.; Romero, F.J.; Miranda, M. Neuroprotective Actions of Progesterone in an In Vivo Model of Retinitis Pigmentosa. Pharmacol. Res. 2015, 99, 276–288. [Google Scholar] [CrossRef] [PubMed]
- Roche, S.L.; Wyse-Jackson, A.C.; Gómez-Vicente, V.; Lax, P.; Ruiz-Lopez, A.M.; Byrne, A.M.; Cuenca, N.; Cotter, T.G. Progesterone Attenuates Microglial-Driven Retinal Degeneration and Stimulates Protective Fractalkine-CX3CR1 Signaling. PLoS ONE 2016, 11, e0165197. [Google Scholar] [CrossRef] [PubMed]
- Byrne, A.M.; Ruiz-Lopez, A.M.; Roche, S.L.; Moloney, J.N.; Wyse-Jackson, A.C.; Cotter, T.G. The Synthetic Progestin Norgestrel Modulates Nrf2 Signaling and Acts as an Antioxidant in a Model of Retinal Degeneration. Redox Biol. 2016, 10, 128–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, R.S.; Olsen, T.W.; Sayeed, I.; Cale, H.A.; Morrison, K.C.; Oumarbaeva, Y.; Lucaciu, I.; Boatright, J.H.; Pardue, M.T.; Stein, D.G. Progesterone Treatment in Two Rat Models of Ocular Ischemia. Investig. Ophthalmol. Vis. Sci. 2015, 56, 2880–2891. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Rabaza, V.; López-Pedrajas, R.; Almansa, I. Progesterone, Lipoic Acid, and Sulforaphane as Promising Antioxidants for Retinal Diseases: A Review. Antioxidants 2019, 8, 53. [Google Scholar] [CrossRef] [Green Version]
- Corrochano, S.; Barhoum, R.; Boya, P.; Arroba, A.I.; Rodríguez-Muela, N.; Gómez-Vicente, V.; Bosch, F.; De Pablo, F.; De La Villa, P.; De La Rosa, E.J. Attenuation of Vision Loss and Delay in Apoptosis of Photoreceptors Induced by Proinsulin in a Mouse Model of Retinitis Pigmentosa. Investig. Ophthalmol. Vis. Sci. 2008, 49, 4188–4194. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Sánchez, L.; Lax, P.; Isiegas, C.; Ayuso, E.; Ruiz, J.M.; De La Villa, P.; Bosch, F.; De La Rosa, E.J.; Cuenca, N. Proinsulin Slows Retinal Degeneration and Vision Loss in the P23H Rat Model of Retinitis Pigmentosa. Hum. Gene Ther. 2012, 23, 1290–1300. [Google Scholar] [CrossRef] [Green Version]
- Amato, R.; Canovai, A.; Melecchi, A.; Pezzino, S.; Corsaro, R.; Dal Monte, M.; Rusciano, D.; Bagnoli, P.; Cammalleri, M. Dietary Supplementation of Antioxidant Compounds Prevents Light-Induced Retinal Damage in a Rat Model. Biomedicines 2021, 9, 1177. [Google Scholar] [CrossRef]
- Wang, Y.; Qi, W.; Huo, Y.; Song, G.; Sun, H.; Guo, X.; Wang, C. Cyanidin-3-Glucoside Attenuates 4-Hydroxynonenal- and Visible Light-Induced Retinal Damage in Vitro and in Vivo. Food Funct. 2019, 10, 2871–2880. [Google Scholar] [CrossRef]
- Lee, S.H.; Jeong, E.; Paik, S.S.; Jeon, J.H.; Jung, S.W.; Kim, H.B.; Kim, M.; Chun, M.H.; Kim, I.B. Cyanidin-3-Glucoside Extracted from Mulberry Fruit Can Reduce N-Methyl-N-Nitrosourea-Induced Retinal Degeneration in Rats. Curr. Eye Res. 2014, 39, 79–87. [Google Scholar] [CrossRef]
- Ercan, Z.; Haberal, N.; Helvacioglu, F.; Daǧdeviren, A.; Yilmaz, G. Effect of Intravitreal and Intraperitoneal Cyanidin-3-Glucoside Injection in Oxygen-Induced Retinopathy Mouse Model. Indian J. Ophthalmol. 2019, 67, 801–805. [Google Scholar] [CrossRef] [PubMed]
- Osada, H.; Okamoto, T.; Kawashima, H.; Toda, E.; Miyake, S.; Nagai, N.; Kobayashi, S.; Tsubota, K.; Ozawa, Y. Neuroprotective Effect of Bilberry Extract in a Murine Model of Photo-Stressed Retina. PLoS ONE 2017, 12, e0178627. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, L.; Lu, F.; Yang, X.; Deng, Q.; Ji, B.; Huang, F.; Kitts, D.D. Retinoprotective Effects of Bilberry Anthocyanins via Antioxidant, Anti-Inflammatory, and Anti-Apoptotic Mechanisms in a Visible Light-Induced Retinal Degeneration Model in Pigmented Rabbits. Molecules 2015, 20, 22395–22410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fursova, A.Z.; Gesarevich, O.G.; Gonchar, A.M.; Trofimova, N.A.; Kolosova, N.G. Dietary supplementation with bilberry extract prevents macular degeneration and cataracts in senesce-accelerated OXYS rats. Adv. Gerontol. 2005, 16, 76–79. [Google Scholar]
- Kim, J.; Kim, C.S.; Lee, Y.M.; Sohn, E.; Jo, K.; Kim, J.S. Vaccinium Myrtillus Extract Prevents or Delays the Onset of Diabetes--Induced Blood-Retinal Barrier Breakdown. Int. J. Food Sci. Nutr. 2015, 66, 236–242. [Google Scholar] [CrossRef]
- Matsunaga, N.; Chikaraishi, Y.; Shimazawa, M.; Yokota, S.; Hara, H. Vaccinium Myrtillus (Bilberry) Extracts Reduce Angiogenesis In Vitro and In Vivo. Evid. Based Complement. Altern. Med. 2010, 7, 47–56. [Google Scholar] [CrossRef]
- Nakamura, O.; Moritoh, S.; Sato, K.; Maekawa, S.; Murayama, N.; Himori, N.; Omodaka, K.; Sogon, T.; Nakazawa, T. Bilberry Extract Administration Prevents Retinal Ganglion Cell Death in Mice via the Regulation of Chaperone Molecules under Conditions of Endoplasmic Reticulum Stress. Clin. Ophthalmol. 2017, 11, 1825–1834. [Google Scholar] [CrossRef] [Green Version]
- Miyake, S.; Takahashi, N.; Sasaki, M.; Kobayashi, S.; Tsubota, K.; Ozawa, Y. Vision Preservation during Retinal Inflammation by Anthocyanin-Rich Bilberry Extract: Cellular and Molecular Mechanism. Lab. Investig. 2012, 92, 102–109. [Google Scholar] [CrossRef]
- Kalt, W.; McDonald, J.E.; Fillmore, S.A.E.; Tremblay, F. Blueberry Effects on Dark Vision and Recovery after Photobleaching: Placebo-Controlled Crossover Studies. J. Agric. Food Chem. 2014, 62, 11180–11189. [Google Scholar] [CrossRef]
- Guzmán Mendoza, N.A.; Homma, K.; Osada, H.; Toda, E.; Ban, N.; Nagai, N.; Negishi, K.; Tsubota, K.; Ozawa, Y. Neuroprotective Effect of 4-Phenylbutyric Acid against Photo-Stress in the Retina. Antioxidants 2021, 10, 1147. [Google Scholar] [CrossRef]
- Qiu, Y.; Yao, J.; Jia, L.; Thompson, D.A.; Zacks, D.N. Shifting the Balance of Autophagy and Proteasome Activation Reduces Proteotoxic Cell Death: A Novel Therapeutic Approach for Restoring Photoreceptor Homeostasis. Cell Death Dis. 2019, 10, 547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Samardzija, M.; Yang, Z.; Grimm, C.; Jin, M. Pharmacological Amelioration of Cone Survival and Vision in a Mouse Model for Leber Congenital Amaurosis. J. Neurosci. 2016, 36, 5808–5819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mesentier-Louro, L.A.; Shariati, M.A.; Dalal, R.; Camargo, A.; Kumar, V.; Shamskhou, E.A.; de Jesus Perez, V.; Liao, Y.J. Systemic Hypoxia Led to Little Retinal Neuronal Loss and Dramatic Optic Nerve Glial Response. Exp. Eye Res. 2020, 193, 107957. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Mesentier-Louro, L.A.; Oh, A.J.; Heng, K.; Shariati, M.A.; Huang, H.; Hu, Y.; Liao, Y.J. Increased ER Stress After Experimental Ischemic Optic Neuropathy and Improved RGC and Oligodendrocyte Survival After Treatment With Chemical Chaperon. Investig. Ophthalmol. Vis. Sci. 2019, 60, 1953–1966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeng, Y.Y.; Lin, N.T.; Chang, P.H.; Huang, Y.P.; Pang, V.F.; Liu, C.H.; Lin, C.T. Retinal Ischemic Injury Rescued by Sodium 4-Phenylbutyrate in a Rat Model. Exp. Eye Res. 2007, 84, 486–492. [Google Scholar] [CrossRef]
- Bian, M.; Du, X.; Cui, J.; Wang, P.; Wang, W.; Zhu, W.; Zhang, T.; Chen, Y. Celastrol Protects Mouse Retinas from Bright Light-Induced Degeneration through Inhibition of Oxidative Stress and Inflammation. J. Neuroinflamm. 2016, 13, 50. [Google Scholar] [CrossRef] [Green Version]
- Gu, L.; Kwong, J.M.K.; Yadegari, D.; Yu, F.; Caprioli, J.; Piri, N. The Effect of Celastrol on the Ocular Hypertension-Induced Degeneration of Retinal Ganglion Cells. Neurosci. Lett. 2018, 670, 89–93. [Google Scholar] [CrossRef] [Green Version]
- Kyung, H.; Kwong, J.M.K.; Bekerman, V.; Gu, L.; Yadegari, D.; Caprioli, J.; Piri, N. Celastrol Supports Survival of Retinal Ganglion Cells Injured by Optic Nerve Crush. Brain Res. 2015, 1609, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.W.; Huang, Y.P.; Wu, P.C.; Chiang, W.Y.; Wang, P.H.; Chen, B.Y. The Functional Vision Protection Effect of Danshensu via Dopamine D1 Receptors: In Vivo Study. Nutrients 2021, 13, 978. [Google Scholar] [CrossRef]
- Perusek, L.; Maeda, A.; Maeda, T. Supplementation with Vitamin a Derivatives to Rescue Vision in Animal Models of Degenerative Retinal Diseases. Methods Mol. Biol. 2015, 1271, 345–362. [Google Scholar] [CrossRef]
- Li, T.; Sandberg, M.A.; Pawlyk, B.S.; Rosner, B.; Hayes, K.C.; Dryja, T.P.; Berson, E.L. Effect of Vitamin A Supplementation on Rhodopsin Mutants Threonine-17 --> Methionine and Proline-347 --> Serine in Transgenic Mice and in Cell Cultures. Proc. Natl. Acad. Sci. USA 1998, 95, 11933–11938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Mansi, A.A.; Al-Kahtani, M.A.; Rady, A.M.; El-Bealy, E.A.; Al-Asmari, A.M. Vitamin A and Daucus Carota Root Extract Mitigate STZ-Induced Diabetic Retinal Degeneration in Wistar Albino Rats by Modulating Neurotransmission and Downregulation of Apoptotic Pathways. J. Food Biochem. 2021, 45, e13688. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, C.; Kuriyama, K. Alteration of Lipid Peroxide and Endogenous Antioxidant Contents in Retina of Streptozotocin-Induced Diabetic Rats: Effect of Vitamin A Administration. Jpn. J. Pharmacol. 1985, 37, 365–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiruvalluru, M.; Ananthathmakula, P.; Ayyalasomayajula, V.; Nappanveettil, G.; Ayyagari, R.; Reddy, G.B. Vitamin A Supplementation Ameliorates Obesity-Associated Retinal Degeneration in WNIN/Ob Rats. Nutrition 2013, 29, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Sezen, O.; Ertekin, M.V.; Demircan, B.; Karslioǧlu, I.; Erdoǧan, F.; Koçer, I.; Çalik, I.; Gepdiremen, A. Vitamin E and L-Carnitine, Separately or in Combination, in the Prevention of Radiation-Induced Brain and Retinal Damages. Neurosurg. Rev. 2008, 31, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, T.; Aydemir, O.; Özercan, I.H.; Üstündaǧ, B. Effects of Vitamin e, Pentoxifylline and Aprotinin on Light-Induced Retinal Injury. Ophthalmologica 2007, 221, 159–166. [Google Scholar] [CrossRef]
- Ueda, K.; Zhao, J.; Kim, H.J.; Sparrow, J.R. Photodegradation of Retinal Bisretinoids in Mouse Models and Implications for Macular Degeneration. Proc. Natl. Acad. Sci. USA 2016, 113, 6904–6909. [Google Scholar] [CrossRef] [Green Version]
- Di Leo, M.A.S.; Ghirlanda, G.; Silveri, N.G.; Giardina, B.; Franconi, F.; Santini, S.A. Potential Therapeutic Effect of Antioxidants in Experimental Diabetic Retina: A Comparison between Chronic Taurine and Vitamin E plus Selenium Supplementations. Free Radic. Res. 2003, 37, 323–330. [Google Scholar] [CrossRef]
- Fernandez-Robredo, P.; Moya, D.; Rodriguez, J.A.; Garcia-Layana, A. Vitamins C and e Reduce Retinal Oxidative Stress and Nitric Oxide Metabolites and Prevent Ultrastructural Alterations in Porcine Hypercholesterolemia. Investig. Ophthalmol. Vis. Sci. 2005, 46, 1140–1146. [Google Scholar] [CrossRef]
- Schwartz, S.G.; Wang, X.; Chavis, P.; Kuriyan, A.E.; Abariga, S.A. Vitamin A and Fish Oils for Preventing the Progression of Retinitis Pigmentosa. Cochrane Database Syst. Rev. 2020, 6, CD008428. [Google Scholar] [CrossRef]
- Jacobson, S.G.; Cideciyan, A.V.; Regunath, G.; Rodriguez, F.J.; Vandenburgh, K.; Sheffield, V.C.; Stone, E.M. Night Blindness in Sorsby’s Fundus Dystrophy Reversed by Vitamin A. Nat. Genet. 1995, 11, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.R.; Lawrenson, J.G. Antioxidant Vitamin and Mineral Supplements for Slowing the Progression of Age-Related Macular Degeneration. Cochrane Database Syst. Rev. 2012, 11, CD000254. [Google Scholar] [CrossRef] [PubMed]
- Berson, E.L. A Randomized Trial of Vitamin A and Vitamin E Supplementation for Retinitis Pigmentosa. Arch. Ophthalmol. 1993, 111, 761–772. [Google Scholar] [CrossRef] [PubMed]
- Domanico, D.; Fragiotta, S.; Cutini, A.; Carnevale, C.; Zompatori, L.; Vingolo, E. Circulating Levels of Reactive Oxygen Species in Patients with Nonproliferative Diabetic Retinopathy and the Influence of Antioxidant Supplementation: 6-Month Follow-Up. Indian J. Ophthalmol. 2015, 63, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Piccardi, M.; Fadda, A.; Martelli, F.; Marangoni, D.; Magli, A.; Minnella, A.M.; Bertelli, M.; Di Marco, S.; Bisti, S.; Falsini, B. Antioxidant Saffron and Central Retinal Function in ABCA4-Related Stargardt Macular Dystrophy. Nutrients 2019, 11, 2461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cukras, C.A.; Singaravelu, J.; Alvarez, J.; Wong, W.T. Pilot Study to Evaluate Oral Minocycline as a Treatment for Cystoid Macular Edema Associated with Retinitis Pigmentosa. Investig. Ophthalmol. Vis. Sci. 2017, 58, 3261. [Google Scholar]
- Bahrami, H.; Melia, M.; Dagnelie, G. Lutein Supplementation in Retinitis Pigmentosa: PC-Based Vision Assessment in a Randomized Double-Masked Placebo-Controlled Clinical Trial [NCT00029289]. BMC Ophthalmol 2006, 6, 23. [Google Scholar] [CrossRef] [Green Version]
- Berson, E.L.; Rosner, B.; Sandberg, M.A.; Weigel-DiFranco, C.; Brockhurst, R.J.; Hayes, K.C.; Johnson, E.J.; Anderson, E.J.; Johnson, C.A.; Gaudio, A.R.; et al. Clinical Trial of Lutein in Patients with Retinitis Pigmentosa Receiving Vitamin A. Arch. Ophthalmol. 2010, 128, 403–411. [Google Scholar] [CrossRef] [Green Version]
- Vidović, B.B.; Milinčić, D.D.; Marčetić, M.D.; Djuriš, J.D.; Ilić, T.D.; Kostić, A.Ž.; Pešić, M.B. Health Benefits and Applications of Goji Berries in Functional Food Products Development: A Review. Antioxidants 2022, 11, 248. [Google Scholar] [CrossRef]
- Scholl, H.P.N.; Moore, A.T.; Koenekoop, R.K.; Wen, Y.; Fishman, G.A.; van den Born, L.I.; Bittner, A.; Bowles, K.; Fletcher, E.C.; Collison, F.T.; et al. Safety and Proof-of-Concept Study of Oral QLT091001 in Retinitis Pigmentosa Due to Inherited Deficiencies of Retinal Pigment Epithelial 65 Protein (RPE65) or Lecithin: Retinol Acyltransferase (LRAT). PLoS ONE 2015, 10, e0143846. [Google Scholar] [CrossRef] [Green Version]
- Wen, Y.; Birch, D.G. Outer Segment Thickness Predicts Visual Field Response to QLT091001 in Patients with RPE65 or LRAT Mutations. Transl. Vis. Sci. Technol. 2015, 4, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koenekoop, R.K.; Sui, R.; Sallum, J.; van den Born, L.I.; Ajlan, R.; Khan, A.; den Hollander, A.I.; Cremers, F.P.M.; Mendola, J.D.; Bittner, A.K.; et al. Oral 9-Cis Retinoid for Childhood Blindness Due to Leber Congenital Amaurosis Caused by RPE65 or LRAT Mutations: An Open-Label Phase 1b Trial. Lancet 2014, 384, 1513–1520. [Google Scholar] [CrossRef]
- Scholl, H.P.; Koenekoop, R.K.; Moore, A.T.; Zrenner, E.; van den Born, L.I.; Fishman, G.A.; Dagnelie, G.; Schuchard, R.A.; Saperstein, D.A.; Mallick, S.; et al. Vision Improvement After Retreatment with an Oral Synthetic Cis-Retinoid (QLT091001) in Subjects with LCA or RP Due to Mutations in RPE65 or LRAT. Investig. Ophthalmol. Vis. Sci. 2015, 56, 1285. [Google Scholar]
- Hoffman, D.R.; Hughbanks-Wheaton, D.K.; Pearson, N.S.; Fish, G.E.; Spencer, R.; Takacs, A.; Klein, M.; Locke, K.G.; Birch, D.G. Four-Year Placebo-Controlled Trial of Docosahexaenoic Acid in X-Linked Retinitis Pigmentosa (DHAX Trial): A Randomized Clinical Trial. JAMA Ophthalmol. 2014, 132, 866–873. [Google Scholar] [CrossRef] [PubMed]
- Hughbanks-Wheaton, D.K.; Birch, D.G.; Fish, G.E.; Spencer, R.; Shirlene Pearson, N.; Takacs, A.; Hoffman, D.R. Safety Assessment of Docosahexaenoic Acid in X-Linked Retinitis Pigmentosa: The 4-Year DHAX Trial. Investig. Ophthalmol. Vis. Sci. 2014, 55, 4958–4966. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, D.R.; Hughbanks-Wheaton, D.K.; Spencer, R.; Fish, G.E.; Pearson, N.S.; Wang, Y.Z.; Klein, M.; Takacs, A.; Locke, K.G.; Birch, D.G. Docosahexaenoic Acid Slows Visual Field Progression in X-Linked Retinitis Pigmentosa: Ancillary Outcomes of the DHAX Trial. Investig. Ophthalmol. Vis. Sci. 2015, 56, 6646–6653. [Google Scholar] [CrossRef]
- Berson, E.L.; Rosner, B.; Sandberg, M.A.; Weigel-DiFranco, C.; Moser, A.; Brockhurst, R.J.; Hayes, K.C.; Johnson, C.A.; Anderson, E.J.; Gaudio, A.R.; et al. Clinical Trial of Docosahexaenoic Acid in Patients with Retinitis Pigmentosa Receiving Vitamin A Treatment. Arch. Ophthalmol. 2004, 122, 1297–1305. [Google Scholar] [CrossRef]
- Berson, E.L. Further Evaluation of Docosahexaenoic Acid in Patients With Retinitis Pigmentosa Receiving Vitamin A Treatment. Arch. Ophthalmol. 2004, 122, 1306–1314. [Google Scholar] [CrossRef]
- MacDonald, I.M.; Sieving, P.A. Investigation of the Effect of Dietary Docosahexaenoic Acid (DHA) Supplementation on Macular Function in Subjects with Autosomal Recessive Stargardt Macular Dystrophy. Ophthalmic Genet. 2018, 39, 477–486. [Google Scholar] [CrossRef]
- Jurgensmeier, C.; Bhosale, P.; Bernstein, P.S. Evaluation of 4-Methylpyrazole as a Potential Therapeutic Dark Adaptation Inhibitor. Curr. Eye Res. 2007, 32, 911–915. [Google Scholar] [CrossRef]
- Birch, D.G.; Bernstein, P.S.; Iannacone, A.; Pennesi, M.E.; Lam, B.L.; Heckenlively, J.; Csaky, K.; Hartnett, M.E.; Winthrop, K.L.; Jayasundera, T.; et al. Effect of Oral Valproic Acid vs Placebo for Vision Loss in Patients With Autosomal Dominant Retinitis Pigmentosa. JAMA Ophthalmol. 2018, 136, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Rotenstreich, Y.; Belkin, M.; Sadetzki, S.; Chetrit, A.; Ferman-Attar, G.; Sher, I.; Harari, A.; Shaish, A.; Harats, D. Treatment With 9- Cis β-Carotene–Rich Powder in Patients With Retinitis Pigmentosa. JAMA Ophthalmol. 2013, 131, 985–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.Y.; Usui, S.; Zafar, A.B.; Oveson, B.C.; Jo, Y.J.; Lu, L.; Masoudi, S.; Campochiaro, P.A. N-Acetylcysteine Promotes Long-Term Survival of Cones in a Model of Retinitis Pigmentosa. J. Cell. Physiol. 2011, 226, 1843–1849. [Google Scholar] [CrossRef] [PubMed]
- Schwalfenberg, G.K. N-Acetylcysteine: A Review of Clinical Usefulness (an Old Drug with New Tricks). J. Nutr. Metab. 2021, 2021, 9949453. [Google Scholar] [CrossRef]
- Sunitha, K.; Hemshekhar, M.; Thushara, R.M.; Santhosh, M.S.; Yariswamy, M.; Kemparaju, K.; Girish, K.S. N-Acetylcysteine Amide: A Derivative to Fulfill the Promises of N-Acetylcysteine. Free Radic. Res. 2013, 47, 357–367. [Google Scholar] [CrossRef]
- Grinberg, L.; Fibach, E.; Amer, J.; Atlas, D. N-Acetylcysteine Amide, a Novel Cell-Permeating Thiol, Restores Cellular Glutathione and Protects Human Red Blood Cells from Oxidative Stress. Free Radic. Biol. Med. 2005, 38, 136–145. [Google Scholar] [CrossRef]
- Holmgren, A. Antioxidant Function of Thioredoxin and Glutaredoxin Systems. Antioxid. Redox Signal. 2000, 2, 811–820. [Google Scholar] [CrossRef]
- Nakamura, H.; Herzenberg, L.A.; Bai, J.; Araya, S.; Kondo, N.; Nishinaka, Y.; Herzenberg, L.A.; Yodoi, J. Circulating Thioredoxin Suppresses Lipopolysaccharide-Induced Neutrophil Chemotaxis. Proc. Natl. Acad. Sci. USA 2001, 98, 15143–15148. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, H.; Hoshino, Y.; Okuyama, H.; Matsuo, Y.; Yodoi, J. Thioredoxin 1 Delivery as New Therapeutics. Adv. Drug Deliv. Rev. 2009, 61, 303–309. [Google Scholar] [CrossRef]
- Léveillard, T.; Mohand-Saïd, S.; Lorentz, O.; Hicks, D.; Fintz, A.C.; Clérin, E.; Simonutti, M.; Forster, V.; Cavusoglu, N.; Chalmel, F.; et al. Identification and Characterization of Rod-Derived Cone Viability Factor. Nat. Genet. 2004, 36, 755–759. [Google Scholar] [CrossRef]
- Léveillard, T.; Sahel, J.A. Rod-Derived Cone Viability Factor for Treating Blinding Diseases: From Clinic to Redox Signaling. Sci. Transl. Med. 2010, 2, 26ps16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalmel, F.; Léveillard, T.; Jaillard, C.; Lardenois, A.; Berdugo, N.; Morel, E.; Koehl, P.; Lambrou, G.; Holmgren, A.; Sahel, J.A.; et al. Rod-Derived Cone Viability Factor-2 Is a Novel Bifunctional-Thioredoxin-like Protein with Therapeutic Potential. BMC Mol. Biol. 2007, 8, 74. [Google Scholar] [CrossRef] [PubMed]
- Clérin, E.; Marussig, M.; Sahel, J.A.; Léveillard, T. Metabolic and Redox Signaling of the Nucleoredoxin-Like-1 Gene for the Treatment of Genetic Retinal Diseases. Int. J. Mol. Sci. 2020, 21, 1625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cronin, T.; Raffelsberger, W.; Lee-Rivera, I.; Jaillard, C.; Niepon, M.L.; Kinzel, B.; Clérin, E.; Petrosian, A.; Picaud, S.; Poch, O.; et al. The Disruption of the Rod-Derived Cone Viability Gene Leads to Photoreceptor Dysfunction and Susceptibility to Oxidative Stress. Cell Death Differ. 2010, 17, 1199–1210. [Google Scholar] [CrossRef] [PubMed]
- Stone, J.; Mitrofanis, J.; Johnstone, D.M.; Falsini, B.; Bisti, S.; Adam, P.; Nuevo, A.B.; George-Weinstein, M.; Mason, R.; Eells, J. Acquired Resilience: An Evolved System of Tissue Protection in Mammals. Dose Response 2018, 16, 1559325818803428. [Google Scholar] [CrossRef]
- Yamauchi, M.; Tsuruma, K.; Imai, S.; Nakanishi, T.; Umigai, N.; Shimazawa, M.; Hara, H. Crocetin Prevents Retinal Degeneration Induced by Oxidative and Endoplasmic Reticulum Stresses via Inhibition of Caspase Activity. Eur. J. Pharmacol. 2011, 650, 110–119. [Google Scholar] [CrossRef]
- Laabich, A.; Vissvesvaran, G.P.; Lieu, K.L.; Murata, K.; McGinn, T.E.; Manmoto, C.C.; Sinclair, J.R.; Karliga, I.; Leung, D.W.; Fawzi, A.; et al. Protective Effect of Crocin against Blue Light- and White Light-Mediated Photoreceptor Cell Death in Bovine and Primate Retinal Primary Cell Culture. Investig. Ophthalmol. Vis. Sci. 2006, 47, 3156–3163. [Google Scholar] [CrossRef]
- Giaccio, M. Crocetin from Saffron: An Active Component of an Ancient Spice. Crit. Rev. Food Sci. Nutr. 2004, 44, 155–172. [Google Scholar] [CrossRef]
- Kanakis, C.D.; Tarantilis, P.A.; Tajmir-Riahi, H.A.; Polissiou, M.G. DNA Interaction with Saffron’s Secondary Metabolites Safranal, Crocetin, and Dimethylcrocetin. DNA Cell Biol. 2007, 26, 63–70. [Google Scholar] [CrossRef]
- Garrido-Mesa, N.; Zarzuelo, A.; Gálvez, J. Minocycline: Far beyond an Antibiotic. Br. J. Pharmacol. 2013, 169, 337–352. [Google Scholar] [CrossRef] [Green Version]
- Ataie-Kachoie, P.; Badar, S.; Morris, D.L.; Pourgholami, M.H. Minocycline Targets the NF-κB Nexus through Suppression of TGF-Β1-TAK1-IκB Signaling in Ovarian Cancer. Mol. Cancer Res. 2013, 11, 1279–1291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blum, D.; Chtarto, A.; Tenenbaum, L.; Brotchi, J.; Levivier, M. Clinical Potential of Minocycline for Neurodegenerative Disorders. Neurobiol. Dis. 2004, 17, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Romero-Miguel, D.; Lamanna-Rama, N.; Casquero-Veiga, M.; Gómez-Rangel, V.; Desco, M.; Soto-Montenegro, M.L. Minocycline in Neurodegenerative and Psychiatric Diseases: An Update. Eur. J. Neurol. 2021, 28, 1056–1081. [Google Scholar] [CrossRef] [PubMed]
- Nazarian, S.; Akhondi, H. Minocycline. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar] [PubMed]
- Acuña-Castroviejo, D.; Escames, G.; Venegas, C.; Díaz-Casado, M.E.; Lima-Cabello, E.; López, L.C.; Rosales-Corral, S.; Tan, D.X.; Reiter, R.J. Extrapineal Melatonin: Sources, Regulation, and Potential Functions. Cell. Mol. Life Sci. 2014, 71, 2997–3025. [Google Scholar] [CrossRef]
- Meng, X.; Li, Y.; Li, S.; Zhou, Y.; Gan, R.Y.; Xu, D.P.; Li, H. Bin Dietary Sources and Bioactivities of Melatonin. Nutrients 2017, 9, 367. [Google Scholar] [CrossRef] [Green Version]
- Reiter, R.J.; Coto-Montes, A.; Boga, J.A.; Fuentes-Broto, L.; Rosales-Corral, S.; Tan, D.X. Melatonin: New Applications in Clinical and Veterinary Medicine, Plant Physiology and Industry. Neuro Endocrinol. Lett. 2011, 32, 575–587. [Google Scholar]
- Tordjman, S.; Chokron, S.; Delorme, R.; Charrier, A.; Bellissant, E.; Jaafari, N.; Fougerou, C. Melatonin: Pharmacology, Functions and Therapeutic Benefits. Curr. Neuropharmacol. 2017, 15, 434–443. [Google Scholar] [CrossRef]
- Dehdashtian, E.; Mehrzadi, S.; Yousefi, B.; Hosseinzadeh, A.; Reiter, R.J.; Safa, M.; Ghaznavi, H.; Naseripour, M. Diabetic Retinopathy Pathogenesis and the Ameliorating Effects of Melatonin; Involvement of Autophagy, Inflammation and Oxidative Stress. Life Sci. 2018, 193, 20–33. [Google Scholar] [CrossRef]
- Peddada, K.V.; Brown, A.; Verma, V.; Nebbioso, M. Therapeutic Potential of Curcumin in Major Retinal Pathologies. Int. Ophthalmol. 2019, 39, 725–734. [Google Scholar] [CrossRef]
- Chandrasekaran, P.R.; Madanagopalan, V.G. Role of Curcumin in Retinal Diseases-A Review. Graefe’s Arch. Clin. Exp. Ophthalmol. 2022, 260, 1457–1473. [Google Scholar] [CrossRef]
- Lou, J.; Hu, W.; Tian, R.; Zhang, H.; Jia, Y.; Zhang, J.; Zhang, L. Optimization and Evaluation of a Thermoresponsive Ophthalmic in Situ Gel Containing Curcumin-Loaded Albumin Nanoparticles. Int. J. Nanomed. 2014, 9, 2517–2525. [Google Scholar] [CrossRef]
- Duan, Y.; Cai, X.; Du, H.; Zhai, G. Novel in Situ Gel Systems Based on P123/TPGS Mixed Micelles and Gellan Gum for Ophthalmic Delivery of Curcumin. Colloids Surf. B Biointerfaces 2015, 128, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Howell, J.C.; Chun, E.; Farrell, A.N.; Hur, E.Y.; Caroti, C.M.; Iuvone, P.M.; Haque, R. Global MicroRNA Expression Profiling: Curcumin (Diferuloylmethane) Alters Oxidative Stress-Responsive MicroRNAs in Human ARPE-19 Cells. Mol. Vis. 2013, 19, 544–560. [Google Scholar] [PubMed]
- Landrum, J.T.; Bone, R.A. Lutein, Zeaxanthin, and the Macular Pigment. Arch. Biochem. Biophys. 2001, 385, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Bone, R.A.; Landrum, J.T.; Friedes, L.M.; Gomez, C.M.; Kilburn, M.D.; Menendez, E.; Vidal, I.; Wang, W. Distribution of Lutein and Zeaxanthin Stereoisomers in the Human Retina. Exp. Eye Res. 1997, 64, 211–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mewborn, C.M.; Lindbergh, C.A.; Robinson, T.L.; Gogniat, M.A.; Terry, D.P.; Jean, K.R.; Hammond, B.R.; Renzi-Hammond, L.M.; Miller, L.S. Lutein and Zeaxanthin Are Positively Associated with Visual-Spatial Functioning in Older Adults: An FMRI Study. Nutrients 2018, 10, 458. [Google Scholar] [CrossRef] [Green Version]
- Kijlstra, A.; Tian, Y.; Kelly, E.R.; Berendschot, T.T.J.M. Lutein: More than Just a Filter for Blue Light. Prog. Retin. Eye Res. 2012, 31, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Chew, E.Y.; Clemons, T.E.; SanGiovanni, J.P.; Danis, R.P.; Ferris, F.L.; Elman, M.J.; Antoszyk, A.N.; Ruby, A.J.; Orth, D.; Bressler, S.B.; et al. Secondary Analyses of the Effects of Lutein/Zeaxanthin on Age-Related Macular Degeneration Progression: AREDS2 Report No. 3. JAMA Ophthalmol. 2014, 132, 142–149. [Google Scholar] [CrossRef]
- Chakrawarti, L.; Agrawal, R.; Dang, S.; Gupta, S.; Gabrani, R. Therapeutic Effects of EGCG: A Patent Review. Expert Opin Pat. 2016, 26, 907–916. [Google Scholar] [CrossRef]
- He, J.; Xu, L.; Yang, L.; Wang, X. Epigallocatechin Gallate Is the Most Effective Catechin Against Antioxidant Stress via Hydrogen Peroxide and Radical Scavenging Activity. Med. Sci. Monit. 2018, 24, 8198–8206. [Google Scholar] [CrossRef]
- Chu, K.O.; Chan, K.P.; Yang, Y.P.; Qin, Y.J.; Li, W.Y.; Chan, S.O.; Wang, C.C.; Pang, C.P. Effects of EGCG Content in Green Tea Extract on Pharmacokinetics, Oxidative Status and Expression of Inflammatory and Apoptotic Genes in the Rat Ocular Tissues. J. Nutr. Biochem. 2015, 26, 1357–1367. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Song, D.K.; Jung, C.H.; Shin, D.H.; Park, J.W.; Taeg, K.K.; Jang, B.C.; Mun, K.C.; Kim, S.P.; Suh, S.I.; et al. (−)-Epigallocatechin Gallate Attenuates Glutamate-Induced Cytotoxicity via Intracellular Ca Modulation in PC12 Cells. Clin. Exp. Pharmacol. Physiol. 2004, 31, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.W.; Huang, W.J.; Tien, L.T.; Wang, S.J. (−)-Epigallocatechin Gallate, the Most Active Polyphenolic Catechin in Green Tea, Presynaptically Facilitates Ca2+-Dependent Glutamate Release via Activation of Protein Kinase C in Rat Cerebral Cortex. Synapse 2007, 61, 889–902. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Jia, Y.; Guo, Y.; Chang, G.; Duan, W.; Sun, M.; Li, B.; Li, C. Epigallocatechin-3-Gallate Protects Motor Neurons and Regulates Glutamate Level. FEBS Lett. 2010, 584, 2921–2925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, G.Y.; Meng, X.; Gan, R.Y.; Zhao, C.N.; Liu, Q.; Feng, Y.B.; Li, S.; Wei, X.L.; Atanasov, A.G.; Corke, H.; et al. Health Functions and Related Molecular Mechanisms of Tea Components: An Update Review. Int. J. Mol. Sci. 2019, 20, 6196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neelam, K.; Dey, S.; Sim, R.; Lee, J.; Au Eong, K.G. Fructus Lycii: A Natural Dietary Supplement for Amelioration of Retinal Diseases. Nutrients 2021, 13, 246. [Google Scholar] [CrossRef]
- Liu, F.; Liu, X.; Zhou, Y.; Yu, Y.; Wang, K.; Zhou, Z.; Gao, H.; So, K.F.; Vardi, N.; Xu, Y. Wolfberry-Derived Zeaxanthin Dipalmitate Delays Retinal Degeneration in a Mouse Model of Retinitis Pigmentosa through Modulating STAT3, CCL2 and MAPK Pathways. J. Neurochem. 2021, 158, 1131–1150. [Google Scholar] [CrossRef]
- Wu, Y.Z.; Qiao, F.; Xu, G.W.; Zhao, J.; Teng, J.F.; Li, C.; Deng, W.J. Neuroprotective Metabolites from the Endophytic Fungus Penicillium Citrinum of the Mangrove Bruguiera Gymnorrhiza. Phytochem. Lett. 2015, 12, 148–152. [Google Scholar] [CrossRef]
- Wu, D.M.; Ji, X.; Ivanchenko, M.V.; Chung, M.; Piper, M.; Rana, P.; Wang, S.K.; Xue, Y.; West, E.; Zhao, S.R.; et al. Nrf2 Overexpression Rescues the RPE in Mouse Models of Retinitis Pigmentosa. JCI Insightig. 2021, 6, e145029. [Google Scholar] [CrossRef]
- Xiong, W.; Garfinkel, A.E.M.C.; Li, Y.; Benowitz, L.I.; Cepko, C.L. NRF2 Promotes Neuronal Survival in Neurodegeneration and Acute Nerve Damage. J. Clin. Investig. 2015, 125, 1433–1445. [Google Scholar] [CrossRef] [Green Version]
- Sahu, B.; Leon, L.M.; Zhang, W.; Puranik, N.; Periasamy, R.; Khanna, H.; Volkert, M. Oxidative Stress Resistance 1 Gene Therapy Retards Neurodegeneration in the Rd1 Mutant Mouse Model of Retinopathy. Investig. Ophthalmol. Vis. Sci. 2021, 62, 8. [Google Scholar] [CrossRef] [PubMed]
- Volkert, M.R.; Crowley, D.J. Preventing Neurodegeneration by Controlling Oxidative Stress: The Role of OXR1. Front. Neurosci. 2020, 14, 611904. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Mondal, A.K.; Adlakha, Y.K.; Gumerson, J.; Aponte, A.; Gieser, L.; Kim, J.-W.; Boleda, A.; Brooks, M.J.; Nellissery, J.; et al. Multiomics Analyses Reveal Early Metabolic Imbalance and Mitochondrial Stress in Neonatal Photoreceptors Leading to Cell Death in Pde6brd1/Rd1 Mouse Model of Retinal Degeneration. Hum. Mol. Genet. 2022, ddac013. [Google Scholar] [CrossRef] [PubMed]
- Punzo, C.; Xiong, W.; Cepko, C.L. Loss of Daylight Vision in Retinal Degeneration: Are Oxidative Stress and Metabolic Dysregulation to Blame? J. Biol. Chem. 2012, 287, 1642–1648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, D.-Y.; Cringle, S.; Valter, K.; Walsh, N.; Lee, D.; Stone, J. Photoreceptor Death, Trophic Factor Expression, Retinal Oxygen Status, and Photoreceptor Function in the P23H Rat. Investig. Opthalmol. Vis. Sci. 2004, 45, 2013–2019. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Wang, S.K.; Rana, P.; West, E.R.; Hong, C.M.; Feng, H.; Wu, D.M.; Cepko, C.L. AAV-Txnip Prolongs Cone Survival and Vision in Mouse Models of Retinitis Pigmentosa. Elife 2021, 10, e66240. [Google Scholar] [CrossRef]
- Pagano, G.; Pallardó, F.V.; Lyakhovich, A.; Tiano, L.; Trifuoggi, M. Mitigating the Pro-Oxidant State and Melanogenesis of Retinitis Pigmentosa: By Counteracting Mitochondrial Dysfunction. Cell. Mol. Life Sci. 2021, 78, 7491–7503. [Google Scholar] [CrossRef]
- Wallimann, T.; Tokarska-Schlattner, M.; Schlattner, U. The Creatine Kinase System and Pleiotropic Effects of Creatine. Amino Acids 2011, 40, 1271–1296. [Google Scholar] [CrossRef] [Green Version]
- Rowe, A.A.; Patel, P.D.; Gordillo, R.; Wert, K.J. Replenishment of TCA Cycle Intermediates Provides Photoreceptor Resilience against Neurodegeneration during Progression of Retinitis Pigmentosa. JCI Insight 2021, 6, e150898. [Google Scholar] [CrossRef]
- Wert, K.J.; Velez, G.; Kanchustambham, V.L.; Shankar, V.; Evans, L.P.; Sengillo, J.D.; Zare, R.N.; Bassuk, A.G.; Tsang, S.H.; Mahajan, V.B. Metabolite Therapy Guided by Liquid Biopsy Proteomics Delays Retinal Neurodegeneration. EBioMedicine 2020, 52, 102636. [Google Scholar] [CrossRef] [Green Version]
- Boatright, J.H.; Moring, A.G.; McElroy, C.; Phillips, M.J.; Do, V.T.; Chang, B.; Hawes, N.L.; Boyd, A.P.; Sidney, S.S.; Stewart, R.E.; et al. Tool from Ancient Pharmacopoeia Prevents Vision Loss. Mol. Vis. 2006, 12, 1706–1714. [Google Scholar] [PubMed]
- Daruich, A.; Picard, E.; Boatright, J.H.; Behar-Cohen, F. Review: The Bile Acids Urso- and Tauroursodeoxycholic Acid as Neuroprotective Therapies in Retinal Disease. Mol. Vis. 2019, 25, 610–624. [Google Scholar] [PubMed]
- Boatright, J.H.; Nickerson, J.M.; Moring, A.G.; Pardue, M.T. Bile Acids in Treatment of Ocular Disease. J. Ocul. Biol. Dis. Infor. 2009, 2, 149–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Sánchez, L.; Bravo-Osuna, I.; Lax, P.; Arranz-Romera, A.; Maneu, V.; Esteban-Pérez, S.; Pinilla, I.; Puebla-González, M.D.M.; Herrero-Vanrell, R.; Cuenca, N. Controlled Delivery of Tauroursodeoxycholic Acid from Biodegradable Microspheres Slows Retinal Degeneration and Vision Loss in P23H Rats. PLoS ONE 2017, 12, e0177998. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, T. Pathophysilogical Mechanism and Treatment Strategies for Leber Congenital Amaurosis. Adv. Exp. Med. Biol. 2014, 801, 791–796. [Google Scholar] [CrossRef] [Green Version]
- Gaspar, J.M.; Martins, A.; Cruz, R.; Rodrigues, C.M.P.; Ambrósio, A.F.; Santiago, A.R. Tauroursodeoxycholic Acid Protects Retinal Neural Cells from Cell Death Induced by Prolonged Exposure to Elevated Glucose. Neuroscience 2013, 253, 380–388. [Google Scholar] [CrossRef]
- Fernández-Sánchez, L.; Esquiva, G.; Pinilla, I.; Lax, P.; Cuenca, N. Retinal Vascular Degeneration in the Transgenic P23H Rat Model of Retinitis Pigmentosa. Front. Neuroanat. 2018, 12, 55. [Google Scholar] [CrossRef]
- Parry, G.J.; Rodrigues, C.M.P.; Aranha, M.M.; Hilbert, S.J.; Davey, C.; Kelkar, P.; Low, W.C.; Steer, C.J. Safety, Tolerability, and Cerebrospinal Fluid Penetration of Ursodeoxycholic Acid in Patients with Amyotrophic Lateral Sclerosis. Clin. Neuropharmacol. 2010, 33, 17–21. [Google Scholar] [CrossRef] [Green Version]
- Elia, A.E.; Lalli, S.; Monsurrò, M.R.; Sagnelli, A.; Taiello, A.C.; Reggiori, B.; La Bella, V.; Tedeschi, G.; Albanese, A. Tauroursodeoxycholic Acid in the Treatment of Patients with Amyotrophic Lateral Sclerosis. Eur. J. Neurol. 2016, 23, 45–52. [Google Scholar] [CrossRef]
- Min, J.H.; Hong, Y.H.; Sung, J.J.; Kim, S.M.; Lee, J.B.; Lee, K.W. Oral Solubilized Ursodeoxycholic Acid Therapy in Amyotrophic Lateral Sclerosis: A Randomized Cross-over Trial. J. Korean Med. Sci. 2012, 27, 200–206. [Google Scholar] [CrossRef] [Green Version]
- Roche, S.L.; Ruiz-Lopez, A.M.; Moloney, J.N.; Byrne, A.M.; Cotter, T.G. Microglial-Induced Müller Cell Gliosis Is Attenuated by Progesterone in a Mouse Model of Retinitis Pigmentosa. Glia 2018, 66, 295–310. [Google Scholar] [CrossRef] [PubMed]
- Djebaili, M.; Guo, Q.; Pettus, E.H.; Hoffman, S.W.; Stein, D.G. The Neurosteroids Progesterone and Allopregnanolone Reduce Cell Death, Gliosis, and Functional Deficits after Traumatic Brain Injury in Rats. J. Neurotrauma 2005, 22, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Drew, P.D.; Chavis, J.A. Female Sex Steroids: Effects upon Microglial Cell Activation. J. Neuroimmunol. 2000, 111, 77–85. [Google Scholar] [CrossRef]
- Miller, L.; Hunt, J.S. Regulation of TNF-Alpha Production in Activated Mouse Macrophages by Progesterone. J. Immunol. 1998, 160, 5098–5104. [Google Scholar] [PubMed]
- Cutler, S.M.; Cekic, M.; Miller, D.M.; Wali, B.; VanLandingham, J.W.; Stein, D.G. Progesterone Improves Acute Recovery after Traumatic Brain Injury in the Aged Rat. J. Neurotrauma 2007, 24, 1475–1486. [Google Scholar] [CrossRef] [PubMed]
- Puia, G.; Belelli, D. Neurosteroids on Our Minds. Trends Pharm. Sci 2001, 22, 266–267. [Google Scholar] [CrossRef]
- Reddy, D.S.; O’Malley, B.W.; Rogawski, M.A. Anxiolytic Activity of Progesterone in Progesterone Receptor Knockout Mice. Neuropharmacology 2005, 48, 14–24. [Google Scholar] [CrossRef]
- Fliesler, A.J.; Anderson, R.E. Chemistry and Metabolism of Lipids in the Vertebrate Retina. Prog. Lipid Res. 1983, 22, 79–131. [Google Scholar] [CrossRef]
- Hoffman, D.R.; Locke, K.G.; Wheaton, D.H.; Fish, G.E.; Spencer, R.; Birch, D.G. A Randomized, Placebo-Controlled Clinical Trial of Docosahexaenoic Acid Supplementation for X-Linked Retinitis Pigmentosa. Am. J. Ophthalmol. 2004, 137, 704–718. [Google Scholar] [CrossRef]
- Cremers, F.P.M.; Lee, W.; Collin, R.W.J.; Allikmets, R. Clinical Spectrum, Genetic Complexity and Therapeutic Approaches for Retinal Disease Caused by ABCA4 Mutations. Prog. Retin. Eye Res. 2020, 79, 100861. [Google Scholar] [CrossRef]
- Issa, P.C.; Barnard, A.R.; Herrmann, P.; Washington, I.; MacLaren, R.E. Rescue of the Stargardt Phenotype in Abca4 Knockout Mice through Inhibition of Vitamin A Dimerization. Proc. Natl. Acad. Sci. USA 2015, 112, 8415–8420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blum, E.; Zhang, J.; Zaluski, J.; Einstein, D.E.; Korshin, E.E.; Kubas, A.; Gruzman, A.; Tochtrop, G.P.; Kiser, P.D.; Palczewski, K. Rational Alteration of Pharmacokinetics of Chiral Fluorinated and Deuterated Derivatives of Emixustat for Retinal Therapy. J. Med. Chem. 2021, 64, 8287–8302. [Google Scholar] [CrossRef] [PubMed]
- Yeong, J.L.; Loveman, E.; Colquitt, J.L.; Royle, P.; Waugh, N.; Lois, N. Visual Cycle Modulators versus Placebo or Observation for the Prevention and Treatment of Geographic Atrophy Due to Age-Related Macular Degeneration. Cochrane Database Syst. Rev. 2020, 12, CD013154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubota, R.; Al-Fayoumi, S.; Mallikaarjun, S.; Patil, S.; Bavik, C.; Chandler, J.W. Phase 1, Dose-Ranging Study of Emixustat Hydrochloride (ACU-4429), a Novel Visual Cycle Modulator, in Healthy Volunteers. Retina 2014, 34, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Dugel, P.U.; Novack, R.L.; Csaky, K.G.; Richmond, P.P.; Birch, D.G.; Kubota, R. Phase Ii, Randomized, Placebo-Controlled, 90-Day Study of Emixustat Hydrochloride in Geographic Atrophy Associated with Dry Age-Related Macular Degeneration. Retina 2015, 35, 1173–1183. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, P.J.; Dugel, P.U.; Holz, F.G.; Heier, J.S.; Pearlman, J.A.; Novack, R.L.; Csaky, K.G.; Koester, J.M.; Gregory, J.K.; Kubota, R. Emixustat Hydrochloride for Geographic Atrophy Secondary to Age-Related Macular Degeneration: A Randomized Clinical Trial. Ophthalmology 2018, 125, 1556–1567. [Google Scholar] [CrossRef] [Green Version]
- Drolet, D.W.; Green, L.S.; Gold, L.; Janjic, N. Reviews Fit for the Eye: Aptamers in Ocular Disorders. Nucleic Acid Ther. 2016, 26, 127–146. [Google Scholar] [CrossRef] [Green Version]
- Ricklin, D.; Lambris, J.D. Complement in Immune and Inflammatory Disorders: Therapeutic Interventions. J. Immunol. 2013, 190, 3839–3847. [Google Scholar] [CrossRef]
- Biesecker, G.; Dihel, L.; Enney, K.; Bendele, R.A. Derivation of RNA Aptamer Inhibitors of Human Complement C5. Immunopharmacology 1999, 42, 219–230. [Google Scholar] [CrossRef]
- Park, Y.G.; Park, Y.S.; Kim, I.B. Complement System and Potential Therapeutics in Age-Related Macular Degeneration. Int. J. Mol. Sci. 2021, 22, 6851. [Google Scholar] [CrossRef]
- Simon, W.A.; Herrmann, M.; Klein, T.; Shin, J.M.; Huber, R.; Senn-Bilfinger, J.; Postius, S. Soraprazan: Setting New Standards in Inhibition of Gastric Acid Secretion. J. Pharmacol. Exp. Ther. 2007, 321, 866–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Julien-Schraermeyer, S.; Illing, B.; Tschulakow, A.; Taubitz, T.; Guezguez, J.; Burnet, M.; Schraermeyer, U. Penetration, Distribution, and Elimination of Remofuscin/Soraprazan in Stargardt Mouse Eyes Following a Single Intravitreal Injection Using Pharmacokinetics and Transmission Electron Microscopic Autoradiography: Implication for the Local Treatment of Stargardt’s Disease and Dry Age-Related Macular Degeneration. Pharmacol. Res. Perspect. 2020, 8, e00683. [Google Scholar] [CrossRef] [PubMed]
Compounds | Animal Models of Photoreceptor Degeneration, Diabetic Retinopathy or Retinal Ganglion Cell Death | Clinical Use in Ophthalmology |
---|---|---|
Antioxidant and anti-inflammatory | ||
N-acetylcysteine | IRD and retinal damage models: Rd10 mouse [108,109] P23H rats (studying NLRP3 inflammasome) [59] Blue-light damage in mice [110] Light damage in mice (with angiotensin II type 1 receptor blockade) [111] Light damage in zebrafish [112] Cypermethrin-induced damage in rats [113] AMD: Choroidal neovascularization in mice (studying plasma-activated medium) [114] Autoimmune uveitis in mice [115,116] Diabetic mice (Redd1−/−) [117] Diabetic rats [118] Mouse normal tension glaucoma [119] Choroidal neovascularization in rats [120] | IRD: RP: NCT03063021 (FIGHT-RP1), NCT04864496 (NAC) [121,122] AMD: NCT03919019 (Macuprev) [123] |
N-acetylcysteine amide | IRD and retinal damage models: Rd10 mice [124] Light injury in mice [125] | IRD: Usher syndrome: NCT04355689 (SLO RP) |
Thioredoxin | IRD and retinal damage models: Rd1 mice [126] Nxlnl1−/− mice after light damage [127] DR models: Diabetic mice with light damage [128] Ganglion cell damage models: Perinatal hypoxia-ischemia retina damage in rats | |
Saffron | IRD and retinal damage models: Light-induced photoreceptor degeneration in rats [129,130,131] P23H rats [132] NMDA-induced damage in mice [133] | IRD: Stargardt disease: NCT01278277 (STARSAF02) AMD: NCT00951288 [134] |
Minocycline | IRD and retinal damage models: Rhodopsin−/− mice [135] (Mertk)−/− Cx3cr1GFP/+ Ccr2RFP/+ mice [136] P23H and RC rats [137] rd10 mice [138] Rds mice [139,140] NMDA-induced damage in mice [141,142] S100B retina degeneration model [143] Branch retinal vein occlusion in rats [144] Lipofuscinosis: Cln3Δex7/8 mouse [145] Focal light damage in mouse [146] Light damage in mice [147,148] Light damage in rats [149] AMD models: Aging: Chx10-Cre;Tsc1fx/fx mouse (Tsc1-cKO) [150] Subretinal hemorrhage in mouse [151] DR models: Diabetes rats (histone levels) [152] Diabetes rats (STZ) [153,154] Ganglion cell damage models: Ischemia/reperfusion mice [155,156] Ischemia/reperfusion rats [157,158,159] Glaucoma model in rats [160,161] and mice [162] DBA/2J mouse model of glaucoma [163,164] Optic nerve transection in rats [156] and mice [155] Optic nerve crush mice [165] Axotomy in rat [166] | IRD: RP: NCT04068207; NCT02140164 AMD: NCT02564978 NCT00893724 DR: Diabetic macular edema: NCT01120899 |
Melatonin | IRD and retinal damage models: P23H rats [167,168] Rd10 mice [169] Rds mice [170] Light damage in mice [171] MNU-induced photoreceptor degeneration in mice [172] Toxoplasma retinochoroiditis in SD rats (melatonin + zinc) [173] AMD models: Laser-induced CNV in mice [174] Non-exudative AMD after cervical ganglionectomy in mice [175] DR models: STZ rats [176,177,178,179,180,181,182,183] STZ-nicotinamide rats [184] High-fat diet + STZ in mice [185] For review [186] Ganglion cell-damage models: Hypoxia-ischemia mice [187] Ischemia-reperfusion guinea pig [188] | AMD: Effect of melatonin on AMD [189] Macular damage with blue filtering IOL: NCT00444249 DR: NCT04547439 NCT03478306 |
Curcumin | IRD and retinal damage models: P23H swine model of RP [190] P23H rat [191] MNU-induced photoreceptor apoptosis in SD rats [192] Light-induced retinal degeneration in rats [193] DR models: Diabetic rats [194,195,196,197,198,199,200,201,202,203,204] Rabbit model of proliferative retinopathy [205] Other retinal diseases models: CLN6 (neuronal ceroid lipofuscinosis) mice [206] Ganglion cell damage models: Rat ischemia/reperfusion [207,208] Retinal ischemia/reperfusion in a rat stroke model [209] Chronic methanol intoxication in rats [210] | AMD: NCT04590196 NCT05062486 (resveratrol + quercetin + curcumin) DR: Chronic diabetic macular edema [211] In DR, NCT04378972 (curcumin + homotaurine + vitamin D3) In diabetic macular edema, NCT03598205 (Curcumin + dexamethasone) |
Quercetin | IRD and retinal damage models: Rd10 mice (+ naringenin) [212] P23H rats Light damage in mice (quercertin + myricetin) [213] Blue-light damage in Balb-c mice [214] Light damage in rats [215] AMD models: Nrf2−/− mice [216] DR models: Zebrafish model of DR [217] Diabetic rat retina [218,219] Other retinal disease models: Rodent model of retinopathy of prematurity [220] Ganglion cell damage models: Chronic glaucoma rat model [221] Ischemia/reperfusion in rats [222] | |
Lutein (L) Zeaxanthin (Z) | IRD and retinal damage models: Light damage retinopathy in quails (L) [223] and rodents (Z&L) [224,225] Rd1 mice (L + Z + lipoic acid + glutathione + Lycium barbarum) [226] Pde6b rd10 mice [224] Light-induced retinopathy (L&Z) [227] DR models: Diabetic rats, zeaxanthin [228] Light-exposed retinas of mice [229] Other retinal disease models: Inflammatory state of retina in obesity-induced high-fat diet [230] Sod2−/− mice (Z) [231] Vldlr−/− mice [232] House finch vision with carotenoids supplementation (Z or astaxanthin) [233] | AMD: NCT03919019; NCT00121589; NCT00527553; NCT00564902; NCT01269697; NCT01648660; NCT00763659; NCT01646047; NCT04741763; NCT01694680; NCT00879671 (L) Dietary supplement for AMD: NCT04496817; NCT00345176; NCT01404845; NCT00902408 (L); NCT01527435 (Z); NCT02287298 (Z); NCT02113254 (Z) Aging: NCT02147171 DR: NCT04496817; NCT01627977 Multiple compounds: NCT04117022; NCT04071977; NCT03702374 Other diseases: Corioretinopathy: NCT00963131 Albinism: NCT02200263 Juxtafoveal telangiectasia: NCT01354093 Glaucoma: NCT04460365; NCT03959592; NCT01646047 (Multiple compounds) |
Catechins | IRD and retinal damage models: P23H1 rats [234,235] Light-induced photoreceptor degeneration in mice [236] Light damage in albino rats [237] Oxidative damage by SNP injection in rats [238] Sodium-iodate-induced retinal degeneration in rats [239] Photoreceptor apoptosis by injection of MNU in SD rats [240] NMDA excitotoxicity in rats [241] DR models: Diabetic rats [242] Ganglion cell damage models: Ischemia/reperfusion in rats [243] Glaucoma model in mice [244] Ischemia/reperfusion in albino rabbits [238] | AMD: NCT03205202 (Cocoa supplement with 80 mg epicatechins) Supplementation with flavonoids (epigallocatechin, quercetin, etc.) [245] |
Resveratrol | IRD and retinal damage models: Rd10 mice [246] Light-damaged rat retinas [247] Light damage, mouse [248] Zebrafish model of retinal neurodegeneration by NMDA [249,250] AMD and CNV models: Aging zebrafish retinas [249] Aged SAMP8 mice [251] Choroidal neovascularization mouse model [252]; resveratrol + omega 3 [253] DR models: STZ-induced diabetes in mice [254,255,256] Diabetic rats [257,258,259,260,261,262,263,264] Other retinal disease models: Retinal detachment in Brown Norway rats by subretinal injection of sodium hyaluronate [265] Induced myopia in golden Syrian hamsters [266] Vldlr−/− mice, model of macular telangiectasia [267] Rats with oxygen-induced retinopathy of prematurity [268] Oxygen-induced retinopathy model, SD rats [269] Ganglion cell-damage models: Mouse model ischemia/reperfusion [268,270,271,272] Ischemia/reperfusion Sprague-Dawley rats [273,274,275,276] Mouse model ocular of hypertension (ischemia/reperfusion) [277] Rat chronic ocular hypertension model [278] Steroid-induced ocular hypertensive rats [279] Glaucoma model by injecting hyaluronic acid, Wistar albino rats [280]: riluzole + resveratrol Optic nerve crush in mice [281] Optic nerve transection in SD rats [282] Uveitis models: Inflammation model by LPS injection in mice [283] | NCT02321176 (pharmacokinetics of resveratrol in the eye) AMD: NCT02625376; NCT04756310: supplementation in AMD [284] Observer-blinded trial in wet AMD patients (lutein, zeaxanthin, resveratrol, hydroxytyrosol and DHA+ the AREDS EU recommended doses) [284] NCT05062486: resveratrol + quercetin + curcumin for AMD Case report (resveratrol + lutein + Vac. myrtilus) in AMD patient [285] Octogenarians + resveratrol supplement [286] DR: Observational study with diabetic patients. Supplementation with multinutrient complex (resveratrol + vitamins, L, Z, etc.) [287] NCT04117022: diabetic retinopathy (rich formula) NCT03866005: Adjunctive Carotenoids Plus Antioxidants in Anti-VEGF Treated Diabetic Macular Edema (PROACTIVEDME)Other:Effect on choroidal thickness, in young and healthy:NCT02321189 |
Dietary antioxidants | IRD and retinal damage models: Tested individual effects of vitamins in dystrophic RCS rats [288] LED light damage rats (β-Cryptoxanthin) [289] Light damage in SD rats (AREDS ± antioxidants) [290] Light damage in rats (suppl antioxidants and omega 3) [291] Light damage in rats (Beta carotene) [292] Light rabbit (blueberry polyphenols) [293] AMD and CNV models: CNV mice (Resvega: omega 3 + resveratrol) [252] 𝛽Amyloid mice (grape seed extracts) [294] β5−/− mice [295] Other retinal disease models: Smith–Lemli–Opitz syndrome (defective cholesterol synthesis) [296] ApoE−/− mice. Suppl L vs. multivitamin [297] DR models: Diabetes, rats (ascorbic acid, vitamin E, beta-carotene, zinc, and copper) [298] Diabetes rats (carrot powder) [299] Diabetes and experimental galactosemia in rats (antioxidants, ascorbic acid, alpha-tocopherol) [300] Diabetes and experimental galactosemia in rats VI (ascorbic acid + trolox + alpha-tocopherol + NAC+ beta-carotene + selenium) [301] Ganglion cell damage models: Ischemia/reperfusion mice with ubiquinol [302] Pressure trauma in mice [303] | AMD: AMD prevention [304] NCT03326401; NCT04756310; NCT02264938; NCT00121589; NCT00800995 NCT00000145 (AREDS); NCT00345176 (AREDS2) DR: NCT04496817 Other diseases: Retinopathy of prematurity NCT03866005 Hyperoxia-induced retinal reduced blow flow: NCT00712907 Oxygen-induced retinal vasoconstriction: NCT02221089ithout DR |
Fructus lycii | IRD and retinal damage models: Rd10 mouse [305] Methyl-N-nitrosurea photoreceptor degeneration mouse model Rd1 mice (L + Z+ lipoic acid + glutathione + Lycium barbarum) [226] Light damage in rats [306] Light damage in mice [307] Intravitreal paraquat in rats [308] DR models: Diabetic rats [309] Other retinal diseases models: Alzheimer’s Disease Model Mouse Retina [310] Ganglion cell damage models: Ischemia/reperfusion in rats [311] Acute hypertension in mice [312,313] Ocular hypertension in rats [314,315,316] | IRD: RP: NCT02244996 (Lycium barbarum) [317] AMD: Goji berry intakes and macular pigment in healthy adults (randomized pilot study) [318] |
Alpha-lipoic acid | IRD and retinal damage models: Rd1 mice (L + Z + lipoic acid + glutathione + Lycium barbarum) [226] Rd1 mouse (mixture) [319]. Rd10 model (α-tocopherol, ascorbid acid, α-lipoic acid) [320] Q334 model (α-tocopherol, ascorbid acid, α-lipoic acid) [320] Rd1 model (LA and/or progesterone) [321] | AMD: NCT02613572 DR: NCT01880372 |
(Z)-7,4′-Dimethoxy-6-hydroxy-aurone-4-O-β-glucopyranoside (DHAG) | IRD and retinal damage models: Rd10 mouse [322] | |
Multi-target iron chelators | IRD and retinal damage models: Mouse model of RP [323] Rd 10 mice [324,325] NMDA damage in rats [326] | |
Creatine | IRD and retinal damage models: Rd1 mice [327] | Gyrate atrophy with hyperornithinaemia (4 patients) [328] Gyrate atrophy (7 patients) [329] |
Sulforaphane | IRD and retinal damage models: Phd6b rd10 mice [330] Light damage mice (sulforaphane induces TRX) [331] Light damage mice [332] Tubby mouse [333] DR models: Diabetic STZ rats [334] Ganglion cell damage models: Rat model ischemia reperfusion [335] Ischemia in mice [336] | |
NOS inhibitors | IRD and retinal damage models: Rd1 mice [337] S334ter-3 rat [338] Light damage in rats [339] Ganglion cell damage models: Rat model of chronic glaucoma [340,341] Rat axotomy [342] | |
Sigma1R ligand (+)- Pentazocine (PTZ) | IRD and retinal damage models: Rd10 mice [343,344,345,346,347] NMDA damage in mice [348] DR models: Diabetic mice Ins2(Akita/+) [349,350] Ganglion cell damage models: Optic nerve crush in mice [351] | |
Norbixin (bixin extracted from Bixa Orellana) | IRD and retinal damage models: Blue-light model of photodamage in rats [352] Abca4−/− Rdh8−/− mice [353] | |
(3R)-5,6,7-trihydroxy-3-isopropyl-3-methylisochroman-1-one | IRD and retinal damage models: Pde6b rd10 mice [354] | |
Glycyrrhizic acid/Glycyrrhizin | IRD and retinal damage models: IGFB-3 KO mouse [355] Blue-light-induced damage in mouse [356] DR models: Diabetic rats [357,358] Ganglion cell damage models: Acute model of glaucoma in mice [359] Ischemia-reperfusion in mice [360] | |
Antiapoptotic agents | ||
Tudca | IRD and retinal damage models: P23H AD rat model [361] MNU-induced photoreceptor degeneration mouse model [362] Leber Congenital Amaurosis mouse [363] Rd1 mice [364] Rd10 mice [365] Rd1, Rd10, Rd16 (Bardet–Biedl Syndrome type 1) [366] Light-induced damage in mice [367] RPGR conditional knockout (cko) mouse [368] NMDA-induced damage in mice [369] AMD and CNV models: CNV laser-induced rat [370] DR models: Mouse model of type 1 diabetes [371] Ex vivo model of RD in rats [372] Other retinal diseases models: Retinal detachment rat model [373] Ganglion cell damage models: Rat optic nerve crush [374] | Others: Rhegmatogenous RD: NCT02841306 URSO |
Rasagiline | IRD and retinal damage models: Rd10 mice (RP) [375] Prph2/rds mouse [376] Ganglion cell damage models: Glaucoma model in rats [377] Mouse, ischemia/reperfusion [378] (rasagiline + idebenone) | Others: Retinal detachment: NCT02068625 (Macula off- retinal detachment) [379] |
Norgestrel/ Progesterone | IRD and retinal damage models: Pde6b Rd10 mouse [380,381,382] Rd1 mice (L + Z + lipoic acid + glutathione + Lycium barbarum) Rd1 mouse [383] Rd10 mice [384] Acute light-induced degeneration model in mice [382,385] Ganglion cell damage models: Rat models of ocular ischemia [386] Review: [387] | |
Proinsulin | IRD and retinal damage models: Rd10 mice [388] P23H RP rats [389] | Others: Glaucoma NCT05206877, NCT04118920 |
Nutraceuticals and other compounds | ||
Anthocyanin Cyanidin-3-glucoside (C3G) Bilberry extract | IRD and retinal damage models: Light-induced photoreceptor degeneration in rats (+L) [390] Light damage in rabbits [391] MNU-induced damage in rats [392] Other retinal disease models: Oxygen-induced retinopathy in mice [393] IRD and retinal damage models: Photo-stressed murine model [394] Light damage in rabbits [395] AMD models: OXYS rats [396] DR models: STZ rats [397] Other retinal disease models: Oxygen-induced retinopathy in mice [398] Ganglion cell damage models: Optic nerve crush in mice [399] Uveitis models: Endotoxin-induced uveitis in mice [400] | Metabolism and Clearance of Cyanidin 3 Glucoside: NCT01106729 NCT01942746: Blueberry Effects on Dark Vision and Glare Recovery [401] |
4-Phenylbutyric acid | IRD and retinal damage models: Photo-stressed murine model [402] P23H mice [403] Leber congenital amaurosis mice [404] Other retinal disease models: Hypoxia mice [405] Ganglion cell damage models: Ischemic optic neuropathy in mice [406] Ischemic rats [407] | IRD: Achromatopsia NCT04041232 |
Celastrol | IRD and retinal damage models: Light-induced retinal degeneration mice [408] Ganglion cell damage models: Ocular hypertension in mice [409] Optic nerve crush [410] | |
Salvia miltiorrhiza Bunge | IRD and retinal damage models: Light damage in mice [411] Rd10 mice (+ Fructus lycii) DR models: DR rats (FXST Chinese medicine + various compounds) | |
Vitamin A and/or E | Vitamin A IRD and retinal damage models: Lrat−/−, Rpe65−/−, and Gnat1−/− mouse models, supplemented with Vit A derivatives [412] T17M mouse [413] DR models: DR rat [414,415] Other retinal pathology models: Obesity-associated retinal degeneration in WNIN/Ob rats [416] Vitamin E IRD and retinal damage models: Radiation induced retinal damage in a rat model [417] Light-induced damage in guinea pig [418] Light damage in albino mice [419] DR models: Diabetic rats (taurine, Vit E + selenium) [420] Other retinal pathology models: Porcine hypercholesterolemia [421] | Vitamin A IRD: RP: NCT00000116 (vitamin A + fish oils) [422]; NCT00346333 (L + vit A); NCT04499820 (flavonoids, L, Z) Choroidemia: NCT05045703 Stargardt disease (ALK-001): NCT02230228; NCT04239625; NCT02402660 LCA, RP Drug: QLT091001, NCT01014052 Night blindness in Sorsby’s fundus dystrophy [423] AMD: AMD Review [424] AMD, reticular pseudodrusen: NCT03478878 AMD: NCT03478865 Geographic atrophy: NCT03845582 AMD (Phase I): NCT02230228 Others: Retinopathy of Prematurity: NCT00417404; NCT03154723; NCT03779776 (Vit AD); NCT02102711 DR: NCT04000789 (Vit A, Vit E); NCT04000789 Vitamin E IRD: RP: NCT00000114 (Vit A + Vit E) [425] AMD: NCT00784225; NCT00000161; NCT00893724; NCT00893724; NCT00000145 (various antioxidants) DR: NPDR (various compounds) [426] Others: Glaucoma: NCT01544192 Retinopathy of Prematurity: NCT03274596 |
Compound | Mechanism | Disease | Participants (Number) | Follow-Up Time | Trial ID | Phase/ Status | References | Results |
---|---|---|---|---|---|---|---|---|
N-acetylcysteine (NAC) | Antioxidant Stabilizes protein structure | RP | 30 | 10 m | NCT03063021 (FIGHT-RP) | 1/ Completed (2019) | Campochiaro et al., 2020 and Kong et al., 2021 [121,122] | NAC is safe and well-tolerated Improvement in macular functioning cones |
NAC | RP | 30 | 6 m | NCT04864496 | 2/Active | |||
NACA (NPI-001) | Antioxidant Stabilizes protein structure | Usher syndrome | 48 | 24 m | NCT04355689 (SLO RP) | 1, 2/ Recruiting | ||
Saffron | Neuroprotective and antioxidant effects | Stargardt Disease | 30 (31) | 6 m | NCT01278277 (STARSAF02) | 1,2/ Unknown | Piccardi et al., 2019 [427] | No detrimental effects on ERG and visual acuity |
Minocyclin | Anti-inflammatory, antiapoptotic and neuroprotective effects | RP | 35 | 24 wk | NCT04068207 | 2/ Recruiting | ||
Minocyclin | Cystoid macular edema associated with RP | 7 | 12 m | NCT02140164 | 1, 2/ Completed (2015) | Cukras et al., 2017 [428] | Well tolerated. No significant changes in mean visual acuity. Small but progressive decrease in mean central macular thickness. | |
Lutein | Removes ROS; protection against photo-oxidative stress | RP | 34 | 48 wk | NCT00029289 | 1,2/ Completed (2008) | Bahrami et al., 2006 [429] | Lutein supplementation improves visual field |
Lutein in patients receiving vitamin A | RP | 240 | 5 yr | NCT00346333 | 3/ Completed (2008) | Berson et al., 2010 [430] | 12 mg/d of lutein slows visual field loss among nonsmoking patients with RP with vitamin A | |
Lycium barbarum | Antioxidative, anti-inflammatory, and antiapoptotic mechanisms | RP | 50 (42) | 1 yr | NCT02244996 | NA/ Completed (2017) | Chan et al., 2019 and Vidović et al., 2022 [317] For review: [431] | Preservation of photopic vision |
4-Phenylbutyric acid | ER stress-regulated transmembrane protein | Achromatopsia | 2 | 6 m | NCT04041232 | Early phase 1/ Not yet recruiting | ||
Vitamin A | Improvement in cone photoreceptor function | RP (RHO1 mutation) | 10 (5 RP) | 6 wk | NCT00065455 | 1/ Completed (2009) | ||
Vitamin A and/or Vitamin E | RP | 601 (572) | 4 yr. | NCT00000114 | 3/ Completed (1987) | Berson et al., 1993 [425] | Beneficial effect of 15,000 IU/d of vitamin A Adverse effect of 400 IU/d of vitamin E | |
Vitamin A | RP | 5 yr | NCT00000116 | 3/ Completed (1997) | ||||
Vitamin A | Choroideremia | 10 | 8 m | NCT05045703 (DARC) | Not yet recruiting | |||
QLT091001 | Replaces chromophore in visual cycle | Leber congenital amaurosis (mutation RPE65, LRAT) | 32 | 12 m | NCT01014052 (RET IRD 01) | 1b/ Completed (2012) | Scholl H et al., 2015 [432] Wen & Birch 2015 [433] Koenekoop et al., 2014 [434] | Improvements in visual field and/or visual acuity. Cortical activation |
QLT091001 (retreatment) | Leber congenital amaurosis (mutation RPE65, LRAT) | 27 | 12 m | NCT01521793 (RET IRD 01 extension) | 1/ Completed (2014) | Scholl et al., 2015 [435] | Sustained visual improvements | |
QLT091001 | ADRP (RPE65 mutation) | 5 | 12 m | NCT01543906 | 1/ Completed (2014) | |||
ALK-001 | Chemically modified vitamin A (replacement of vitamin A) | Healthy volunteers | 40 | 4 wk | NCT02230228 | 1/ Completed | ||
ALK-001 | Stargardt Disease | 140 | 24 m | NCT02402660 (TEASE) | 2/ Recruiting | |||
ALK-001 | Stargardt Disease | 140 | 24 m | NCT04239625 (TEASE-2, an open-label extension of TEASE) | 2/ Enrolling by invitation | |||
DHA (docosahexaenoic acid; omega 3) | Key cell membrane component involved in multiple metabolic pathways | X-linked RP | 221 (208) | 4 yr | NCT00100230 | 2/ Completed (2014) | Hoffman et al., 2014 [436] Hughbanks- Wheaton et al., 2014 [437] Hoffman et al., 2015 [438] | |
DHA | X-linked RP | 46 | 3 yr | NCT00004827 | 2/ Completed (2002) | For review see: Schwartz et al., 2020 [422] | ||
DHA | Usher Syndrome | 100 | NCT00004345 | NA/ Terminated | ||||
DHA in patients receiving Vit A | RP | 221 | 4 yr | NA | Berson et al., 2004 [439] Berson et al. 2004 [440] | No improvement with DHA in patients with RP receiving Vit A 4 yr Improvements in the first 2 yr | ||
DHA | Stargardt or Stargardt-like Macular Dystrophy | 22 | 15 m | NCT00060749 | 1/ Completed (2007) | MacDonald & Sieving 2018 [441] | ||
DHA | Stargardt and dry AMD | 32 | 24 wk | NCT03297515 (MADEOS) | NA/ Completed (2020) | |||
Hydroxychloroquine | Targets autophagy pathway | P23H-RHO RP | 12 | 18 m | NCT04120883 | 1, 2/ Recruiting | ||
4-Methylpyrazole (4-MP) (alcohol dehydrogenase inhibitor) | Slows down processing of vitamin A derivatives | Healthy volunteers | 10 | 6 wk | NCT00346853 | 1/ Completed | Jurgensmeier et al., 2007 [442] | 4-MP does not inhibit human visual cycle sufficiently to be evaluated for Stargardt disease treatment |
Emixustat | RPE65 inhibitor | Stargardt | 23 | 1 m | NCT03033108 (SeaSTAR) | 2A Dose scalation/ Completed (2017) | No SAES Frequent ocular side effects | |
Emixustat | Stargardt | 194 | 2 yr | NCT03772665 | 3/Active | |||
Soraprazan | H,K+-ATPase inhibitor Removes retinal lipofuscine accumulation | Stargardt | 90 | 12 m | EudraCT 2018-001496-20 | 2/Active | ||
Zimura (avacincaptad pegol) | Aptamer that inhibits the activity of complement factor C5 | Stargardt 1 | 120 | 18 m | NCT03364153 | 2b/ Recruiting | ||
STG-001 | RBP4 antagonist Visual cycle regulator | Stargardt 1 | 10 | 4 wk | NCT04489511 | 2a (2 doses)/ Completed (2021) | ||
L-DOPA | Upregulates PDEF Downregulates VEGF | RP | 50 | 5 yr | NCT02837640 | 2/NA | ||
Valproic acid | Neuroprotective Induces microglial apoptosis | ADRP | 90 | 52 wk | NCT01233609 | 2/ Completed (2015) | Birch et al., 2018 [443] | No efficacy was found |
Valproic acid | RP | 200 | 48 wk | NCT01399515 | 2/ Completed (2015) | |||
Dunaliella Bardawil powder (oral) | Beta carotene | RP | 34 | 1 yr | NCT01256697 | NA/ Completed (2009) | Rotenstreich et al., 2013 [444] | Increase retinal function in RP |
Dunaliella Bardawil powder | RP in adolescents | 30 | 72 wk | NCT02018692 | 1, 2/Not yet recruiting | |||
Dunaliella Bardawil powder | RP | 100 | 72 wk | NCT01680510 | 2, 3/ Recruiting | |||
rhNGF (recombinant human nerve growth factor) (drops) | Neuroprotection | RP | 50 | 48 wk | NCT02110225 | 1, 2/ Completed (2015) | ||
Cannabis (cannabidiol:THC, 1:1) | Neuroprotection | RP | 50 | 3 h. | NCT03078309 | 1/ Recruiting | ||
NP-001 (oral) | Inactivates macrophages. Anti-inflammatory | Usher syndrome | 48 | 24 m. | NCT04355689 (SLO RP) | 1, 2/ Recruiting |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinilla, I.; Maneu, V.; Campello, L.; Fernández-Sánchez, L.; Martínez-Gil, N.; Kutsyr, O.; Sánchez-Sáez, X.; Sánchez-Castillo, C.; Lax, P.; Cuenca, N. Inherited Retinal Dystrophies: Role of Oxidative Stress and Inflammation in Their Physiopathology and Therapeutic Implications. Antioxidants 2022, 11, 1086. https://doi.org/10.3390/antiox11061086
Pinilla I, Maneu V, Campello L, Fernández-Sánchez L, Martínez-Gil N, Kutsyr O, Sánchez-Sáez X, Sánchez-Castillo C, Lax P, Cuenca N. Inherited Retinal Dystrophies: Role of Oxidative Stress and Inflammation in Their Physiopathology and Therapeutic Implications. Antioxidants. 2022; 11(6):1086. https://doi.org/10.3390/antiox11061086
Chicago/Turabian StylePinilla, Isabel, Victoria Maneu, Laura Campello, Laura Fernández-Sánchez, Natalia Martínez-Gil, Oksana Kutsyr, Xavier Sánchez-Sáez, Carla Sánchez-Castillo, Pedro Lax, and Nicolás Cuenca. 2022. "Inherited Retinal Dystrophies: Role of Oxidative Stress and Inflammation in Their Physiopathology and Therapeutic Implications" Antioxidants 11, no. 6: 1086. https://doi.org/10.3390/antiox11061086
APA StylePinilla, I., Maneu, V., Campello, L., Fernández-Sánchez, L., Martínez-Gil, N., Kutsyr, O., Sánchez-Sáez, X., Sánchez-Castillo, C., Lax, P., & Cuenca, N. (2022). Inherited Retinal Dystrophies: Role of Oxidative Stress and Inflammation in Their Physiopathology and Therapeutic Implications. Antioxidants, 11(6), 1086. https://doi.org/10.3390/antiox11061086