Enhanced Oxidative DNA-Damage in Peritoneal Dialysis Patients via the TXNIP/TRX Axis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Patient’s Material
2.2. Thioredoxin Activity Assay
2.3. Enzyme-Linked Immuno-Sorbent Assay (ELISA)
2.4. Immunohistochemistry (IHC)
2.5. Evaluation of Histo-Score
2.6. Statistical Analysis
3. Results
3.1. TXNIP Is Upregulated in PD Patients
3.2. Pathological Changes in the Peritoneal Membrane of PD Patients
3.3. Enhanced Oxidative DNA-Damage in Plasma and the Peritoneal Membrane of PD Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roumeliotis, S.; Dounousi, E.; Salmas, M.; Eleftheriadis, T.; Liakopoulos, V. Unfavorable Effects of Peritoneal Dialysis Solutions on the Peritoneal Membrane: The Role of Oxidative Stress. Biomolecules 2020, 10, 768. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Shibata, M.; Shimizu, T.; Shibata, S.; Toriumi, H.; Ebine, T.; Kuroi, T.; Iwashita, T.; Funakubo, M.; Kayama, Y.; et al. Differential cellular localization of antioxidant enzymes in the trigeminal ganglion. Neuroscience 2013, 248, 345–358. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Yepes, J.; Zavala-Flores, L.; Anandhan, A.; Wang, F.; Skotak, M.; Chandra, N.; Li, M.; Pappa, A.; Martinez-Fong, D.; Del Razo, L.M.; et al. Antioxidant gene therapy against neuronal cell death. Pharmacol. Ther. 2014, 142, 206–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finkel, T. Signal transduction by reactive oxygen species. J. Cell Biol. 2011, 194, 7–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxidative Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef] [PubMed]
- Brieger, K.; Schiavone, S.; Miller, F.J., Jr.; Krause, K.H. Reactive oxygen species: From health to disease. Swiss Med. Wkly. 2012, 142, w13659. [Google Scholar] [CrossRef] [PubMed]
- Oberacker, T.; Bajorat, J.; Ziola, S.; Schroeder, A.; Röth, D.; Kastl, L.; Edgar, B.A.; Wagner, W.; Gülow, K.; Krammer, P.H. Enhanced expression of thioredoxin-interacting-protein regulates oxidative DNA damage and aging. FEBS Lett. 2018, 592, 2297–2307. [Google Scholar] [CrossRef] [PubMed]
- Forrester, S.J.; Kikuchi, D.S.; Hernandes, M.S.; Xu, Q.; Griendling, K.K. Reactive Oxygen Species in Metabolic and Inflammatory Signaling. Circ. Res. 2018, 122, 877–902. [Google Scholar] [CrossRef]
- Helfinger, V.; Schröder, K. Redox control in cancer development and progression. Mol. Asp. Med. 2018, 63, 88–98. [Google Scholar] [CrossRef]
- Kojima, Y.; Binz, P.-A.; Kägi, J.H.R. Nomenclature of metallothionein: Proposal for a revision. In Metallothionein IV; Klaassen, C.D., Ed.; Birkhäuser Basel: Basel, Switzerland, 1999; pp. 3–6. [Google Scholar]
- Hopkins, B.L.; Neumann, C.A. Redoxins as gatekeepers of the transcriptional oxidative stress response. Redox Biol. 2019, 21, 101104. [Google Scholar] [CrossRef] [PubMed]
- Schulze, P.C.; Yoshioka, J.; Takahashi, T.; He, Z.; King, G.L.; Lee, R.T. Hyperglycemia Promotes Oxidative Stress through Inhibition of Thioredoxin Function by Thioredoxin-interacting Protein. J. Biol. Chem. 2004, 279, 30369–30374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamanaka, H.; Maehira, F.; Oshiro, M.; Asato, T.; Yanagawa, Y.; Takei, H.; Nakashima, Y. A possible interaction of thioredoxin with VDUP1 in HeLa cells detected in a yeast two-hybrid system. Biochem. Biophys. Res. Commun. 2000, 271, 796–800. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, A.; Masutani, H.; Nakamura, H.; Nishinaka, Y.; Yodoi, J. Redox regulation by thioredoxin and thioredoxin-binding proteins. IUBMB Life 2001, 52, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Patwari, P.; Higgins, L.J.; Chutkow, W.A.; Yoshioka, J.; Lee, R.T. The interaction of thioredoxin with Txnip. Evidence for formation of a mixed disulfide by disulfide exchange. J. Biol. Chem. 2006, 281, 21884–21891. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, D.F.; Abderrazak, A.; El Hadri, K.; Simmet, T.; Rouis, M. The thioredoxin system as a therapeutic target in human health and disease. Antioxid. Redox Signal. 2013, 19, 1266–1303. [Google Scholar] [CrossRef] [PubMed]
- Minn, A.H.; Hafele, C.; Shalev, A. Thioredoxin-interacting protein is stimulated by glucose through a carbohydrate response element and induces beta-cell apoptosis. Endocrinology 2005, 146, 2397–2405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, W.; Chen, X.; Gilbert, R.E.; Zhang, Y.; Waltham, M.; Schache, M.; Kelly, D.J.; Pollock, C.A. High glucose-induced thioredoxin-interacting protein in renal proximal tubule cells is independent of transforming growth factor-beta1. Am. J. Pathol. 2007, 171, 744–754. [Google Scholar] [CrossRef] [Green Version]
- Gu, C.; Liu, S.; Wang, H.; Dou, H. Role of the thioredoxin interacting protein in diabetic nephropathy and the mechanism of regulating NOD-like receptor protein 3 inflammatory corpuscle. Int. J. Mol. Med. 2019, 43, 2440–2450. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, Y.-F.; Li, J.-S.; Zhu, G.-L.; Bi, Z.-M.; Li, X.-Y. The effect of high glucose-based peritoneal dialysis fluids on thioredoxin-interacting protein expression in human peritoneal mesothelial cells. Int. Immunopharmacol. 2019, 66, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, A.; Matsui, M.; Iwata, S.; Hirota, K.; Masutani, H.; Nakamura, H.; Takagi, Y.; Sono, H.; Gon, Y.; Yodoi, J. Identification of thioredoxin-binding protein-2/vitamin D(3) up-regulated protein 1 as a negative regulator of thioredoxin function and expression. J. Biol. Chem. 1999, 274, 21645–21650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alscher, D.M.; Bruckner, A.; Fritz, P.; Kimmel, M.; Stoeltzing, H.; Kuhlmann, U.; Mettang, T. Metallothionein and dendritic cells in skin of end-stage renal disease patients not on dialysis, or on hemodialysis or peritoneal dialysis. Perit. Dial. Int. J. Int. Soc. Perit. Dial. 2002, 22, 449–453. [Google Scholar] [CrossRef]
- Alscher, D.M.; Redmann, D.; Wehner, F.; Maier, A.; Mettang, T.; Kuhlmann, U.; Fritz, P. Metallothionein in liver-biopsies from patients with different diseases. Exp. Toxicol. Pathol. Off. J. Ges. Toxikol. Pathol. 2002, 54, 245–253. [Google Scholar] [CrossRef]
- Alscher, D.M.; Biegger, D.; Mettang, T.; Dunst, R.; Wolken, D.; Kuhlmann, U.; Fritz, P. Peritoneal metallothionein content in patients with end-stage renal disease on or not on peritoneal dialysis. Perit. Dial. Int. J. Int. Soc. Perit. Dial. 2001, 21, 92–94. [Google Scholar] [CrossRef]
- Alscher, D.M.; Biegger, D.; Kuhlmann, U.; Fritz, P. Induction of metallothionein in mesothelial cells by zinc. Artif. Organs 2007, 31, 488–491. [Google Scholar] [CrossRef]
- Schanz, M.; Schaaf, L.; Dippon, J.; Biegger, D.; Fritz, P.; Alscher, M.D.; Kimmel, M. Renal effects of metallothionein induction by zinc in vitro and in vivo. BMC Nephrol. 2017, 18, 91. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.D.; Craig, K.J.; Topley, N.; Von Ruhland, C.; Fallon, M.; Newman, G.R.; Mackenzie, R.K.; Williams, G.T. Morphologic changes in the peritoneal membrane of patients with renal disease. J. Am. Soc. Nephrol. JASN 2002, 13, 470–479. [Google Scholar] [CrossRef]
- Schricker, S.; Oberacker, T.; Fritz, P.; Ketteler, M.; Alscher, M.D.; Schanz, M. Peritoneal Expression of SGLT-2, GLUT1, and GLUT3 in Peritoneal Dialysis Patients. Kidney Blood Press. Res. 2022, 47, 125–134. [Google Scholar] [CrossRef]
- Braun, N.; Reimold, F.; Biegger, D.; Fritz, P.; Kimmel, M.; Ulmer, C.; Alscher, M.D. Fibrogenic growth factors in encapsulating peritoneal sclerosis. Nephron. Clin. Pract. 2009, 113, c88–c95. [Google Scholar] [CrossRef]
- Segerer, S.; Banas, B.; Wörnle, M.; Schmid, H.; Cohen, C.D.; Kretzler, M.; Mack, M.; Kiss, E.; Nelson, P.J.; Schlöndorff, D.; et al. CXCR3 Is Involved in Tubulointerstitial Injury in Human Glomerulonephritis. Am. J. Pathol. 2004, 164, 635–649. [Google Scholar] [CrossRef] [Green Version]
- Segerer, S.; Böhmig, G.A.; Exner, M.; Kerjaschki, D.; Regele, H.; Schlöndorff, D. Role of CXCR3 in cellular but not humoral renal allograft rejection. Transpl. Int. Off. J. Eur. Soc. Organ Transplant. 2005, 18, 676–680. [Google Scholar] [CrossRef]
- Fritz, P.; Multhaupt, H.; Hoenes, J.; Lutz, D.; Doerrer, R.; Schwarzmann, P.; Tuczek, H.V. Quantitative immunohistochemistry. Theoretical background and its application in biology and surgical pathology. Prog. Histochem. Cytochem. 1992, 24, 1–53. [Google Scholar] [PubMed]
- Xu, G.; Chen, J.; Jing, G.; Shalev, A. Thioredoxin-interacting protein regulates insulin transcription through microRNA-204. Nat. Med. 2013, 19, 1141–1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Guo, Y.; Li, L.; Luo, M.; Peng, L.; Lv, D.; Cheng, Z.; Xue, Q.; Wang, L.; Huang, J. Role of thioredoxin-interacting protein in mediating endothelial dysfunction in hypertension. Genes Dis. 2022, 9, 753–765. [Google Scholar] [CrossRef]
- Alscher, D.M.; Biegger, D.; Mettang, T.; van der Kuip, H.; Kuhlmann, U.; Fritz, P. Apoptosis of mesothelial cells caused by unphysiological characteristics of peritoneal dialysis fluids. Artif. Organs 2003, 27, 1035–1040. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, E. TXNIP/TBP-2: A Master Regulator for Glucose Homeostasis. Antioxidants 2020, 9, 765. [Google Scholar] [CrossRef]
- Nakamura, H.; Nakamura, K.; Yodoi, J. Redox regulation of cellular activation. Annu. Rev. Immunol. 1997, 15, 351–369. [Google Scholar] [CrossRef]
- Kao, M.P.C.; Ang, D.S.C.; Pall, A.; Struthers, A.D. Oxidative stress in renal dysfunction: Mechanisms, clinical sequelae and therapeutic options. J. Hum. Hypertens. 2010, 24, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irazabal, M.V.; Torres, V.E. Reactive Oxygen Species and Redox Signaling in Chronic Kidney Disease. Cells 2020, 9, 1342. [Google Scholar] [CrossRef]
- Vida, C.; Oliva, C.; Yuste, C.; Ceprián, N.; Caro, P.J.; Valera, G.; González de Pablos, I.; Morales, E.; Carracedo, J. Oxidative Stress in Patients with Advanced CKD and Renal Replacement Therapy: The Key Role of Peripheral Blood Leukocytes. Antioxidants 2021, 10, 1155. [Google Scholar] [CrossRef] [PubMed]
- Terawaki, H.; Yoshimura, K.; Hasegawa, T.; Matsuyama, Y.; Negawa, T.; Yamada, K.; Matsushima, M.; Nakayama, M.; Hosoya, T.; Era, S. Oxidative stress is enhanced in correlation with renal dysfunction: Examination with the redox state of albumin. Kidney Int. 2004, 66, 1988–1993. [Google Scholar] [CrossRef] [Green Version]
- Roumeliotis, S.; Eleftheriadis, T.; Liakopoulos, V. Is oxidative stress an issue in peritoneal dialysis? Semin. Dial. 2019, 32, 463–466. [Google Scholar] [CrossRef]
- Schupp, N.; Stopper, H.; Heidland, A. DNA Damage in Chronic Kidney Disease: Evaluation of Clinical Biomarkers. Oxidative Med. Cell. Longev. 2016, 2016, 3592042. [Google Scholar] [CrossRef] [Green Version]
- Domenici, F.A.; Vannucchi, M.T.I.; Jordão, A.A.; Meirelles, M.S.S.; Vannucchi, H. DNA oxidative damage in patients with dialysis treatment. Ren. Fail. 2005, 27, 689–694. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Watanabe, M.; Qureshi, A.R.; Heimbürger, O.; Bárány, P.; Anderstam, B.; Eriksson, M.; Stenvinkel, P.; Lindholm, B. Oxidative DNA damage and mortality in hemodialysis and peritoneal dialysis patients. Perit. Dial. Int. J. Int. Soc. Perit. Dial. 2015, 35, 206–215. [Google Scholar] [CrossRef] [Green Version]
- Hoeijmakers, J.H.J. DNA damage, aging, and cancer. N. Engl. J. Med. 2009, 361, 1475–1485. [Google Scholar] [CrossRef]
- Ishibashi, Y.; Sugimoto, T.; Ichikawa, Y.; Akatsuka, A.; Miyata, T.; Nangaku, M.; Tagawa, H.; Kurokawa, K. Glucose dialysate induces mitochondrial DNA damage in peritoneal mesothelial cells. Perit. Dial. Int. J. Int. Soc. Perit. Dial. 2002, 22, 11–21. [Google Scholar] [CrossRef]
- Hung, K.Y.; Liu, S.Y.; Yang, T.C.; Liao, T.L.; Kao, S.H. High-dialysate-glucose-induced oxidative stress and mitochondrial-mediated apoptosis in human peritoneal mesothelial cells. Oxidative Med. Cell. Longev. 2014, 2014, 642793. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Prieto, J.A.; Soto-Vargas, J.; Parra-Michel, R.; Pazarín-Villaseñor, H.L.; García-Sánchez, A.; Miranda-Díaz, A.G. The Behavior of the Type of Peritoneal Transport in the Inflammatory and Oxidative Status in Adults Under Peritoneal Dialysis. Front. Med. 2019, 6, 210. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, H.; Hoshino, Y.; Okuyama, H.; Matsuo, Y.; Yodoi, J. Thioredoxin 1 delivery as new therapeutics. Adv. Drug Deliv. Rev. 2009, 61, 303–309. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Li, Y.; Zhang, W.; Chen, J.; Deng, W.; Liu, Q.; Liu, Y.; Liu, D. Role and mechanism of TXNIP in ageing-related renal fibrosis. Mech. Ageing Dev. 2021, 196, 111475. [Google Scholar] [CrossRef] [PubMed]
- Yamadera, S.; Nakamura, Y.; Inagaki, M.; Ohsawa, I.; Gotoh, H.; Goto, Y.; Sato, N.; Oguchi, T.; Gomi, Y.; Tsuji, M.; et al. Vitamin E-Coated Dialyzer Inhibits Oxidative Stress. Blood Purif. 2017, 44, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, K.; Hamada, C.; Kanda, R.; Nakano, T.; Io, H.; Horikoshi, S.; Tomino, Y. Oral Astaxanthin Supplementation Prevents Peritoneal Fibrosis in Rats. Perit. Dial. Int. J. Int. Soc. Perit. Dial. 2015, 35, 506–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.T.; Sun, X.Y.; Lin, A.X. Supplementation with high-dose trans-resveratrol improves ultrafiltration in peritoneal dialysis patients: A prospective, randomized, double-blind study. Ren. Fail. 2016, 38, 214–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Li, X.; Zhu, G.; Zhang, Y.; He, M.; Zhang, J. The role of Resveratrol-induced mitophagy/autophagy in peritoneal mesothelial cells inflammatory injury via NLRP3 inflammasome activation triggered by mitochondrial ROS. Exp. Cell Res. 2016, 341, 42–53. [Google Scholar] [CrossRef]
- Liang, R.; Wang, M.; Xu, F.; Cai, M. 1138-P: Empagliflozin Ameliorates Kidney Injury in Diabetic Nephropathy via SIRT1 and TXNIP. Diabetes 2020, 69, 1138. [Google Scholar] [CrossRef]
- Asgharpour, M.; Alirezaei, A. Herbal antioxidants in dialysis patients: A review of potential mechanisms and medical implications. Ren. Fail. 2021, 43, 351–361. [Google Scholar] [CrossRef] [PubMed]
Number (n) | Control 19 | Uremic 18 | PD 51 | EPS 19 |
---|---|---|---|---|
Age (years), median (IQR) | 52.0 (32.0–65.0) | 66.0 (48.5–71.5) | 51.0 (44.0–67.0) | 52.0 (45.0–59.0) |
Female/male (n) | 14/5 | 6/12 | 16/35 | 4/15 |
PD-duration (months) | ||||
median (IQR) | 22.0 (11.0–45.0) | 72.0 (53.0–104.0) | ||
Composition of PD-Fluid | ||||
Neutral pH (n) | 20 | 9 | ||
Acidic pH (n) | 23 | 6 | ||
Both or N.D. (n) | 8 | 4 | ||
Icodextrin (n) | 23 | 15 | ||
Transporter status | ||||
High (n) | 5 | 6 | ||
Average (n) | 16 | 9 | ||
Low (n) | 10 | 3 | ||
N.D. (n) | 20 | 1 | ||
Diabetes | excluded | excluded | excluded | excluded |
Hypertension (n,%) | 0 (0%) | 17 (94%) | 43 (84%) | 16 (84%) |
Smoking status (n,%) | 1 (5%) | 1 (6%) | 8 (16%) | 2 (11%) |
Laboratory | ||||
Haemoglobin (g/L), median (IQR) | 136.5 (124.0–151.8) | 106.0 (92.0–112.0) | 114.0 (106.8–126) | 106.0 (86.0–118.3) |
N.D. (n) | 9 | 5 | 1 | |
Leucocytes (109/L), median (IQR) | 5.7 (5.0–7.1) | 5.8 (5.1–6.5) | 7.1 (5.6–7.1) | 6.7 (5.1–8.8) |
N.D. (n) | 9 | 4 | 1 | |
Phosphate (mmol/L), median (IQR) | 1.8 (1.3–2.1) | 1.4 (1.1–1.8) | 1.5 (1.1–1.7) | |
N.D. (n) | 7 | 3 | ||
Calcium (mmol/L), median (IQR) | 2.3 (2.2–2.4) | 2.1 (2.0–2.2) | 2.3 (2.2–2.5) | 2.3 (2.1–2.4) |
N.D. (n) | 9 | 5 | 1 | |
PTH (pmol/L), median (IQR) | 28.4 (20.6–32.3) | 25.1 (12.0–31.0) | 18.7 (4.5–78.2) | |
N.D. (n) | 5 | 15 | 5 | |
Urea (mg/dL), median (IQR) | 152.0 (121.5–185.5) | 96.5 (62.8–132.0) | 101.0 (67.3–113.3) | |
N.D. (n) | 7 | 1 | ||
Creatinine (mg/dL), median (IQR) | 0.8 (0.7–1.0) | 6.1 (5.2–7.0) | 6.7 (4.1–9.9) | 6.8 (5.6–8.9) |
N.D. (n) | 9 | 4 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oberacker, T.; Fritz, P.; Schanz, M.; Alscher, M.D.; Ketteler, M.; Schricker, S. Enhanced Oxidative DNA-Damage in Peritoneal Dialysis Patients via the TXNIP/TRX Axis. Antioxidants 2022, 11, 1124. https://doi.org/10.3390/antiox11061124
Oberacker T, Fritz P, Schanz M, Alscher MD, Ketteler M, Schricker S. Enhanced Oxidative DNA-Damage in Peritoneal Dialysis Patients via the TXNIP/TRX Axis. Antioxidants. 2022; 11(6):1124. https://doi.org/10.3390/antiox11061124
Chicago/Turabian StyleOberacker, Tina, Peter Fritz, Moritz Schanz, Mark Dominik Alscher, Markus Ketteler, and Severin Schricker. 2022. "Enhanced Oxidative DNA-Damage in Peritoneal Dialysis Patients via the TXNIP/TRX Axis" Antioxidants 11, no. 6: 1124. https://doi.org/10.3390/antiox11061124
APA StyleOberacker, T., Fritz, P., Schanz, M., Alscher, M. D., Ketteler, M., & Schricker, S. (2022). Enhanced Oxidative DNA-Damage in Peritoneal Dialysis Patients via the TXNIP/TRX Axis. Antioxidants, 11(6), 1124. https://doi.org/10.3390/antiox11061124