Fingertip-Measured Skin Carotenoids and Advanced Glycation End Product Levels in Glaucoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Measurement of Carotenoids in the Fingertip Skin
2.3. Measurement of AGEs in the Fingertip Skin
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weinreb, R.N.; Khaw, P.T. Primary open-angle glaucoma. Lancet 2004, 363, 1711–1720. [Google Scholar] [CrossRef]
- Jonas, J.B.; Aung, T.; Bourne, R.R.; Bron, A.M.; Ritch, R.; Panda-Jonas, S. Glaucoma. Lancet 2017, 390, 2183–2193. [Google Scholar] [CrossRef]
- Foster, A.; Resnikoff, S. The impact of Vision 2020 on global blindness. Eye 2005, 19, 1133–1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwase, A.; Suzuki, Y.; Araie, M.; Yamamoto, T.; Abe, H.; Shirato, S.; Kuwayama, Y.; Mishima, H.K.; Shimizu, H.; Tomita, G.; et al. The prevalence of primary open-angle glaucoma in Japanese: The Tajimi Study. Ophthalmology 2004, 111, 1641–1648. [Google Scholar] [CrossRef]
- Lim, R. The surgical management of glaucoma: A review. Clin. Exp. Ophthalmol. 2022, 50, 213–231. [Google Scholar] [CrossRef]
- Casson, R.J. Medical therapy for glaucoma: A review. Clin. Exp. Ophthalmol. 2022, 50, 198–212. [Google Scholar] [CrossRef]
- Mozaffarieh, M.; Grieshaber, M.C.; Flammer, J. Oxygen and blood flow: Players in the pathogenesis of glaucoma. Mol. Vis. 2008, 14, 224–233. [Google Scholar] [PubMed]
- Vernazza, S.; Oddone, F.; Tirendi, S.; Bassi, A.M. Risk Factors for Retinal Ganglion Cell Distress in Glaucoma and Neuroprotective Potential Intervention. Int. J. Mol. Sci. 2021, 22, 7994. [Google Scholar] [CrossRef]
- Pinazo-Duran, M.D.; Shoaie-Nia, K.; Zanon-Moreno, V.; Sanz-Gonzalez, S.M.; Del Castillo, J.B.; Garcia-Medina, J.J. Strategies to Reduce Oxidative Stress in Glaucoma Patients. Curr. Neuropharmacol. 2018, 16, 903–918. [Google Scholar] [CrossRef]
- Chrysostomou, V.; Rezania, F.; Trounce, I.A.; Crowston, J.G. Oxidative stress and mitochondrial dysfunction in glaucoma. Curr. Opin. Pharmacol. 2013, 13, 12–15. [Google Scholar] [CrossRef]
- Tezel, G. Oxidative stress in glaucomatous neurodegeneration: Mechanisms and consequences. Prog. Retin. Eye Res. 2006, 25, 490–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Hondur, G.; Tezel, G. Antioxidant Treatment Limits Neuroinflammation in Experimental Glaucoma. Investig. Ophthalmol. Vis. Sci. 2016, 57, 2344–2354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dziedziak, J.; Kasarello, K.; Cudnoch-Jedrzejewska, A. Dietary Antioxidants in Age-Related Macular Degeneration and Glaucoma. Antioxidants 2021, 10, 1743. [Google Scholar] [CrossRef] [PubMed]
- Tezel, G. Molecular regulation of neuroinflammation in glaucoma: Current knowledge and the ongoing search for new treatment targets. Prog. Retin. Eye. Res. 2022, 87, 100998. [Google Scholar] [CrossRef] [PubMed]
- Kang, E.Y.; Liu, P.K.; Wen, Y.T.; Quinn, P.M.J.; Levi, S.R.; Wang, N.K.; Tsai, R.K. Role of Oxidative Stress in Ocular Diseases Associated with Retinal Ganglion Cells Degeneration. Antioxidants 2021, 10, 1948. [Google Scholar] [CrossRef]
- Tanito, M.; Kaidzu, S.; Takai, Y.; Ohira, A. Correlation between Systemic Oxidative Stress and Intraocular Pressure Level. PLoS ONE 2015, 10, e0133582. [Google Scholar] [CrossRef] [Green Version]
- Tanito, M.; Kaidzu, S.; Takai, Y.; Ohira, A. Association between systemic oxidative stress and visual field damage in open-angle glaucoma. Sci. Rep. 2016, 6, 25792. [Google Scholar] [CrossRef] [Green Version]
- Takayanagi, Y.; Takai, Y.; Kaidzu, S.; Tanito, M. Evaluation of Redox Profiles of the Serum and Aqueous Humor in Patients with Primary Open-Angle Glaucoma and Exfoliation Glaucoma. Antioxidants 2020, 9, 1305. [Google Scholar] [CrossRef]
- Fiedor, J.; Burda, K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients 2014, 6, 466–488. [Google Scholar] [CrossRef] [Green Version]
- Obana, A.; Gohto, Y.; Asaoka, R.; Gellermann, W.; Bernstein, P.S. Lutein and Zeaxanthin Distribution in the Healthy Macula and Its Association with Various Demographic Factors Examined in Pseudophakic Eyes. Antioxidants 2021, 10, 1857. [Google Scholar] [CrossRef]
- Khachik, F.; Bernstein, P.S.; Garland, D.L. Identification of lutein and zeaxanthin oxidation products in human and monkey retinas. Investig. Ophthalmol. Vis. Sci. 1997, 38, 1802–1811. [Google Scholar]
- Krinsky, N.I.; Landrum, J.T.; Bone, R.A. Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu. Rev. Nutr. 2003, 23, 171–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohm, V.; Lietz, G.; Olmedilla-Alonso, B.; Phelan, D.; Reboul, E.; Banati, D.; Borel, P.; Corte-Real, J.; de Lera, A.R.; Desmarchelier, C.; et al. From carotenoid intake to carotenoid blood and tissue concentrations-implications for dietary intake recommendations. Nutr. Rev. 2021, 79, 544–573. [Google Scholar] [CrossRef]
- Giaconi, J.A.; Yu, F.; Stone, K.L.; Pedula, K.L.; Ensrud, K.E.; Cauley, J.A.; Hochberg, M.C.; Coleman, A.L.; Study of Osteoporotic Fractures Research, G. The association of consumption of fruits/vegetables with decreased risk of glaucoma among older African-American women in the study of osteoporotic fractures. Am. J. Ophthalmol. 2012, 154, 635–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, J.H.; Pasquale, L.R.; Willett, W.; Rosner, B.; Egan, K.M.; Faberowski, N.; Hankinson, S.E. Antioxidant intake and primary open-angle glaucoma: A prospective study. Am. J. Epidemiol. 2003, 158, 337–346. [Google Scholar] [CrossRef] [Green Version]
- Lem, D.W.; Gierhart, D.L.; Davey, P.G. Carotenoids in the Management of Glaucoma: A Systematic Review of the Evidence. Nutrients 2021, 13, 1949. [Google Scholar] [CrossRef]
- Siah, W.F.; O’Brien, C.; Loughman, J.J. Macular pigment is associated with glare-affected visual function and central visual field loss in glaucoma. Br. J. Ophthalmol. 2018, 102, 929–935. [Google Scholar] [CrossRef]
- Obana, A.; Gohto, Y.; Nakazawa, R.; Moriyama, T.; Gellermann, W.; Bernstein, P.S. Effect of an antioxidant supplement containing high dose lutein and zeaxanthin on macular pigment and skin carotenoid levels. Sci. Rep. 2020, 10, 10262. [Google Scholar] [CrossRef]
- Yoshizako, H.; Hara, K.; Takai, Y.; Kaidzu, S.; Obana, A.; Ohira, A. Comparison of macular pigment and serum lutein concentration changes between free lutein and lutein esters supplements in Japanese subjects. Acta Ophthalmol. 2016, 94, e411–e416. [Google Scholar] [CrossRef]
- Obana, A.; Tanito, M.; Gohto, Y.; Okazaki, S.; Gellermann, W.; Bernstein, P.S. Changes in Macular Pigment Optical Density and Serum Lutein Concentration in Japanese Subjects Taking Two Different Lutein Supplements. PLoS ONE 2015, 10, e0139257. [Google Scholar] [CrossRef]
- Tanito, M.; Obana, A.; Gohto, Y.; Okazaki, S.; Gellermann, W.; Ohira, A. Macular pigment density changes in Japanese individuals supplemented with lutein or zeaxanthin: Quantification via resonance Raman spectrophotometry and autofluorescence imaging. Jpn. J. Ophthalmol. 2012, 56, 488–496. [Google Scholar] [CrossRef]
- Sanz-González, S.M.; Raga-Cervera, J.; Aguirre Lipperheide, M.; Zanón-Moreno, V.; Chiner, V.; Ramírez, A.I.; Pinazo-Durán, M.D. Effect of an oral supplementation with a formula containing R-lipoic acid in glaucoma patients. Arch. De La Soc. Esp. De Oftalmol. (Engl. Ed.) 2020, 95, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Medina, J.J.; Garcia-Medina, M.; Garrido-Fernandez, P.; Galvan-Espinosa, J.; Garcia-Maturana, C.; Zanon-Moreno, V.; Pinazo-Duran, M.D. A two-year follow-up of oral antioxidant supplementation in primary open-angle glaucoma: An open-label, randomized, controlled trial. Acta Ophthalmol. 2015, 93, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Romeo Villadoniga, S.; Rodriguez Garcia, E.; Sagastagoia Epelde, O.; Alvarez Diaz, M.D.; Domingo Pedrol, J.C. Effects of Oral Supplementation with Docosahexaenoic Acid (DHA) plus Antioxidants in Pseudoexfoliative Glaucoma: A 6-Month Open-Label Randomized Trial. J. Ophthalmol. 2018, 2018, 8259371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ermakov, I.V.; Ermakova, M.; Sharifzadeh, M.; Gorusupudi, A.; Farnsworth, K.; Bernstein, P.S.; Stookey, J.; Evans, J.; Arana, T.; Tao-Lew, L.; et al. Optical assessment of skin carotenoid status as a biomarker of vegetable and fruit intake. Arch. Biochem. Biophys. 2018, 646, 46–54. [Google Scholar] [CrossRef]
- Takayanagi, Y.; Obana, A.; Muto, S.; Asaoka, R.; Tanito, M.; Ermakov, I.V.; Bernstein, P.S.; Gellermann, W. Relationships between Skin Carotenoid Levels and Metabolic Syndrome. Antioxidants 2021, 11, 14. [Google Scholar] [CrossRef] [PubMed]
- Kandarakis, S.A.; Piperi, C.; Topouzis, F.; Papavassiliou, A.G. Emerging role of advanced glycation-end products (AGEs) in the pathobiology of eye diseases. Prog. Retin. Eye Res. 2014, 42, 85–102. [Google Scholar] [CrossRef]
- Thornalley, P.J.; Langborg, A.; Minhas, H.S. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem. J. 1999, 344 Pt 1, 109–116. [Google Scholar] [CrossRef]
- Tezel, G.; Luo, C.; Yang, X. Accelerated aging in glaucoma: Immunohistochemical assessment of advanced glycation end products in the human retina and optic nerve head. Investig. Ophthalmol. Vis. Sci. 2007, 48, 1201–1211. [Google Scholar] [CrossRef]
- Shirakami, T.; Yamanaka, M.; Fujihara, J.; Matsuoka, Y.; Gohto, Y.; Obana, A.; Tanito, M. Advanced Glycation End Product Accumulation in Subjects with Open-Angle Glaucoma with and without Exfoliation. Antioxidants 2020, 9, 755. [Google Scholar] [CrossRef]
- Yamanaka, M.; Matsumura, T.; Ohno, R.; Fujiwara, Y.; Shinagawa, M.; Sugawa, H.; Hatano, K.; Shirakawa, J.; Kinoshita, H.; Ito, K.; et al. Non-invasive measurement of skin autofluorescence to evaluate diabetic complications. J. Clin. Biochem. Nutr. 2016, 58, 135–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meerwaldt, R.; Graaff, R.; Oomen, P.H.N.; Links, T.P.; Jager, J.J.; Alderson, N.L.; Thorpe, S.R.; Baynes, J.W.; Gans, R.O.B.; Smit, A.J. Simple non-invasive assessment of advanced glycation endproduct accumulation. Diabetologia 2004, 47, 1324–1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bentata, R.; Cougnard-Grégoire, A.; Delyfer, M.N.; Delcourt, C.; Blanco, L.; Pupier, E.; Rougier, M.B.; Rajaobelina, K.; Hugo, M.; Korobelnik, J.F.; et al. Skin autofluorescence, renal insufficiency and retinopathy in patients with type 2 diabetes. J. Diabetes Its Complicat. 2017, 31, 619–623. [Google Scholar] [CrossRef]
- Yasuda, M.; Shimura, M.; Kunikata, H.; Kanazawa, H.; Yasuda, K.; Tanaka, Y.; Konno, H.; Takahashi, M.; Kokubun, T.; Maruyama, K.; et al. Relationship of skin autofluorescence to severity of retinopathy in type 2 diabetes. Curr. Eye Res. 2015, 40, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Gerrits, E.G.; Lutgers, H.L.; Kleefstra, N.; Graaff, R.; Groenier, K.H.; Smit, A.J.; Gans, R.O.; Bilo, H.J. Skin autofluorescence: A tool to identify type 2 diabetic patients at risk for developing microvascular complications. Diabetes Care 2008, 31, 517–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grover, S.; Fishman, G.A.; Anderson, R.J.; Tozatti, M.S.V.; Heckenlively, J.R.; Weleber, R.G.; Edwards, A.O.; Brown, J. Visual acuity impairment in patients with retinitis pigmentosa at age 45 years or older. Ophthalmology 1999, 106, 1780–1785. [Google Scholar] [CrossRef]
- Ermakov, I.V.; Gellermann, W. Dermal carotenoid measurements via pressure mediated reflection spectroscopy. J. Biophotonics 2012, 5, 559–570. [Google Scholar] [CrossRef]
- Sugiura, M.; Nakamura, M.; Ogawa, K.; Ikoma, Y.; Matsumoto, H.; Ando, F.; Shimokata, H.; Yano, M. Synergistic interaction of cigarette smoking and alcohol drinking with serum carotenoid concentrations: Findings from a middle-aged Japanese population. Br. J. Nutr. 2009, 102, 1211–1219. [Google Scholar] [CrossRef] [Green Version]
- Bone, R.A.; Davey, P.G.; Roman, B.O.; Evans, D.W. Efficacy of Commercially Available Nutritional Supplements: Analysis of Serum Uptake, Macular Pigment Optical Density and Visual Functional Response. Nutrients 2020, 12, 1321. [Google Scholar] [CrossRef]
- Schlotzer-Schrehardt, U.; Khor, C.C. Pseudoexfoliation syndrome and glaucoma: From genes to disease mechanisms. Curr. Opin. Ophthalmol. 2021, 32, 118–128. [Google Scholar] [CrossRef]
- Jinno, M.; Nagai, R.; Takeuchi, M.; Watanabe, A.; Teruya, K.; Sugawa, H.; Hatakeyama, N.; Jinno, Y. Trapa bispinosa Roxb. extract lowers advanced glycation end-products and increases live births in older patients with assisted reproductive technology: A randomized controlled trial. Reprod. Biol. Endocrinol. 2021, 19, 149. [Google Scholar] [CrossRef] [PubMed]
- Block, G.; Hartman, A.M.; Dresser, C.M.; Carroll, M.D.; Gannon, J.; Gardner, L. A data-based approach to diet questionnaire design and testing. Am. J. Epidemiol. 1986, 124, 453–469. [Google Scholar] [CrossRef] [PubMed]
Group | Control | PG | EG | p-Value a |
---|---|---|---|---|
137 | 358 | 168 | ||
Age (years) | ||||
n | 137 | 358 | 168 | |
Mean ± SD | 73.4 ± 10.9 | 66.1 ± 10.7 | 75.1 ± 8.6 | <0.0001 ** |
95% CI | 71.5 to 75.2 | 65.0 to 67.2 | 73.7 to 76.3 | |
vs. control, p < 0.0001 b ## | vs. control, p = 0.1322 b | |||
vs. PG, p < 0.0001 b ## | ||||
Sex | ||||
Male, n (%) | 64 (47) | 203 (57) | 90 (54) | 0.1364 |
Female, n (%) | 73 (53) | 155 (43) | 78 (46) | |
BCVA (logMAR) | ||||
n | 137 | 358 | 168 | |
Mean ± SD | 0.16 ± 0.22 | 0.19 ± 0.42 | 0.35 ± 0.61 | 0.0003 ** |
95% CI | 0.13 to 0.20 | 0.15 to 0.24 | 0.25 to 0.44 | |
vs. control, p = 0.4680 b | vs. control, p = 0.0010 b ## | |||
vs. PG, p = 0.0008 b ## | ||||
IOP (mmHg) | ||||
n | 90 | 357 | 168 | |
Mean ± SD | 15.0 ± 2.7 | 15.4 ± 7.0 | 18.0 ± 9.2 | 0.0004 ** |
95% CI | 14.4 to 15.6 | 14.7 to 16.2 | 16.6 to 19.4 | |
vs. control, p = 0.5504 b | vs. control, p = 0.0030 b ## | |||
vs. PG, p = 0.0006 b ## | ||||
Highest IOP (mmHg) | ||||
92 | 358 | 168 | ||
Mean ± SD | 15.4 ± 3.5 | 21.4 ± 8.6 | 27.1 ± 11.4 | <0.0001 ** |
95% CI | 14.6 to 16.1 | 20.5 to 22.3 | 25.4 to 28.9 | |
vs. control, p < 0.0001 b ## | vs. control, p < 0.0001 b ## | |||
vs. PG, p < 0.0001 b ## | ||||
No. of glaucoma medications | ||||
n | 137 | 358 | 168 | |
Mean ± SD | 0 | 2.5 ± 1.3 | 2.5 ± 1.4 | < 0.0001 ** |
95% CI | 2.4 to 2.7 | 2.3 to 2.7 | ||
vs. control, p < 0.0001 b ## | vs. control, p < 0.0001b ## | |||
vs. PG, p = 0.8741b | ||||
MD (dB) | ||||
n | 358 | 168 | ||
Mean ± SD | – | −15.9 ± 8.4 | −18.0 ± 9.8 | 0.0114 ** |
95% CI | −16.8 to −15.0 | −19.4 to –16.7 | ||
Pseudophakia | ||||
Yes, n (%) | 19 (14) | 179 (50) | 119 (71) | <0.0001 ** |
No, n (%) | 118 (86) | 179 (50) | 49 (29) | |
vs. control, p < 0.0001 b ## | vs. control, p < 0.0001 b ## | |||
vs. PG, p < 0.0001 b ## | ||||
Current smoking | ||||
Yes, n (%) | 15 (11) | 41 (12) | 18 (11) | 0.9586 |
No, n (%) | 122 (89) | 315 (88) | 150 (89) | |
Diabetes | ||||
Yes, n (%) | 21 (21) | 53 (23) | 26 (20) | 0.8220 |
No, n (%) | 78 (79) | 177 (77) | 102 (80) | |
Hypertension | ||||
Yes, n (%) | 48 (49) | 133 (55) | 85 (65) | 0.0449 * |
No, n (%) | 49 (51) | 107 (45) | 45 (35) | |
vs. control, p = 0.3366 b | vs. control, p = 0.0205 b | |||
vs. PG, p = 0.0764 b | ||||
Vegetable intake score | ||||
n | 134 | 349 | 167 | |
0, n (%) | 11 (8) | 25 (7) | 16 (10) | 0.8103 |
1, n (%) | 23 (17) | 48 (14) | 28 (17) | |
2, n (%) | 72 (54) | 191 (55) | 89 (53) | |
3, n (%) | 28 (21) | 85 (24) | 34 (20) | |
Intraocular surgery | ||||
Yes, n (%) | 19 (14) | 223 (62) | 122 (73) | <0.0001 ** |
No, n (%) | 118 (86) | 135 (38) | 46 (27) | |
vs. control, p < 0.0001 b ## | vs. control, p < 0.0001 b ## | |||
vs. PG, p = 0.0235 b | ||||
SCs (OD) | ||||
n | 137 | 358 | 168 | |
Mean ± SD | 327.8 ± 125.7 | 336.2 ± 125.6 | 330.6 ± 114.0 | 0.7974 |
95% CI | 306.6 to 348.9 | 323.2 to 349.3 | 313.2 to 347.9 | |
AGEs (AU) | ||||
n | 137 | 358 | 168 | |
Mean ± SD | 0.45 ± 0.08 | 0.44 ± 0.08 | 0.48 ± 0.10 | <0.0001 ** |
95% CI | 0.43 to 0.46 | 0.43 to 0.45 | 0.46 to 0.49 | |
vs. control, p = 0.6818 b | vs. control, p = 0.0012 b ## | |||
vs. PG, p < 0.0001 b ## |
Parameters | r | Lower 95% CI | Upper 95% CI | p-Value |
---|---|---|---|---|
Age (years) | 0.03 | −0.05 | 0.10 | 0.4966 |
BCVA (logMAR) | −0.06 | −0.13 | 0.02 | 0.1359 |
IOP (mmHg) | 0.03 | −0.05 | 0.11 | 0.4243 |
Highest IOP (mmHg) | −0.02 | −0.10 | 0.06 | 0.6725 |
No. of glaucoma medications | 0.06 | −0.02 | 0.14 | 0.1200 |
Parameters | Mean ± SD (95% CI) | Mean ± SD (95% CI) | p-Value |
---|---|---|---|
Sex | Male, 310 ± 122 (297 to 323) | Female, 360 ± 118 (347 to 374) | <0.0001 ** |
Pseudophakia | Yes, 332 ± 122 (319 to 346) | No, 334 ± 123 (321 to 347) | 0.8133 |
Glaucoma type | PG, 336 ± 126 (323 to 349) | EG, 331 ± 114 (313 to 348) | 0.6210 |
Intraocular surgery | Yes, 340 ± 123 (326 to 353) | No, 328 ± 123 (326 to 353) | 0.2360 |
Current smoking | Yes, 252 ± 84 (232 to 271) | No, 344 ± 123 (333 to 354) | <0.0001 ** |
Diabetes | Yes, 342 ± 136 (315 to 369) | No, 330 ± 119 (318 to 343) | 0.4285 |
Hypertension | Yes, 325 ± 128 (309 to 340) | No, 341 ± 118 (325 to 358) | 0.1284 |
Parameters | r | Lower 95% CI | Upper 95% CI | p-Value |
---|---|---|---|---|
Age (year) | 0.17 | 0.10 | 0.24 | <0.0001 ** |
BCVA (logMAR) | 0.15 | 0.08 | 0.23 | <0.0001 ** |
IOP (mmHg) | 0.03 | −0.05 | 0.10 | 0.5333 |
Highest IOP (mmHg) | 0.00 | −0.08 | 0.08 | 0.9929 |
No. of glaucoma medications | 0.01 | −0.07 | 0.08 | 0.8753 |
Parameters | Mean ± SD (95% CI) | Mean ± SD (95% CI) | p-Value |
---|---|---|---|
Sex | Male, 0.46 ± 0.09 (0.45 to 0.47) | Female, 0.45 ± 0.09 (0.44 to 0.46) | 0.1209 |
Pseudophakia | Yes, 0.46 ± 0.09 (0.45 to 0.47) | No, 0.45 ± 0.08 (0.44 to 0.46) | 0.3183 |
Glaucoma type | PG, 0.44 ± 0.08 (0.43 to 0.45) | EG, 0.48 ± 0.10 (0.46 to 0.49) | <0.0001 ** |
Intraocular surgery | Yes, 0.46 ± 0.09 (0.45 to 0.47) | No, 0.45 ± 0.08 (0.44 to 0.46) | 0.2130 |
Current smoking | Yes, 0.40 ± 0.09 (0.39 to 0.42) | No, 0.46 ± 0.08 (0.45 to 0.47) | <0.0001 ** |
Diabetes | Yes, 0.46 ± 0.09 (0.45 to 0.48) | No, 0.45 ± 0.09 (0.44 to 0.46) | 0.2648 |
Hypertension | Yes, 0.46 ± 0.09 (0.45 to 0.47) | No, 0.45 ± 0.08 (0.44 to 0.46) | 0.1284 |
Vegetable Intake Score | |||||
---|---|---|---|---|---|
0 | 1 | 2 | 3 | ||
n | 52 | 99 | 352 | 147 | |
Parameters | Mean ± SD (95% CI) | Mean ± SD (95% CI) | Mean ± SD (95% CI) | Mean ± SD (95% CI) | p-Value a |
SCs (OD) | 282 ± 112 (255 to 317) | 267 ± 94 (249 to 286) | 335 ± 118 (323 to 347) | 393 ± 124 (373 to 413) | <0.0001 ** |
vs. 0, p = 0.1731 b | vs. 0, p = 0.0047 b # | vs. 0, p < 0.0001 b ## | |||
vs. 1, p < 0.0001 b ## | vs. 1, p < 0.0001 b ## | ||||
vs. 2, p < 0.0001 b ## | |||||
AGEs (AU) | 0.47 ± 0.10 (0.45 to 0.50) | 0.45 ± 0.09 (0.44 to 0.47) | 0.45 ± 0.09 (0.45 to 0.46) | 0.44 ± 0.08 (0.43 to 0.46) | 0.1956 |
Parameters | Estimate | Lower 95% CI | Upper 95% CI | p Value | Standard β |
---|---|---|---|---|---|
Age (year) | 0.64 | −0.62 | 1.91 | 0.3200 | 0.06 |
Male (female) | −16.98 | −28.65 | −5.30 | 0.0045 ** | −0.14 |
BCVA (logMAR) | −7.91 | −33.16 | 17.33 | 0.5380 | −0.03 |
IOP (mmHg) | −0.56 | −2.63 | 1.52 | 0.5984 | −0.04 |
Highest IOP (mmHg) | 0.80 | −1.12 | 2.72 | 0.4121 | 0.06 |
No. of glaucoma medications | 6.70 | −2.96 | 16.38 | 0.1733 | 0.09 |
AGEs (AU) | −346.64 | −484.02 | −209.26 | <0.0001 ** | −0.24 |
Phakia (pseudophakia) | −17.92 | −43.48 | 7.63 | 0.1686 | −0.14 |
Intraocular surgery, yes (no) | −27.17 | −52.54 | −1.79 | 0.0359 * | −0.22 |
PG (control) | −4.08 | −23.08 | 14.93 | 0.6734 | −0.02 |
EG (control) | 9.98 | −11.09 | 31.05 | 0.3524 | 0.05 |
Current smoking, yes (no) | −41.72 | −61.15 | −22.30 | <0.0001 ** | −0.21 |
Diabetes, yes (no) | 15.79 | 0.91 | 30.67 | 0.0376 * | 0.10 |
Hypertension, yes (no) | −7.97 | −19.73 | 3.79 | 0.1837 | −0.06 |
Vegetable intake score 1 (0) | −41.04 | −66.06 | −16.03 | 0.0014 ** | −0.16 |
Vegetable intake score 2 (0) | 10.60 | −7.17 | 28.36 | 0.2415 | 0.05 |
Vegetable intake score 3 (0) | 48.79 | 26.75 | 70.83 | <0.0001 ** | 0.21 |
Parameters | Estimate | Lower 95% CI | Upper 95% CI | p-Value | Standard β |
---|---|---|---|---|---|
Age (year) | 0.001 | −0.00009 | 0.002 | 0.0784 | 0.10 |
Male (female) | 0.078 | −0.0005 | 0.016 | 0.0661 | 0.09 |
BCVA (logMAR) | 0.003 | −0.015 | 0.021 | 0.7230 | 0.02 |
IOP (mmHg) | −0.002 | −0.002 | 0.013 | 0.8295 | −0.02 |
Highest IOP (mmHg) | −0.003 | −0.002 | 0.001 | 0.6913 | −0.03 |
No. of glaucoma medications | 0.057 | −0.001 | 0.013 | 0.1040 | 0.10 |
Phakia (pseudophakia) | 0.019 | 0.0008 | 0.037 | 0.2203 | 0.22 |
Intraocular surgery, yes (no) | 0.014 | −0.004 | 0.032 | 0.1315 | 0.16 |
SCs (OD) | −0.0002 | −0.0002 | −0.001 | <0.0001 ** | −0.25 |
PG (control) | −0.018 | −0.031 | −0.004 | 0.0112 * | −0.15 |
EG (control) | 0.018 | 0.003 | 0.033 | 0.0173 * | 0.14 |
Current smoking, yes (no) | −0.036 | −0.050 | −0.022 | <0.0001 ** | −0.26 |
Diabetes, yes (no) | 0.008 | −0.002 | 0.019 | 0.1237 | 0.08 |
Hypertension, yes (no) | 0.004 | −0.005 | 0.012 | 0.4099 | 0.04 |
Vegetable intake score 1 (0) | −0.006 | −0.024 | 0.012 | 0.5120 | −0.03 |
Vegetable intake score 2 (0) | −0.008 | −0.021 | 0.005 | 0.2181 | −0.06 |
Vegetable intake score 3 (0) | −0.005 | −0.021 | 0.012 | 0.5814 | −0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadoh, Y.; Takayanagi, Y.; Sasaki, J.; Tanito, M. Fingertip-Measured Skin Carotenoids and Advanced Glycation End Product Levels in Glaucoma. Antioxidants 2022, 11, 1138. https://doi.org/10.3390/antiox11061138
Kadoh Y, Takayanagi Y, Sasaki J, Tanito M. Fingertip-Measured Skin Carotenoids and Advanced Glycation End Product Levels in Glaucoma. Antioxidants. 2022; 11(6):1138. https://doi.org/10.3390/antiox11061138
Chicago/Turabian StyleKadoh, Yoichi, Yuji Takayanagi, Junichi Sasaki, and Masaki Tanito. 2022. "Fingertip-Measured Skin Carotenoids and Advanced Glycation End Product Levels in Glaucoma" Antioxidants 11, no. 6: 1138. https://doi.org/10.3390/antiox11061138
APA StyleKadoh, Y., Takayanagi, Y., Sasaki, J., & Tanito, M. (2022). Fingertip-Measured Skin Carotenoids and Advanced Glycation End Product Levels in Glaucoma. Antioxidants, 11(6), 1138. https://doi.org/10.3390/antiox11061138