Methods of Isolation of Active Substances from Garlic (Allium sativum L.) and Its Impact on the Composition and Biological Properties of Garlic Extracts
Abstract
:1. Introduction
2. Methods of Isolation of Active Compounds
2.1. Aqueous Solutions
2.2. Alcohol Solutions
2.3. Other Organic Solvents
2.4. Garlic Essential Oil Quality Depending on the Extraction Method
2.5. Other Factors
3. Biological Properties of Garlic Extracts
3.1. Antibacterial Properties
3.1.1. Antibacterial Activity of Aqueous Extracts
3.1.2. Antibacterial Activity of Alcoholic Extracts
3.1.3. Antibacterial Activity of Other Types of Extracts
3.2. Antioxidant Properties
3.3. Anticancer Properties
3.4. Other Biological Activities of Garlic Extracts
3.4.1. Antiviral, Antifungal, Antiparasitic, and Insecticidal Properties
3.4.2. Antiinflammatory Activity and Treatment of Cardiovascular Diseases
3.4.3. Neuroprotective Properties
3.4.4. Other Health Properties of Garlic Extracts
4. Bioavailability of Garlic Extracts
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- De Greef, D.; Barton, E.M.; Sandberg, E.N.; Croley, C.R.; Pumarol, J.; Wong, T.L.; Das, N.; Bishayee, A. Anticancer potential of garlic and its bioactive constituents: A systematic and comprehensive review. Semin. Cancer Biol. 2021, 73, 219–264. [Google Scholar] [CrossRef]
- Petrovska, B.; Cekovska, S. Extracts from the history and medical properties of garlic. Pharmacogn. Rev. 2010, 4, 106. [Google Scholar] [CrossRef] [Green Version]
- El-Saber Batiha, G.; Magdy Beshbishy, A.; Wasef, L.G.; Elewa, Y.H.A.; Al-Sagan, A.A.; Abd El-Hack, M.E.; Taha, A.E.; Abd-Elhakim, Y.M.; Prasad Devkota, H. Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review. Nutrients 2020, 12, 872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikaili, P.; Maadirad, S.; Moloudizargari, M.; Aghajanshakeri, S.; Sarahroodi, S. Therapeutic uses and pharmacological properties of garlic, shallot, and their biologically active compounds. Iran. J. Basic Med. Sci. 2013, 16, 1031–1048. [Google Scholar]
- Martins, N.; Petropoulos, S.; Ferreira, I.C.F.R. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review. Food Chem. 2016, 211, 41–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subramanian, M.S.; Nandagopal, G.M.S.; Nordin, S.A.; Thilakavathy, K.; Joseph, N. Prevailing knowledge on the bioavailability and biological activities of Sulphur compounds from Alliums: A potential drug candidate. Molecules 2020, 25, 4111. [Google Scholar] [CrossRef] [PubMed]
- Bontempo, P.; Stiuso, P.; Lama, S.; Napolitano, A.; Piacente, S.; Altucci, L.; Molinari, A.M.; De Masi, L.; Rigano, D. Metabolite Profile and In Vitro Beneficial Effects of Black Garlic (Allium sativum L.) Polar Extract. Nutrients 2021, 13, 2771. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.-W.; Lin, L.-G.; Ye, W.-C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajac, J.; Nikolovski, B.; Kocić-Tanackov, S.; Tomšik, A.; Mandić, A.; Gvozdanović-Varga, J.; Vlajić, S.; Vujanović, M.; Radojković, M. Extraction of different garlic varieties (A. sativum L.)—Determination of organosulfur compounds and microbiological activity. In Proceedings of the IV International Congress Food Technology, Quality and Safety, Novi Sad, Serbia, 23–25 October 2018; p. 82. [Google Scholar]
- Zhang, T.; Wei, X.; Miao, Z.; Hassan, H.; Song, Y.; Fan, M. Screening for antioxidant and antibacterial activities of phenolics from Golden Delicious apple pomace. Chem. Cent. J. 2016, 10, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massias, A.; Boisard, S.; Baccaunaud, M.; Leal Calderon, F.; Subra-Paternault, P. Recovery of phenolics from apple peels using CO2 + ethanol extraction: Kinetics and antioxidant activity of extracts. J. Supercrit. Fluids 2015, 98, 172–182. [Google Scholar] [CrossRef]
- Lou, S.N.; Lai, Y.C.; Hsu, Y.S.; Ho, C.T. Phenolic content, antioxidant activity and effective compounds of kumquat extracted by different solvents. Food Chem. 2016, 197, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Krakowska-Sieprawska, A.; Kiełbasa, A.; Rafińska, K.; Ligor, M.; Buszewski, B. Modern Methods of Pre-Treatment of Plant Material for the Extraction of Bioactive Compounds. Molecules 2022, 27, 730. [Google Scholar] [CrossRef] [PubMed]
- Butsat, S.; Siriamornpun, S. Effect of solvent types and extraction times on phenolic and flavonoid contents and antioxidant activity in leaf extracts of Amomum chinense C. Int. Food Res. J. 2016, 23, 180–187. [Google Scholar]
- Cavalcanti, V.P.; Aazza, S.; Bertolucci, S.K.V.; Rocha, J.P.M.; Coelho, A.D.; Oliveira, A.J.M.; Mendes, L.C.; Pereira, M.M.A.; Morais, L.C.; Forim, M.R.; et al. Solvent mixture optimization in the extraction of bioactive compounds and antioxidant activities from garlic (Allium sativum L.). Molecules 2021, 26, 6026. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, X.; Ruan, J.; Zhuang, X.; Zhang, X.; Li, Z. Phytochemicals of garlic: Promising candidates for cancer therapy. Biomed. Pharmacother. 2020, 123, 109730. [Google Scholar] [CrossRef] [PubMed]
- U. S. Department of Agriculture. A.R.S. USDA National Nutrient Database for Standard Reference; United States Department of Agriculture: Washington, DC, USA, 2013; p. 28.
- Kacjan Marsic, N.; Necemer, M.; Veberic, R.; Poklar Ulrih, N.; Skrt, M. Effect of cultivar and fertilization on garlic yield and allicin content in bulbs at harveand during storage. Turk. J. Agric. For. 2019, 43, 414–429. [Google Scholar] [CrossRef]
- Tchórzewska, D.; Bocianowski, J.; Najda, A.; Dabrowska, A.; Winiarczyk, K. Effect of environment fluctuations on biomass and allicin level in Allium sativum (cv. Harnas, Arkus) and Allium ampeloprasum var. ampeloprasum (GHG-L). J. Appl. Bot. Food Qual. 2017, 90, 106–114. [Google Scholar]
- Szychowski, K.A.; Rybczyńska-Tkaczyk, K.; Gaweł-Bȩben, K.; Ašwieca, M.; Kara, M.; Jakubczyk, A.; Matysiak, M.; Binduga, U.E.; Gmiński, J.; Gaweł-Bęben, K.; et al. Characterization of Active Compounds of Different Garlic (Allium sativum L.) Cultivars. Pol. J. Food Nutr. Sci. 2018, 68, 73–81. [Google Scholar] [CrossRef]
- Diretto, G.; Rubio-Moraga, A.; Argandoña, J.; Castillo, P.; Gómez-Gómez, L.; Ahrazem, O. Tissue-Specific Accumulation of Sulfur Compounds and Saponins in Different Parts of Garlic Cloves from Purple and White Ecotypes. Molecules 2017, 22, 1359. [Google Scholar] [CrossRef]
- Shang, A.; Cao, S.-Y.; Xu, X.-Y.; Gan, R.-Y.; Tang, G.-Y.; Corke, H.; Mavumengwana, V.; Li, H.-B. Bioactive Compounds and Biological Functions of Garlic (Allium sativum L.). Foods 2019, 8, 246. [Google Scholar] [CrossRef] [Green Version]
- Rafe, A. Physicochemical Characteristics of Garlic (Allium sativum L.) Oil: Effect of Extraction Procedure. Int. J. Nutr. Food Sci. 2014, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Jacob, B.; Narendhirakannan, R.T. Role of medicinal plants in the management of diabetes mellitus: A review. Biotech 2019, 9, 4. [Google Scholar]
- Pârvu, M.; Moţ, C.A.; Pârvu, A.E.; Mircea, C.; Stoeber, L.; Roşca-Casian, O.; Ţigu, A.B. Allium sativum Extract Chemical Composition, Antioxidant Activity and Antifungal Effect against Meyerozyma guilliermondii and Rhodotorula mucilaginosa Causing Onychomycosis. Molecules 2019, 24, 3958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surh, Y.J. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer 2003, 3, 768–780. [Google Scholar] [CrossRef]
- Mathialagan, R.; Mansor, N.; Shamsuddin, M.R.; Uemura, Y.; Majeed, Z. Optimisation of Ultrasonic-Assisted Extraction (UAE) of Allicin from Garlic (Allium sativum L.). Chem. Eng. Trans. 2017, 56, 1747–1752. [Google Scholar]
- Li, X.; Zhu, F.; Zeng, Z. Effects of different extraction methods on antioxidant properties of blueberry anthocyanins. Open Chem. 2021, 19, 138–148. [Google Scholar] [CrossRef]
- De Martino, A.; Torricelli, P.; Abu-Zeid, H.M.; Shevchenko, A.; Siciliano, A.; Beninati, S. Synergistic Anticancer Potential of Water Garlic Extract and Copper in a Human Hepatocarcinoma Cell Line. Cancer Res. J. 2016, 4, 28. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Gupta, S.; Huang, J.-S.; Jayathilaka, L.P.; Lee, B.-S. HPLC–MTT assay: Anticancer activity of aqueous garlic extract is from allicin. Anal. Biochem. 2013, 436, 187–189. [Google Scholar] [CrossRef]
- Jasamai, M.; Hui, C.S.; Azmi, N.; Kumolosasi, E. Effect of Allium sativum (Garlic) methanol extract on viability and apoptosis of human leukemic cell lines. Trop. J. Pharm. Res. 2016, 15, 1479–1485. [Google Scholar] [CrossRef] [Green Version]
- Aminuddin, M.; Partadiredja, G.; Sari, D.C.R. The effects of black garlic (Allium sativum L.) ethanol extract on the estimated total number of Purkinje cells and motor coordination of male adolescent Wistar rats treated with monosodium glutamate. Anat. Sci. Int. 2015, 90, 75–81. [Google Scholar] [CrossRef]
- Khashan, A.A. Antibacterial activity of garlic extract (Allium sativum) against Staphylococcus aureus in vitro. Glob. J. Bio-Sci. Biotechnol. 2014, 3, 346–348. [Google Scholar]
- Lee, E.N.; Choi, Y.W.; Kim, H.K.; Park, J.K.; Kim, H.J.; Kim, M.J.; Lee, H.W.; Kim, K.-H.; Bae, S.S.; Kim, B.S.; et al. Chloroform extract of aged black garlic attenuates TNF-α-induced ROS generation, VCAM-1 expression, NF-κB activation and adhesiveness for monocytes in human umbilical vein endothelial cells. Phytother. Res. 2011, 25, 92–100. [Google Scholar] [CrossRef]
- Bhattacharyya, M.; Girish, G.V.; Karmohapatra, S.K.; Samad, S.A.; Sinha, A.K. Systemic production of IFN-α by garlic (Allium sativum) in humans. J. Interferon Cytokine Res. 2007, 27, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Najjaa, H.; Chekki, R.; Elfalleh, W.; Tlili, H.; Jaballah, S.; Bouzouita, N. Freeze-dried, oven-dried, and microencapsulation of essential oil from Allium sativum as potential preservative agents of minced meat. Food Sci. Nutr. 2020, 8, 1995–2003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, Y.; Park, H. Apoptosis induction of U937 human leukemia cells by diallyl trisulfide induces through generation of reactive oxygen species. J. Biomed. Sci. 2012, 19, 50. [Google Scholar] [CrossRef] [Green Version]
- Lefebvre, T.; Destandau, E.; Lesellier, E. Selective extraction of bioactive compounds from plants using recent extraction techniques: A review. J. Chromatogr. A 2021, 1635, 461770. [Google Scholar] [CrossRef]
- Filly, A.; Fabiano-Tixier, A.S.; Louis, C.; Fernandez, X.; Chemat, F. Water as a green solvent combined with different techniques for extraction of essential oil from lavender flowers. Comptes Rendus Chim. 2016, 19, 707–717. [Google Scholar] [CrossRef]
- Castro-Puyana, M.; Marina, M.L.; Plaza, M. Water as green extraction solvent: Principles and reasons for its use. Curr. Opin. Green Sustain. Chem. 2017, 5, 31–36. [Google Scholar] [CrossRef]
- Joshi, D.R.; Adhikari, N. An Overview on Common Organic Solvents and Their Toxicity. J. Pharm. Res. Int. 2019, 28, 1–18. [Google Scholar] [CrossRef]
- Carreira-Casais, A.; Lourenço-Lopes, C.; Otero, P.; Carpena, M.; Gonzalez Pereira, A.; Echave, J.; Soria-Lopez, A.; Chamorro, F.; Prieto, M.A.; Simal-Gandara, J. Application of Green Extraction Techniques for Natural Additives Production. In Food Additives [Working Title]; IntechOpen: London, UK, 2021. [Google Scholar]
- Ezeorba, T.P.C.; Chukwudozie, K.I.; Ezema, C.A.; Anaduaka, E.G.; Nweze, E.J.; Okeke, E.S. Potentials for health and therapeutic benefits of garlic essential oils: Recent findings and future prospects. Pharmacol. Res. Mod. Chin. Med. 2022, 3, 100075. [Google Scholar] [CrossRef]
- Dhwani, S.; Pushparaj, P.; Gurumoorthi, P. A Review on Different Extraction and Quantification Methods of Allicin from Garlic. J. Xidian Univ. 2021, 15, 183–196. [Google Scholar]
- Loghmanifar, S.; Nasiraie, L.R.; Nouri, H.; Jafarian, S. Effects of Different Extraction Methods on Antioxidant Properties and Allicin Content of Garlic. J. Food Sci. Hyg. 2020, 1, 16–25. [Google Scholar]
- Li, R.; Chen, W.C.; Wang, W.P.; Tian, W.Y.; Zhang, X.G. Extraction of essential oils from garlic (Allium sativum) using ligarine as solvent and its immunity activity in gastric cancer rat. Med. Chem. Res. 2010, 19, 1092–1105. [Google Scholar] [CrossRef]
- Tulloch, A.D.; Khondoker, M.R.; Fearon, P.; David, A.S. Associations of homelessness and residential mobility with length of stay after acute psychiatric admission. BMC Psychiatry 2012, 12, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trio, P.Z.; You, S.; He, X.; He, J.; Sakao, K.; Hou, D.-X. Chemopreventive functions and molecular mechanisms of garlic organosulfur compounds. Food Funct. 2014, 5, 833. [Google Scholar] [CrossRef] [PubMed]
- Turner, P.V.; Pekow, C.; Vasbinder, M.A.; Brabb, T. Administration of substances to laboratory animals: Equipment considerations, vehicle selection, and solute preparation. J. Am. Assoc. Lab. Anim. Sci. 2011, 50, 614–627. [Google Scholar] [PubMed]
- Kallel, F.; Driss, D.; Chaari, F.; Belghith, L.; Bouaziz, F.; Ghorbel, R.; Chaabouni, S.E. Garlic (Allium sativum L.) husk waste as a potential source of phenolic compounds: Influence of extracting solvents on its antimicrobial and antioxidant properties. Ind. Crops Prod. 2014, 62, 34–41. [Google Scholar] [CrossRef]
- Meriga, B.; Mopuri, R.; MuraliKrishna, T. Insecticidal, antimicrobial and antioxidant activities of bulb extracts of Allium sativum. Asian Pac. J. Trop. Med. 2012, 5, 391–395. [Google Scholar] [CrossRef] [Green Version]
- Kaur, R.; Tiwari, A.; Manish, M.; Maurya, I.K.; Bhatnagar, R.; Singh, S. Common garlic (Allium sativum L.) has potent Anti-Bacillus anthracis activity. J. Ethnopharmacol. 2021, 264, 113230. [Google Scholar] [CrossRef]
- Johnson, M.; Olaleye, O.; Kolawole, O. Antimicrobial and Antioxidant Properties of Aqueous Garlic (Allium sativum) Extract against Staphylococcus aureus and Pseudomonas aeruginosa. Br. Microbiol. Res. J. 2016, 14, 1–11. [Google Scholar] [CrossRef]
- Bin, C.; Al-Dhabi, N.A.; Esmail, G.A.; Arokiyaraj, S.; Arasu, M.V. Potential effect of Allium sativum bulb for the treatment of biofilm forming clinical pathogens recovered from periodontal and dental caries. Saudi J. Biol. Sci. 2020, 27, 1428–1434. [Google Scholar] [CrossRef] [PubMed]
- Cañizares, P.; Gracia, I.; Gómez, L.A.; De Argila, C.M.; De Rafael, L.; García, A. Optimization of Allium sativum solvent extraction for the inhibition of in vitro growth of Helicobacter pylori. Biotechnol. Prog. 2002, 18, 1227–1232. [Google Scholar] [CrossRef] [PubMed]
- Mamun, A.; Hasan, N.; Belal, H.; Karim, R.U.; Islam, D.; Afroz, S.; Islam, A.; Ara, T. Investigation on phytochemical content and antioxidant activity of locally grown garlic (Allium sativum L.) in Bangladesh. Int. J. Biol. Res. 2016, 1, 37–42. [Google Scholar]
- Milner, J.A.; Rivlin, R.S. Recent Advances on the Nutritional Effects Associated with the Use of Garlic as a Supplement Historical Perspective on the Use of Garlic 1, 2. J. Nutr. 2001, 131, 951–954. [Google Scholar]
- Dehariya, N.; Guha, P.; Gupta, R.K. Extraction and characterization of essential oil of garlic (Allium sativa L.). Int. J. Chem. Stud. 2021, 9, 1455–1459. [Google Scholar] [CrossRef]
- Del Valle, J.M.; Mena, C.; Budinich, M. Extraction of garlic with supercritical CO2 and conventional organic solvents. Braz. J. Chem. Eng. 2008, 25, 535–542. [Google Scholar] [CrossRef] [Green Version]
- Maldonado, P.D.; Chánez-Cárdenas, M.E.; Pedraza-Chaverrí, J. Aged garlic extract, garlic powder extract, S-allylcysteine, diallyl sulfide and diallyl disulfide do not interfere with the antibiotic activity of gentamicin. Phytother. Res. 2005, 19, 252–254. [Google Scholar] [CrossRef]
- Pedraza-Chaverrí, J.; Medina-Campos, O.N.; Ávila-Lombardo, R.; Berenice Zúñiga-Bustos, A.; Orozco-Ibarra, M. Reactive oxygen species scavenging capacity of different cooked garlic preparations. Life Sci. 2006, 78, 761–770. [Google Scholar] [CrossRef]
- Zaini, A.S.; Putra, N.R.; Idham, Z.; Md Norodin, N.S.; Mohd Rasidek, N.A.; Che Yunus, M.A. Mini Review: Extraction of Allicin from Allium sativum using Subcritical Water Extraction. IOP Conf. Ser. Mater. Sci. Eng. 2020, 932, 012023. [Google Scholar] [CrossRef]
- Bhatwalkar, S.B.; Mondal, R.; Krishna, S.B.N.; Adam, J.K.; Govender, P.; Anupam, R. Antibacterial Properties of Organosulfur Compounds of Garlic (Allium sativum). Front. Microbiol. 2021, 12, 1–20. [Google Scholar] [CrossRef]
- Lawson, L.D.; Wang, Z.J. Allicin and allicin-derived garlic compounds increase breath acetone through allyl methyl sulfide: Use in measuring allicin bioavailability. J. Agric. Food Chem. 2005, 53, 1974–1983. [Google Scholar] [CrossRef] [PubMed]
- Wallock-Richards, D.; Doherty, C.J.; Doherty, L.; Clarke, D.J.; Place, M.; Govan, J.R.W.; Campopiano, D.J. Garlic revisited: Antimicrobial activity of allicin-containing garlic extracts against Burkholderia cepacia complex. PLoS ONE 2014, 9, e112726. [Google Scholar] [CrossRef] [PubMed]
- Ilic, D.; Nikolic, V.; Nikolic, L.; Stankovic, M.; Stanojevic, L.; Cakic, M. Allicin and related compounds: Biosynthesis, synthesis and pharmacological activity. Facta Univ. Ser. Phys. Chem. Technol. 2011, 9, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Cellini, L.; Di Campli, E.; Masulli, M.; Di Bartolomeo, S.; Allocati, N. Inhibition of Helicobacter pylori by garlic extract (Allium sativum). FEMS Immunol. Med. Microbiol. 1996, 13, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.J.; Lee, H.J.; Yoon, D.K.; Ji, D.S.; Kim, J.H.; Lee, C.H. Antioxidant and antimicrobial activities of fresh garlic and aged garlic by-products extracted with different solvents. Food Sci. Biotechnol. 2018, 27, 219–225. [Google Scholar] [CrossRef]
- Gabriel, T.; Vestine, A.; Kim, K.D.; Kwon, S.J.; Sivanesan, I.; Chun, S.C. Antibacterial Activity of Nanoparticles of Garlic (Allium sativum) Extract against Different Bacteria Such as Streptococcus mutans and Poryphormonas gingivalis. Appl. Sci. 2022, 12, 3491. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Zeng, Y.R. Garlic extract in prosthesis-related infections: A literature review. J. Int. Med. Res. 2020, 48, 300060520913778. [Google Scholar] [CrossRef] [Green Version]
- Kyo, E.; Uda, N.; Suzuki, A.; Kakimoto, M.; Ushijima, M.; Kasuga, S.; Itakura, Y. Immunomodulation and antitumor activities of Aged Garlic Extract. Phytomedicine 1998, 5, 259–267. [Google Scholar] [CrossRef]
- Modem, S.; DiCarlo, S.E.; Reddy, T.R. Fresh Garlic Extract Induces Growth Arrest and Morphological Differentiation of MCF7 Breast Cancer Cells. Genes Cancer 2012, 3, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Babu, B.; Sunil, A.; Mukunda, A.; Pynadath, M.K.; Mohan, A. Anti-cancer potency of garlic ( Allium sativum ) extract in comparison to 5-fluorouracil—An in vitro study. Oral Maxillofac. Pathol. J. 2020, 11, 11–15. [Google Scholar]
- Durak, I.; Yilmaz, E.; Devrim, E.; Perk, H.; Kaçmaz, M. Consumption of aqueous garlic extract leads to significant improvement in patients with benign prostate hyperplasia and prostate cancer. Nutr. Res. 2003, 23, 199–204. [Google Scholar] [CrossRef]
- Hong, Y.-S.; Ham, Y.-A.; Choi, J.-H.; Kim, J. Effects of allyl sulfur compounds and garlic extract on the expression of Bcl-2, Bax, and p53 in non small cell lung cancer cell lines. Exp. Mol. Med. 2000, 32, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Petrovic, V.; Nepal, A.; Olaisen, C.; Bachke, S.; Hira, J.; Søgaard, C.K.; Røst, L.M.; Misund, K.; Andreassen, T.; Melø, T.M.; et al. Anti-cancer potential of homemade fresh garlic extract is related to increased endoplasmic reticulum stress. Nutrients 2018, 10, 450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fallah-Rostami, F.; Tabari, M.A.; Esfandiari, B.; Aghajanzadeh, H.; Behzadi, M.Y. Immunomodulatory activity of aged garlic extract against implanted fibrosarcoma tumor in mice. North Am. J. Med. Sci. 2013, 5, 207–212. [Google Scholar]
- Bayan, L.; Koulivand, P.H.; Gorji, A. Garlic is said to be a wonderful medicinal plant because of its antitumoral and antioxidant properties, as well as its ability to prevent cardiovascular diseases, regulate blood pressure, lower blood sugar, and cholesterol levels, and be effective against. Avicenna J. Phytomedicine 2014, 4, 1–14. [Google Scholar]
- Morales-González, J.A.; Madrigal-Bujaidar, E.; Sánchez-Gutiérrez, M.; Izquierdo-Vega, J.A.; Del Carmen Valadez-Vega, M.; Álvarez-González, I.; Morales-González, Á.; Madrigal-Santillán, E. Garlic (Allium sativum L.): A brief review of its antigenotoxic effects. Foods 2019, 8, 343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borek, C. Recent Advances on the Nutritional Effects Associated with the Use of Garlic as a Supplement Antioxidant Health Effects of Aged Garlic Extract 1. J. Nutr. 2001, 131, 1010–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baluchnejadmojarad, T.; Roghani, M. Endothelium-dependent and -independent effect of aqueous extract of garlic on vascular reactivity on diabetic rats. Fitoterapia 2003, 74, 630–637. [Google Scholar] [CrossRef]
- Eidi, A.; Eidi, M.; Esmaeili, E. Antidiabetic effect of garlic (Allium sativum L.) in normal and streptozotocin-induced diabetic rats. Phytomedicine 2006, 13, 624–629. [Google Scholar] [CrossRef] [PubMed]
- Lemar, K.M.; Turner, M.P.; Lloyd, D. Garlic (Allium sativum) as an anti-Candida agent: A comparison of the efficacy of fresh garlic and freeze-dried extracts. J. Appl. Microbiol. 2002, 93, 398–405. [Google Scholar] [CrossRef] [Green Version]
- Low, C.F.; Chong, P.P.; Yong, P.V.C.; Lim, C.S.Y.; Ahmad, Z.; Othman, F. Inhibition of hyphae formation and SIR2 expression in Candida albicans treated with fresh Allium sativum (garlic) extract. J. Appl. Microbiol. 2008, 105, 2169–2177. [Google Scholar] [CrossRef]
- Pai, S.T.; Platt, M.W. Antifungal effects of Allium sativum (garlic) extract against the Aspergillus species involved in otomycosis. Lett. Appl. Microbiol. 1995, 20, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Hayat, S.; Cheng, Z.; Ahmad, H.; Ali, M.; Chen, X.; Wang, M. Garlic, from remedy to stimulant: Evaluation of antifungal potential reveals diversity in phytoalexin allicin content among garlic cultivars; allicin containing aqueous garlic extracts trigger antioxidants in Cucumber. Front. Plant Sci. 2016, 7, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, B.H.S. Suppression of LDL Oxidation by Garlic. J. Nutr. 2001, 131, 985S–988S. [Google Scholar] [CrossRef] [PubMed]
- Sobenin, I.A.; Andrianova, I.V.; Demidova, O.N.; Gorchakova, T.; Orekhov, A.N. Lipid-Lowering Effects of Time-Released Garlic Powder Tablets in Double-Blinded Placebo-Controlled Randomized Study. J. Atheroscler. Thromb. 2008, 15, 334–338. [Google Scholar] [CrossRef] [Green Version]
- Oboh, G.; Akinyemi, A.J.; Ademiluyi, A.O. Inhibitory Effect of Phenolic Extract from Garlic on Angiotensin-1 Converting Enzyme and Cisplatin induced Lipid Peroxidation—In Vitro. Int. J. Biomed. Sci. IJBS 2013, 9, 98–106. [Google Scholar] [PubMed]
- Shouk, R.; Abdou, A.; Shetty, K.; Sarkar, D.; Eid, A.H. Mechanisms underlying the antihypertensive effects of garlic bioactives. Nutr. Res. 2014, 34, 106–115. [Google Scholar] [CrossRef]
- Moutia, M.; Seghrouchni, F.; Abouelazz, O.; Elouaddari, A.; Al Jahid, A.; Elhou, A.; Nadifi, S.; Jamal Eddine, J.; Habti, N.; Badou, A. Allium sativum L. regulates in vitro IL-17 gene expression in human peripheral blood mononuclear cells. BMC Complementary Altern. Med. 2016, 16, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morihara, N.; Hino, A.; Miki, S.; Takashima, M.; Suzuki, J.I. Aged garlic extract suppresses inflammation in apolipoprotein E-knockout mice. Mol. Nutr. Food Res. 2017, 61, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Keiss, H.P.; Dirsch, V.M.; Hartung, T.; Haffner, T.; Trueman, L.; Auger, J.; Kahane, R.; Vollmar, A.M. Garlic (Allium sativum L.) modulates cytokine expression in lipopolysaccharide-activated human blood thereby inhibiting NF-κB activity. J. Nutr. 2003, 133, 2171–2175. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, Y.S.; Ishimoto, E.Y.; Bastos, D.H.M.; Sampaio, G.R.; Torres, E.A.F.S. Garlic (Allium sativum L.) and ready-to-eat garlic products: In vitro antioxidant activity. Food Chem. 2009, 115, 371–374. [Google Scholar] [CrossRef]
- Weiss, N.; Papatheodorou, L.; Morihara, N.; Hilge, R.; Ide, N. Aged garlic extract restores nitric oxide bioavailability in cultured human endothelial cells even under conditions of homocysteine elevation. J. Ethnopharmacol. 2013, 145, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Nasr, A.Y.; Saleh, H. Aged garlic extract protects against oxidative stress and renal changes in cisplatin-treated adult male rats. Cancer Cell Int. 2014, 14, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zakarova, A.; Seo, J.Y.; Kim, H.Y.; Kim, J.H.; Shin, J.H.; Cho, K.M.; Lee, C.H.; Kim, J.S. Garlic sprouting is associated with increased antioxidant activity and concomitant changes in the metabolite profile. J. Agric. Food Chem. 2014, 62, 1875–1880. [Google Scholar] [CrossRef]
- Naji, K.M.; Al-Shaibani, E.S.; Alhadi, F.A.; Al-Soudi, S.A.; D’souza, M.R. Hepatoprotective and antioxidant effects of single clove garlic against CCl4-induced hepatic damage in rabbits. BMC Complementary Altern. Med. 2017, 17, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Hiramatsu, K.; Tsuneyoshi, T.; Ogawa, T.; Morihara, N. Aged garlic extract enhances heme oxygenase-and glutamate-cysteine ligase modifier subunit expression via the nuclear factor erythroid 2-related factor 2-antioxidant response element signaling pathway in human endothelial cells. Nutr. Res. 2016, 36, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Li, N.; Qiao, X.; Qiu, Z.; Liu, P. Composition analysis and antioxidant properties of black garlic extract. J. Food Drug Anal. 2017, 25, 340–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, S.K.; Mukherjee, P.K.; Maulik, S.K. Garlic as an antioxidant: The good, the bad and the ugly. Phytother. Res. 2003, 17, 97–106. [Google Scholar] [CrossRef]
- Krstin, S.; Sobeh, M.; Braun, M.; Wink, M. Anti-Parasitic Activities of Allium sativum and Allium cepa against Trypanosoma b. brucei and Leishmania tarentolae. Medicines 2018, 5, 37. [Google Scholar] [CrossRef] [Green Version]
- Yavuzcan Yildiz, H.; Phan Van, Q.; Parisi, G.; Dam Sao, M. Anti-parasitic activity of garlic (Allium sativum) and onion (Allium cepa) juice against crustacean parasite, Lernantropus kroyeri, found on European sea bass (Dicentrarchus labrax). Ital. J. Anim. Sci. 2019, 18, 833–837. [Google Scholar] [CrossRef] [Green Version]
- Mehrbod, P.; Amini, E.; Tavassoti-Kheiri, M. Antiviral Activity of Garlic Extract on Influenza Virus. Iran. J. Virol. 2009, 3, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Harazem, R.; Rahman, S.; Kenawy, A. Evaluation of Antiviral Activity of Allium Cepa and Allium Sativum Extracts Against Newcastle Disease Virus. Alex. J. Vet. Sci. 2019, 61, 108. [Google Scholar] [CrossRef]
- Pandey, P.; Khan, F.; Kumar, A.; Srivastava, A.; Jha, N.K. Screening of potent inhibitors against 2019 novel coronavirus (COVID-19) from alliumsativum and allium cepa: An in silico approach. Biointerface Res. Appl. Chem. 2021, 11, 7981–7993. [Google Scholar]
- Thuy, B.T.P.; My, T.T.A.; Hai, N.T.T.; Hieu, L.T.; Hoa, T.T.; Thi Phuong Loan, H.; Triet, N.T.; Van Anh, T.T.; Quy, P.T.; Van Tat, P.; et al. Investigation into SARS-CoV-2 Resistance of Compounds in Garlic Essential Oil. ACS Omega 2020, 5, 8312–8320. [Google Scholar] [CrossRef] [PubMed]
- Sen, D.; Debnath, P.; Debnath, B.; Bhaumik, S.; Debnath, S. Identification of potential inhibitors of SARS-CoV-2 main protease and spike receptor from 10 important spices through structure-based virtual screening and molecular dynamic study. J. Biomol. Struct. Dyn. 2022, 40, 941–962. [Google Scholar] [CrossRef]
- Almatroodi, S.A.; Anwar, S.; Almatroudi, A.; Khan, A.A.; Alrumaihi, F.; Alsahli, M.A.; Rahmani, A.H. Hepatoprotective effects of garlic extract against carbon tetrachloride (CCl4)-induced liver injury via modulation of antioxidant, anti-inflammatory activities and hepatocyte architecture. Appl. Sci. 2020, 10, 6200. [Google Scholar] [CrossRef]
- Chinnala, K.; Jayagar, P.; Motta, G.; Adusumilli, R.; Elsani, M. Evaluation of hepatoprotective activity of Allium sativum ethanolic extract in thioacetamide induced hepato-toxicity in albino Wistar rats. Am. J. Res. Med. Sci. 2018, 3, 48. [Google Scholar] [CrossRef]
- Wang, D.; Feng, Y.; Liu, J.; Yan, J.; Wang, M.; Changlong, J.S. Black Garlic (Allium sativum) Extracts Enhance the Immune System. Med. Aromat. Plant Sci. Biotechnol. 2010, 4, 37–40. [Google Scholar]
- Colic, M.; Vuević, D.; Kilibarda, V.; Radiević, N.; Savić, M. Modulatory effects of garlic extracts on proliferation of T-lymphocytes in vitro stimulated with concanavalin A. Phytomedicine 2002, 9, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Hassouna, I.; Ibrahim, H.; Abdel Gaffar, F.; El-Elaimy, I.; Abdel Latif, H. Simultaneous administration of hesperidin or garlic oil modulates diazinon-induced hemato- and immunotoxicity in rats. Immunopharmacol. Immunotoxicol. 2015, 37, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Solomon, W.J.; Azare, B.A. Insecticidal Properties of Garlic (Allium sativum) Aqueous Extracts on Beans (Phaseolus valgaris) and Maize (Zea mays) Pest. Direct Res. J. Biol. Biotechnol. 2019, 5, 24–33. [Google Scholar]
- Selassie, M.; Griffin, B.; Gwebu, N.; Gwebu, E.T. Aged garlic extract attenuates the cytotoxicity of beta-amyloid on undifferentiated PC12 cells. Vitr. Cell. Dev. Biology. Anim. 1999, 35, 369–370. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Jing, X.; Wei, X.; Perez, R.G.; Ren, M.; Zhang, X.; Lou, H. S-allyl cysteine activates the Nrf2-dependent antioxidant response and protects neurons against ischemic injury in vitro and in vivo. J. Neurochem. 2015, 133, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Olukunle, O.F.; Adenola, O.J. Comparative Antimicrobial Activity of Lemon Grass (Cymbopogon citratus) and Garlic (Allium sativum) Extracts on Salmonella typhi. J. Adv. Med. Pharm. Sci. 2019, 20, 1–9. [Google Scholar] [CrossRef]
- Heinonen, M. Antioxidant activity and antimicrobial effect of berry phenolics—A Finnish perspective. Mol. Nutr. Food Res. 2007, 51, 684–691. [Google Scholar] [CrossRef]
- Durairaj, S.; Srinivasan, S.; Lakshmanaperumalsamy, P. In vitro Antibacterial Activity and Stability of Garlic Extract at Different pH and Temperature. Electr. J. Biol. 2009, 5, 5–10. [Google Scholar]
- Hutabarat, R.T.; Nurjanah, U.; Fahrurrozi, F. Effects of mulching on weed growth and cucumber yield. J. Appl. Hortic. 2021, 23, 125–129. [Google Scholar] [CrossRef]
- Vyas, Y.; Bhatnagar, M.; Sharma, K. In vitro evaluation of antibacterial activity of an herbal dentifrice against Streptococcus mutans and Lactobacillus acidophilus. Indian J. Dent. Res. 2008, 19, 26–28. [Google Scholar]
- Cañizares, P.; Gracia, I.; Gómez, L.A.; De Argila, C.M.; Boixeda, D.; García, A.; De Rafael, L. Allyl-thiosulfinates, the Bacteriostatic Compounds of Garlic against Helicobacter pylori. Biotechnol. Prog. 2004, 20, 397–401. [Google Scholar] [CrossRef]
- Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary Polyphenols and the Prevention of Diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. [Google Scholar] [CrossRef]
- Jung, C.H.; Seog, H.M.; Choi, I.W.; Park, M.W.; Cho, H.Y. Antioxidant properties of various solvent extracts from wild ginseng leaves. LWT Food Sci. Technol. 2006, 39, 266–274. [Google Scholar] [CrossRef]
- Ahmad, R.; Ahmad, N.; Riaz, M.; Al-Tarouti, M.; Aloufi, F.; AlDarwish, A.; Alalaq, B.; Alhanfoush, B.; Khan, Z. Optimization of extraction and quantification technique for phenolics content of garlic (Allium sativum): An application for comparative phytochemical evaluation based on cultivar origin. Biomed. Chromatogr. BMC 2020, 34, e4942. [Google Scholar] [CrossRef]
- Shahidi, F.; Wanasundara, P.K. Phenolic antioxidants. Crit. Rev. Food Sci. Nutr. 1992, 32, 67–103. [Google Scholar] [CrossRef]
- Sultana, S.; Ripa, F.A.; Hamid, K. Comparative antioxidant activity study of some commonly used spices in Bangladesh. Pak. J. Biol. Sci. 2010, 13, 340–343. [Google Scholar] [CrossRef]
- Sani, M.F.; Kouhsari, S.M.; Moradabadi, L. Effects of three medicinal plants extracts in experimental diabetes: Antioxidant enzymes activities and plasma lipids profiles in comparison with metformin. Iran. J. Pharm. Res. 2012, 11, 897–903. [Google Scholar]
- Nasr, A.Y. Protective effect of aged garlic extract against the oxidative stress induced by cisplatin on blood cells parameters and hepatic antioxidant enzymes in rats. Toxicol. Rep. 2014, 1, 682–691. [Google Scholar] [CrossRef] [Green Version]
- Szychowski, K.A.; Binduga, U.E.; Rybczyńska-Tkaczyk, K.; Leja, M.L.; Gmiński, J. Cytotoxic effects of two extracts from garlic (Allium sativum L.) cultivars on the human squamous carcinoma cell line SCC-15. Saudi J. Biol. Sci. 2018, 25, 1703–1712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aquilano, K.; Filomeni, G.; Baldelli, S.; Piccirillo, S.; De Martino, A.; Rotilio, G.; Ciriolo, M.R. Neuronal nitric oxide synthase protects neuroblastoma cells from oxidative stress mediated by garlic derivatives. J. Neurochem. 2007, 101, 1327–1337. [Google Scholar] [CrossRef]
- Hadi, S.M.; Asad, S.F.; Singh, S.; Ahmad, A. Putative mechanism for anticancer and apoptosis-inducing properties of plant-derived polyphenolic compounds. IUBMB Life 2000, 50, 167–171. [Google Scholar] [PubMed]
- Spencer, J.P.E.E.; Abd El Mohsen, M.M.; Minihane, A.-M.M.; Mathers, J.C. Biomarkers of the intake of dietary polyphenols: Strengths, limitations and application in nutrition research. Br. J. Nutr. 2007, 99, 12–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avci, A.; Sunguroğlu, A.; Ergüder, İ.B.; Gümüş Akay, G.; Devrİm, E.; Özkal Baydin, P.; Varol, N.; Durak, İ. Effects of aqueous garlic extract on oxidant/antioxidant status in 32D and 32Dp210 cell lines. Turk J. Med. Sci. 2010, 40, 881–888. [Google Scholar] [CrossRef]
- Zeng, T.; Li, Y.; Zhang, C.L.; Yu, L.H.; Zhu, Z.P.; Zhao, X.L.; Xie, K.Q. Garlic Oil Suppressed the Hematological Disorders Induced by Chemotherapy and Radiotherapy in Tumor-Bearing Mice. J. Food Sci. 2013, 78, 936–942. [Google Scholar] [CrossRef] [PubMed]
- Delshad, A.A.; Heshmati, M.; Ghaini, M.H. Garlic Extract Can Induce Apoptotic Cell Death In The Human Colon Adenocarcinoma Ht29 Cell Line. Iran. J. Pathol. 2010, 5, 126–131. [Google Scholar]
- Bagul, M.; Kakumanu, S.; Wilson, T.A. Crude garlic extract inhibits cell proliferation and induces cell cycle arrest and apoptosis of cancer cells in vitro. J. Med. Food 2015, 18, 731–737. [Google Scholar] [CrossRef]
- Su, C.-C.; Chen, G.-W.; Tan, T.-W.; Lin, J.-G.; Chung, J.-G. Crude extract of garlic induced caspase-3 gene expression leading to apoptosis in human colon cancer cells. Vivo 2006, 20, 85–90. [Google Scholar]
- Yedjou, C.G.; Tchounwou, P.B. In vitro assessment of oxidative stress and apoptotic mechanisms of garlic extract in the treatment of acute promyelocytic leukemia. J. Cancer Sci. Ther. 2012, 2012, 6. [Google Scholar] [CrossRef] [PubMed]
- Hodge, G.; Davis, S.; Rice, M.; Tapp, H.; Saxon, B.; Revesz, T. Garlic compounds selectively kill childhood pre-B acute lymphoblastic leukemia cells in vitro without reducing T-cell function: Potential therapeutic use in the treatment of ALL. Biol. Targets Ther. 2008, 2, 143–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Jiao, F.; Wang, Q.W.; Wang, J.; Yang, K.; Hu, R.R.; Liu, H.C.; Wang, H.Y.; Wang, Y.S. Aged black garlic extract induces inhibition of gastric cancer cell growth in vitro and in vivo. Mol. Med. Rep. 2012, 5, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Lan, X.Y.; Sun, H.Y.; Liu, J.J.; Lin, Y.; Zhu, Z.Y.; Han, X.; Sun, X.; Li, X.R.; Zhang, H.C.; Tang, Z.Y. Effects of garlic oil on pancreatic cancer cells. Asian Pac. J. Cancer Prev. 2013, 14, 5905–5910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balasenthil, S.; Arivazhagan, S.; Ramachandran, C.R.; Nagini, S. Effects of garlic on 7,12-dimethylbenz[a]anthracene-induced hamster buccal pouch carcinogenesis. Cancer Detect. Prev. 1999, 23, 534–538. [Google Scholar] [CrossRef]
- Hakimzadeh, H.; Ghazanfari, T.; Rahmati, B.; Naderimanesh, H. Cytotoxic effect of garlic extract and its fractions on Sk-mel3 melanoma cell line. Immunopharmacol. Immunotoxicol. 2010, 32, 371–375. [Google Scholar] [CrossRef]
- Ghazanfari, T.; Yaraee, R.; Rahmati, B.; Hakimzadeh, H.; Shams, J.; Jalali-Nadoushan, M.R. In vitro cytotoxic effect of garlic extract on malignant and nonmalignant cell lines. Immunopharmacol. Immunotoxicol. 2011, 33, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Mohajer Shojai, T.; Ghalyanchi Langeroudi, A.; Karimi, V.; Barin, A.; Sadri, N. The effect of Allium sativum (Garlic) extract on infectious bronchitis virus in specific pathogen free embryonic egg. Avicenna J. Phytomedicine 2016, 6, 458–467. [Google Scholar]
- Rouf, R.; Uddin, S.J.; Sarker, D.K.; Islam, M.T.; Ali, E.S.; Shilpi, J.A.; Nahar, L.; Tiralongo, E.; Sarker, S.D. Antiviral potential of garlic (Allium sativum) and its organosulfur compounds: A systematic update of pre-clinical and clinical data. Trends Food Sci. Technol. 2020, 104, 219–234. [Google Scholar] [CrossRef]
- Bakhshi, M.; Taheri, J.-B.; Basir Shabestari, S.; Tanik, A.; Pahlevan, R. Comparison of therapeutic effect of aqueous extract of garlic and nystatin mouthwash in denture stomatitis. Gerodontology 2012, 29, e680–e684. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S. Oxidative Stress, Inflammation, and Disease. In Oxidative Stress and Biomaterials; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 35–58. ISBN 9780128032701. [Google Scholar]
- Arreola, R.; Quintero-Fabián, S.; López-Roa, R.I.; Flores-Gutiérrez, E.O.; Reyes-Grajeda, J.P.; Carrera-Quintanar, L.; Ortuño-Sahagún, D. Immunomodulation and Anti-Inflammatory Effects of Garlic Compounds. J. Immunol. Res. 2015, 2015, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ide, N.; Lau, B.H.S. Garlic Compounds Minimize Intracellular Oxidative Stress and Inhibit Nuclear Factor-κB Activation. J. Nutr. 2001, 131, 1020S–1026S. [Google Scholar] [CrossRef] [PubMed]
- Park, B.M.; Cha, S.A.; Kim, H.Y.; Kang, D.K.; Yuan, K.; Chun, H.; Chae, S.W.; Kim, S.H. Fermented garlic extract decreases blood pressure through nitrite and sGC-cGMP-PKG pathway in spontaneously hypertensive rats. J. Funct. Foods 2016, 22, 156–165. [Google Scholar] [CrossRef]
- Park, B.M.; Chun, H.; Chae, S.W.; Kim, S.H. Fermented garlic extract ameliorates monocrotaline-induced pulmonary hypertension in rats. J. Funct. Foods 2017, 30, 247–253. [Google Scholar] [CrossRef]
- Ushijima, M.; Takashima, M.; Kunimura, K.; Kodera, Y.; Morihara, N.; Tamura, K. Effects of S -1-propenylcysteine, a sulfur compound in aged garlic extract, on blood pressure and peripheral circulation in spontaneously hypertensive rats. J. Pharm. Pharmacol. 2018, 70, 559–565. [Google Scholar] [CrossRef]
- Ried, K.; Frank, O.R.; Stocks, N.P. Aged garlic extract lowers blood pressure in patients with treated but uncontrolled hypertension: A randomised controlled trial. Maturitas 2010, 67, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Zarezadeh, M.; Baluchnejadmojarad, T.; Kiasalari, Z.; Afshin-Majd, S.; Roghani, M. Garlic active constituent s-allyl cysteine protects against lipopolysaccharide-induced cognitive deficits in the rat: Possible involved mechanisms. Eur. J. Pharmacol. 2017, 795, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.-F.; Dong, Y.; Chen, J.-Y.; Lu, J.-H. The effect and underlying mechanisms of garlic extract against cognitive impairment and Alzheimer’s disease: A systematic review and meta-analysis of experimental animal studies. J. Ethnopharmacol. 2021, 280, 114423. [Google Scholar] [CrossRef]
- Lai, Y.S.; Chen, W.C.; Ho, C.T.; Lu, K.H.; Lin, S.H.; Tseng, H.C.; Lin, S.Y.; Sheen, L.Y. Garlic essential oil protects against obesity-triggered nonalcoholic fatty liver disease through modulation of lipid metabolism and oxidative stress. J. Agric. Food Chem. 2014, 62, 5897–5906. [Google Scholar] [CrossRef] [PubMed]
- Siddique, A.; Iqbal, J.; Sheikh, M.A. Effects of garlic (allium sativum) on the weights of liver in albino rats. Pak. J. Med. Health Sci. 2015, 9, 1051–1054. [Google Scholar]
- Phadatare, A.G.; Viswanathan, V.; Mukne, A. Novel strategies for optimized delivery of select components of Allium sativum. Pharmacogn. Res. 2014, 6, 334–340. [Google Scholar]
- Li, Z.; Le, W.; Cui, Z. A novel therapeutic anticancer property of raw garlic extract via injection but not ingestion. Cell Death Discov. 2018, 4, 108. [Google Scholar] [CrossRef] [PubMed]
- Nazari, M.; Ghanbarzadeh, B.; Samadi Kafil, H.; Zeinali, M.; Hamishehkar, H. Garlic essential oil nanophytosomes as a natural food preservative: Its application in yogurt as food model. Colloids Interface Sci. Commun. 2019, 30, 100176. [Google Scholar] [CrossRef]
- Kumari, G.D.; Shivangi, K.; Sharma, N.K.; Gupta, K.M. Formulation and Evaluation of Herbal Extract of Allivum sativum (Garlic) Loaded Chitosan Nanoparticles. J. Drug Deliv. Ther. 2019, 9, 715–718. [Google Scholar]
- Pinilla, C.M.B.; Noreña, C.P.Z.; Brandelli, A. Development and characterization of phosphatidylcholine nanovesicles, containing garlic extract, with antilisterial activity in milk. Food Chem. 2017, 220, 470–476. [Google Scholar] [CrossRef] [PubMed]
Type of Extract | Extraction Method | Analyses Performed | References |
---|---|---|---|
Aqueous | Distilling the garlic extract solution under reduced pressure | Assessment of antiproliferative properties of copper-enriched garlic extract | [29] |
Pressing extraction | Identification of allicin with anticancer activity | [30] | |
Methanol | Maceration | Analysis of viability and apoptosis in leukemia cells | [31] |
Ethanol | Solvent extraction | Analysis of motor coordination and Purkinje cell count in rats | [32] |
Solvent extraction | Analysis of antibacterial properties against Staphylococcus aureus | [33] | |
Chloroform | Solvent extraction under reduced pressure | Assessment of the antiinflammatory properties of aged black garlic | [34] |
Fresh material | Blended in water | Analysis of NO and interferon-α (IFN-α) levels in plasma | [35] |
Freeze-dried material | NDA | Preservation of minced meat | [36] |
Oil | Steam distillation | Preservation of minced meat | [36] |
NDA | Analysis of the mechanism of cytotoxicity of DATS in leukemic cells | [37] |
Compunds | Solvent | Contents | Extraction Method | Geographic Region | References |
---|---|---|---|---|---|
AC | Water extracts | 42.74 and 50.79 μg/mL | Pressing extraction | Serbia | [9] |
Alcohol extracts | 4.39 to 4.56 μg/mL (ethanol) | Pressing extraction | Serbia | ||
Alcohol extracts | 7068 ppm (ethanol) | Soxhlet extractions | Spain | [55] | |
MMTS | Water extracts | 0.09–0.33 μg/mL | Pressing extraction | Serbia | [9] |
Alcohol extracts | 0.45–0.67 μg/mL (ethanol) | Pressing extraction | Serbia | ||
AS | Water extracts | 1.91–4.72 μg/mL | Pressing extraction | Serbia | [9] |
Alcohol extracts | 0.21–0.70 μg/mL (ethanol) | Pressing extraction | Serbia | ||
DADS | Water extracts | 0.01–0.03 μg/mL | Pressing extraction | Serbia | [9] |
Alcohol extracts | 0.03–0.04 μg/mL (ethanol) | Pressing extraction | Serbia | ||
TS | Water extracts | 6.42 µmol/g (dw) | Uultrasound-assisted extraction | Brazil | [15] |
Alcohol extracts | 1.40 µmol/g dw (ethanol) | Ultrasound-assisted extraction | Brazil | ||
Phenols | Water extracts | 3.82 mg/g dw | Ultrasound-assisted extraction | Brazil | [15] |
Alcohol extracts | 0.84 GAE/g dw (ethanol) | Ultrasound-assisted extraction | Brazil | ||
Water extracts | 2.97 mg GAEs/g | Solvent extraction | NAD | [50] | |
Alcohol extracts | 13 mg GAE/g (50% ethanol); 11.80 mg GAE/g (ethanol); 25 mg GAE/g (50% methanol); 22.83 mg GAE/g (methanol) | Solvent extraction | NAD | ||
Water extracts | 201.99 to 365.52 μg/g | Blended in water | Spanish | [20] | |
231.66 μg/g | Blended in water | Uzbek | |||
185.26 μg/g | Blended in water | Thai | |||
253.58 μg/g | Blended in water | Burmese | |||
201.04 μg/g | Blended in water | Portuguese | |||
394.10 μg/g | Blended in water | Chinese | |||
223.74 μg/g | Blended in water | Polish | |||
Water extracts | 0.112 to 0.311 mg/g | Boiling and ultrasound | Iran | [45] | |
Alcohol extracts | 0.216 to 0.269 mg/g (ethanol) | Boiling and ultrasound | Iran | ||
Water extracts | 0.285 mg/mL | Blended in water | Nigeria | [53] | |
Alcohol extracts | 24.81 mg GAE/g (ethanol); 29.72 mg GAE/g (methanol) | Solvent extraction | Bangladesh | [56] | |
Flavonoids | Water extracts | 28.74 mg QUE/mL | Blended in water | Nigeria | [53] |
Alcohol extracts | 22.51 mg CAE/g (ethanol); 20.18 mg CAE/g (methanol) | Solvent extraction | Bangladesh | [56] | |
Water extracts | 0.045 mg QUE/g dry GH | Solvent extraction | NAD | [50] | |
Alcohol extracts | 0.51 mg QUE/g (50% ethanol); 0.486 mg QUE/g (ethanol); 0.617 mg QUE/g (50% methanol); 0.602 mg QUE/g (methanol) | Solvent extraction | NAD | ||
Flavonols | Alcohol extracts | 12.92 mg QUE/g (ethanol); 11.92 mg QUE/g (methanol) | Solvent extraction | Bangladesh | [56] |
Proanthocyanidins | Alcohol extracts | 5.13 mg CAE/g (ethanol); 5.17 mg CAE/g (methanol) | Solvent extraction | Bangladesh | [56] |
Type of Action | Model | References |
---|---|---|
Antibacterial | In vitro | [51,67,68,69,70] |
Anticancer | In vitro/In vivo | [6,71,72,73,74,75,76,77,78,79,80] |
Antidiabetic | In vivo | [81,82] |
Antifungal | In vitro | [25,83,84,85,86] |
Antihypercholesterolemic | In vivo/In vitro | [87,88,89] |
Antihypertensive | In vivo/In vitro | [90] |
Antiinflammatory | In vivo/In vitro | [34,91,92,93] |
Antioxidant | In vitro | [68,80,94,95,96,97,98,99,100,101] |
Antiparasitic | In vivo/In vitro | [102,103] |
Antiviral | In vitro | [104,105,106,107,108] |
Hepatoprotective | In vivo | [98,109,110] |
Immunostimulatory | In vitro/In vivo | [111,112,113] |
Insecticidal | In vivo | [51,114] |
Neuroprotective | In vitro | [115,116] |
Type of Cancer | Type of Extract | Proposed Mechanism of Action | References |
---|---|---|---|
HT29 (human colon adenocarcinoma) | Ethanol | Apoptosis | [136] |
CACO-2 (human colon carcinoma) | Aqueous, methanol, ethanol | ROS | [130] |
Crude garlic | Inhibition of cell proliferation | [137] | |
colo 205 (human colon adenocarcinoma) | Crude garlic | Reduction in cell viability, induction of apoptosis | [138] |
32Dp210 (murine myeloid leukemia) | Aqueous | Oxidant stress | [134] |
HL-60 (human leukemia) | Aqueous | Cytotoxic effect, apoptosis | [139] |
ALL (precursor-B acute lymphoblastic leukemia) | Fresh garlic | Selective cells apoptosis | [140] |
U937 (histiocytic lymphoma) | Oil | ROS, apoptotic | [37] |
TIB (monocyte/macrophage cell line) | Crude garlic | Inhibition of cell proliferation | [137] |
HepG2 (human hepatoma) | Aqueous | Antiproliferative effect, overexpression of p53 and p21 (break of DNA strand) | [29] |
Crude garlic | Inhibition of cell proliferation | [137] | |
Heat-aging | Inhibition of cell proliferation | [7] | |
SGC-7901 (human gastric cancer) | Aged black garlic | Inhibition of cell growth through apoptosis, inhibition of tumor growth in rats, which may result from antioxidant and immunomodulating effects | [141] |
AsPC-1 (pancreatic beta cells) | Oil | Pro-apoptotic effect as a result of programmed cell death, cell cycle arrest | [142] |
Squamous cell carcinomas (SCC) | Aqueous | Modulating lipid peroxidation, increase in the levels of GSH, GPx, and GST | [143] |
U2OS (human bone osteosarcoma epithelial cells) | Ethanol | Reduced proliferation mediated by increased endoplasmic reticulum (ER) stress | [76] |
U937 (human histiocytic lymphoma cell line) | Heat-aging | Inhibition of cell proliferation | [7] |
Mia PaCa-2 (epithelial cell line) | Oil | Inhibition of cell proliferation | [142] |
Sk-mel3 (human melanoma) | Aqueous | Decrease in cell viability | [144] |
MCF-7 (human breast cancer) | Aqueous | Decrease in cell viability | [145] |
Fresh garlic | Inhibition of cell growth, change in cell morphology | [72] | |
Crude garlic | Inhibition of cell proliferation | [137] | |
PC-3 (human prostate cancer) | Crude garlic | Inhibition of cell proliferation, cell cycle arrest | [137] |
PANC-1 (human pancreatic cancer) | Oil | Inhibition of cell proliferation | [142] |
DU145 (human prostate cancer) | Ethanol | Reduced proliferation mediated by increased endoplasmic reticulum (ER) stress | [76] |
67NR (cellosaurus cell line) | Ethanol | Reduced proliferation mediated by increased endoplasmic reticulum (ER) stress | [76] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bar, M.; Binduga, U.E.; Szychowski, K.A. Methods of Isolation of Active Substances from Garlic (Allium sativum L.) and Its Impact on the Composition and Biological Properties of Garlic Extracts. Antioxidants 2022, 11, 1345. https://doi.org/10.3390/antiox11071345
Bar M, Binduga UE, Szychowski KA. Methods of Isolation of Active Substances from Garlic (Allium sativum L.) and Its Impact on the Composition and Biological Properties of Garlic Extracts. Antioxidants. 2022; 11(7):1345. https://doi.org/10.3390/antiox11071345
Chicago/Turabian StyleBar, Monika, Urszula E. Binduga, and Konrad A. Szychowski. 2022. "Methods of Isolation of Active Substances from Garlic (Allium sativum L.) and Its Impact on the Composition and Biological Properties of Garlic Extracts" Antioxidants 11, no. 7: 1345. https://doi.org/10.3390/antiox11071345
APA StyleBar, M., Binduga, U. E., & Szychowski, K. A. (2022). Methods of Isolation of Active Substances from Garlic (Allium sativum L.) and Its Impact on the Composition and Biological Properties of Garlic Extracts. Antioxidants, 11(7), 1345. https://doi.org/10.3390/antiox11071345