Clove Polyphenolic Compounds Improve the Microbiological Status, Lipid Stability, and Sensory Attributes of Beef Burgers during Cold Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Clove Powder (CP) and Extract (CPE)
2.3. Characterization of CP Polyphenol Compounds Using HPLC
2.4. Determination of the Antimicrobial Activity of CPE
2.5. Preparation of Beef Burgers
2.6. Preparation of Beef Burger Extract
2.7. Determination of Total Phenolic Content
2.8. Determination of Total Flavonoid Content
2.9. Determination of Antioxidant Activity
2.10. pH Measurement
2.11. Cooking of the Beef Burgers
2.12. Evaluation of Cooking Properties
2.13. Microbiological Analysis
2.14. Determination of Thiobarbituric Acid Reactive Substances (TBARS)
2.15. Measurement of Color Attributes
2.16. Sensory Evaluation
2.17. Statistical Analysis
3. Results and Discussion
3.1. Phenolic Compounds, Total Phenolic Content, Flavonoid Content, and Antioxidant Activity of CPE
3.2. Antimicrobial Activity of CP Extract (CPE)
3.3. Cooking Properties of Burger–CP Formulate during Cold Storage
3.4. pH of Raw Burgers during Cold Storage
3.5. Microbial Analysis and Antioxidant Activity of Raw Burgers during Cold Storage
Storage Period (Days) | Clove Powder (%) | |||
---|---|---|---|---|
0 | 2 | 4 | 6 | |
pH | ||||
0 | 5.14 ± 0.46 | 5.01 ± 0.31 | 5.04 ± 0.59 | 5.11 ± 0.33 |
7 | 5.41 ± 0.27 | 5.32 ± 0.45 | 5.67 ± 0.36 | 5.82 ± 0.45 |
14 | ND | 5.32 ± 0.56 | 5.24 ± 0.45 | 5.42 ± 0.67 |
21 | ND | 4.84 ± 0.39 | 4.69 ± 0.66 | 4.78 ± 0.72 |
Plate count (log CFU/gm) | ||||
0 | 3.36 ± 0.21 bp | 3.26 ± 0.19 cp | 2.88 ± 0.14 bq | 2.65 ± 0.37 bq |
7 | 6.61 ± 0.32 ap | 4.49 ± 0.18 bq | 4.39 ± 0.31 aq | 3.03 ± 0.39 ar |
14 | ND | 5.65 ± 0.58 ap | 4.60 ± 0.48 aq | 3.36 ± 0.25 ar |
21 | ND | 5.86 ± 0.67 ap | 4.66 ± 0.59 aq | 3.53 ± 0.56 ar |
Total phenolic content (TPC) (mg GAE/g sample) | ||||
0 | 1.52 ± 0.46 ar | 4.63 ± 0.25 aq | 4.79 ± 0.37 aq | 6.49 ± 0.28 ap |
7 | 1.21 ± 0.57 as | 4.03 ± 0.03 br | 4.61 ± 0.18 aq | 5.44 ± 0.34 bp |
14 | ND | 3.29 ± 0.19 cq | 4.50 ± 0. 47 ap | 4.57 ± 0.47 cp |
21 | ND | 2.93 ± 0.11 dr | 3.19 ± 0. 17 bq | 4.24 ± 0.61 cp |
DPPH (% inhibition) | ||||
0 | 9.99 ± 0.57 bs | 52.3 ± 0.68 ar | 57.9 ± 0.27 aq | 69.3 ± 0.26 ap |
7 | 13.40 ± 0.88 as | 30.6 ± 0.47 br | 35.3 ± 0.47 cq | 47.9 ± 0.47 cp |
14 | ND | 23.5 ± 0.49 cr | 19.9 ± 0.35 dq | 50.2 ± 0.75 bp |
21 | ND | 22.7 ± 0.26 dr | 36.8 ± 0.44 bq | 49.9 ± 0.35 bp |
Thiobarbituric acid reactive substances (TBARS) in mg malonaldehyde/kg sample | ||||
0 | 0.99 ± 0.04 ap | 0.83 ± 0.05 cq | 0.81 ± 0.05 bq | 0.72 ± 0.01 cr |
7 | 1.10 ± 0.11 ap | 0.91 ± 0.02 bq | 0.87 ± 0.05 bq | 0.79 ± 0.03 br |
14 | ND | 0.93 ± 0.04 bp | 0.91 ± 0.02 bp | 0.82 ± 0.05 bq |
21 | ND | 1.15 ± 0.02 ap | 1.07 ± 0.03 aq | 0.99 ± 0.03 ar |
3.6. Color Characteristics of Raw Beef Burger–CP Formulate during Storage
3.7. Sensory Properties of Beef Burger—CP Formulation
3.8. Chemometric Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hawashin, M.D.; Al-Juhaimi, F.; Ahmed, I.A.M.; Ghafoor, K.; Babiker, E.E. Physicochemical, microbiological and sensory evaluation of beef patties incorporated with destoned olive cake powder. Meat Sci. 2016, 122, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Honikel, K.O. Minced meat. In Encyclopedia of Meat Sciences, 2nd ed.; Dikeman, M., Devine, C., Eds.; Elsevier Academic Press: London, UK, 2014; pp. 422–424. [Google Scholar]
- Gutiérrez-del-Río, I.; López-Ibáñez, S.; Magadán-Corpas, P.; Fernández-Calleja, L.; Pérez-Valero, Á.; Tuñón-Granda, M.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Terpenoids and polyphenols as natural antioxidant agents in food preservation. Antioxidants 2021, 10, 1264. [Google Scholar] [CrossRef] [PubMed]
- Efenberger-Szmechtyk, M.; Nowak, A.; Czyzowska, A. Plant extracts rich in polyphenols: Antibacterial agents and natural preservatives for meat and meat products. Crit. Rev. Food Sci. Nutr. 2021, 61, 149–178. [Google Scholar] [CrossRef] [PubMed]
- Legesse, A.; Muluken, A.; Getasew, A. A survey on awareness of consumers about health problems of food additives in packaged foods and their attitude toward consumption of packaged foods: A case study at Jimma University. Int. Food Res. J. 2016, 23, 375–380. [Google Scholar]
- Pateiro, M.; Gómez-Salazar, J.A.; Jaime-Patlán, M.; Sosa-Morales, M.E.; Lorenzo, J.M. Plant extracts obtained with green solvents as natural antioxidants in fresh meat products. Antioxidants 2021, 10, 181. [Google Scholar] [CrossRef]
- Estévez, M. Critical overview of the use of plant antioxidants in the meat industry: Opportunities, innovative applications and future perspectives. Meat Sci. 2021, 181, 108610. [Google Scholar] [CrossRef]
- Ruan, L.; Lu, L.; Zhao, X.; Xiong, W.; Xu, H.; Wu, S. Effects of natural antioxidants on the oxidative stability of Eucommia ulmoides seed oil: Experimental and molecular simulation investigations. Food Chem. 2022, 383, 132640. [Google Scholar] [CrossRef]
- Al-Juhaimi, F.; Ghafoor, K.; Hawashin, M.D.; Alsawmahi, O.N.; Babiker, E.E. Effects of different levels of Moringa (Moringa oleifera) seed flour on quality attributes of beef burgers. CyTA-J. Food 2016, 14, 1–9. [Google Scholar] [CrossRef]
- Al-Juhaimi, F.; Adiamo, O.Q.; Alsawmahi, O.N.; Gahfoor, K.; Islam Sarker, M.Z.; Mohamed Ahmed, I.A.; Babiker, E.E. Effect of pistachio seed hull extracts on quality attributes of chicken burger. CyTA-J. Food 2017, 15, 9–14. [Google Scholar] [CrossRef]
- Al-Juhaimi, F.Y.; Mohamed Ahmed, I.A.; Adiamo, O.Q.; Adisa, A.R.; Ghafoor, K.; Özcan, M.M.; Babiker, E.E. Effect of Argel (Solenostemma argel) leaf powder on the quality attributes of camel patties during cold storage. J. Food Process. Preserv. 2018, 42, e13496. [Google Scholar] [CrossRef]
- Al-Juhaimi, F.Y.; Shahzad, S.A.; Ahmed, A.S.; Adiamo, O.Q.; Ahmed, I.A.M.; Alsawmahi, O.N.; Ghafoor, K.; Babiker, E.E. Effect of Argel (Solenostemma argel) leaf extract on quality attributes of chicken meatballs during cold storage. J. Food Sci. Technol. 2018, 55, 1797–1805. [Google Scholar] [CrossRef] [PubMed]
- Al-Juhaimi, F.Y.; Almusallam, I.A.; Mohamed Ahmed, I.A.; Ghafoor, K.; Babiker, E.E. Potential of Acacia nilotica fruit flesh extract as an anti-oxidative and antimicrobial agent in beef burger. J. Food Process. Preserv. 2020, 44, e14504. [Google Scholar] [CrossRef]
- Babiker, E.E.; Al-Juhaimi, F.Y.; Alqah, H.A.; Adisa, A.R.; Adiamo, O.Q.; Mohamed Ahmed, I.A.; Alsawmahi, O.N.; Ghafoor, K.; Ozcan, M.M. The effect of Acacia nilotica seed extract on the physicochemical, microbiological, oxidative stability and sensory properties of chicken patties. J. Food Sci. Technol. 2019, 56, 3910–3920. [Google Scholar] [CrossRef] [PubMed]
- Elhadef, K.; Smaoui, S.; Ben Hlima, H.; Ennouri, K.; Fourati, M.; Mtibaa, A.C.; Ennouri, M.; Mellouli, L. Effects of Ephedra alata extract on the quality of minced beef meat during refrigerated storage: A chemometric approach. Meat Sci. 2020, 170, 108246. [Google Scholar] [CrossRef] [PubMed]
- Al-Juhaimi, F.; Babtain, I.A.; Ahmed, I.A.M.; Alsawmahi, O.N.; Ghafoor, K.; Adiamo, O.Q.; Babiker, E.E. Assessment of oxidative stability and physicochemical, microbiological, and sensory properties of beef patties formulated with baobab seed (Adansonia digitata) extract. Meat Sci. 2020, 162, 108044. [Google Scholar] [CrossRef]
- Bellucci, E.R.B.; Munekata, P.E.S.; Pateiro, M.; Lorenzo, J.M.; da Silva Barretto, A.C. Red pitaya extract as natural antioxidant in pork patties with total replacement of animal fat. Meat Sci. 2021, 171, 108284. [Google Scholar] [CrossRef]
- Vargas-Ramella, M.; Lorenzo, J.M.; Zamuz, S.; Valdés, M.E.; Moreno, D.; Balcázar, M.C.G.; Fernández-Arias, J.M.; Reyes, J.F.; Franco, D. The antioxidant effect of Colombian Berry (Vaccinium meridionale Sw.) extracts to prevent lipid oxidation during pork patties shelf-life. Antioxidants 2021, 10, 1290. [Google Scholar] [CrossRef]
- El-Maati, M.F.A.; Mahgoub, S.A.; Labib, S.M.; Al-Gaby, A.M.; Ramadan, M.F. Phenolic extracts of clove (Syzygium aromaticum) with novel antioxidant and antibacterial activities. Eur. J. Integr. Med. 2016, 8, 494–504. [Google Scholar] [CrossRef]
- Cortés-Rojas, D.F.; de Souza, C.R.F.; Oliveira, W.P. Clove (Syzygium aromaticum): A precious spice. Asian Pac. J. Trop. Biomed. 2014, 4, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Rubió, L.; Motilva, M.J.; Romero, M.P. Recent advances in biologically active compounds in herbs and spices: A review of the most effective antioxidant and anti-inflammatory active principles. Crit. Rev. Food Sci. Nutr. 2013, 53, 943–953. [Google Scholar] [CrossRef]
- Zhang, H.; Peng, X.; Li, X.; Wu, J.; Guo, X. The application of clove extract protects Chinese-style sausages against oxidation and quality deterioration. Korean J. Food Sci. Anim. Resour. 2017, 37, 114–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, M.; Park, J.; Yoo, S. Effect of clove powder on quality characteristics and shelf life of kimchi paste. Food Sci. Nutr. 2019, 7, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Zahid, M.A.; Seo, J.-K.; Park, J.-Y.; Jeong, J.-Y.; Jin, S.-K.; Park, T.-S.; Yang, H.-S. The effects of natural antioxidants on protein oxidation, lipid oxidation, color, and sensory attributes of beef patties during cold storage at 4 °C. Korean J. Food Sci. Anim. Resour. 2018, 38, 1029–1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahid, M.A.; Seo, J.-K.; Parvin, R.; Ko, J.; Yang, H.-S. Comparison of butylated hydroxytoluene, ascorbic acid, and clove extract as antioxidants in fresh beef patties at refrigerated storage. Korean J. Food Sci. Anim. Resour. 2019, 39, 768–779. [Google Scholar] [CrossRef] [Green Version]
- Zahid, M.A.; Choi, J.Y.; Seo, J.K.; Parvin, R.; Ko, J.; Yang, H.S. Effects of clove extract on oxidative stability and sensory attributes in cooked beef patties at refrigerated storage. Meat Sci. 2020, 161, 107972. [Google Scholar] [CrossRef]
- Zahid, M.A.; Seo, J.-K.; Parvin, R.; Ko, J.; Park, J.-Y.; Yang, H.-S. Assessment of the stability of fresh beef patties with the addition of clove extract during frozen storage. Korean J. Food Sci. Anim. Resour. 2020, 40, 601–612. [Google Scholar] [CrossRef]
- Nikousaleh, A.; Prakash, J. Antioxidant components and properties of dry heat treated clove in different extraction solvents. J. Food Sci. Technol. 2016, 53, 1993–2000. [Google Scholar] [CrossRef] [Green Version]
- Mohamed Ahmed, I.A.; Al Juhaimi, F.Y.; Osman, M.A.; Al Maiman, S.A.; Hassan, A.B.; Alqah, H.A.S.; Babiker, E.E.; Ghafoor, K. Effect of oven roasting treatment on the antioxidant activity, phenolic compounds, fatty acids, minerals, and protein profile of Samh (Mesembryanthemum forsskalei Hochst) seeds. LWT—Food Sci. Technol. 2020, 131, 109825. [Google Scholar] [CrossRef]
- Efstratiou, E.; Hussain, A.I.; Nigam, P.S.; Moore, J.E.; Ayub, M.A.; Rao, J.R. Antimicrobial activity of Calendula officinalis petal extracts against fungi, as well as Gram-negative and Gram-positive clinical pathogens. Complement. Therap. Clinic. Pract. 2012, 18, 173–176. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef]
- Kim, D.O.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003, 81, 321–326. [Google Scholar] [CrossRef]
- Li, B.; Du, W.; Jin, J.; Du, Q. Preservation of (-)-epigallocatechin-3- gallate antioxidant properties loaded in heat treated β-lactoglobulin nanoparticles. J. Agric. Food Chem. 2012, 60, 3477–3484. [Google Scholar] [CrossRef] [PubMed]
- ISO 4833-1:2013; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms. Part 1: Colony Count at 30 °C by the Pour Plate Technique. International Organization for Standardization: Geneva, Switzerland, 2013.
- Vicente-Villardón, J.L. MULTBIPLOT: A Package for Multivariate Analysis Using Biplots; Department of Statistics, University of Salamanca: Salamanca, Spain, 2010. [Google Scholar]
- Ali, A.; Wu, H.; Ponnampalam, E.N.; Cottrell, J.J.; Dunshea, F.R.; Suleria, H.A.R. Comprehensive profiling of most widely used spices for their phenolic compounds through LC-ESI-QTOF-MS2 and their antioxidant potential. Antioxidants 2021, 10, 721. [Google Scholar] [CrossRef] [PubMed]
- Frohlich, P.C.; Santos, K.A.; Hasan, S.D.M.; da Silva, E.A. Evaluation of the ethanolic ultrasound-assisted extraction from clove (Syzygium aromaticum) leaves and chemical characterization of the extracts. Food Chem. 2022, 373, 131351. [Google Scholar] [CrossRef]
- Sultana, B.; Anwar, F.M.; Mushtaq, M.; Aslam, M.; Ijaz, S. In vitro antimutagenic, antioxidant activities and total phenolics of clove (Syzygium aromaticum L.) seed extracts. Pak. J. Pharma. Sci. 2014, 27, 893–899. [Google Scholar]
- Suantawee, T.; Wesarachanon, K.; Anantsuphasak, K.; Daenphetploy, T.; Thien-Ngern, S.; Thilavech, T.; Pasukamonset, P.; Ngamukote, S.; Adisakwattana, S. Protein glycation inhibitory activity and antioxidant capacity of clove extract. J. Food Sci. Technol. 2015, 52, 3843–3850. [Google Scholar] [CrossRef] [Green Version]
- Hassan, S.M.; El-Bebany, A.F.; Salem, M.Z.M.; Komeil, D.A. Productivity and post-harvest fungal resistance of hot pepper as affected by potassium silicate, clove extract foliar spray and nitrogen application. Plants 2021, 10, 662. [Google Scholar] [CrossRef]
- Adefegha, S.A.; Oboh, G.; Oyeleye, S.I.; Osunmo, K. Alteration of starch hydrolyzing enzyme inhibitory properties, antioxidant activities, and phenolic profile of clove buds (Syzygium aromaticum L.) by cooking duration. Food Sci. Nutr. 2016, 4, 250–260. [Google Scholar] [CrossRef]
- Shan, B.; Cai, Y.Z.; Brooks, J.D.; Corke, H. The in vitro antibacterial activity of dietary spice and medicinal herb extracts. Int. J. Food Microbiol. 2007, 117, 112–119. [Google Scholar] [CrossRef]
- Albuquerque, B.R.; Heleno, S.A.; Oliveira, M.B.P.P.; Barros, L.; Ferreira, I.C.F.R. Phenolic compounds: Current industrial applications, limitations and future challenges. Food Funct. 2021, 12, 14–29. [Google Scholar] [CrossRef]
- Singh, R. Antimicrobial activity of selected medicinal plants cinnamon and clove. Int. J. Res. Pharma. Pharma. Sci. 2018, 3, 48–50. [Google Scholar]
- Rosarior, V.L.; Lim, P.S.; Wong, W.K.; Yue, C.S.; Yam, H.C.; Tan, S.-A. Antioxidant-rich clove extract, a strong antimicrobial agent against urinary tract infections-causing bacteria in vitro. Trop. Life Sci. Res. 2021, 32, 45–63. [Google Scholar] [CrossRef] [PubMed]
- Özçelik, B.; Kartal, M.; Orhan, I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharma. Biol. 2011, 49, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Naveena, B.M.; Muthukumar, M.; Sen, A.R.; Babji, Y.; Murthy, T.R.K. Quality characteristics and storage stability of chicken patties formulated with finger millet flour (Eleusine coracana). J. Muscle Foods 2006, 17, 92–104. [Google Scholar] [CrossRef]
- Serdaroglu, M. The characteristics of beef patties containing different levels of fat and oat flour. Int. J. Food Sci. Technol. 2006, 41, 147–153. [Google Scholar] [CrossRef]
- Wang, X.H.; Ren, H.Y.; Liu, D.Y.; Zhu, W.Y.; Wang, W. Effects of inoculating Lactobacillus sakei starter cultures on the microbiological quality and nitrite depletion of Chinese fermented sausages. Food Cont. 2013, 32, 591–596. [Google Scholar] [CrossRef]
- Bekhit, A.E.D.A.; Cheng, V.J.; Zhang, H.; Mros, S.; Ahmed, I.A.M.; Al-Juhaimi, F.Y.; Bekhit, A.A.; McConnell, M. Effect of extraction system and grape variety on anti-influenza compounds from wine production residue. Food Cont. 2019, 99, 180–189. [Google Scholar] [CrossRef]
- Lima, M.C.; de Sousa, C.P.C.; Fernandez-Prada, J.H.; Dubreuil, J.D.; de Souza, E.L. A review of the current evidence of fruit phenolic compounds as potential antimicrobials against pathogenic bacteria. Micro. Path. 2019, 130, 259–270. [Google Scholar] [CrossRef]
- Takó, M.; Kerekes, E.B.; Zambrano, C.; Kotogán, A.; Papp, T.; Krisch, J.; Vágvölgyi, C. Plant phenolics and phenolic-enriched extracts as antimicrobial agents against food-contaminating microorganisms. Antioxidants 2020, 9, 165. [Google Scholar] [CrossRef] [Green Version]
- Muthukumar, M.; Naveena, B.M.; Vaithiyanathan, S.; Sen, A.R.; Sureshkumar, K. Effect of incorporation of Moringa oleifera leaves extract on quality of ground pork patties. J. Food Sci. Technol. 2014, 51, 3172–3180. [Google Scholar] [CrossRef] [Green Version]
- Shah, M.A.; Bosco, S.J.D.; Mir, S.A. Plant extracts as natural antioxidants in meat and meat products. Meat Sci. 2014, 98, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.Z.; Chin, K.B. Physicochemical properties and shelf-life of raw and cooked patties added with various levels of grape tomato powder by different drying methods. LWT—Food Sci. Technol. 2021, 146, 111415. [Google Scholar] [CrossRef]
- Ferreira, C.S.R.; Saqueti, B.H.F.; dos Santos, P.D.S.; da Silva, J.M.; Matiucci, M.A.; Feihrmann, A.C.; Mikcha, J.M.G.; Santos, O.O. Effect of Salvia (Salvia officinalis) on the oxidative stability of salmon hamburgers. LWT—Food Sci. Technol. 2022, 154, 112867. [Google Scholar] [CrossRef]
- Mitsumoto, M.; O’Grady, M.N.; Kerry, J.P.; Buckley, D.J. Addition of tea catechins and vitamin C on sensory evaluation, colour and lipid stability during chilled storage in cooked or raw beef and chicken patties. Meat Sci. 2005, 69, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Osman, M.F.E.; Mohamed, A.A.; Mohamed Ahmed, I.A.; Alamri, M.S.; Al Juhaimi, F.Y.; Hussain, S.; Ibraheem, M.A.; Qasem, A.A. Acetylated corn starch as a fat replacer: Effect on physiochemical, textural, and sensory attributes of beef patties during frozen storage. Food Chem. 2022, 388, 132988. [Google Scholar] [CrossRef] [PubMed]
Phenolic Compounds (mg/100 g) | ||
---|---|---|
Phenolic acids | CP | CPE |
Hydroxybenzoic acids | ||
Gallic acid | 762.6 ± 3.65 | 63.6 ± 0.30 |
Protocatechuic acid | 544.9 ± 2.80 | 45.4 ± 0.23 |
Syringic acid | 137.7 ± 2.10 | 11.5 ± 0.18 |
Catechol | 635.8 ± 3.45 | 53.0 ± 0.29 |
Hydroxycinnamic acids | ||
Caffeic acid | 151.7 ± 0.56 | 12.6 ± 0.05 |
p-Coumaric acid | 16.1 ± 0.39 | 1.3 ± 0.03 |
trans-Ferulic acid | 101.8 ± 0.63 | 8.5 ± 0.05 |
trans-Cinnamic acid | 0.78 ± 0.05 | 0.1 ± 0.002 |
Flavonoids | ||
Flavan-3-ols | ||
(+)-Catechin | 1065.1 ± 7.62 | 88.8 ± 0.64 |
Flavonols | ||
Quercetin | 1703.1 ± 5.26 | 141.9 ± 0.44 |
Rutin trihydrate | 98.1 ± 1.12 | 8.2 ± 0.09 |
Isorhamnetin | 126.0 ± 2.96 | 10.5 ± 0.25 |
Flavones | ||
Apigenin 7 glucoside | 99.7 ± 1.25 | 8.3 ± 0.10 |
Stilbenes | ||
Resveratrol | 19.0 ± 0.96 | 1.6 ± 0.08 |
Antioxidant activity | ||
DPPH (%) | - | 83.9 ± 0.41 |
Total phenolic content (mg GAE/g) | - | 455.8 ± 2.51 |
Total flavonoid content (mg CE/g) | - | 100.4 ± 1.40 |
Antimicrobial activity | ||
Bacteria | Inhibition zone (mm) | |
CPE (100 μg/disc) | Penicillin (100 μg/disc) | |
Escherichia coli ATCC 10536 | 20.0 b ± 0.05 | 26.0 a ± 0.09 |
Serratia marcescens ATCC 13880 | 25.0 b ± 0.02 | 30.0 a ± 0.12 |
Pseudomonas aeruginosa ATCC 9027 | 20.0 ± 0.10 | 20.0 ± 0.19 |
Salmonella typhimurium ATCC 14028 | 18.0 b ± 0.05 | 19.0 a ± 0.13 |
Yersinia enterocolitica ATCC 27729 | 11.0 b ± 0.02 | 13.0a ± 0.04 |
Klebsiella pneumoniae ATCC 10031 | 17.0 a ± 0.12 | 16.0 b ± 0.08 |
Bacillus cereus ATCC 14579 | 22.0 a ± 0.07 | 18.0 b ± 0.18 |
Clostridium perfringens ATCC 13124 | 16.0 ± 0.01 | 16.0 ± 0.10 |
Listeria monocytogenes ATCC 19114 | 9.0 b ± 0.04 | 11.0 a ± 0.01 |
Micrococcus luteus ATCC 10240 | 23.0 a ± 0.09 | 17.0 b ± 0.08 |
Bacillus coagulans (laboratory isolate) | 13.0 b± 0.02 | 16.0 a ± 0.10 |
Staphylococcus aureus ATCC 29737 | 15.0 b ± 0.09 | 25.0 a ± 0.12 |
Clove Powder (%) | Storage Period (Days) | |||
---|---|---|---|---|
0 | 7 | 14 | 21 | |
Cooking Yield (%) | ||||
0 | 85.0 ± 0.46 cp | 84.8 ± 0.35 bp | ND | ND |
2 | 88.9 ± 0.97 ap | 84.8 ± 0.79 bs | 87.0 ± 0.09 bq | 85.4 ± 0.67 ar |
4 | 86.8 ± 0.52 bq | 84.9 ± 0.78 br | 87.9 ± 0.78 ap | 84.8 ± 0.59 ar |
6 | 86.6 ± 0.65 br | 90.9 ± 1.01 ap | 87.8 ± 0.71 aq | 84.7 ± 1.02 as |
Fat retention (%) | ||||
0 | 86.5 ± 0.21 bq | 88.5 ± 0.24 dp | ND | ND |
2 | 88.0 ± 0.69 as | 92.6 ± 0.93 ap | 88.3 ± 0.07 ar | 89.4 ± 0.38 aq |
4 | 87.5 ± 0.13 ar | 90.3 ± 0.32 bp | 87.9 ± 0.28 br | 88.2 ± 0.28 bq |
6 | 87.5 ± 0.53 aq | 89.3 ± 0.27 cp | 87.9 ± 0.14 bq | 87.9 ± 0.17 cq |
Moisture retention (%) | ||||
0 | 72.0 ± 0.83 cq | 74.0 ± 0.18 cp | ND | ND |
2 | 79.3 ± 0.24 ap | 75.3 ± 0.79 br | 73.2 ± 0.49 bs | 76.4 ± 0.39 aq |
4 | 78.3 ± 0.53 bp | 75.8 ± 0.75 bq | 75.0 ± 0.86 aq | 75.6 ± 0.23 bq |
6 | 78.1 ± 0.29 bq | 80.7 ± 0.64 ap | 74.7 ± 0.68 ar | 74.6 ± 0.31 cr |
Dimensional shrinkage (%) | ||||
0 | 11.1 ± 0.29 ap | 9.0 ± 0.37 aq | ND | ND |
2 | 10.4 ± 0.34 bp | 8.0 ± 0.21 bq | 10.1 ± 0.24 ap | 8.3 ± 0.56 bq |
4 | 9.2 ± 0.33 cp | 7.5 ± 0.17 cq | 9.2 ± 0.23 bp | 9.4 ± 0.31 ap |
6 | 8.1 ± 0.54 dp | 7.2 ± 0.23 cq | 8.6 ± 0.13 cp | 9.0 ± 0.13 bp |
Storage Period (Days) | Clove Powder (%) | |||
---|---|---|---|---|
0 | 2 | 4 | 6 | |
Lightness (L*) | ||||
0 | 50.0 ± 0.34 ap | 48.5 ± 0.47 aq | 48.9 ±0.44 aq | 48.0 ± 0.79 aq |
7 | 46.3 ± 0.14 br | 46.0 ± 0.29 bp | 45.4 ± 0.25 bq | 44.6 ± 0.88 bq |
14 | ND | 46.7 ± 0.49 bp | 42.8 ± 0.58 cq | 41.0 ± 0.26 cr |
21 | ND | 45.0 ± 0.37 cp | 41.5 ± 0.31 dq | 39.9 ± 0.58 dr |
Redness (a*) | ||||
0 | 6.4 ± 0.61 ar | 7.0 ± 0.36 bq | 7.7 ± 0.27 ap | 6.7 ± 0.37 bqr |
7 | 6.5 ± 0.43 aq | 8.1 ± 0.39 ap | 7.9 ± 0.46 ap | 7.4 ± 0.74 ap |
14 | ND | 6.3 ± 0.43 bp | 6.1 ± 0.66 bp | 6.1 ± 0.71 bp |
21 | ND | 6.2 ± 0.63 bp | 6.1 ± 0.45 bp | 6.0 ± 0.68 bp |
Yellowness (b*) | ||||
0 | 16.6 ± 0.46 aq | 17.4 ± 0.26 ap | 17.9 ± 0.49 ap | 14.8 ± 0.27 br |
7 | 16.7 ± 0.52 ap | 15.1 ± 0.27 cq | 13.7 ± 0.17 ds | 14.5 ± 0.32 br |
14 | ND | 16.3 ± 0.38 bq | 16.7 ± 0.28 bq | 17.3 ± 0.28 ap |
21 | ND | 14.2 ± 0.41 dp | 14.2 ± 0.18 cp | 14.7 ± 0.64 bp |
Chroma (C) = (a2 + b2)0.5 | ||||
0 | 17.7 ± 0.31 ar | 18.8 ± 0.27 aq | 19.3 ± 0.53 ap | 16.3 ± 0.19 bs |
7 | 17.9 ± 0.31 ap | 17.1 ± 0.58 bp | 15.8 ± 0.21 cr | 16.3 ± 0.13 bq |
14 | ND | 17.4 ± 0.33 bq | 17.8 ± 0.16 bq | 18.3 ± 0.22 ap |
21 | ND | 15.4 ± 0.41 cp | 15.5 ± 0.62 cp | 15.9 ± 0.15 cp |
Storage Period (Days) | Clove Powder (%) | |||
---|---|---|---|---|
0 | 2 | 4 | 6 | |
Color | ||||
0 | 8.49 ± 0.25 ap | 8.26 ± 0.27 ap | 8.24 ± 0.25 ap | 8.25 ± 0.31 ap |
7 | 7.23 ± 0.24 bq | 8.33 ± 0.21 ap | 7.61 ± 0.15 bq | 6.74 ± 0.15 br |
14 | ND | 8.06 ± 0.13 ap | 7.86 ± 0.15 bp | 6.75 ± 0.41 bq |
21 | ND | 7.21 ± 0.35 bp | 7.34 ± 0.37 bp | 6.28 ± 0.47 bq |
Flavor | ||||
0 | 8.41 ± 0.24 aq | 9.17 ± 0.36 ap | 9.41 ± 0.57 ap | 8.82 ± 0.22 aq |
7 | 7.04 ± 0.32 bq | 8.41 ± 0.37 bp | 7.64 ± 0.29 bq | 7.18 ± 0.62 bq |
14 | ND | 7.24 ± 0.27 cp | 6.87 ± 0.13 cq | 6.35 ± 0.41 bq |
21 | ND | 7.13 ± 0.15 cp | 6.67 ± 0.22 cq | 6.08 ± 0.32 bq |
Taste | ||||
0 | 8.17 ± 0.42 ap | 8.47 ± 0.26 ap | 8.38 ± 0.27 ap | 8.29 ± 0.13 ap |
7 | 7.41 ± 0.35 ar | 8.27 ± 0.26 ap | 7.34 ± 0.24 br | 7.89 ± 0.06 bq |
14 | ND | 6.59 ± 0.22 cq | 7.49 ± 0.17 bp | 6.17 ± 0.46 cq |
21 | ND | 7.18 ± 0.18 bp | 7.01 ± 0.35 bp | 6.13 ± 0.17 cq |
Texture | ||||
0 | 8.36 ± 0.24 ar | 9.16 ± 0.17 ap | 9.02 ± 0.02 ap | 8.89 ± 0.06 aq |
7 | 7.17 ± 0.23 bq | 9.01 ± 0.47 ap | 8.91 ± 0.03 bp | 7.87 ± 0.42 bq |
14 | ND | 7.51 ± 0.28 bp | 7.87 ± 0.38 cp | 6.89 ± 0.17 cq |
21 | ND | 7.65 ± 0.32 bp | 6.51 ± 0.58 dq | 6.57 ± 0.23 cq |
Juiciness | ||||
0 | 8.57 ± 0.08 aq | 9.12 ± 0.31 ap | 8.76 ± 0.09 ap | 8.95 ± 0.15 ap |
7 | 7.14 ± 0.31 bp | 7.57 ± 0.56 bp | 7.78 ± 0.22 bp | 7.81 ± 0.17 bp |
14 | ND | 7.73 ± 0.23 bp | 7.83 ± 0.34 bp | 6.75 ± 0.16 cq |
21 | ND | 7.53 ± 0.36 bp | 7.14 ± 0.15 cp | 6.55 ± 0.43 cq |
Overall acceptability | ||||
0 | 8.19 ± 0.15 ap | 8.46 ± 0.33 ap | 8.76 ± 0.27 ap | 7.84 ± 0.02 aq |
7 | 7.62 ± 0.26 bq | 8.32 ± 0.26 ap | 7.74 ± 0.16 bq | 7.56 ± 0.11 bq |
14 | ND | 7.45 ± 0.38 bp | 7.14 ± 0.79 bp | 6.58 ± 0.28 cq |
21 | ND | 7.24 ± 0.29 bp | 7.11 ± 0.59 bp | 6.32 ± 0.31 cq |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, I.A.M.; Babiker, E.E.; Al-Juhaimi, F.Y.; Bekhit, A.E.-D.A. Clove Polyphenolic Compounds Improve the Microbiological Status, Lipid Stability, and Sensory Attributes of Beef Burgers during Cold Storage. Antioxidants 2022, 11, 1354. https://doi.org/10.3390/antiox11071354
Ahmed IAM, Babiker EE, Al-Juhaimi FY, Bekhit AE-DA. Clove Polyphenolic Compounds Improve the Microbiological Status, Lipid Stability, and Sensory Attributes of Beef Burgers during Cold Storage. Antioxidants. 2022; 11(7):1354. https://doi.org/10.3390/antiox11071354
Chicago/Turabian StyleAhmed, Isam A. Mohamed, Elfadil E. Babiker, Fahad Y. Al-Juhaimi, and Alaa El-Din Ahmed Bekhit. 2022. "Clove Polyphenolic Compounds Improve the Microbiological Status, Lipid Stability, and Sensory Attributes of Beef Burgers during Cold Storage" Antioxidants 11, no. 7: 1354. https://doi.org/10.3390/antiox11071354
APA StyleAhmed, I. A. M., Babiker, E. E., Al-Juhaimi, F. Y., & Bekhit, A. E.-D. A. (2022). Clove Polyphenolic Compounds Improve the Microbiological Status, Lipid Stability, and Sensory Attributes of Beef Burgers during Cold Storage. Antioxidants, 11(7), 1354. https://doi.org/10.3390/antiox11071354