Potential Antioxidative and Anti-Hyperuricemic Components Targeting Superoxide Dismutase and Xanthine Oxidase Explored from Polygonatum Sibiricum Red.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Preparation of Samples
2.2. Chemicals and Reagents
2.3. Evaluation of the Antioxidant Capacity of P. sibiricum
2.3.1. DPPH Free Radical Scavenging Activity
2.3.2. ABTS Free Radical Scavenging Activity
2.3.3. Ferric-Ion-Reducing Antioxidant Power (FRAP) Assay
2.4. Determination of Phenolic Constituents
2.4.1. Determination of Total Phenolic Content (TPC)
2.4.2. Determination of Total Flavonoid Contents (TFC)
2.5. Screening of the Potential Ligands of SOD and XOD with UF-LC-MS
2.6. UPLC-Q-TOF-MS/MS Analysis
2.7. Molecular Docking Study
2.8. Validation of Potential Ligands Activity by UF-LC-MS
2.9. Statistical Analysis
3. Results and Discussion
3.1. Antioxidant Activities of P. sibiricum
3.2. Total Phenolic and Flavonoid Content
3.3. Screening for SOD and XOD Ligands in P. sibiricum with UF-LC-MS
3.4. Identification of SOD and XOD Ligands in P. sibiricum with UPLC-Q-TOF-MS/MS
3.5. Molecular Docking
3.6. Antioxidant Capacity of Potential Ligands by UF-LC-MS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, X.; Yi, H.; Yao, L.; Ma, H.; Zhang, J.; Wang, Z. Advances in plants of Polygonatum and discussion of its development prospects. Chin. Pharm. J. 2017, 52, 530–534. [Google Scholar]
- Zhao, P.; Zhao, C.; Li, X.; Gao, Q.; Huang, L.; Xiao, P.; Gao, W. The genus Polygonatum: A review of ethnophar-macology, phytochemistry and pharmacology. J. Ethnopharmacol. 2018, 214, 274–291. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Cao, Y.; Chen, L.; Wang, J.; Tian, Q.; Wang, N.; Liu, Z.; Li, J.; Wang, N.; Wang, X. A polysaccharide from Polygonatum sibiricum attenuates amyloid-β-induced neurotoxicity in PC12 cells. Carbohydr. Polym. 2015, 117, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Yelithao, K.; Surayot, U.; Lee, J.H.; You, S. RAW264.7 cell activating glucomannans extracted from rhizome of Polygonatum sibiricum. Prev. Nutr. Food Sci. 2016, 21, 245–254. [Google Scholar] [CrossRef]
- Zong, S.; Zeng, G.; Zou, B.; Li, K.; Fang, Y.; Lu, L.; Xiao, D.; Zhang, Z. Effects of Polygonatum sibiricum polysaccharide on the osteogenic differentiation of bone mesenchymal stem cells in mice. Int. J. Clin. Exp. Pathol. 2015, 8, 6169–6180. [Google Scholar] [PubMed]
- Rufus, P.; Mohamed, N.; Shuid, A.N. Beneficial effects of traditional Chinese medicine on the treatment of osteoporosis on ovariectomised rat models. Curr. Drug Targets 2013, 14, 1689–1693. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhang, J.G.; Wang, L.H.; Mao, D.X. Effects of polygonatum sibiricum polysaccharide on learning and memory in a scopolamine-induced mouse model of dementia. Neural Regen. Res. 2008, 3, 33–36. [Google Scholar]
- Liu, N.; Dong, Z.; Zhu, X.; Xu, H.; Zhao, Z. Characterization and protective effect of Polygonatum sibiricum polysaccharide against cyclophosphamide-induced immunosuppression in Balb/c mice. Int. J. Biol. Macromol. 2018, 107, 796–802. [Google Scholar] [CrossRef]
- Lu, J.M.; Wang, Y.F.; Yan, H.L.; Lin, P.; Gu, W.; Yu, J. Antidiabetic effect of total saponins from Polygonatum kingianum in streptozotocin-induced daibetic rats. J. Ethnopharmacol. 2016, 179, 291–300. [Google Scholar] [CrossRef]
- Zheng, S.Y. Protective effect of Polygonatum sibiricum polysaccharide on D-galactose-induced aging rats model. Sci. Rep. 2020, 10, 2246. [Google Scholar] [CrossRef]
- Ma, Y.L.; Zhang, Y.S.; Zhang, F.; Zhang, Y.Y.; Thakur, K.; Zhang, J.G.; Wei, Z.J. Methyl protodioscin from Polygonatum sibiricum inhibits cervical cancer through cell cycle arrest and apoptosis induction. Food Chem. Toxicol. 2019, 132, 110655. [Google Scholar] [CrossRef]
- Ren, M.H.; Deng, Y.L.; Zhang, J.L.; Ye, X.W.; Xia, L.T.; Liu, M.M.; Liu, Y. Research progress on processing history evolution, chemical components and pharmacological effects of Polygonati Rhizoma. China J. Chin. Mater. Med. 2020, 45, 4163–4182. [Google Scholar]
- Xia, G.H.; Li, X.H.; Zhang, Z.; Jiang, Y.H. Effects of fermentation treatments on Polygonatum odoratum flavones’ antioxidant activities. Saudi J. Biol. Sci. 2021, 28, 5011–5016. [Google Scholar] [CrossRef]
- Ahn, M.J.; Kim, C.Y.; Yoon, K.D.; Ryu, M.Y.; Cheong, J.H.; Chin, Y.W.; Kim, J. Steroidal Saponins from the Rhizomes of Polygonatum sibiricum. J. Nat. Prod. 2006, 69, 360–364. [Google Scholar] [CrossRef]
- Sun, L.; Li, X. Studies on chemical constituents of Polygonatum sibiricum (II). Chin. Tradit. Herb. Drugs 2001, 32, 586–588. [Google Scholar]
- Yu, Y.; Li, Z.; Cao, G.; Li, S.; Yang, H. Effects of ball milling micronization on amino acids profile and antioxidant activities of Polygonatum cyrtonema Hua tuber powder. J. Food Meas. Charact. 2019, 13, 2106–2117. [Google Scholar] [CrossRef]
- Liu, L.; Dong, Q.; Dong, X.T.; Fang, J.N.; Ding, K. Structural investigation of two neutral polysaccharides isolated from rhizome of Polygonatum sibiricum. Carbohydr. Polym. 2007, 70, 304–309. [Google Scholar] [CrossRef]
- Xiao, F.; Xu, T.; Lu, B.; Liu, R.H. Guidelines for antioxidant assays for food component. Food Front. 2020, 1, 60–69. [Google Scholar] [CrossRef]
- Mittler, R. ROS are good. Trends Plant Sci. 2017, 22, 11–19. [Google Scholar] [CrossRef]
- Carocho, M.; Morales, P.; Ferreira, I.C. Antioxidants: Reviewing the chemistry, food applications, legislation and role as preservatives. Trends Food Sci. Technol. 2018, 71, 107–120. [Google Scholar] [CrossRef]
- Stephenie, S.; Chang, Y.P.; Gnanasekaran, A.; Esa, N.M.; Gnanaraj, C. An insight on superoxide dismutase (SOD) from plants for mammalian health enhancement. J. Funct. Foods 2020, 68, 103917. [Google Scholar] [CrossRef]
- Knaus, U.G. Oxidants in physiological processes. Handb. Exp. Pharmacol. 2021, 264, 27–47. [Google Scholar]
- Sugahara, S.; Chiyo, A.; Fukuoka, K.; Ueda, Y.; Tokunaga, Y.; Nishida, Y.; Kinoshita, H.; Matsuda, Y.; Igoshi, K.; Ono, M. Unique antioxidant effects of herbal leaf tea and stem tea from Moringa oleifera L. especially on superoxide anion radical generation systems. Biosci. Biotechnol. Biochem. 2018, 82, 1973–1984. [Google Scholar] [CrossRef] [PubMed]
- Taleb, A.; Ahmad, K.A.; Ihsan, A.U.; Qu, J.; Lin, N.; Hezam, K.; Koju, N.; Hui, L.; Qilong, D. Antioxidant effects and mechanism of silymarin in oxidative stress induced cardiovascular diseases. Biomed. Pharmacother. 2018, 102, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Martorell, M.; Lucas, X.; Alarcón-Zapata, P.; Capó, X.; Quetglas-Llabrés, M.M.; Tejada, S.; Sureda, A. Targeting xanthine oxidase by natural products as a therapeutic approach for mental disorders. Curr. Pharm. Des. 2021, 27, 367–382. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J. Oxidative stress-based therapeutics in COPD. Redox Biol. 2020, 33, 101544. [Google Scholar] [CrossRef] [PubMed]
- Borges, F.; Fernandes, E.; Roleira, F. Progress towards the discovery of xanthine oxidase inhibitors. Curr. Med. Chem. 2002, 9, 195–217. [Google Scholar] [CrossRef]
- Ma, W.; Wei, S.; Peng, W.; Sun, T.; Huang, J.; Yu, R.; Zhang, B.; Li, W. Antioxidant effect of Polygonatum sibiricum polysaccharides in D-galactose-induced heart aging mice. BioMed Res. Int. 2021, 2021, 6688855. [Google Scholar] [CrossRef]
- Han, C.; Zhu, Y.; Yang, Z.; Fu, S.; Zhang, W.; Liu, C. Protective effect of Polygonatum sibiricum against cadmium-induced testicular injury in mice through inhibiting oxidative stress and mitochondria-mediated apoptosis. J. Ethnopharmacol. 2020, 261, 113060. [Google Scholar] [CrossRef]
- Liu, Y.; Muema, F.W.; Zhang, Y.L.; Guo, M.Q. Acyl quinic acid derivatives screened out from Carissa spinarum by SOD-affinity ultrafiltration LC-MS and their antioxidative and hepatoprotective activities. Antioxidants 2021, 10, 1302. [Google Scholar] [CrossRef]
- Xu, Y.B.; Chen, G.L.; Guo, M.Q. Antioxidant and anti-Inflammatory activities of the crude extracts of Moringa oleifera from Kenya and their correlations with flavonoids. Antioxidants 2019, 8, 296. [Google Scholar] [CrossRef]
- Zhuang, X.C.; Chen, G.L.; Liu, Y.; Zhang, Y.L.; Guo, M.Q. New lignanamides with antioxidant and anti-Inflammatory activities screened out and identified from Warburgia ugandensis combining affinity ultrafiltration LC-MS with SOD and XOD enzymes. Antioxidants 2021, 10, 370. [Google Scholar] [CrossRef]
- Dordevic, T.M.; Siler-Marinkovic, S.S.; Dimitrijevic-Brankovic, S.I. Effect of fermentation on antioxidant properties of some cereals and pseudo cereals. Food Chem. 2010, 119, 957–963. [Google Scholar] [CrossRef]
- AbdErahman, A.; Abayomi, O.O.; Ahmed, A.E.; Nour, A.H.; Yunus, R.B.M.; Ibrahim, G.M.; Kabbashi, N.A. Comparative analysis of polyphenolic and antioxidant constituents in dried seedlings and seedless Acacia nilotica fruits. J. Anal. Test. 2018, 2, 352–355. [Google Scholar] [CrossRef]
- Zou, Y.; Chang, S.K.; Gu, Y.; Qian, S.Y. Antioxidant activity and phenolic compositions of lentil (Lens culinaris var. Morton) extract and its fractions. J. Agric. Food Chem. 2011, 59, 2268–2276. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.L.; Fan, M.X.; Wu, J.L.; Li, N.; Guo, M.Q. Antioxidant and anti-inflammatory properties of flavonoids from lotus plumule. Food Chem. 2019, 277, 706–712. [Google Scholar] [CrossRef]
- Fan, M.X.; Chen, G.L.; Guo, M.Q. Potential antioxidative components in Azadirachta indica revealed by bio-affinity ultrafiltration with SOD and XOD. Antioxidants 2022, 11, 658. [Google Scholar] [CrossRef]
- Yong, T.; Chen, S.; Xie, Y.; Shuai, O.; Li, X.; Chen, D.; Su, J.; Jiao, C.; Liang, Y. Hypouricemic effects of extracts from Agrocybe aegerita on hyperuricemia mice and virtual prediction of bioactives by molecular docking. Front. Pharmacol. 2018, 9, 498. [Google Scholar] [CrossRef]
- Rakotondrabe, T.F.; Fan, M.X.; Zhang, Y.L.; Guo, M.Q. Simultaneous screening and analysis of anti-inflammatory and antiproliferative compounds from Euphorbia maculata combining bio-affinity ultrafiltration with multiple drug targets. J. Anal. Test. 2022, 6, 98–110. [Google Scholar] [CrossRef]
- Vajragupta, O.; Boonchoong, P.; Berliner, L.J. Manganese complexes of curcumin analogues: Evaluation of hydroxyl radical scavenging ability, superoxide dismutase activity and stability towards hydrolysis. Free Radic. Res. 2004, 38, 303–314. [Google Scholar] [CrossRef]
- Jiao, J.J.; Yang, Y.Z.; Wu, Z.F.; Li, B.T.; Zheng, Q.; Wei, S.F.; Wang, Y.Q.; Yang, M. Screening cyclooxygenase-2 inhibitors from Andrographis paniculata to treat inflammation based on bio-affinity ultrafiltration coupled with UPLC-Q-TOF-MS. Fitoterapia 2019, 137, 104259. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yang, Y.X.; Li, S.Y.; Wang, Y.L.; Yang, F.Q.; Chen, H.; Xia, Z.N. An ultrafiltration and high performance liquid chromatography coupled with diode array detector and mass spectrometry approach for screening and characterizing thrombin inhibitors from Rhizoma Chuanxiong. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1061, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.; Kim, Y.; Wi, S.J.; Seo, J.B.; Kwon, J.; Chung, J.H.; Park, K.Y.; Nam, M.H. Nontargeted metabolite profiling in compatible pathogen-inoculated tobacco (Nicotiana tabacum L. cv. Wisconsin 38) using UPLC-Q-TOF/MS. J. Agric. Food Chem. 2012, 60, 11015–11028. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhao, H.; Shi, S.; Li, H.; Zhou, X.; Jiao, F.; Jiang, X.; Peng, D.; Chen, X. Sensitive characterization of polyphenolic antioxidants in Polygonatum odoratum by selective solid phase extraction and high performance liquid chromatography-diode array detector-quadrupole time-of-flight tandem mass spectrometry. J. Pharm. Biomed. Anal. 2015, 112, 15–22. [Google Scholar] [CrossRef]
- Zhang, J.; Guan, S.; Sun, J.; Liu, T.; Chen, P.; Feng, R.; Chen, X.; Wu, W.; Yang, M.; Guo, D.A. Characterization and profiling of phenolic amides from Cortex Lycii by ultra-high performance liquid chromatography coupled with LTQ-Orbitrap mass spectrometry. Anal. Bioanal. Chem. 2015, 407, 581–595. [Google Scholar] [CrossRef]
- Ye, M.; Guo, D.; Ye, G.; Huang, C. Analysis of homoisoflavonoids in Ophiopogon japonicus by HPLC-DAD-ESI-MS. J. Am. Soc. Mass Spectrom. 2005, 16, 234–243. [Google Scholar] [CrossRef]
- Qi, J.; Xu, D.; Zhou, Y.F.; Qin, M.J.; Yu, B.Y. New features on the fragmentation patterns of homoisoflavonoids in Ophiopogon japonicus by high-performance liquid chromatography/diode-array detection/electrospray ionization with multi-stage tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2010, 24, 2193–2206. [Google Scholar] [CrossRef]
- Ren, H.M.; Zhang, J.L.; Deng, Y.L.; Ye, X.W.; Xia, L.T.; Liu, M.M.; Liu, Y.; Chen, Y.; Zhang, Q.; Wang, T. Analysis of chemical constitutions of Polygonatum cyrtonema dried rhizomes before and after processing with wine based on UPLC-Q-TOF-MS. Chin. J. Exp. Tradit. Med. Formulae 2021, 24, 110–121. [Google Scholar]
- Chen, G.L.; Seukep, A.J.; Guo, M.Q. Recent advances in molecular docking for the research and discovery of potential marine drugs. Mar. Drugs 2020, 18, 545. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, G.; Zhang, Y.; Yang, M.; Chen, J.; Guo, M.Q. Potential hypoglycemic, hypolipidemic, and anti-inflammatory bioactive components in Nelumbo nucifera leaves explored by bioaffinity ultrafiltration with multiple targets. Food Chem. 2022, 375, 131856. [Google Scholar] [CrossRef]
Extracts | TPC (mg GAE/g dw) | TFC (mg RT/g dw) |
---|---|---|
PE | 10.417 ± 0.899 c | 2.859 ± 0.106 b |
EA | 144.736 ± 6.419 a | 119.204 ± 3.099 a |
n-Bu | 19.143 ± 1.234 b | 3.999 ± 0.381 b |
WA | 0.790 ± 0.015 d | 0.078 ± 0.015 c |
CE | 0.543 ± 0.014 d | 0.188 ± 0.018 c |
NO. | Rt/min | [M-H]− (m/z) | MS/MS Spectrum | Identification | BD (%) | |
---|---|---|---|---|---|---|
SOD | XOD | |||||
3 | 9.71 | 298.1008 | 280.0918, 145.0272, 119.0483 | N-cis-p-Coumaroyloctopamine | 17.00 | 8.86 |
4 | 11.22 | 328.1114 | 310.1057, 161.0235, 133.0521 | N-cis-Feruloyloctopamine | 14.86 | 7.21 |
5 | 12.34 | 298.1032 | 280.0968, 145.0281, 119.0515 | N-trans-p-Coumaroyloctopamine | 22.93 | −3.29 |
6 | 13.83 | 328.1209 | 310.1028, 161.0230, 133.0528 | N-trans-Feruloyloctopamine | 24.28 | −1.01 |
7 | 16.44 | 282.1144 | 162.0504, 145.0221, 119.0468 | N-cis-p-Coumaroyltyramine | 16.90 | 39.72 |
8 | 17.78 | 312.1246 | 190.0471, 178.0462, 148.0502, 135.0434 | N-cis-Feruloyltyramine | 6.95 | 9.53 |
9 | 19.20 | 282.1146 | 162.0539, 119.0495 | N-trans-p-Coumaroyltyramine | 18.81 | −6.76 |
10 | 20.43 | 312.1253 | 190.0447, 178.0482, 148.0501, 135.0428 | N-trans-Feruloyltyramine | 25.21 | −0.96 |
12 | 24.66 | 301.0695 | 179.0334, 125.0243 | 5,7,2’,4’-Tetrahydroxyl homoisoflavanone | 14.83 | −1.48 |
13 | 35.82 | 329.1057 | 193.0499, 139.0411 | 5,7,2’-Trihydroxy-8-methyl-4’- methoxyl homoisoflavanone | 7.19 | 0.99 |
Peak | SOD (PDB 1CBJ) | XOD (PDB 1FIQ) | ||||
---|---|---|---|---|---|---|
BE (kcal/mol) | Ki | Hydrogen Bonds | BE (kcal/mol) | Ki | Hydrogen Bonds | |
5 | −6.54 | 16.13 μM | Val146, Val7, Asp11 | ND | ND | ND |
6 | −6.58 | 14.97 μM | Val146, Val7, Asp11, Asn51 | ND | ND | ND |
7 | ND | ND | ND | −6.51 | 16.83 μM | Gln144, Tyr1227, Ser1234 |
10 | −6.83 | 9.83 μM | Val146, Lys9, Asp11 | ND | ND | ND |
DTC a | −3.84 | 1.52 mM | Gly49, Asn51, Val5 | ND | ND | ND |
ALL b | ND | ND | ND | −5.08 | 189.72 μM | Lys1228, Glu1210 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Wang, Z.; Fan, M.; Hu, G.; Guo, M. Potential Antioxidative and Anti-Hyperuricemic Components Targeting Superoxide Dismutase and Xanthine Oxidase Explored from Polygonatum Sibiricum Red. Antioxidants 2022, 11, 1651. https://doi.org/10.3390/antiox11091651
Li J, Wang Z, Fan M, Hu G, Guo M. Potential Antioxidative and Anti-Hyperuricemic Components Targeting Superoxide Dismutase and Xanthine Oxidase Explored from Polygonatum Sibiricum Red. Antioxidants. 2022; 11(9):1651. https://doi.org/10.3390/antiox11091651
Chicago/Turabian StyleLi, Jing, Zhi Wang, Minxia Fan, Guangwan Hu, and Mingquan Guo. 2022. "Potential Antioxidative and Anti-Hyperuricemic Components Targeting Superoxide Dismutase and Xanthine Oxidase Explored from Polygonatum Sibiricum Red." Antioxidants 11, no. 9: 1651. https://doi.org/10.3390/antiox11091651
APA StyleLi, J., Wang, Z., Fan, M., Hu, G., & Guo, M. (2022). Potential Antioxidative and Anti-Hyperuricemic Components Targeting Superoxide Dismutase and Xanthine Oxidase Explored from Polygonatum Sibiricum Red. Antioxidants, 11(9), 1651. https://doi.org/10.3390/antiox11091651