The Effect of Maternal Dietary Selenium Supplementation on Blood Antioxidant and Metabolic Status of Ewes and Their Lambs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of Experiment and Treatments
2.2. Chemical Composition of Feed
2.3. Body Weight of Lambs
2.4. Collection and Analysis of Blood Samples
2.5. Statistical Analysis
3. Results
3.1. Effects of Selenium Supplementation on the Antioxidant Status Indicators in the Blood of Ewes
3.2. Effects of Selenium Supplementation on the Antioxidant Status Indicators in the Blood of Lambs
3.3. Effects of Selenium Supplementation on the Blood Biochemical Indicators of Lambs
3.4. Effects of Selenium Supplementation on the Blood Hematological Indicators of Lambs
3.5. Selenium Transfer from Ewes to Lambs
3.6. Correlation and Regression Analysis between the Content of Antioxidant Parameters in the Blood of Ewes and Their Lambs
4. Discussion
4.1. Effects of Selenium on the Antioxidant Indicators in Ewes as Dams
4.2. Effects of Selenium on the Antioxidant Indicators of Lambs
4.3. Effects of Selenium on Blood Biochemical Indicators in Lambs
4.4. Effects of Selenium on Blood Hematological Indicators in Lambs
4.5. Effectiveness of Selenium Transfer from Ewes to Lambs through Placenta and Milk
4.6. The Relationship between Antioxidant Indicators in the Blood of Ewes and Their Lambs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Humann-Ziehank, E.; Tegtmeyer, P.C.; Seeling, B.; Roehring, P.; Ganter, M. Variation of serum selenium concentrations in German sheep flock and implications for herd health management consultancy. Acta Vet. Scand. 2013, 55, 82. [Google Scholar] [CrossRef]
- Sunde, R.A. Selenium. In Modern Nutrition in Health and Disease, 11th ed.; Ross, A.C., Caballero, B., Cousins, R.J., Tucker, K.L., Ziegler, T.R., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2012; pp. 225–237. [Google Scholar]
- Rooke, J.; Dwyer, C.; Ashworth, C. The potential for improving physiological, behavioural and immunological responses in the neonatal lamb by trace element and vitamin supplementation of the ewe. Animal 2008, 2, 514–524. [Google Scholar] [CrossRef] [PubMed]
- Milewski, S.; Sobiech, P.; Błażejak-Grabowska, J.; Wójcik, R.; Żarczyńska, K.; Miciński, J.; Ząbek, K. The efficacy of a long-acting injectable selenium preparation administered to pregnant ewes and lambs. Animals 2021, 11, 1076. [Google Scholar] [CrossRef]
- FDA. Code of Federal Regulations Title 21. Food and Drugs. Part 573. Food Additive Permited in Feed and Drinking Water of Animals. 2018. Available online: https://www.govinfo.gov/app/details/CFR-2008-title21-vol6/CFR-2008-title21-vol6-part573 (accessed on 20 May 2021).
- Novoselec, J.; Klir, Ž.; Domaćinović, M.; Lončarić, Z.; Antunović, Z. Biofortification of feedstuffs with microelements in animal nutrition. Poljoprivreda 2018, 24, 32–41. [Google Scholar] [CrossRef]
- Weiss, W.P. Selenium sources for dairy cattle. In Proceedings of the Tri-State Dairy Nutrition Conference, Fort Wayne, IN, USA, 2–3 May 2005; Ohio State University: Columbus, OH, USA; pp. 61–71. [Google Scholar]
- Stewart, W.C.; Bobe, G.; Vorachek, W.R.; Pirelli, G.J.; Mosher, W.D.; Nicholas, T.; Van Saun, R.J.; Forsberg, N.F.; Hall, J.A. Organic and inorganic selenium: II. Transfer efficiency from ewes to lambs. J. Anim. Sci. 2012, 90, 577–584. [Google Scholar] [CrossRef]
- Erdoğan, S.; Karadaş, F.; Yılmaz, A.; Karaca, S. The effect of organic selenium in feeding of ewes in late pregnancy on selenium transfer to progeny. Rev. Bras. Zootec. 2017, 46, 147–155. [Google Scholar] [CrossRef]
- Manojlović, M.; Lončarić, Z. Selenium deficiency in regional soils affecting animal and human health in Balkan and other European countries. In The Nexus of Soils, Plants, Animals and Human Health; Singh, B.R., McLaughlin, M.J., Brevik, E.C., Eds.; The Catena-Schweizerbart: Stuttgart, Germany, 2017; pp. 87–98. [Google Scholar]
- Antunović, Z.; Klapec, T.; Čavar, S.; Šperanda, M.; Pavić, V.; Novoselec, J.; Klir, Z. Status of selenium and correlation with blood GSH-px in goats and their kids in organic breeding fed with different levels of organic selenium. Arch. Anim. Breed. 2013, 56, 167–177. [Google Scholar] [CrossRef]
- Surai, P.F. Selenium in ruminant nutrition. In Selenium in Nutrition and Health; Surai, P.F., Ed.; Nottingham University Press: Nottingham, UK, 2006; pp. 489–509. [Google Scholar]
- Juniper, D.T.; Phipps, R.H.; Ramos-Morales, E.; Bertin, G. Effect of high dose selenium enriched yeast diets on the distribution of total selenium and selenium species within lamb tissues. Livest. Sci. 2009, 122, 63–67. [Google Scholar] [CrossRef]
- Sordillo, L.M. Selenium-dependent regulation of oxidative stress and immunity in periparturient dairy cattle. Vet. Med. Int. 2013, 2013, 154045. [Google Scholar] [CrossRef]
- Gao, J.Z.; Qin, S.Y.; Huang, K.H. Effects of selenium enriched probiotics on antioxidative activities and immune functions in weanling piglets. Acta Nutr. Sin. 2006, 28, 132. [Google Scholar]
- Shilo, S.; Pardo, M.; Aharoni-Simon, M.; Glibter, S.; Tirosh, O. Selenium supplementation increases liver MnSOD expression: Molecular mechanism for hepato-protection. J. Inorg. Biochem. 2008, 102, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Yue, W.; Zhang, C.; Shi, L.; Ren, Y.; Jiang, Y.; Kleemann, D.O. 49 Effect of Supplemental Selenomethionine on Growth Performance and Serum Antioxidant Status in Taihang Black Goats. Asian-australas. J. Anim. Sci. 2009, 22, 365–370. [Google Scholar] [CrossRef]
- Hosnedlova, B.; Kepinska, M.; Skalickova, S.; Fernandez, C.; Ruttkay-Nedecky, B.; Malevu, T.D.; Kizek, R. A summary of new findings on the biological effects of selenium in selected animal species-a critical review. Int. J. Mol. Sci. 2017, 18, 2209. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis of AOAC International. In Association of Analytical Communities; AOAC: Arlington, VA, USA, 2006. [Google Scholar]
- Pearson, D. The Chemical Analysis of Foods; Longman Group Ltd.: Harlow, UK, 1976; pp. 488–496. [Google Scholar]
- Onwuka, G.I. Food Analysis and Instrumentation: Theory and Practice; Napthali Prints: Lagos, Nigeria, 2005; pp. 133–137. [Google Scholar]
- Belete, T.; Hussen, A.; Rao, V.M. Determination of concentrations of selected heavy metals in cow’s milk: Borena Zone, Ethiopia. J. Health Sci. 2014, 4, 105–112. [Google Scholar] [CrossRef]
- Bosnak, C.P.; Davidowski, L. Continuous flow hydride generation using the optima ICP. In Field Application Report; Shelton, PerkinElmer Life and Analytical Sciences: Shelton, CT, USA, 2004. [Google Scholar]
- Paglia, D.E.; Valentine, W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 1967, 70, 158–169. [Google Scholar]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxidation in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Kaneko, J.J.; Harvey, J.W.; Bruss, M.L. Clinical Biochemistry of Domestic Animals, 6th ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2008; p. 931. [Google Scholar]
- Lepherd, M.L.; Canfield, P.J.; Hunt, G.B.; Bosward, K.L. Haematological, biochemical and selected acute phase protein reference intervals for weaned female Merino lambs. Aust. Vet. J. 2009, 87, 5–11. [Google Scholar] [CrossRef]
- Hefnawy, A.E.; López-Arellano, R.; Revilla-Vázquez, A.; Ramírez-Bribiesca, E.; Tórtora-Pérez, J. The relationship between fetal and maternal selenium concentrations in sheep and goats. Small Rumin. Res. 2007, 73, 174–180. [Google Scholar] [CrossRef]
- Øvernes, G.; Moksnes, K.; Froslie, A.; Gunnar, J.G.; Flaat, J. The effect of different levels of selenium in mineral mixtures and salt licks on selenium status in sheep. Acta Vet. Scand. 1985, 26, 405–416. [Google Scholar] [CrossRef]
- Panev, A.; Hauptmanova, K.; Pavlata, L.; Pechova, A.; Filipek, J.; Dvorak, R. Effect of supplementation of various selenium forms and doses on selected parameters of ruminal fluid and blood sheep. Czech J. Anim. Sci. 2013, 58, 37–46. [Google Scholar] [CrossRef]
- Misurova, L.; Pavlata, L.; Pechova, A.; Dvorak, R. Effect of a long-term peroral supplementation with sodium selenite and selenium lactate-protein complex on selenium status in goats and their kids. Vet. Med. (Praha) 2009, 52, 324–332. [Google Scholar] [CrossRef]
- Hall, J.A.; Van Saun, R.J.; Bobe, G.; Stewart, W.C.; Vorachek, W.R.; Mosher, W.D.; Nichols, T.; Forsberg, N.E.; Pirelli, G.J. Organic and inorganic selenium: I. Oral bioavailability in ewes. J. Anim. Sci. 2012, 90, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Steen, A.; Strom, T.; Bernhoft, A. Organic selenium supplementation increased selenium concentrations in ewe and newborn lamb blood and slaughter lamb meat compared to inorganic selenium supplementation. Acta Vet. Scand. 2008, 50, 7. [Google Scholar] [CrossRef] [PubMed]
- Balicki-Ramisz, A.; Bogumila, P.; Ramisz, A.; Wieczorek, M. Effect of selenium administration on blood serum Se content and on selected reproductive characteristic of sheep. Arch. Anim. Breed. 2006, 49, 176–180. [Google Scholar] [CrossRef]
- Forrer, R.; Gautscki, K.; Lutz, H. Comparative determination of selenium in the serum of various animal species and humans by means of electrothermal atomic absorption spectrometry. J. Trace Elem. Electrolytes Health Dis. 1991, 5, 101–113. [Google Scholar]
- Grace, N.D. Use of biochemical cryteria to diagnose trace element deficiencies in sheep and cattle. In Proceedings, IXth International Conference on Production Diseases in Farm Animals 1995: 11–14 September 1995, Free University of Berlin; Ferdinand Enke Verlag: Stuttgart, Germany, 1997; pp. 11–14. [Google Scholar]
- Juniper, D.T.; Phipps, R.H.; Givens, D.I.; Jones, A.K.; Green, C.; Bertin, G. Tolerance of ruminant animals to high dose in-feed administration of a selenium-enriched yeast. J. Anim. Sci. 2008, 86, 197–204. [Google Scholar] [CrossRef]
- Pavlata, L.; Misurova, L.; Pechova, A.; Dvorak, R. Comparison of organic and inorganic forms of selenium in the mother and kid relationship in goats. Czech. J. Anim. Sci. 2012, 57, 361–369. [Google Scholar] [CrossRef]
- Awawdeh, M.S.; Talafha, A.Q. Blood and milk status of vitamin E, vitamin A and selenium in nursing Awass ewes injected with vitamin E and selenium. Acta Agric. Scand.-B 2015, 65, 176–182. [Google Scholar] [CrossRef]
- Karren, B.J.; Thorson, J.F.; Cavinder, C.A.; Hammer, C.J.; Coverdale, J.A. Effect of selenium supplementation and plane of nutrition on mares and their foals: Selenium concentrations and glutathione peroxidase 1. J. Anim. Sci. 2010, 88, 991–997. [Google Scholar] [CrossRef]
- Kachuee, R.; Moeini, M.; Souri, M. Effects of organic and inorganic selenium supplementation during late pregnancy on colostrum and serum Se status, performance and passive immunity in Merghoz goats. Anim. Prod. Sci. 2014, 54, 1016–1022. [Google Scholar] [CrossRef]
- Faixova, Z.; Faix, Š.; Leng, L.; Vaczi, P.; Makova, Z.; Szaboova, R. Haematological, blood and rumen chemistry changes in lambs following supplementation with Se-yeast. Acta Vet. Brno. 2007, 76, 3–8. [Google Scholar] [CrossRef]
- Antunović, Z.; Novoselec, J.; Klapec, T.; Čavar, S.; Mioč, B.; Šperanda, M. Influence of different selenium sources on performance, blood and meat selenium content off fattening lambs. Ital. J. Anim. Sci. 2009, 8, 163–165. [Google Scholar] [CrossRef]
- Vignola, G.; Lambertini, L.; Giammarco, M.; Pezzi, P.; Mazzone, G. Effect of Se supplementation on growth rate and blood parameters in lambs. Ital. J. Anim. Sci. 2007, 6, 383–385. [Google Scholar] [CrossRef]
- Shi, L.; Xun, W.; Yue, W.; Zhang, C.; Ren, Y.; Shi, L.; Wang, Q.; Yang, R.; Lei, F. Effect of sodium selenite, Se-yeast and nano-elemental selenium on growth performance, Se concentration and antioxidant status in growing male goats. Small Rumin. Res. 2011, 96, 49–52. [Google Scholar] [CrossRef]
- Mousaie, A. Dietary supranutritional supplementation of selenium-enriched yeast improves feed efficiency and blood antioxidant status of growing lambs reared under warm environmental condition. Trop. Anim. Health Prod. 2021, 53, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Vignola, G.; Lambertini, L.; Mazzone, G.; Giammarco, M.; Tassinari, M.; Martelli, G.; Bertin, G. Effect of selenium source and level of supplementation on the performance and meat quality of lambs. Meat Sci. 2009, 81, 678–685. [Google Scholar] [CrossRef]
- Padmaja, S.; Squadrito, G.L.; Lemercier, J.N.; Cueto, R.; Pryor, W.A. Rapid oxidation of DL-selenomethionine by peroxynitrite. Free Radic. Biol. Med. 1996, 21, 317–322. [Google Scholar] [CrossRef]
- Hefnawy, A.E.; Tortora-Perez, J.L. The importance of selenium and effect of its deficiency in animal health. Small Rumin. Res. 2010, 89, 185–192. [Google Scholar] [CrossRef]
- Rahim, A.G.A. The relationship between whole blood selenium (Se) concentration and activity of seleno-enzyme, glutathione peroxidase (GSH-Px E.C. I. 1.1.1.9) in camel (Camelus dromedarius). J. Arid Environ. 2005, 62, 359–362. [Google Scholar] [CrossRef]
- Van Ryssen, J.B.J.; Deagen, J.T.; Beilstein, M.A.; Whanger, P.D. Comparative metabolism of organic and inorganic selenium by sheep. J. Agric. Food Chem. 1989, 37, 1358–1363. [Google Scholar] [CrossRef]
- Misurova, L.; Pavlata, L.; Pechova, A.; Dvorak, R. Selenium metabolism in goats-maternal transfer of selenium to newborn kids. Vet. Med. (Praha). 2009, 54, 125–130. [Google Scholar] [CrossRef]
- Antunović, Z.; Novoselec, J.; Klir Šalavardić, Ž.; Steiner, Z.; Šperanda, M.; Jakobek Barron, L.; Pavić, V. Influence of Red Corn Rich in Anthocyanins on Productive Traits, Blood Metabolic Profile, and Antioxidative Status of Fattening Lambs. Animals 2022, 12, 612. [Google Scholar] [CrossRef] [PubMed]
- de Souza, D.F.; Reijers, T.S.S.S.; Gilaverte, S.; da Cruz, T.A.; Hentz, F.; Castilhos, B.D.Q.; Dittrich, R.L.; Monteiro, A.L.G. Dynamics of biochemical parameters in lambs during the first four months of life. Rev. Bras. Zootec. 2020, 49. [Google Scholar] [CrossRef]
- Ahn, T.; Bae, C.S.; Yun, C.H. Selenium supplementation restores the decreased albumin level of peripheral blood mononuclear cells in streptozotocin-induced diabetic mice. J. Vet. Med. Sci. 2016, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Sterndale, S.; Broomfield, S.; Currie, A.; Hancock, S.; Kearney, G.A.; Lei, J.; Liu, S.; Lockwood, A.; Scanlan, V.; Smith, G.; et al. Supplementation of Merino ewes with vitamin E plus selenium increases α-tocopherol and selenium concentrations in plasma of the lamb but does not improve their immune function. Animal 2018, 12, 998–1006. [Google Scholar] [CrossRef]
- Rooke, J.; Robinson, J.; Arthur, J. Effects of vitamin E and selenium on the performance and immune status of ewes and lambs. J. Agric. Sci. 2004, 142, 253–262. [Google Scholar] [CrossRef]
- Scott, R.L.; Kheshti, A.; Heimberg, M.; Wilcox, G.H.; Stone, W.L. The role of selenium in the secretion of very-low density lipoprotein in the isolated perfused rat liver. Biochem. J. 1991, 279, 741–745. [Google Scholar] [CrossRef]
- Lizuka, Y.E.; Sakurai, E.; Tanaka, Y. Effect of selenium on serum, hepatic and lipoprotein lipids concentration in rats fed on a high-cholesterol diet. Yakugaku Zasshi. 2001, 121, 93–96. [Google Scholar] [CrossRef]
- Ziaei, N. Effect of selenium and vitamin E supplementation on reproductive indices and biochemical metabolites in Raieni goats. J. Appl. Anim. Res. 2015, 43, 426–430. [Google Scholar] [CrossRef]
- Abdel-Raheem, S.M.; Mahmoud, G.B.; Senosy, W.; El-Sherry, T.M. Influence of vitamin e and selenium supplementation on the performance, reproductive indices and metabolic status of ossimi ewes. Slov. Vet. Res. 2019, 56, 353–363. [Google Scholar] [CrossRef]
- Gabryszuk, M.; Horbańczuk, K.; Klewiec, J. Rearing, fattening performance and slaughter indicators of lambs after selenium, zinc and vitamin E supplementation. Arch. Anim. Breed. 2009, 52, 309–320. [Google Scholar] [CrossRef]
- Shi, L.; Ren, Y.; Zhang, C.; Yue, W.; Lei, F. Effects of organic selenium (Se-enriched yeast) supplementation in gestation diet on antioxidant status, hormone profile and haemato-biochemical parameters in Taihang Black Goats. Anim. Feed Sci. Technol. 2018, 238, 57–65. [Google Scholar] [CrossRef]
- Alahmadi, B.A.; El-Alfy, S.H.; Hemaid, A.M.; Abdel-Nabi, I.M. The protective effects of vitamin E against selenium-induced oxidative damage and hepatotoxicity in rats. J. Taibah. Univ. Sci. 2020, 14, 709–720. [Google Scholar] [CrossRef]
- Błażejak-Grabowska, J.; Milewski, S.; Ząbek, K.; Sobiech, P.; Wójcik, R.; Żarczyńska, K.; Miciński, J. Effect of Long-Acting Selenium Preparation on Health and Productivity of Sheep. Animals 2022, 12, 140. [Google Scholar] [CrossRef] [PubMed]
- Mohri, M.; Ehsani, A.; Norouzian, M.A.; Bami, M.H.; Seifi, H.A. Parenteral selenium and vitamin E supplementation to lambs: Hematology, serum biochemistry, performance, and relationship with other trace elements. Biol. Trace Elem. Res. 2011, 139, 308–316. [Google Scholar] [CrossRef]
- Arain, M.; Kamboh, A.A.; Arshed, M.J. Effects of selenium supplementation on hematological profile, gut microflora composition, in vitro biofilm formation assay and serum IgG concentration in goats. Pak. J. Zool. 2021, 1–8. [Google Scholar] [CrossRef]
- Polizopoulou, Z.S. Haematological tests in sheep health management. Small Rumin. Res. 2010, 92, 88–91. [Google Scholar] [CrossRef]
- Jones, M.L.; Allison, R.W. Evaluation of the ruminant complete blood cell count. Vet. Clin. North Am. Food Anim. 2007, 23, 377–402. [Google Scholar] [CrossRef]
- Soliman, E.B.; Abd El-Moty, A.K.I.; Kassab, A.Y. Combined effect of vitamin E and selenium on some productive and physiological characteristics of ewes and their lambs during suckling period. Egypt. J. Sheep Goat Sci. 2012, 7, 31–42. [Google Scholar] [CrossRef]
- Aksakal, M.; Naziroğlu, M.; ÇAY, M. The effects of selenium and vitamin E on some heamatological and biochemical values of blood in lambs. Turk. J. Vet. Anim. Sci. 1996, 20, 185–190. [Google Scholar] [CrossRef]
- Mohri, M.; Seifi, H.A.; Khodadadi, J. Effects of preweaning parenteral supplementation of vitamin E and selenium on hematology, serum proteins, and weight gain in dairy calves. Comp. Clin. Pathol. 2005, 14, 149–154. [Google Scholar] [CrossRef]
- Enjalbert, F.; Lebreton, P.; Salto, O.; Schlcher, F. Effect of pre or postpartum selenium supplementation on selenium status in beef cows and their calves. J. Anim. Sci. 1999, 77, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Hefnawy, A.E.; Lopez-Arellano, R.; Revilla-Vazquez, A.; Ramirez-Bribiesca, E.; Tortora-Perez, J. Effect of Pre-and Postpartum selenium supplementation in sheep. J. Anim. Vet. Adv. 2008, 7, 61–67. [Google Scholar]
- Van Saun, R.J.; Herdt, T.H.; Stowe, H.D. Maternal and fetal selenium concentrations and their interrelationship in dairy cattle. J. Nutr. 1989, 119, 1128–1137. [Google Scholar] [CrossRef] [PubMed]
- Rowntree, J.E.; Hill, G.M.; Hawkins, D.R.; Link, J.E.; Rincker, M.J.; Bednar, G.W.; Kreft, R.A., Jr. Effect of Se on seleno-protein activity and thyroid hormone metabolism in beef and dairy cows and calves. J. Anim. Sci. 2004, 82, 2995–3005. [Google Scholar] [CrossRef]
- Davis, P.A.; McDowell, L.R.; Wilkinson, N.S.; Buergelt, C.D.; Van Alstyne, R.; Weldon, R.N.; Marshall, T.T. Effect of selenium levels in ewes diet on selenium in milk and plasma and tissue concentrations of lambs. Small Rumin. Res. 2006, 65, 14–23. [Google Scholar] [CrossRef]
- Whanger, P.D. Selenocompounds in plants and animals and their biological significance. J. Am. Coll. Nutr. 2002, 21, 223–232. [Google Scholar] [CrossRef]
Component (%) | % |
---|---|
Corn | 51.1 |
Wheat flour | 15 |
Molasses | 4 |
Yeast | 3 |
Dehydrated alfalfa meal | 2 |
Sunflower meal | 9 |
Soybean meal | 9 |
Animal salt | 0.4 |
Limestone | 2 |
Monocalcium phosphate | 1 |
CMR | 2.5 |
Premix | 1 |
Basic Chemical Composition | % |
Dry mater | 88.0 |
Crude protein | 17.7 |
Crude fiber | 6.4 |
Crude fat | 3.0 |
Ash | 7.0 |
Metabolize energy (MJ/kg) | 11.2 |
Indicator | R.S. | Group | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
I | II | III | ||||||
Mean | Mean | Mean | Group | R.S. | R.S.×G. | |||
Se, μg/L | L.G. | 96.86 A | 157.56 B | 141.01 C | 5.71 | <0.001 | 0.073 | 0.666 |
L. | 93.37 A | 143.18 Ba | 131.37 Bb | 4.79 | ||||
MDA, nmol/mL | L.G. | 32.49 a | 20.13 b | 30.22 ab | 2.31 | 0.048 | 0.550 | 0.086 |
L. | 29.78 | 27.95 | 29.22 | 0.69 | ||||
GSH-PX, μkat/L | L.G. | 581.18 A | 899.85 B | 771.67 B | 41.59 | <0.001 | 0.063 | 0.008 |
L. | 569.08 A | 1054.91 B | 884.65 C | 57.55 | ||||
SOD, U/mL | L.G. | 759.76 | 741.76 | 849.70 | 29.53 | 0.373 | 0.007 | 0.731 |
L. | 867.70 | 861.70 | 909.67 | 27.67 |
Indicator | A. Days | Group | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
I | II | III | ||||||
Mean | Mean | Mean | Group | A. | G.×A. | |||
Se, μg/L | 23 | 48.21 Aa | 63.62 Ba | 56.76 b | 1.74 | <0.001 | <0.001 | 0.010 |
63 | 58.62 A | 89.23 Ba | 80.71 Bb | 2.70 | ||||
MDA, nmol/mL | 23 | 33.28 | 28.21 | 30.26 | 1.40 | 0.050 | 0.048 | 0.689 |
63 | 28.95 | 25.31 | 22.67 | 3.14 | ||||
GSH-PX, μkat/L | 23 | 590.65 A | 1023.78 Ba | 928.94 Bb | 52.01 | <0.001 | 0.045 | 0.490 |
63 | 596.80 A | 1017.51 Ba | 857.83 Bb | 36.47 | ||||
SOD, U/mL | 23 | 950.15 Aa | 1183.13 B | 1115.97 b | 36.86 | <0.001 | <0.001 | 0.006 |
63 | 1081.34 A | 1208 B | 1223.01 B | 20.90 |
Indicator, mmol L−1 | A. Days | Group | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
I | II | III | ||||||
Mean | Mean | Mean | Group | A. | G.×A. | |||
Fe, µmol L−1 | 23 | 23.63 | 35.11 | 28.64 | 3.79 | 0.702 | 0.104 | 0.457 |
63 | 35.92 | 36.16 | 39.57 | 2.31 | ||||
P | 23 | 3.41 | 3.69 | 3.49 | 0.05 | 0.103 | 0.002 | 0.738 |
63 | 3.14 | 3.32 | 3.28 | 0.06 | ||||
Ca | 23 | 2.92 | 3.14 | 3.08 | 0.03 | 0.050 | <0.01 | 0.632 |
63 | 2.56 | 2.71 | 2.59 | 0.05 | ||||
Na | 23 63 | 149.56 148.11 | 149.90 144.10 | 149.60 144.20 | 0.51 0.89 | 0.139 | <0.01 | 0.233 |
K | 23 63 | 5.70 4.84 | 5.68 4.74 | 5.30 4.56 | 0.09 0.06 | 0.054 | <0.01 | 0.781 |
Cl | 23 63 | 105.44 107.55 | 106.90 105.30 | 107.10 103.74 | 0.50 0.82 | 0.540 | 0.377 | 0.119 |
GUK | 23 | 6.42 | 6.08 | 6.15 | 0.12 | <0.01 | 0.102 | |
63 | 4.66 | 4.86 | 5.05 | 0.09 | 0.803 | |||
UREA | 23 | 7.43 | 7.78 | 7.36 | 0.29 | 0.420 | 0.034 | |
63 | 6.68 | 7.05 | 8.24 | 0.23 | 0.367 | |||
TPROT, gL−1 | 23 | 56.17 | 54.41 | 52.97 | 0.67 | |||
63 | 53.14 | 52.75 | 53.76 | 0.45 | 0.262 | 0.163 | 0.239 | |
ALB, gL−1 | 23 | 28.86 a | 30.18 b | 30.17 b | 0.25 | 0.004 | <0.01 | 0.746 |
63 | 30.93 | 32.19 | 31.58 | 0.27 | ||||
GLOB, gL−1 | 23 | 22.80 a | 24.23 ab | 26.44 b | 0.59 | 0.032 | <0.01 | 0.094 |
63 | 22.21 | 20.56 | 22.17 | 0.39 | ||||
CHOL | 23 | 2.69 a | 2.46 ab | 1.96 b | 0.13 | 0.036 | <0.01 | 0.186 |
63 | 1.76 | 1.65 | 1.46 | 0.06 | ||||
TGC | 23 | 0.56 | 0.59 | 0.53 | 0.04 | 0.369 | 0.520 | 0.033 |
63 | 0.73 | 0.49 | 0.53 | 0.05 | ||||
CREA, µmol L−1 | 23 63 | 59.56 59.38 | 55.20 55.80 | 60.60 59.60 | 1.39 1.81 | 0.312 | 0.909 | 0.939 |
HDL | 23 | 1.48 | 1.29 | 1.18 | 0.05 | 0.095 | <0.01 | 0.402 |
63 | 0.92 | 0.92 | 0.79 | 0.03 | ||||
LDL | 23 | 0.96 a | 0.90 ab | 0.54 b | 0.08 | 0.039 | <0.01 | 0.068 |
63 | 0.61 Bb | 0.40 A | 0.42 a | 0.03 | ||||
AST, UL−1 | 23 | 136.90 | 137.89 | 128.13 | 5.27 | <0.01 | 0.072 | 0.083 |
63 | 185.20 A | 148.38 B | 121.34 C | 5.56 | ||||
ALT, UL−1 | 23 | 27.93 | 31.94 | 29.90 | 1.96 | 0.940 | 0.378 | 0.566 |
63 | 35.57 | 29.58 | 35.29 | 3.52 | ||||
GGT, UL−1 | 23 63 | 128.18 A 72.03 | 86.34 B 69.66 | 84.60 B 73.24 | 4.45 2.90 | <0.01 | <0.01 | <0.01 |
CK, UL−1 | 23 63 | 176.20 210.21 | 160.44 172.08 | 166.88 162.90 | 6.20 9.11 | 0.071 | 0.224 | 0.079 |
Indicator | A. Days | Group | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
I | II | III | ||||||
Mean | Mean | Mean | Group | A. | G.×A. | |||
WBC (x 109/L) | 23 | 8.04 a | 9.91 ab | 13.07 a | 0.99 | <0.01 | 0.824 | 0.525 |
63 | 8.78 | - | 11.54 | 0.75 | ||||
RBC (x 1012/L) | 23 | 7.86 | 9.89 | 9.87 | 0.40 | 0.196 | 0.658 | 0.294 |
63 | 8.44 | 9.63 | 8.06 | 0.49 | ||||
HGB, g/L | 23 | 92.75 | 117.50 | 112.10 | 4.51 | 0.067 | 0.289 | 0.388 |
63 | 107.20 | 124.60 | 106.35 | 4.53 | ||||
HCT, g/L | 23 63 | 0.31 0.32 | 0.42 0.38 | 0.39 0.35 | 0.02 0.02 | 0.062 | 0.614 | 0.699 |
MCV, fL | 23 63 | 39.23 a 38.12 | 41.94 b 38.69 | 39.46 a 37.68 | 0.42 0.26 | 0.004 | 0.002 | 0.435 |
MCH, pg | 23 63 | 11.87 12.74 a | 11.91 13.71 A | 11.41 11.30 bB | 0.14 0.28 | <0.01 | <0.01 | <0.01 |
MCHC, g/L | 23 | 304.33 | 284.40 | 288.70 | 4.20 | <0.01 | 0.036 | |
63 | 335.36 AB | 360.66 A | 229.90 B | 9.03 | 0.026 | |||
PLT (x 109/L) | 23 | 901.66 | 848.50 | 894.50 | 24.61 | 0.082 | <0.01 | |
63 | 1275.20 A | 873.71 B | 689.24 C | 53.40 | <0.01 | |||
Distribution of Leukocytes % | ||||||||
Segmented neutrophil | 23 63 | 50.62 36.50 | 43.27 44.50 | 45.92 38.33 | 2.69 1.29 | 0.856 | 0.019 | 0.122 |
Band neutrophil | 23 63 | 0.13 0 | 00.27 0 | 0.16 0 | 0.07 0 | 0 | 0 | 0 |
Lymphocytes | 23 63 | 48.75 62.75 | 53.54 53.45 | 52.16 65.00 | 2.71 1.75 | 0.419 | 0.007 | 0.128 |
Eosinophil | 23 63 | 0.25 0.25 A | 2.09 2.00 B | 1.16 0.25 A | 0.38 0.19 | 0.016 | 0.627 | 0.259 |
Monocyte | 23 63 | 0.12 0 | 0.09 0 | 0.16 0 | 0.08 0 | 0 | 0 | 0 |
Basophil | 23 63 | 0.12 0 | 0.27 0.27 | 0.41 0.25 | 0.09 0.08 | 0.375 | 0.343 | 0.761 |
Correlation | Group | Repro. Status | GSH-Px, μkat/L Lamb | |||||
---|---|---|---|---|---|---|---|---|
Group, Days | ||||||||
I | II | III | ||||||
23 | 63 | 23 | 63 | 23 | 63 | |||
GSH-Px, μkat/L ewe | I | L.G. | 0.83 | |||||
L. | 0.75 | |||||||
II | L.G. | 0.91 a | ||||||
L. | 0.82 | |||||||
III | L.G. | 0.82 | ||||||
L. | 0.82 | |||||||
Regression Equation | ||||||||
Age, Days | ||||||||
Group | Repro. Status | 23 | 63 | |||||
I | L.G. | GSH-Px = 178.98 + 0.70 × GSH-Px | - | |||||
L. | - | GSH-Px = −0.02 + 1.04 × GSH-Px | ||||||
II | L.G. | GSH-Px = 534.21 + 0.43 × GSH-Px | - | |||||
L. | - | GSH-Px = 360.04 + 0.56 × GSH-Px | ||||||
III | L.G. | GSH-Px = 561.19 + 0.59 × GSH-Px | - | |||||
L. | - | GSH-Px = 212.23 + 0.76 × GSH-Px |
Correlation | Group | Repro. Status | SOD, μkat/L Lamb | |||||
---|---|---|---|---|---|---|---|---|
Group, Days | ||||||||
I | II | III | ||||||
23 | 63 | 23 | 63 | 23 | 63 | |||
SOD, μkat/L ewe | I | L.G. | 0.64 | |||||
L. | 0.50 | |||||||
II | L.G. | 0.62 | ||||||
L. | 0.74 | |||||||
III | L.G. | 0.42 | ||||||
L. | 0.73 | |||||||
Regression Equation | ||||||||
Age, Days | ||||||||
Group | Repro. Status | 23 | 63 | |||||
I | L.G. | SOD = 737.37 + 0.280 × SOD | - | |||||
L. | - | SOD = 923.22 + 0.182 × SOD | ||||||
II | L.G. | SOD = 687.71 + 0.613 × SOD | - | |||||
L. | - | SOD = 1063.6 + 0.150 × SOD | ||||||
III | L.G. | SOD = 687.52 + 0.469 × SOD | - | |||||
L. | - | SOD = 1047.5 + 0.202 × SOD |
Correlation | Group | Repro. Status | MDA, nmol/mL Lamb | |||||
---|---|---|---|---|---|---|---|---|
Group, Days | ||||||||
I | II | III | ||||||
23 | 63 | 23 | 63 | 23 | 63 | |||
MDA, nmol/mL Ewe | I | L.G. | 0.18 | |||||
L. | 0.47 | |||||||
II | L.G. | 0.98 a | ||||||
L. | 0.71 | |||||||
III | L.G. | 0.48 | ||||||
L. | 0.44 | |||||||
Regression Equation | ||||||||
Age, Days | ||||||||
Group | Repro. Status | 23 | 63 | |||||
I | L.G. | MDA = 28.545 + 0.145 × MDA | - | |||||
L. | - | MDA = 17.618 + 0.380 × MDA | ||||||
II | L.G. | MDA = 17.378 + 0.639 × MDA | - | |||||
L. | - | MDA = −15.04 + 1.290 × MDA | ||||||
III | L.G. | MDA = 18.016 + 0.337 × MDA | - | |||||
L. | - | MDA = −17.05 + 1.515 × MDA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novoselec, J.; Klir Šalavardić, Ž.; Đidara, M.; Novoselec, M.; Vuković, R.; Ćavar, S.; Antunović, Z. The Effect of Maternal Dietary Selenium Supplementation on Blood Antioxidant and Metabolic Status of Ewes and Their Lambs. Antioxidants 2022, 11, 1664. https://doi.org/10.3390/antiox11091664
Novoselec J, Klir Šalavardić Ž, Đidara M, Novoselec M, Vuković R, Ćavar S, Antunović Z. The Effect of Maternal Dietary Selenium Supplementation on Blood Antioxidant and Metabolic Status of Ewes and Their Lambs. Antioxidants. 2022; 11(9):1664. https://doi.org/10.3390/antiox11091664
Chicago/Turabian StyleNovoselec, Josip, Željka Klir Šalavardić, Mislav Đidara, Maja Novoselec, Rosemary Vuković, Suzana Ćavar, and Zvonko Antunović. 2022. "The Effect of Maternal Dietary Selenium Supplementation on Blood Antioxidant and Metabolic Status of Ewes and Their Lambs" Antioxidants 11, no. 9: 1664. https://doi.org/10.3390/antiox11091664
APA StyleNovoselec, J., Klir Šalavardić, Ž., Đidara, M., Novoselec, M., Vuković, R., Ćavar, S., & Antunović, Z. (2022). The Effect of Maternal Dietary Selenium Supplementation on Blood Antioxidant and Metabolic Status of Ewes and Their Lambs. Antioxidants, 11(9), 1664. https://doi.org/10.3390/antiox11091664