UHPLC-MS Chemical Fingerprinting and Antioxidant, Enzyme Inhibition, Anti-Inflammatory In Silico and Cytoprotective Activities of Cladonia chlorophaea and C. gracilis (Cladoniaceae) from Antarctica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Lichen Material
2.3. Preparation of Ethanolic Extracts
2.4. LC Parameters and MS Parameters
2.5. Total Phenolic (TP) Content
2.6. Antioxidant Activity
2.6.1. Ferric-Reducing Antioxidant Power (FRAP) Assay
2.6.2. Oxygen Radical Absorbance Capacity (ORAC) Assay
2.6.3. DPPH Scavenging Activity
2.7. Enzymatic Inhibitory Activity
2.7.1. Cholinesterase Inhibition
2.7.2. α-Glucosidase Inhibition Assay
2.7.3. Lipase Inhibition Assay
2.8. Calculation of ADME Parameters
2.9. Calculation of Risk Toxicity
2.10. In Silico Analysis
2.10.1. Ligand Preparation
2.10.2. Docking Simulation
2.11. Human Neuroblastoma Cell Line (SH-SY5Y Cells)
2.12. Cell Treatments
2.13. Metabolic Activity Measurement
2.14. Intracellular ROS Production
2.15. Statistical Analysis
3. Results and Discussion
3.1. UHPLC Chromatographic Analysis of Lichens Extracts
3.2. Total Phenolic Contents and Antioxidant Activity
3.3. Enzymatic Inhibitory Activity
3.4. In Silico Anti-Inflammatory Effect of 5-LOX
3.4.1. Prediction of Pharmacokinetic Properties—ADME
3.4.2. Toxicity Prediction
3.4.3. Evaluation of the Docking 5-LOX Inhibition
3.5. Cytoprotective Activity
3.5.1. Effect of Cladonia Extracts on Cell Viability and Survival under Oxidative Stress Induced by H2O2
3.5.2. Effect of Cladonia Extracts on the Reduction in ROS Production in an H2O2-Induced Oxidative Stress Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Grimm, M.; Grube, M.; Schiefelbein, U.; Zuhlke, D.; Bernhardt, J.; Riedel, K. The lichens microbiota, still a mystery? Front. Microbiol. 2021, 12, 623839. [Google Scholar] [CrossRef] [PubMed]
- Leiva, D.; Fernández-Mendoza, F.; Acevedo, J.; Carú, M.; Grube, M.; Orlando, J. The Bacterial community of the foliose macro-lichen Peltigera frigida is more than a mere extension of the microbiota of the subjacent substrate. Microb. Ecol. 2021, 81, 965–976. [Google Scholar] [CrossRef] [PubMed]
- Sancho, L.G.; Pintado, A.; Navarro, F.; Ramos, M.; De Pablo, M.A.; Blanquer, J.M.; Raggio, J.; Valladares, F.; Green, T.G.A. Recent warming and cooling in the Antarctic Peninsula region has rapid and large effects on lichen vegetation. Sci. Rep. 2017, 7, 5689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, C.J.; Bennett, J.P.; Biro, S.M.; Duque-Velasquez, J.C.; Rodriguez, C.M.; Bessen, R.A.; Rocke, T. Degradation of the disease-associated prion protein by a serine proteasa from lichens. PLoS ONE 2011, 6, e19836. [Google Scholar] [CrossRef] [PubMed]
- Redón, J. Antarctic Lichens; Instituto Antártico Chileno: Santiago de Chile, Chile, 1985; 123p. [Google Scholar]
- Torres-Benítez, A.; Rivera-Montalvo, M.; Sepúlveda, B.; Castro, O.N.; Nagles, E.; Simirgiotis, M.J.; Garciá-Beltrán, O.; Areche, C. Metabolomic analysis of two Parmotrema lichens: P. robustum (Degel.) Hale and P. andinum (Mull. rg.) hale using UHPLC-ESI-OTMS-MS. Molecules 2017, 22, 1861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paudel, B.; Datta Bhattarai, H.; Prasad Pandey, D.; Seoun Hur, J.; Gyu Hong, S.; Kim, I.C.; Han Yim, J. Antioxidant, antibacterial activity and brine shrimp toxicity test of some Mountainous lichens from Nepal. Biol. Res. 2012, 45, 387–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Areche, C.; Parra, J.R.; Sepulveda, B.; García-Beltrán, O.; Simirgiotis, M.J. UHPLC-MS metabolomic fingerprinting, antioxidant, and enzyme inhibition activities of Himantormia lugubris from Antarctica. Metabolites 2022, 12, 560. [Google Scholar] [CrossRef]
- Sinha, S.; Doble, M.; Manju, S. 5-Lipoxygenase as a drug target: A review on trends in inhibitors structural design, SAR and mechanism based approach. Bioorg. Med. Chem. 2019, 27, 3745–3759. [Google Scholar] [CrossRef]
- Gilbert, N.C.; Gerstmeier, J.; Schexnaydre, E.E.; Börner, F.; Garscha, U.; Neau, D.B.; Werz, O.; Newcomer, M.E. Structural and mechanistic insights into 5-lipoxygenase inhibition by natural products. Nat. Chem. Biol. 2020, 16, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Suh, Y.J.; Yang, S.; Hong, D.G.; Ishigami, A.; Kim, H.; Hur, J.-S.; Chang, S.-C.; Lee, J. Neuroprotective and anti-inflammatory effects of evernic acid in an MPTP-induced Parkinson’s disease model. Int. J. Mol. Sci. 2021, 22, 2098. [Google Scholar] [CrossRef]
- Ureña-Vacas, I.; González-Burgos, E.; Divakar, P.K.; Gómez-Serranillos, M.P. Lichen extracts from Cetrarioid clade provide neuroprotection against hydrogen peroxide-induced oxidative stress. Molecules 2022, 27, 6520. [Google Scholar] [CrossRef]
- Sánchez-Rangel, J.C.; Benavides, J.; Heredia, J.B.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. The Folin–Ciocalteu assay revisited: Improvement of its specificity for total phenolic content determination. Anal. Methods 2013, 5, 5990–5999. [Google Scholar] [CrossRef]
- Gómez, J.; Simirgiotis, M.; Lima, B.; Gamarra-Luques, C.; Bórquez, J.; Caballero, D.; Feresin, G.E.; Tapia, A. UHPLC–Q/Orbitrap/MS/MS fingerprinting, free radical scavenging, and antimicrobial activity of Tessaria absinthioides (Hook. &Arn.) DC. (Asteraceae) lyophilized decoction from Argentina and Chile. Antioxidants 2019, 8, 593. [Google Scholar]
- Karadag, A.; Ozcelik, B.; Saner, S. Review of methods to determine antioxidant capacities. Food Anal. Methods 2009, 2, 41–60. [Google Scholar] [CrossRef]
- Parra, C.; Soto, E.; León, G.; Salas, C.O.; Heinrich, M.; Echiburú-Chau, C. Nutritional composition, antioxidant activity and isolation of scopoletin from Senecio nutans: Support of ancestral and new uses. Nat. Prod. Res. 2017, 32, 719–722. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J.A.; Prior, R.L. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 2002, 50, 4437–4444. [Google Scholar] [CrossRef]
- Brand-Willians, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Costamagna, M.S.; Zampini, I.C.; Alberto, M.R.; Cuello, S.; Torres, S.; Perez, J.; Quispe, C.; Schmeda-Hirschmann, G.; Isla, M.I. Polyphenol rich fraction from Geoffroea decorticans fruits flour affects key enzymes involved in metabolic syndrome, oxidative stress and inflammatory process. Food Chem. 2016, 190, 392–402. [Google Scholar] [CrossRef] [Green Version]
- Burgos-Edwards, A.; Jiménez-Aspee, F.; Thomas-Valdés, S.; Schmeda-Hirschmann, G.; Theoduloz, C. Qualitative and quantitative changes in polyphenol composition and bioactivity of Ribes magellanicum and R. punctatum after in vitro gastrointestinal digestion. Food Chem. 2017, 237, 1073–1082. [Google Scholar] [CrossRef]
- McDougall, G.J.; Kulkarni, N.N.; Stewart, D. Berry polyphenols inhibit pancreatic lipase activity in vitro. Food Chem. 2009, 115, 193–199. [Google Scholar] [CrossRef]
- Picot, M.C.N.; Mahomoodally, M.F. Effects of Aphloia theiformis on key enzymes related to diabetes mellitus. Pharm. Biol. 2017, 55, 864–872. [Google Scholar] [CrossRef] [Green Version]
- Azam, F.; Amer, A.; Abulifa, A.; Elzwawi, M. Ginger components as new leads for the design and development of novel multi-targeted anti-Alzheimer’s drugs: A computational investigation. Drug Des. Dev. Ther. 2014, 8, 2045–2059. [Google Scholar] [CrossRef] [Green Version]
- Ley-Martínez, J.S.; Ortega-Valencia, J.E.; García-Barradas, O.; Jiménez-Fernández, M.; Uribe-Lam, E.; Vencedor-Meraz, C.I.; Oliva-Ramírez, J. Active compounds in Zingiber officinale as possible redox inhibitors of 5-lipoxygenase using an in silico approach. Int. J. Mol. Sci. 2022, 23, 6093. [Google Scholar] [CrossRef]
- Torres-Benítez, A.; Ortega-Valencia, J.E.; Sanchez, M.; Divakar, P.K.; Simirgiotis, M.J.; Gómez-Serranillos, M.P. Metabolomic profiling, antioxidant and enzyme inhibition properties and molecular docking analysis of Antarctic lichens. Molecules 2022, 27, 8086. [Google Scholar] [CrossRef]
- Chiasson, A.I.; Robichaud, S.; Moutombi, F.J.N.; Hébert, M.P.A.; Mbarik, M.; Surette, M.E.; Touaibia, M. New zileutonhydroxycinnamic acid hybrids: Synthesis and structure-activity relationship towards 5-lipoxygenase inhibition. Molecules 2020, 25, 4686. [Google Scholar] [CrossRef]
- Volkamer, A.; Kuhn, D.; Grombacher, T.; Rippmann, F.; Rarey, M. Combining global and local measures for structure-based druggability predictions. J. Chem. Inf. Model. 2012, 52, 360–372. [Google Scholar] [CrossRef]
- Muthuraman, S.; Sinha, S.; Vasavi, C.; Waidha, K.M.; Basu, B.; Munussami, P.; Balamurali, M.; Doble, M.; Kumar, R.S. Design, synthesis and identification of novel coumaperine derivatives for inhibition of human 5-LOX: Antioxidant, pseudoperoxidase and docking studies. Bioorg. Med. Chem. 2019, 27, 604–619. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- LeBel, C.P.; Ischiropoulos, H.; Bondy, S.C. Evaluation of the probe 20,70-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol. 1992, 5, 227–231. [Google Scholar] [CrossRef] [Green Version]
- Sepúlveda, B.; Cornejo, A.; Bárcenas-Pérez, D.; Cheel, J.; Areche, C. Two new fumarprotocetraric acid lactones identified and characterized by UHPLC-PDA/ESI/ORBITRAP/MS/MS from the Antarctic lichen Cladonia metacorallifera. Separations 2022, 9, 41. [Google Scholar] [CrossRef]
- Salgado, F.; Albornoz, L.; Cortéz, C.; Stashenko, E.; Urrea-Vallejo, K.; Nagles, E.; Galicia-Virviescas, C.; Cornejo, A.; Ardiles, A.; Simirgiotis, M.; et al. Secondary metabolite profiling of species of the genus Usnea by UHPLC-ESI-OT-MS-MS. Molecules 2018, 23, 54. [Google Scholar] [CrossRef] [Green Version]
- Paukov, A.; Teptina, A.; Ermoshin, A.; Kruglova, E.; Shabardina, L. The role of secondary metabolites and bark chemistry in shaping diversity and abundance of epiphytic lichens. Front. For. Glob. Chang. 2022, 5, 828211. [Google Scholar] [CrossRef]
- Phi, K.-H.; Shin, M.-J.; Lee, S.; So, J.E.; Kim, J.H.; Suh, S.-S.; Koo, M.H.; Shin, S.C.; Kim, J.-H.; Lee, J.H.; et al. Bioactive terphenyls isolated from the Antarctic lichen Stereocaulon alpinum. Molecules 2022, 27, 2363. [Google Scholar] [CrossRef]
- Aslan, A.; Güllüce, M.; Sökmen, M.; Adgüzel, A.; Sahin, F.; Özkan, H. Antioxidant and antimicrobial properties of the lichens Cladonia foliacea, Dermatocarpon miniatum, Everinia divaricata, Evernia prunastri, and Neofuscella pulla. Pharm. Biol. 2006, 44, 247–252. [Google Scholar] [CrossRef]
- Luo, H.; Yamamoto, Y.; Kim, J.; Jung, J.; Koh, Y.; Hur, J. Lecanoric acid, a secondary lichen substance with antioxidant properties from Umbilicaria antarctica in maritime Antarctica (King George Island). Polar Biol. 2009, 32, 1033–1040. [Google Scholar] [CrossRef]
- Kosanić, M.; Ranković, B.; Stanojković, T.; Rančić, A.; Manojlović, N. Cladonia lichens and their major metabolites as possible natural antioxidant, antimicrobial and anticancer agents. LWT-Food Sci. Technol. 2014, 59, 518–525. [Google Scholar] [CrossRef]
- Ranković, B.; Kosanić, M.; Stanojković, T.P. Antioxidant, antimicrobial and anticancer activity of the lichens Cladonia furcata, Lecanora atra and Lecanora muralis. BMC Complement. Altern. Med. 2011, 11, 97. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Singh, P.; Ravindra, R. Screening of antioxidant potential of Artic lichen. Polar Biol. 2011, 34, 1775–1782. [Google Scholar] [CrossRef]
- Da Costa, J.; Rodrigues, R.; dos Santos, C.; Antoniolli, A.; de Souza, A.; Thomazzi, S. Pharmacological properties of lichen Cladonia clathrata. Pharm. Biol. 2010, 48, 745–752. [Google Scholar] [CrossRef]
- Gunasekaran, S.; Rajan, V.P.; Ramanathan, S.; Murugaiyah, V.; Samsudin, M.W.; Din, L. Antibacterial and antioxidant activity of lichens Usnea rubrotincta, Ramalina dumeticola, Cladonia verticillata and their chemical constituents. Malays. J. Anal. Sci. 2016, 20, 1–13. [Google Scholar] [CrossRef]
- Yücel, O.; Odabaşoǧlu, F.; Güllüce, M.; Çalik, Z.Z.; Çakir, A.; Aslan, A.; Yazici, K.; Halici, M. Antioxidant and antimicrobial properties of a lichen species, Cladonia rangiformis growing in Turkey. Turk. J. Pharm. Sci. 2007, 4, 101–109. [Google Scholar]
- Prokop’ev, I.A.; Yatsyna, A.P.; Poryadina, L.N.; Filippova, G.V.; Shavarda, A.L. Phenolic metabolites of lichens in the genus Cladonia growing in Belarus and Yakutia. Chem. Nat. Compd. 2018, 54, 362–364. [Google Scholar] [CrossRef]
- Prokop’ev, I.A.; Filippova, G.V. Antioxidant activity of secondary metabolites from Cladonia lichens. Chem. Nat. Compd. 2019, 55, 945–947. [Google Scholar] [CrossRef]
- Paudel, B.; Bhattarai, H.D.; Lee, J.S.; Hong, S.G.; Shim, H.W.; Yim, J.H. Antioxidant activity of polar lichens from King George Island (Antarctica). Polar Biol. 2008, 31, 605–608. [Google Scholar] [CrossRef]
- Luo, H.; Li, C.; Kim, J.C.; Liu, Y.; Jung, J.S.; Koh, Y.J.; Hur, J.S. Biruloquinone, an acetylcholinesterase inhibitor produced by lichen-forming fungus Cladonia macilenta. J. Microbiol. Biotechnol. 2013, 23, 161–166. [Google Scholar] [CrossRef]
- Studzińska-Sroka, E.; Majchrzak-Celińska, A.; Zalewski, P.; Szwajgier, D.; Baranowska-Wójcik, E.; Kaproń, B.; Plech, T.; Żarowski, M.; Cielecka-Piontek, J. Lichen-derived compounds and extracts as biologically active substances with anticancer and neuroprotective properties. Pharmaceuticals 2021, 14, 1293. [Google Scholar] [CrossRef]
- Mukemre, M.; Zengin, G.; Turker, R.S.; Aslan, A.; Dalar, A. Biological activities and chemical composition of Xanthoria lichens from Turkey. Int. J. Second. Metab. 2021, 8, 376–388. [Google Scholar] [CrossRef]
- Devi, A.P.; Duong, T.H.; Ferron, S.; Beniddir, M.; Dinh, M.H.; Nguyen, V.K.; Pham, N.K.T.; Mac, D.H.; Boustie, J.; Chavasiri, W.; et al. Salazinic acid-derived depsidones and diphenylethers with α-glucosidase inhibitory activity from the lichen Parmotrema dilatatum. Planta Med. 2020, 86, 1216–1224. [Google Scholar] [CrossRef]
- Duong, T.H.; Hang, T.X.H.; Le Pogam, P.; Tran, T.N.; Mac, D.H.; Dinh, M.H.; Sichaem, J. α-glucosidase inhibitory depsidones from the lichen Parmotrema tsavoense. Planta Med. 2020, 86, 776–781. [Google Scholar] [CrossRef]
- White, P.A.S.; Oliveira, R.C.M.; Oliveira, A.P.; Serafini, M.R.; Araújo, A.A.S.; Gelain, D.P.; Moreira, J.C.F.; Almeida, J.R.G.S.; Quintans, J.S.S.; Quintans-Junior, L.J.; et al. Antioxidant activity and mechanisms of action of natural compounds isolated from lichens: A systematic review. Molecules 2014, 19, 14496–14527. [Google Scholar] [CrossRef] [PubMed]
- Bézivin, C.; Tomasi, S.; Rouaud, I.; Delcros, J.G.; Boustie, J. Citotoxic activity of compounds from the lichen: Cladonia convolute. Planta Med. 2004, 70, 874–877. [Google Scholar] [CrossRef]
- Brisdelli, F.; Perilli, M.; Sellitri, D.; Piovano, M.; Garbarino, J.A.; Nicoletti, M.; Bozzi, A.; Amicosante, G.; Celenza, G. Citotoxic activity and antioxidant capacity of purified lichen metabolites: An in vitro study. Phytother. Res. 2012, 27, 431–437. [Google Scholar] [CrossRef] [PubMed]
Peak | Tentative Identification | [M − H]− | Retention Time (min) | Theoretical Mass (m/z) | Measured Mass (m/z) | Accuracy (ppm) | Metabolite Type | MS Ions (ppm) | Lichens |
---|---|---|---|---|---|---|---|---|---|
1 | Na formiate (internal standard) | C4H2O4 | 1.04 | 112.9829 | 112.9856 | 3.1 | A | - | CG, CC |
2 | Citric acid | C6H7O7 | 1.78 | 191.0192 | 191.0184 | 4.2 | OA | 111.0074 | CG, CC |
3 | Orsellinic acid | C8H7O3 | 2.2 | 151.0465 | 151.0403 | 5.0 | A | - | CC |
4 | Methylorsellinate | C9H9O4 | 12.8 | 181.0506 | 181.0478 | −15.4 | A | - | CG |
5 | Atranorin * | C19H17O8 | 14.3 | 373.0926 | 373.0928 | 0.19 | A | 177.0186, 163.0934 | CC |
6 | Squamatic acid | C19H17O9 | 14.8 | 389.0877 | 389.0878 | 0.45 | A | 181.05000 | CG, CC |
7 | Hexahidroxioxohexacosanoic acid | C26H49O9 | 18.2 | 505.3338 | 505.3356 | 3.5 | L | 431.3015, 375.2722 | CG, CC |
8 | 9,10,12,13-Tetrahydroxyheneicosanoic acid | C21H41O6 | 18.8 | 389.2903 | 389.2841 | −15.9 | L | - | CG |
9 | Pentahydroxyhexacosanoic acid | C26H51O7 | 19.2 | 475.3315 | 475.3276 | 8.1 | L | 448.3405, 273.0163 | CG |
10 | 9,10,12,13-Tetrahydroxydocosanoic acid | C22H43O6 | 19.8 | 403.3060 | 403.3000 | −14.8 | L | - | CG |
11 | Stearin | C23H45O7 | 20.2 | 433.3117 | 433.3144 | −6.0 | L | 277.2144 | CG |
12 | Pentahydroxyoxohexacosanoic acid | C26H49O8 | 20.7 | 489.3432 | 489.3403 | −5.9 | L | 403. 3001, 979.6848 (2M-H) | CG, CC |
13 | 9,10,12,13-Tetrahidroxytricosanoic acid | C23H45O6 | 21.1 | 417.3236 | 417.3184 | −12.4 | L | 235.0538, 195.0616 | CG, CC |
14 | Pseudoplacodiolic acid or Placodiolic acid | C19H19O8 | 21.3 | 375.1080 | 375.1070 | 2.7 | DBF | 343.0807; 259.0598; 231.0648 | CG, CC |
15 | Criptostictic acid derivate | C18H11O8 | 21.7 | 355.0454 | 355.0384 | −19.7 | A | - | CG, CC |
16 | Fumarprotocetraric acid | C22H15O12 | 21.9 | 471.0569 | 471.0476 | −9.6 | A | 375.0668, 355.0385, 167.0300, 943.0975 (2M − H) | CG, CC |
17 | Thamnolic acid | C19H15O11 | 22.1 | 419.0614 | 419.0586 | −6.6 | d | 211.0201, 317.0592 | CC |
18 | Constictic acid or siphulellic acid | C19H14O10 | 23.1 | 401.0593 | 401.0797 | 50.8 | D | - | CG, CC |
19 | Usnic acid * | C18H15O7 | 23.5 | 343.0823 | 343.0859 | −2.91 | DBF | - | CG, CC |
20 | Cetraric acid | C20H17O9 | 24.1 | 401.0878 | 401.0864 | −3.4 | A | 281.2464, 211.0166 | CC |
21 | Linolenic acid | C18H29O2 | 25.1 | 277.2173 | 277.2121 | −18.0 | L | 183.0182 | CC |
22 | Lecanoric acid | C16H13O7 | 25.3 | 317.0666 | 317.0632 | −10.7 | d | 167.034 | CG |
23 | Ramaric acid | C18H17O7 | 26.1 | 345.1038 | 345.1025 | −3.7 | d | 295.1953 | CG, CC |
24 | Octadeca-9,12,15-trienoic acid | C18H29O2 | 28.0 | 277.2203 | 277.2099 | −3.2 | L | - | CG, CC |
25 | Unknown | C27H43O4 | 28.5 | 431.3228 | 431.3166 | 14.3 | L | - | CC |
Assay | TPC (mg GAE/g) | FRAP (µmol Trolox/g) | ORAC (µmol Trolox/g) | DPPHIC50 (µg/mL) |
---|---|---|---|---|
C. gracilis | 53.563 ± 0.004 * | 41.028 ± 0.004 * | 223.088 ± 0.761 * | 296.737 ± 0.021 * |
C. chlorophaea | 330.276 ± 0.006 * | 142.762 ± 0.002 * | 271.483 ± 0.920 * | 437.85 ± 0.022 * |
Gallic acid # | - | - | - | 2.24 ± 0.04 |
Assay | AChE IC50 (µg/mL) | BChE IC50 (µg/mL) | α-Glucosidase IC50 (µg/mL) | Pancreatic Lipase IC50 (µg/mL) |
---|---|---|---|---|
C. gracilis | 6.211 ± 0.055 * | 9.105 ± 0.065 * | 91.323 ± 0.010 * | 345.135 ± 0.050 * |
C. chlorophaea | 4.204 ± 0.061 * | 5.938 ± 0.069 * | 108.590 ± 0.006 * | 125.310 ± 0.049 * |
Galantamine # | 0.266 ± 0.029 * | 3.824 ± 0.024 * | - | - |
Orlistat® # | - | - | - | 1.9 ± 0.077 |
Acarbose # | - | - | 192.8 ± 0.004 |
Compound | %ABS a | TPSA (Å2) b | MW c | cLogP d | HBD e | HBA f | n-ROTB g | Violation of Lipinski’s Rule |
---|---|---|---|---|---|---|---|---|
Rule | - | - | <500 | ≤5 | ≤5 | ≤10 | ≤10 | ≤1 |
Usnic acid | 68.30 | 117.97 | 344.32 | 0.91 | 2 | 7 | 2 | 0 |
Thamnolic acid | 44.17 | 187.89 | 420.33 | 1.57 | 5 | 11 | 7 | 1 |
13D acid | 61.85 | 136.68 | 518.73 | 5.93 | 5 | 8 | 23 | 3 |
Squaric acid | 83.26 | 74.60 | 114.06 | −1.33 | 2 | 4 | 0 | 0 |
Perlatolic acid | 69.91 | 113.29 | 444.52 | 6.06 | 3 | 7 | 13 | 2 |
FP acid | 42.12 | 193.86 | 472.36 | 1.86 | 4 | 12 | 7 | 1 |
Psoromic acid | 67.82 | 119.36 | 358.30 | 2.87 | 2 | 8 | 3 | 0 |
Orsellinic acid | 82.17 | 77.76 | 168.15 | 0.79 | 3 | 4 | 1 | 0 |
Atranorin | 64.03 | 130.36 | 374.34 | 2.93 | 3 | 8 | 6 | 0 |
Cetraric acid | 60.84 | 139.59 | 402.35 | 2.83 | 3 | 9 | 5 | 0 |
Squamatic acid | 57.05 | 150.59 | 390.34 | 2.33 | 4 | 9 | 6 | 0 |
Methylorsellinate | 85.97 | 66.76 | 182.17 | 1.23 | 2 | 4 | 2 | 0 |
Zileuton * | 76.30 | 94.80 | 236.29 | 1.23 | 2 | 4 | 2 | 0 |
Compound | Fraction of the Molecule | Risk of Toxicity |
---|---|---|
Usnic acid | High-risk fragment indicating a reproductive effect | |
Squaric acid | High-risk fragment indicating tumorigenicity | |
FP acid | High-risk fragment indicating an irritant effect |
Compound | Binding Energy (Kcal/mol) 5-Lipoxygenase (5-LOX) |
---|---|
Thamnolic acid | −7.40 |
13D acid | −5.60 |
Perlatolic acid | −7.10 |
Psoromic acid | −8.30 |
Orsellinic acid | −5.60 |
Atranorin | −7.20 |
Cetraric acid | −7.60 |
Squamatic acid | −7.60 |
Methylorsellinate | −5.40 |
Zileuton | −8.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Benítez, A.; Ortega-Valencia, J.E.; Sánchez, M.; Hillmann-Eggers, M.; Gómez-Serranillos, M.P.; Vargas-Arana, G.; Simirgiotis, M.J. UHPLC-MS Chemical Fingerprinting and Antioxidant, Enzyme Inhibition, Anti-Inflammatory In Silico and Cytoprotective Activities of Cladonia chlorophaea and C. gracilis (Cladoniaceae) from Antarctica. Antioxidants 2023, 12, 10. https://doi.org/10.3390/antiox12010010
Torres-Benítez A, Ortega-Valencia JE, Sánchez M, Hillmann-Eggers M, Gómez-Serranillos MP, Vargas-Arana G, Simirgiotis MJ. UHPLC-MS Chemical Fingerprinting and Antioxidant, Enzyme Inhibition, Anti-Inflammatory In Silico and Cytoprotective Activities of Cladonia chlorophaea and C. gracilis (Cladoniaceae) from Antarctica. Antioxidants. 2023; 12(1):10. https://doi.org/10.3390/antiox12010010
Chicago/Turabian StyleTorres-Benítez, Alfredo, José Erick Ortega-Valencia, Marta Sánchez, Mathias Hillmann-Eggers, María Pilar Gómez-Serranillos, Gabriel Vargas-Arana, and Mario J. Simirgiotis. 2023. "UHPLC-MS Chemical Fingerprinting and Antioxidant, Enzyme Inhibition, Anti-Inflammatory In Silico and Cytoprotective Activities of Cladonia chlorophaea and C. gracilis (Cladoniaceae) from Antarctica" Antioxidants 12, no. 1: 10. https://doi.org/10.3390/antiox12010010
APA StyleTorres-Benítez, A., Ortega-Valencia, J. E., Sánchez, M., Hillmann-Eggers, M., Gómez-Serranillos, M. P., Vargas-Arana, G., & Simirgiotis, M. J. (2023). UHPLC-MS Chemical Fingerprinting and Antioxidant, Enzyme Inhibition, Anti-Inflammatory In Silico and Cytoprotective Activities of Cladonia chlorophaea and C. gracilis (Cladoniaceae) from Antarctica. Antioxidants, 12(1), 10. https://doi.org/10.3390/antiox12010010