Antioxidant and Anti-Inflammatory Effects of Garlic in Ischemic Stroke: Proposal of a New Mechanism of Protection through Regulation of Neuroplasticity
Abstract
:1. Introduction
2. Stroke
2.1. Stroke Epidemiology and Risk Factors
2.2. Damage Mechanisms in Ischemic Stroke
2.3. Neuroprotective Mechanisms in Ischemic Stroke: Neuroplasticity
2.3.1. Synaptogenesis
2.3.2. Neurogenesis
2.3.3. Neurotrophic Factors
- (1)
- NTs promote neuronal survival, neuronal differentiation, axonal and dendritic growth, synaptic plasticity, and synaptogenesis [39]. Some examples are nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3).
- (2)
- Members of the transforming growth factor family (TGF) stimulate astrocyte proliferation, migration, and transformation to the axon growth-supportive phenotype [40]. They stimulate neural cell proliferation and differentiation and the synthesis of NGF in astrocytes [40]. After stroke, they promote neurogenesis, angiogenesis, and provide oligodendrocyte protection [41], e.g., glia-derived neurotrophic factor (GDNF).
- (3)
- Neurokines, such as interleukin 6 (IL6), play critical roles in immunity, brain-regulating neurodevelopment, food intake, body temperature, learning, and memory [42].
- (4)
2.4. Treatments for Ischemic Stroke
Intravenous Thrombolysis
3. Garlic
3.1. Garlic Preparations
3.2. Garlic Compounds as Treatment for Ischemic Stroke
Garlic Compound | Animal | Ischemia Model | Doses | Effect |
---|---|---|---|---|
SAC | SD 250–300 g | Global brain ischemia I: 20 min R: 5, 10, and 20 min | 300 mg/Kg i.p. 1 dose. 30 min before I | ↓ Edema and infarct volume ↓ ROS levels [86] |
Mongolian 60–80 g | Global brain ischemia I: 5 min R: 7 days | 300 mg/Kg i.p. 3 doses. 30 min before I, and at the onset and 2 h after R | ↑ Survival of neurons in hippocampal CA1 region [76] | |
Mongolian 60–80 g | Global brain ischemia I: 5 min R: 7 days | 300 mg/Kg i.p. 2 doses. 30 min before I and 2 h after R | ↑ Survival of neurons in hippocampal CA1 region [83] | |
SD 270–290 g | Focal brain ischemia I: 2 h R: 3 and 24 h | 300 mg/Kg i.p. 1 dose. Onset I 300 mg/Kg i.p. 2 doses. 30 min before I and at onset of R | ↓ Neurological deficit ↓ Infarct volume ↓ ERK1/2 levels [76] | |
Wistar Unspecified weight | Focal brain ischemia I: 2 h R: 22 h | 300 mg/Kg i.p. 2 doses. 15 min before I and 2 h after I onset | ↓ Edema and infarct area ↓ Neurological deficits ↑ GSH level and G6PDH activity ↓ Mitochondrial dysfunction (complex I-IV, ATP levels, and cytochrome c release) [89] | |
Wistar 250–300 g | Focal brain ischemia I: 2 h R: 22 h | 100 mg/Kg i.p. 4 doses. 30 min before I onset and 0, 6, and 12 h after R | ↓ Infarct volume and histological abnormalities in neurons ↓ Neurological deficits ↓ TBARS levels ↑ GSH levels and GR, GPx, SOD, and CAT activities ↓ GFAP and iNOS levels [90] | |
Wistar 280–320 g | Focal brain ischemia I: 2 h R: 0, 1, 2, 3, 4, 6, 10, 24, and 48 h | 300 mg/Kg i.p. 1 dose. At onset of R | ↑ GLUT3 and GCLC mRNA levels [91] | |
Nrf2−/− and Nrf2+/+ Unspecified weight | Focal brain ischemia I: 2 h R: 24 h | 300 mg/Kg i.p. 1 dose. 30 min before I | ↓ Neurological deficit, infarct volume, histological damage, and apoptosis ↑ p-JNK and p-p38 levels ↑ Nrf2 levels and activation, and HO-1, GCLC and GCLM levels [80] | |
Allicin | SD 250–300 g | Focal brain ischemia I: 1.5 h R: 24 h | 50 mg/Kg i.p. 1 dose. 3 h after R | ↓ Neurological impairment, edema, infarct volume, and caspase-3 levels Preserved neurons ↓ Inflammation (TNFα levels and MPO activity) [93] |
SD 280–300 g | Focal brain ischemia I: 1 h R: 24 h | 50 mg/Kg i.p. 1 dose. 3, 6, or 9 h after R | ↓ Neurological deficit, edema, infarct volume, and apoptosis. ↑ Sphk2 levels [84] | |
C57 13–15 weeks old | Focal brain ischemia I: 2 h R: 0, 1, 2, 3, 4, 6, 10, 24, and 48 h | 50 mg/Kg i.p. 1 dose. 3 h after R | ↓ Cell apoptosis ↑ GST, GPx, SOD, and CAT activities [92] | |
DAS | SD 250–300 g | Focal brain ischemia I: 2 h R: 24 h | 200 mg/Kg i.p. 7 doses. 24 h before | ↓ Neurological deficit and infarct volume. ↓ Apoptosis (DNA fragmentation levels and caspase-3 levels) ↑ Antiapoptotic markers (Bcl-2 levels) [94] |
DATS | Wistar 280–320 g | Focal brain ischemia I: 1 h R: 7 days | 15 mg/Kg i.p. 4 doses. Before and 24, 48, and 72 h after R onset | ↓ Infarct area, and MDA and metalloproteinase 9 levels ↑ Nrf2 activation, CAT, and GPx activities, and SOD and GST levels [95] |
SD 250–280 g | Cardiac arrest cardiopulmonary resuscitation I: 5 min R: 24 h | 10 mg/Kg in tail vein. 1 dose. After successful resuscitation | ↓ Cerebral inflammation and MDA levels Preserve: SOD and CAT activity [88] | |
E-ajoene and Z-ajone | Unspecified weight | Global brain ischemia I: 5 min R: 3, 12, and 24 h and 5 days | 25 mg/kg p.o. 1 dose. 30 min before I | ↓ Cell damage in hippocampus ↓ Reactive astrogliosis and microgliosis ↓ LPO levels [87] |
3.3. Garlic Preparations as Treatment for Ischemic Stroke
3.4. Garlic Compounds and Neuroplasticity
3.5. Garlic Preparations and Neuroplasticity
4. Final Remarks
5. Conclusions
6. Future Directions
- Studies should be designed that focus on understanding the mechanisms through which garlic compounds and preparations can activate neuroplasticity processes and how this could produce an impact on the recovery of post-stroke patients.
- It is imperative that future works using garlic as a treatment for ischemic stroke include aged animals, both sexes, and animals with comorbidities.
- Preclinical findings associated with neuroplasticity though garlic derivates should be evaluated at a clinical level in future research.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.; Wang, Y.; Ding, Z.J.; Yue, B.; Zhang, P.Z.; Chen, X.D.; Chen, X.; Chen, J.; Chen, F.Q.; Chen, Y.; et al. The role of RIP3 mediated necroptosis in ouabain-induced spiral ganglion neurons injuries. Neurosci. Lett. 2014, 2014, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Avan, A.; Digaleh, H.; di Napoli, M.; Stranges, S.; Behrouz, R.; Shojaeianbabaei, G.; Amiri, A.; Tabrizi, R.; Mokhber, N.; Spence, J.D.; et al. Socioeconomic status and stroke incidence, prevalence, mortality, and worldwide burden: An ecological analysis from the Global Burden of Disease Study 2017. BMC Med. 2019, 17, 191. [Google Scholar] [CrossRef] [PubMed]
- Godwin, K.M.; Wasserman, J.; Ostwald, S.K. Cost associated with stroke: Outpatient rehabilitative services and medication. Top. Stroke Rehabil. 2011, 18, 676–684. [Google Scholar] [CrossRef] [PubMed]
- Cowled, P.; Fitridge, R. Pathophysiology of reperfusion injury. In Mechanisms of Vascular Disease: A Reference Book for Vascular Specialists, 1st ed.; Fitridge, R., Matthew, T., Eds.; University of Adelaide Press: Adelaide, Australia, 2011; pp. 331–350. [Google Scholar] [CrossRef]
- Hou, Y.; Dan, X.; Babbar, M.; Wei, Y.; Hasselbalch, S.G.; Croteau, D.L.; Bohr, V.A. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 2019, 15, 565–581. [Google Scholar] [CrossRef] [PubMed]
- Roy-O’Reilly, M.A.; Ahnstedt, H.; Spychala, M.S.; Munshi, Y.; Aronowski, J.; Sansing, L.H.; McCullough, L.D. Aging exacerbates neutrophil pathogenicity in ischemic stroke. Aging 2020, 12, 436–461. [Google Scholar] [CrossRef] [PubMed]
- Yousufuddin, M.; Young, N. Aging and ischemic stroke. Aging 2019, 11, 2542–2544. [Google Scholar] [CrossRef] [PubMed]
- Beard, J.R.; Officer, A.; de Carvalho, I.A.; Sadana, R.; Pot, A.M.; Michel, J.P.; Lloyd-Sherlock, P.; Epping-Jordan, J.E.; Peeters, G.M.E.E.; Mahanani, W.R.; et al. The World report on ageing and health: A policy framework for healthy ageing. Lancet 2016, 387, 2145–2154. [Google Scholar] [CrossRef] [PubMed]
- Dotson, A.L.; Offner, H. Sex differences in the immune response to experimental stroke: Implications for translational research. J. Neurosci. Res. 2017, 95, 437–446. [Google Scholar] [CrossRef]
- Kaidonis, G.; Rao, A.N.; Ouyang, Y.B.; Stary, C.M. Elucidating sex differences in response to cerebral ischemia: Immunoregulatory mechanisms and the role of microRNAs. Prog. Neurobiol. 2019, 176, 73–85. [Google Scholar] [CrossRef]
- Manwani, B.; Liu, F.; Scranton, V.; Hammond, M.D.; Sansing, L.H.; McCullough, L.D. Differential effects of aging and sex on stroke induced inflammation across the lifespan. Exp. Neurol. 2013, 249, 120–131. [Google Scholar] [CrossRef]
- Eltzschig, H.K.; Eckle, T. Ischemia and reperfusion-from mechanism to translation. Nat. Med. 2011, 17, 1391–1401. [Google Scholar] [CrossRef] [PubMed]
- Palop, J.J.; Chin, J.; Mucke, L. A network dysfunction perspective on neurodegenerative diseases. Nature 2006, 443, 768–773. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Jaffer, T.; Eguchi, S.; Wang, Z.; Linkermann, A.; Ma, D. Role of necroptosis in the pathogenesis of solid organ injury. Cell Death Dis. 2015, 6, e1975. [Google Scholar] [CrossRef] [PubMed]
- Chamorro, Á.; Dirnagl, U.; Urra, X.; Planas, A.M. Neuroprotection in acute stroke: Targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol. 2016, 15, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Domercq, M.; Matute, C. Excitotoxicity therapy for stroke patients still alive. EBioMedicine 2019, 39, 3–4. [Google Scholar] [CrossRef] [PubMed]
- Lai, T.W.; Zhang, S.; Wang, Y.T. Excitotoxicity and stroke: Identifying novel targets for neuroprotection. Prog. Neurobiol. 2014, 115, 157–188. [Google Scholar] [CrossRef] [PubMed]
- Allen, C.L.; Bayraktutan, U. Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int. J. Stroke 2009, 4, 461–470. [Google Scholar] [CrossRef]
- Crack, P.J.; Taylor, J.M. Reactive oxygen species and the modulation of stroke. Free Radic. Biol. Med. 2005, 38, 1433–1444. [Google Scholar] [CrossRef]
- Rodrigo, R.; Fernandez-Gajardo, R.; Gutierrez, R.; Matamala, J.; Carrasco, R.; Miranda-Merchak, A.; Feuerhake, W. Oxidative Stress and Pathophysiology of Ischemic Stroke: Novel Therapeutic Opportunities. CNS Neurol. Disord. Drug Targets 2013, 12, 698–714. [Google Scholar] [CrossRef]
- Yang, J. The role of reactive oxygen species in angiogenesis and preventing tissue injury after brain ischemia. Microvasc. Res. 2019, 123, 62–67. [Google Scholar] [CrossRef]
- Anrather, J.; Iadecola, C. Inflammation and Stroke: An Overview. Neurotherapeutics 2016, 13, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, E.; Flügge, G. Adult neuroplasticity: More than 40 years of research. Neural Plast. 2014, 2014, 541870. [Google Scholar] [CrossRef] [PubMed]
- Castrén, E.; Antila, H. Neuronal plasticity and neurotrophic factors in drug responses. Mol. Psychiatry 2017, 22, 1085–1095. [Google Scholar] [CrossRef] [PubMed]
- Toricelli, M.; Pereira, A.; Souza Abrao, G.; Malerba, H.; Maia, J.; Buck, H.; Viel, T. Mechanisms of neuroplasticity and brain degeneration: Strategies for protection during the aging process. Neural Regen. Res. 2021, 16, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Burke, S.; Barnes, C. Neural plasticity in the ageing brain. Nat. Rev. Neurosci. 2006, 7, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.E.; Li, P.; Boyd, J.D.; Delaney, K.R.; Murphy, T.H. Extensive turnover of dendritic spines and vascular remodeling in cortical tissues recovering from stroke. J. Neurosci. 2007, 27, 4101–4109. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.E.; Wong, C.; Murphy, T.H. Rapid morphologic plasticity of peri-infarct dendritic spines after focal ischemic stroke. Stroke 2008, 39, 1286–1291. [Google Scholar] [CrossRef]
- Cotman, C.W. Axon Sprouting and Reactive Synaptogenesis. In Basic Neurochemistry: Molecular, Cellular and Medical Aspects; Siegel, G.J., Agranoff, B.W., Albers, R.W., Eds.; Lippincott-Raven: Philadelphia, PA, USA, 1999. Available online: https://www.ncbi.nlm.nih.gov/books/NBK28183/ (accessed on 17 July 2023).
- Koh, S.H.; Park, H.H. Neurogenesis in Stroke Recovery. Transl. Stroke Res. 2017, 8, 3–13. [Google Scholar] [CrossRef]
- Zhang, J.; Chopp, M. Cell-based therapy for ischemic stroke. Expert Opin. Biol. Ther. 2013, 13, 1229–1240. [Google Scholar] [CrossRef]
- Dun, X.P.; Parkinson, D.B. Role of Netrin-1 Signaling in Nerve Regeneration. Int. J. Mol. Med. Sci. 2017, 18, 491. [Google Scholar] [CrossRef]
- Ming, G.-L.; Song, H. Adult neurogenesis in the mammalian brain: Significant answers and significant questions. Neuron 2012, 70, 687–702. [Google Scholar] [CrossRef] [PubMed]
- Ruddy, R.M.; Morshead, C.M. Home sweet home: The neural stem cell niche throughout development and after injury. Cell Tissue Res. 2018, 371, 125–141. [Google Scholar] [CrossRef] [PubMed]
- Lindvall, O.; Kokaia, Z. Neurogenesis following stroke affecting the adult brain. Cold Spring Harb. Perspect. Biol. 2015, 7, a019034. [Google Scholar] [CrossRef] [PubMed]
- Shohayeb, B.; Diab, M.; Ahmed, M.; Ng, D.C.H. Factors that influence adult neurogenesis as potential therapy. Transl. Neurodegener. 2018, 7, 4. [Google Scholar] [CrossRef] [PubMed]
- Hermann, D.M.; Buga, A.M.; Popa-Wagner, A. Neurovascular remodeling in the aged ischemic brain. J. Neural Transm. 2015, 122, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Rocha, N.P.; Teixeira, A.L. Neurotrophic Factors in Aging. In Encyclopedia of Geropsychology; Pachana, N.A., Ed.; Springer: Singapore, 2017; pp. 1628–1638. [Google Scholar] [CrossRef]
- Al-Qudah, M.A.; Al-Dwairi, A. Mechanisms and regulation of neurotrophin synthesis and secretion. Neurosciences 2016, 21, 306–313. [Google Scholar] [CrossRef] [PubMed]
- White, R.E.; Rao, M.; Gensel, J.C.; Mctigue, D.M.; Kaspar, B.K.; Jakeman, L.B. Transforming Growth Factor α Transforms Astrocytes to a Growth-Supportive Phenotype after Spinal Cord Injury. J. Neurosci. 2011, 31, 15173–15187. [Google Scholar] [CrossRef]
- Dai, X.; Chen, J.; Xu, F.; Zhao, J.; Cai, W.; Sun, Z.; Hitchens, T.K.; Foley, L.M.; Leak, R.K.; Chen, J.; et al. TGFα preserves oligodendrocyte lineage cells and improves white matter integrity after cerebral ischemia. J. Cereb. Blood Flow Metab. 2020, 40, 639–655. [Google Scholar] [CrossRef]
- Sarver, D.C.; Lei, X.; Wong, G.W. FAM19A (TAFA): An Emerging Family of Neurokines with Diverse Functions in the Central and Peripheral Nervous System. ACS Chem. Neurosci. 2021, 12, 945–958. [Google Scholar] [CrossRef]
- Lanfranconi, S.; Locatelli, F.; Corti, S.; Candelise, L.; Comi, G.P.; Baron, P.L.; Strazzer, S.; Bresolin, N.; Bersano, A. Growth factors in ischemic stroke. J. Cell. Mol. Med. 2011, 15, 1645–1687. [Google Scholar] [CrossRef]
- Zacchigna, S.; Lambrechts, D.; Carmeliet, P. Neurovascular signalling defects in neurodegeneration. Nat. Rev. Neurosci. 2008, 9, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, S.; Yanuar, I.; Sulistio, A.; Heese, K. Neurotrophin Signaling and Stem Cells-Implications for Neurodegenerative Diseases and Stem Cell Therapy. Mol. Neurobiol. 2017, 54, 7401–7459. [Google Scholar] [CrossRef] [PubMed]
- Minichiello, L. Long-term potentiation Synaptic plasticity TrkB signalling pathways in LTP and learning. Nat. Rev. Neurosci. 2009, 10, 850–860. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, D.E.; Josselyn, S.A. Plasticity-related genes in brain development and amygdala-dependent learning. Genes Brain Behav. 2016, 15, 125–143. [Google Scholar] [CrossRef] [PubMed]
- Nelson, T.J.; Sun, M.K.; Hongpaisan, J.; Alkon, D.L. Insulin, PKC signaling pathways and synaptic remodeling during memory storage and neuronal repair. Eur. J. Pharmacol. 2008, 585, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Tsai, E.M.; Wang, Y.C.; Lee TT, Y.; Tsai, C.F.; Chen, H.S.; Lai, F.J.; Yokoyama, K.K.; Hsieh, T.H.; Wu, R.M.; Lee, J.N. Dynamic Trk and G Protein Signalings Regulate Dopaminergic Neurodifferentiation in Human Trophoblast Stem Cells. PLoS ONE 2015, 10, e0143852. [Google Scholar] [CrossRef] [PubMed]
- Leu, T.; Fandrey, J.; Schreiber, T. (H)IF applicable: Promotion of neurogenesis by induced HIF-2 signalling after ischaemia. Pflug. Arch. 2021, 473, 1287–1299. [Google Scholar] [CrossRef]
- Kärkkäinen, V.; Pomeshchik, Y.; Savchenko, E.; Dhungana, H.; Kurronen, A.; Lehtonen, S.; Naumenko, N.; Tavi, P.; Levonen, A.L.; Yamamoto, M.; et al. Nrf2 Regulates Neurogenesis and Protects Neural Progenitor Cells Against Aβ Toxicity. Stem Cells 2014, 32, 1904–1916. [Google Scholar] [CrossRef]
- Ray, S.; Corenblum, M.J.; Anandhan, A.; Reed, A.; Ortiz, F.O.; Zhang, D.D.; Barnes, C.A.; Madhavan, L. A Role for Nrf2 Expression in Defining the Aging of Hippocampal Neural Stem Cells. Cell Transplant. 2018, 27, 589–606. [Google Scholar] [CrossRef]
- Robledinos-Antón, N.; Rojo, A.I.; Ferreiro, E.; Núñez, Á.; Krause, K.H.; Jaquet, V.; Cuadrado, A. Transcription factor NRF2 controls the fate of neural stem cells in the subgranular zone of the hippocampus. Redox Biol. 2017, 13, 393–401. [Google Scholar] [CrossRef]
- Corenblum, M.J.; Ray, S.; Remley, Q.W.; Long, M.; Harder, B.; Zhang, D.D.; Barnes, C.A.; Madhavan, L. Reduced Nrf2 expression mediates the decline in neural stem cell function during a critical middle-age period. Aging Cell 2016, 15, 725–736. [Google Scholar] [CrossRef]
- Li, Q.; Lou, J.; Yang, T.; Wei, Z.; Li, S.; Zhang, F. Ischemic Preconditioning Induces Oligodendrogenesis in Mouse Brain: Effects of Nrf2 Deficiency. Cell. Mol. Neurobiol. 2022, 42, 1859–1873. [Google Scholar] [CrossRef] [PubMed]
- Prabhakaran, S.; Ruff, I.; Bernstein, R.S. Acute Stroke Intervention: A Systematic Review. JAMA 2015, 313, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Craig, L.E.; Middleton, S.; Hamilton, H.; Cudlip, F.; Swatzell, V.; Alexandrov, A.V.; Lightbody, E.; Watkins, D.C.; Philip, S.; Cadilhac, D.A.; et al. Does the Addition of Non-Approved Inclusion and Exclusion Criteria for rtPA Impact Treatment Rates? Findings in Australia, the UK, and the USA. Interv. Neurol. 2020, 8, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Demaerschalk, B.M.; Kleindorfer, D.O.; Adeoye, O.M.; Demchuk, A.M.; Fugate, J.E.; Grotta, J.C.; Khalessi, A.A.; Levy, E.I.; Palesch, Y.Y.; Prabhakaran, S.; et al. Scientific Rationale for the Inclusion and Exclusion Criteria for Intravenous Alteplase in Acute Ischemic Stroke A Statement for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2016, 47, 581–641. [Google Scholar] [CrossRef] [PubMed]
- Campbell BC, V.; de Silva, D.A.; Macleod, M.R.; Coutts, S.B.; Schwamm, L.H.; Davis, S.M.; Donnan, G.A. Ischaemic stroke. Nat. Rev. Dis. Primers 2019, 5, 70. [Google Scholar] [CrossRef] [PubMed]
- Caprio, F.Z.; Sorond, F.A. Cerebrovascular Disease Primary and Secondary Stroke Prevention. Med. Clin. North Am. 2019, 103, 295–308. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.; Thomalla, G. Causes and secondary prevention of acute ischemic stroke in adults. Hamostaseologie 2020, 40, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Petrovska, B.; Cekovska, S. Extracts from the history and medical properties of garlic. Pharmacogn. Rev. 2010, 4, 106–110. [Google Scholar] [CrossRef]
- Rivlin, R.S. Historical perspective on the use of garlic. J Nutr. 2001, 131, 951–954. [Google Scholar] [CrossRef]
- Ekşi, G.; Mine, A.; Özkan, G.; Koyuncu, M. Garlic and onions: An eastern tale. J. Ethnopharmacol. 2020, 253, 112675. [Google Scholar] [CrossRef] [PubMed]
- Shang, A.; Cao, S.Y.; Xu, X.Y.; Gan, R.Y.; Tang, G.Y.; Corke, H.; Mavumengwana, V.; Li, H.B. Bioactive Compounds and Biological Functions of Garlic (Allium sativum L.). Foods 2019, 8, 246. [Google Scholar] [CrossRef] [PubMed]
- Omar, S.H.; Al-Wabel, N.A. Organosulfur compounds and possible mechanism of garlic in cancer. Saudi Pharm. J. 2010, 18, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Amagase, H. Clarifying the Real Bioactive Constituents of Garlic. J. Nutr. 2006, 136, 716–725. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.; Alvarenga, L.; Cardozo, L.F.M.F.; Chermut, T.R.; Sequeira, J.; de Souza Gouveia Moreira, L.; Teixeira KT, R.; Shiels, P.G.; Stenvinkel, P.; Mafra, D. From the distinctive smell to therapeutic effects: Garlic for cardiovascular, hepatic, gut, diabetes and chronic kidney disease. Clin. Nutr. 2021, 40, 4807–4819. [Google Scholar] [CrossRef] [PubMed]
- Abe, K.; Hori, Y.; Myoda, Y. Volatile compounds of fresh and processed garlic. Exp. Ther. Med. 2020, 19, 1585–1593. [Google Scholar] [CrossRef] [PubMed]
- Aviello, G.; Abenavoli, L.; Borrelli, F.; Capasso, R.; Izzo, A.A.; Lembo, F.; Romano, B.; Capasso, F. Garlic: Empiricism or science? Nat. Prod. Commun. 2009, 4, 1785–1796. [Google Scholar] [CrossRef]
- Lawson, L.D. Garlic: A Review of Its Medicinal Effects and Indicated Active Compounds. Avicenna J. Phytomed. 2014, 4, 1–14. [Google Scholar] [CrossRef]
- Yoo, M.; Lee, S.; Kim, S.; Hwang, J.B.; Choe, J.; Shin, D. Composition of organosulfur compounds from cool- and warm-type garlic (Allium sativum L.) in Korea. Food Sci. Biotechnol. 2014, 23, 337–344. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Kumagai, H. Characteristics, biosynthesis, decomposition, metabolism and functions of the garlic odour precursor, S-allyl-L-cysteine sulfoxide. Exp. Ther. Med. 2020, 19, 1528–1535. [Google Scholar] [CrossRef]
- Borek, C. Antioxidant Health Effects of Aged Garlic Extract. J. Nutr. 2001, 131, 1010–1015. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Miao, Y.; Chen, J.Y.; Zhang, Q.; Wang, J. Effective production of S-allyl-L-cysteine through a homogeneous reaction with activated endogenous γ-glutamyltranspeptidase in garlic (Allium Sativum). J. Food Sci. Technol. 2015, 52, 1724–1729. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Lee, J.C.; Chang, N.; Chun, H.S.; Kim, W.K. S-Allyl-l-cysteine attenuates cerebral ischemic injury by scavenging peroxynitrite and inhibiting the activity of extracellular signal-regulated kinase. Free Radic. Res. 2006, 40, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, P.D.; Alvarez-Idaboy, J.R.; Aguilar-González, A.; Lira-Rocha, A.; Jung-Cook, H.; Medina-Campos, O.N.; Pedraza-Chaverrí, J.; Galano, A. Role of allyl group in the hydroxyl and peroxyl radical scavenging activity of S-allylcysteine. J. Phys. Chem. B 2011, 115, 13408–13417. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Pung, D.; Leong, V.; Hebbar, V.; Shen, G.; Nair, S.; Li, W.; Tony Kong, A.N. Induction of detoxifying enzymes by garlic organosulfur compounds through transcription factor Nrf2: Effect of chemical structure and stress signals. Free Radic. Biol. Med. 2004, 37, 1578–1590. [Google Scholar] [CrossRef] [PubMed]
- Fisher, C.D.; Augustine, L.M.; Maher, J.M.; Nelson, D.M.; Slitt, A.L.; Klaassen, C.D.; Lehman-McKeeman, L.D.; Cherrington, N.J. Induction of Drug-Metabolizing Enzymes by Garlic and Allyl Sulfide Compounds via Activation of Constitutive Androstane Receptor and Nuclear Factor E2-Related Factor 2. Drug Metab. Dispos. 2007, 35, 995–1000. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Jing, X.; Wei, X.; Perez, R.G.; Ren, M.; Zhang, X.; Lou, H. S-allyl cysteine activates the Nrf2-dependent antioxidant response and protects neurons against ischemic injury in vitro and in vivo. J. Neurochem. 2015, 133, 298–308. [Google Scholar] [CrossRef]
- Arreola, R.; Quintero-Fabián, S.; Lopez-Roa, R.L.; Flores-Gutierrez, E.O.; Reyes-Grajeda, J.P.; Carrera-Quintanar, L.; Ortuno-Sahagun, D. Immunomodulation and Anti-Inflammatory Effects of Garlic Compounds. J. Immunol. Res. 2015, 2015, 401630. [Google Scholar] [CrossRef]
- Moutia, M.; Habti, N.; Badou, A. In Vitro and In Vivo Immunomodulator Activities of Allium sativum L. Evid. Based Complement. Alternat. Med. 2018, 2018, 4984659. [Google Scholar] [CrossRef]
- Kim, J.M.; Hyun, J.C.; Kim, W.K.; Chang, N.; Hyang, S.C. Structure−Activity Relationship of Neuroprotective and Reactive Oxygen Species Scavenging Activities for Allium Organosulfur Compounds. J. Agric. Food Chem. 2006, 54, 6547–6553. [Google Scholar] [CrossRef]
- Lin, J.J.; Chang, T.; Cai, W.K.; Zhang, Z.; Yang, Y.X.; Sun, C.; Li, X.Y.; Li, W.X. Post-injury administration of allicin attenuates ischemic brain injury through sphingosine kinase 2: In vivo and in vitro studies. Neurochem. Int. 2015, 89, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.H.; Li, G.L.; Wang, B.A.; Qin, Y.; Bai, S.R.; Rong, J.; Deng, T.; Li, Q. Diallyl trisufide protects against oxygen glucose deprivation -induced apoptosis by scavenging free radicals via the PI3K/Akt -mediated Nrf2/HO-1 signaling pathway in B35 neural cells. Brain Res. 2015, 1614, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Numagami, Y.; Sato, S.; Ohnishi, S.T. Attenuation of rat ischemic brain damage by aged garlic extracts: A possible protecting mechanism as antioxidants. Neurochem. Int. 1996, 29, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Yoo, D.Y.; Kim, W.; Nam, S.M.; Yoo, M.; Lee, S.; Yoon, Y.S.; Won, M.H.; Hwang, I.K.; Choi, J.H. Neuroprotective effects of Z-ajoene, an organosulfur compound derived from oil-macerated garlic, in the gerbil hippocampal CA1 region after transient forebrain ischemia. Food Chem. Toxicol. 2014, 72, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Wang, Y.; Wen, S.; Huang, K.; Huang, J.; Chu, X.; Wang, F.; Pang, L. Novel controlled and targeted releasing hydrogen sulfide system exerts combinational cerebral and myocardial protection after cardiac arrest. J. Nanobiotechnology 2021, 19, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Atif, F.; Yousuf, S.; Agrawal, S.K. S-Allyl L-cysteine diminishes cerebral ischemia-induced mitochondrial dysfunctions in hippocampus. Brain Res. 2009, 1265, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Ashafaq, M.; Khan, M.M.; Shadab Raza, S.; Ahmad, A.; Khuwaja, G.; Javed, H.; Khan, A.; Islam, F.; Siddiqui, M.S.; Safhi, M.M.; et al. S-allyl cysteine mitigates oxidative damage and improves neurologic deficit in a rat model of focal cerebral ischemia. Nutr. Res. 2012, 32, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Gomez, C.D.; Aguilera, P.; Ortiz-Plata, A.; López, F.N.; Chánez-Cárdenas, M.E.; Flores-Alfaro, E.; Ruiz-Tachiquín, M.E.; Espinoza-Rojo, M. Aged garlic extract and S-allylcysteine increase the GLUT3 and GCLC expression levels in cerebral ischemia. Adv. Clin. Exp. Med. 2019, 28, 1609–1614. [Google Scholar] [CrossRef]
- Kong, X.; Gong, S.; Su, L.; Li, C.; Kong, Y. Neuroprotective effects of allicin on ischemia-reperfusion brain injury. Oncotarget 2017, 8, 104492–104507. [Google Scholar] [CrossRef]
- Zhang, B.; Li, F.; Zhao, W.; Li, J.; Li, Q.; Wang, W. Protective effects of allicin against ischemic stroke in a rat model of middle cerebral artery occlusion. Mol. Med. Rep. 2015, 12, 3734–3738. [Google Scholar] [CrossRef]
- Lin, X.; Yu, S.; Chen, Y.; Wu, J.; Zhao, J.; Zhao, Y. Neuroprotective effects of diallyl sulfide against transient focal cerebral ischemia via anti-apoptosis in rats. Neurol. Res. 2013, 34, 32–37. [Google Scholar] [CrossRef]
- Silva-Islas, C.A.; Chánez-Cárdenas, M.E.; Barrera-Oviedo, D.; Ortiz-Plata, A.; Pedraza-Chaverri, J.; Maldonado, P.D. Diallyl Trisulfide Protects Rat Brain Tissue against the Damage Induced by Ischemia-Reperfusion through the Nrf2 Pathway. Antioxidants 2019, 8, 410. [Google Scholar] [CrossRef] [PubMed]
- Batirel, H.F.; Aktan, S.; Aykut, C.; Yeǧen, B.C.; Coşkun, T. The effect of aqueous garlic extract on the levels of arachidonic acid metabolites (leukotriene C4 and prostaglandin E2) in rat forebrain after ischemia-reperfusion injury. Prostaglandins Leukot. Essent. Fat. Acids 1996, 54, 289–291. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Singh, M.; Sharma, A. Neuroprotective effect of antioxidants on ischaemia and reperfusion-induced cerebral injury. Pharmacol. Res. 2003, 48, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, P.; Chánez-Cárdenas, M.E.; Ortiz-Plata, A.; León-Aparicio, D.; Barrera, D.; Espinoza-Rojo, M.; Villeda-Hernández, J.; Sánchez-García, A.; Maldonado, P.D. Aged garlic extract delays the appearance of infarct area in a cerebral ischemia model, an effect likely conditioned by the cellular antioxidant systems. Phytomedicine 2010, 17, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Colín-González, A.L.; Ortiz-Plata, A.; Villeda-Hernández, J.; Barrera, D.; Molina-Jijón, E.; Pedraza-Chaverrí, J.; Maldonado, P.D. Aged Garlic Extract Attenuates Cerebral Damage and Cyclooxygenase-2 Induction after Ischemia and Reperfusion in Rats. Plant Foods Hum. Nut. 2011, 66, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Saleem, S.; Ahmad, M.; Ahmad, A.S.; Yousuf, S.; Ansari, M.A.; Khan, M.B.; Ishrat, T.; Islam, F. Behavioral and Histologic Neuroprotection of Aqueous Garlic Extract After Reversible Focal Cerebral Ischemia. J. Med. Food 2007, 9, 537–544. [Google Scholar] [CrossRef]
- Cervantes, M.I.; De Oca Balderas, P.M.; de Jesús Gutiérrez-Baños, J.; Orozco-Ibarra, M.; Fernández-Rojas, B.; Medina-Campos, O.M.; Espinoza-Rojo, M.; Ruiz-Tachiquín, M.; Ortiz-Plata, A.; Salazar, M.I.; et al. Comparison of antioxidant activity of hydroethanolic fresh and aged garlic extracts and their effects on cerebral ischemia. Food Chem. 2013, 140, 343–352. [Google Scholar] [CrossRef]
- Moriguchi, T.; Matsuura, H.; Kodera, Y.; Itakura, Y.; Katsuki, H.; Saito, H.; Nishiyama, N. Neurotrophic activity of organosulfur compounds having a thioallyl group on cultured rat hippocampal neurons. Neurochem. Res. 1997, 22, 1449–1452. [Google Scholar] [CrossRef]
- Hashimoto, M.; Nakai, T.; Masutani, T.; Unno, K.; Akao, Y. Improvement of Learning and Memory in Senescence-Accelerated Mice by S-Allylcysteine in Mature Garlic Extract. Nutrients 2020, 12, 1834. [Google Scholar] [CrossRef]
- Reyes-Soto, C.Y.; Rangel-López, E.; Galván-Arzate, S.; Colín-González, A.L.; Silva-Palacios, A.; Zazueta, C.; Pedraza-Chaverri, J.; Ramírez, J.; Chavarria, A.; Túnez, I.; et al. S-Allylcysteine Protects Against Excitotoxic Damage in Rat Cortical Slices Via Reduction of Oxidative Damage, Activation of Nrf2/ARE Binding, and BDNF Preservation. Neurotox. Res. 2020, 38, 929–940. [Google Scholar] [CrossRef]
- Syu, J.N.; Yang, M.D.; Tsai, S.Y.; Chiang, E.P.I.; Chiu, S.C.; Chao, C.Y.; Rodriguez, R.L.; Tang, F.Y. S-allylcysteine Improves Blood Flow Recovery and Prevents Ischemic Injury by Augmenting Neovasculogenesis. Cell Transplant. 2017, 26, 1636–1647. [Google Scholar] [CrossRef] [PubMed]
- Taek Ji, S.; Kim, M.S.; Ra Park, H.; Lee Lee, E.Y.; Jung Jang, Y.; Sik Kim, H.; Lee, J. Diallyl disulfide impairs hippocampal neurogenesis in the young adult brain. Toxicol. Lett. 2013, 221, 31–38. [Google Scholar] [CrossRef]
- Nam, S.M.; Yoo, Y.; Kim, W.; Yoo, M.; Kim, D.W.; Won, M.H.; Hwang, I.K.; Yoon, Y.S. Effects of S-Allyl-L-Cysteine on Cell Proliferation and Neuroblast Differentiation in the Mouse Dentate Gyrus. J. Vet. Med. Sci. 2011, 73, 1071–1075. [Google Scholar] [CrossRef]
- Javed, H.; Khan, M.M.; Khan, A.; Vaibhav, K.; Ahmad, A.; Khuwaja, G.; Ahmed, M.E.; Raza, S.S.; Ashafaq, M.; Tabassum, R.; et al. S-allyl cysteine attenuates oxidative stress associated cognitive impairment and neurodegeneration in mouse model of streptozotocin-induced experimental dementia of Alzheimer’s type. Brain Res. 2011, 1389, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Zarezadeh, M.; Baluchnejadmojarad, T.; Kiasalari, Z.; Afshin-Majd, S.; Roghani, M. Garlic active constituent s-allyl cysteine protects against lipopolysaccharide-induced cognitive deficits in the rat: Possible involved mechanisms. Eur. J. Pharmacol. 2017, 795, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Kurihara, K.; Moteki, H.; Natsume, H.; Ogihara, M.; Kimura, M. The Enhancing Effects of S-Allylcysteine on Liver Regeneration Are Associated with Increased Expression of mRNAs Encoding IGF-1 and Its Receptor in Two-Thirds Partially Hepatectomized Rats. Biol. Pharm. Bull. 2020, 43, 1776–1784. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Q.; Li, X.; Yang, B.; Fang, X.; Jia, J.; Ren, J.; Dong, Y.; Ou-Yang, C.; Wang, G. Allicin attenuates tunicamycin-induced cognitive deficits in rats via its synaptic plasticity regulatory activity. Iran. J. Basic Med. Sci. 2017, 20, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Yamada, N.; Hattori, A.; Hayashi, T.; Nishikawa, T.; Fukuda, H.; Fujino, T. Improvement of scopolamine-induced memory impairment by Z-ajoene in the water maze in mice. Pharmacol. Biochem. Behav. 2004, 78, 787–791. [Google Scholar] [CrossRef]
- Huang, Y.J.; Lu, K.H.; Lin, Y.E.; Panyod, S.; Wu, H.Y.; Chang, W.T.; Sheen, Y. Garlic essential oil mediates acute and chronic mild stress-induced depression in rats via modulation of monoaminergic neurotransmission and brain-derived neurotrophic factor levels. Food Funct. 2019, 10, 8094–8105. [Google Scholar] [CrossRef]
- Jung, H.Y.; Lee, K.Y.; Yoo, D.Y.; Kim, J.W.; Yoo, M.; Lee, S.; Yoo, K.Y.; Yoon, Y.S.; Hoon Choi, J.; Hwang, I.K. Essential oils from two Allium species exert effects on cell proliferation and neuroblast differentiation in the mouse dentate gyrus by modulating brain-derived neurotrophic factor and acetylcholinesterase. BMC Complement. Med. Ther. 2016, 16, 431. [Google Scholar] [CrossRef] [PubMed]
- Alipour, F.; Bideskan, A.E.; Fazel, A.; Sadeghi, A.; Hami, J.; Kheradmand, H.; Haghir, H. Protective effects of ascorbic acid and garlic extract against neurogenesis inhibition caused by developmental lead exposure in the dentate gyrus of rat. Comp. Clin. Pathol. 2014, 23, 1681–1687. [Google Scholar] [CrossRef]
- Semuyaba, I.; Alao Safiriyu, A.; Ayikobua Tiyo, E.; Figueredo Niurka, R. Memory Improvement Effect of Ethanol Garlic (A. sativum) Extract in Streptozotocin-Nicotinamide Induced Diabetic Wistar Rats Is Mediated through Increasing of Hippocampal Sodium-Potassium ATPase, Glutamine Synthetase, and Calcium ATPase Activities. Evid. Based Complement. Alternat. Med. 2017, 2017, 3720380. [Google Scholar] [CrossRef] [PubMed]
- Nurmasitoh, T.; Sari, D.C.R.; Partadiredja, G. The effects of black garlic on the working memory and pyramidal cell number of medial prefrontal cortex of rats exposed to monosodium glutamate. Drug Chem. Toxicol. 2017, 41, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Hermawati, E.; Dwi, C.; Ratna, C.; Ginus Partadiredja, S. The effects of black garlic ethanol extract on the spatial memory and estimated total number of pyramidal cells of the hippocampus of monosodium glutamate-exposed adolescent male Wistar rats. Anat. Sci. Int. 2015, 90, 275–287. [Google Scholar] [CrossRef] [PubMed]
- Thorajak, P.; Pannangrong, W.; Welbat, J.U.; Chaijaroonkhanarak, W.; Sripanidkulchai, K.; Sripanidkulchai, B. Effects of Aged Garlic Extract on Cholinergic, Glutamatergic and GABAergic Systems with Regard to Cognitive Impairment in Aβ-Induced Rats. Nutrients 2017, 9, 686. [Google Scholar] [CrossRef] [PubMed]
- Moriguchi, T.; Takashina, K.; Chu, P.J.; Saito, H.; Nishiyama, N. Prolongation of Life Span and Improved Learning in the Senescence Accelerated Mouse Produced by Aged Garlic Extract. Biol. Pharm. Bull. 1994, 17, 1589–1594. [Google Scholar] [CrossRef]
Etiology/Risk Factor | Management | Description |
---|---|---|
Noncardioembolic ischemic stroke or TIA | Antiplatelet therapy: acetylsalicylic acid (aspirin) is the main agent of this group. Alternative: thienopyridine clopidogrel. | Aspirin prevents platelet aggregation by preventing the production of thromboxane. Thienopyridines inhibit platelet activation and aggregation by blocking diphosphate receptors. |
Cardioembolic stroke or TIA | Oral anticoagulation. Vitamin K (classic drug in atrial fibrillation). Alternative: non-vitamin K antagonist oral anticoagulants (e.g., apixaban, rivaroxaban, dabigatran). | Vitamin K reduces the risk of stroke, but the narrow window limits its use. Hence, it requires dose adjustments and frequent monitoring. Non-vitamin anticoagulants could be used to prevent stroke in atrial fibrillation as a second line or as a first line to non-valvular atrial fibrillation according to the European Society of Cardiology. |
Blood Pressure | Antihypertensive therapy. | Blood pressure is a major risk for ischemic stroke. The first study in 2001 proved that the administration of antihypertensive therapy lowers recurrent events by 28%. |
Carotid artery stenosis | Revascularization treatment. | A high risk of recurrent stroke is related to symptomatic internal carotid stenosis. Evidence indicates a strong benefit of revascularization treatment over conservative therapy in 70% of stenosis cases. |
Hypercholesterolemia | Management with statins. | In the aortic arch, atheromatous disease is a significant cause of large artery embolisms. Several studies revealed that satins diminish the recurrence of stroke. |
Garlic Compound | Culture Cell | Duration | Doses | Effect |
---|---|---|---|---|
SAC | Neuroblastoma SK-N-SH | OGD: 6 h ReOx: 24 h | 1, 10, or 100 μM, preincubation (48 h) | ↑ Viability [83] |
Cortical primary astrocytes | OGD: 1 h ReOx: 2 h | 10 μM, preincubation (30 min) and during OGD | ↓ ERK1/2 levels ↑ Viability [76] | |
Cortical primary cultures | OGD: 1 h ReOx: 24 h | 10, 25, and 50 μM, preincubation (2 h) | ↓ Apoptosis ↓ p-JNK and p-p38 levels ↑ Nrf2 levels [80] | |
Allicin | Cortical primary cultures | OGD: 1 h ReOx: 2, 4 or 6 h | 50 μM, 2, 4, or 6 h after OGD | ↑ Viability ↓ Apoptosis ↑ Sphk2 levels [84] |
Alliin | Neuroblastoma SK-N-SH | OGD: 6 h ReOx: 24 h | 10 and 100 μM, preincubation (48 h) | ↑ Viability [83] |
DATS | B35 neural cells | OGD I: 90 min ReOx: 24 h | 10 μM, preincubation (24 h) | ↑ Viability ↓ MDA levels ↓ Apoptosis ↑ Nrf2 and HO-1 levels [85] |
Garlic Preparation | Animal | Ischemia Model | Doses | Effect |
---|---|---|---|---|
AGE | Wistar 280–350 g | Focal brain ischemia I: 2 h R: 2 h | 1.2 mL/Kg i.p. 1 dose. 30 min before R, at the onset and 1 h after R | ↓ Neurological impairment, infarct area, and 3-NT levels ↑ GPx and SOD activity [98] |
Wistar 280–350 g | Focal brain ischemia I: 1 h R: 24 h | 1.2 mL/Kg i.p. 1 dose. At onset of R | ↓ Neurological impairment, infarct area, and cellular damage ↓ 8OHdG and TNFα levels ↓ COX-2 levels and activity [99] | |
Wistar 280–320 g | Focal brain ischemia I: 2 h R: 0, 1, 2, 3, 4, 6, 10, 24, and 48 h | 360 mg/Kg i.p. 1 dose. At onset of reperfusion | ↑ GLUT3 and GCLC mRNA levels [91] | |
Wistar 250–300 g | Focal brain ischemia I: 1 h R: 3 days | 0.08–0.5 mL/Kg i.p. 1 dose. 30 min before ischemia | ↓ Edema and infarct volume [86] | |
Aqueous garlic extract | SD 225–275 g | Global brain ischemia I: 10 min R: 8 and 60 min | 1 mL/Kg, i.p. 1 dose. 30 min before I | ↓ PGE2 and LTC4 levels [96] |
Wistar 250–300 g | Focal brain ischemia I: 2 h R: 22 h | 500 mg/mL/kg i.p. 1 dose. 30 min before I | ↓ Neurological impairment ↓ Cell death ↑ GSH levels, as well as GPx, GR, GST, CAT, SOD, and Na+K+ ATPase activity [100] | |
Garlic oil | Swiss albino 18–30 g | Global brain ischemia I: 20 min R: 24 h | 23 mg/kg or 46 mg/Kg p.o. 1 dose. 90 min before I | ↓ Infarct volume and lipoperoxidation ↑ Short-term memory and motor coordination [97] |
Aged garlic clove and skin extract | Wistar 280–320 g | Focal brain ischemia I: 2 h. R: 2 h | 360 mg/Kg i.p. 1 dose. At onset of R | ↑ Survival neurons ↑ Mitochondrial membrane potential and ATP levels [101] |
Garlic Compound | Culture Cell | Administration Scheme | Effect |
---|---|---|---|
SAC | Hippocampal neurons | 100 ng/mL, for 72 h | ↑ Axonal branching [102] |
Hippocampal neurons | 1 μM, for 48 or 72 h | ↑ Neurite length and number of dendrites [103] | |
Cortical slices | 100 µM, for 1 h | ↑ Survival of cells ↓ Cell damage ↓ TBARS levels ↑ Nrf2/ARE binding activity ↑ GSH, HO-1, p-ERK, and BDNF levels [104] | |
Endothelial progenitor cells | 10, 100, or 250 µM, for 1 or 8 h | ↑ Neovasculogenesis ↑ PI3K/AKT/eNOS pathway ↑ c-kit, p-AKT, and p-eNOS levels ↑ Nuclear β-cat and cyclin D1 [105] | |
Alliin | Hippocampal neurons | 1–100 ng/mL, for 72 h | ↑ Survival of neurons ↑ Number of branching points per axon [102] |
DADS | C 17.2 neuronal precursor cells | 0.1–10 µM, for 24 h | ↓ Proliferation [106] |
Garlic Compound | Animal Age/ Model | Administration Scheme | Effect |
---|---|---|---|
SAC | C57BL/6 8 weeks old Healthy | 300 mg/kg, i.p. 21 doses. Every 24 h for 21 days | ↑ Ki67- and doublecortin-positive cells ↑ Serotonin 1 A receptor levels [107] |
SAMP10 and SAMR1 8 weeks old, senescence-accelerated mice | 20 mg/kg p.o. 280 doses. Every 24 h for 10 months | ↑ Improvement in memory ↑ AMPAR, NMDAR, and CaMKII levels [103] | |
Swiss albino 35–40 g Injury induced by intracerebroventricular streptozotocin | 30 mg/kg, i.p. 15 doses. Every 24 h for 15 days pre-treatment | ↑ Memory in cognitively impaired mice ↓ Loss of pyramidal neurons ↑ GSH levels ↑ GPx and GR activities ↓ TBARS levels ↓ DNA fragmentation ↑ Bcl-2 and p53 levels [108] | |
Wistar 215–270g Injury induced by lipopolysaccharide | 25, 50, or 100 mg/kg, i.p. 7 doses. Every 24 h for 7 days after lipopolysaccharide administration | ↑ Memory in cognitively impaired rats ↓ MDA levels ↑ SOD and CAT activities ↑ GSH levels ↓Acetylcholinesterase activity ↓ TLR4, GFAP, andIL-1βlevels ↓ Iba1 levels ↑ Nrf2 levels [109] | |
C57BL 9 weeks old Hind-limb ischemia and xenograft model | 0.2 or 2 mg/kg, p.o. 14 doses. Every 24 h for 14 days after hind-limb ischemia or after endothelial progenitor cell inoculation | ↑ Neovascularization ↑ c-kit levels ↑ Collateral blood flow [105] | |
Wistar 170–200g, 6–7 weeks old Hepatectomized | 300 mg/kg, p.o. 1 or 12 doses. Every 24 h for 12 days after surgery | ↑ Liver weight ↑ IGF-1 and its receptor levels ↑ p-ERK and p-AKT levels [110] | |
Allicin | SD 200–250 g Tunicamycin-induced cognitive deficits in rats | 180 mg/kg, p.o. 112 doses. Every 24 h for 16 weeks before tunicamycin administration | ↓ Memory deficits ↑ Density of dendritic spine ↑Synaptophysin and glutamate receptor-1 levels [111] |
Z-ajone | ddY 8 weeks old, 37–40 g Scopolamine-induced memory impairment | 0.25–25 mg/kg, p.o. 1 dose. At the same time as scopolamine | ↑ Memory performance [112] |
DADS | SD 8 weeks old 190–250 g Acute and chronic mild stress-induced depression | 10 or 20 mg/kg, p.o. 28 or 35 doses. Every 24 h for 28 or 35 days, at the onset of and during mild stress-induced depression | ↓ Depressive-like behavior ↑ Serotonin and dopamine levels ↑ Hippocampal BDNF, CREB, and AKT levels [113] |
C57BL/6 5 weeks old Healthy | 1 or 10 mg/kg, p.o. 14 doses. Every 24 h for 14 days | ↑ Memory defects ↓ Proliferation of NS/PC in the dentate gyrus. ↓ BDNF levels in hippocampus ↓ p-CREB and p-ERKs levels [106] |
Garlic Preparation | Animal Age/ Model | Administration Scheme | Effect |
---|---|---|---|
Garlic oil from two Allium species | 9-week-old mice Healthy | 10 mg/Kg, p.o. 21 doses. Every 24 h for 21 days | ↑ Novel object recognition ↑ Cell proliferation and neuroblast differentiation levels ↑ BDNF levels and acetylcholinesterase activity [114] |
Garlic essential oil | SD 8 weeks old, 190–250 g Acute and chronic mild stress-induced depression | Garlic oil: 25 or 50 mg/Kg, p.o. 28 or 35 doses. Every 24 h for 28 or 35 days | ↓ Depressive-like behavior ↑ Serotonin and dopamine levels ↑ Hippocampal BDNF, CREB, and AKT levels [113] |
Aqueous garlic extract | Wistar 200–250 g, 6–8 weeks old 21-day-old offspring Lead-induced neurotoxicity | 100 g/Kg, p.o. Every 24 h during gestation until lactation 50 doses, 50 days | ↓ Blood and brain lead levels ↑ Doublecortin-positive cells [115] |
Ethanol garlic extract | Wistar 200–250 g, Diabetes induced by streptozotocin–nicotinamide | 1000 mg/Kg, p.o. 21 doses. Every 24 h for 21 days | ↑ Memory in cognitively impaired rats ↑ Na+/K+ ATPase, Ca2+ATPase, and glutamine synthetase activities [116] |
Ethanol-fermented garlic extract (black garlic) | Wistar 4–5 weeks old 100–150 g Injury induced by monosodium glutamate | 0.0125, 0.025, or 0.05 mg/g, p.o. 10 doses. Every 24 h for 10 days | ↑ Memory in cognitively impaired rats No change in the number of pyramidal neurons of prefrontal cortex [117] |
Ethanol-fermented garlic extract (black garlic) | Wistar 3–4 weeks old Injury induced by monosodium glutamate | 2.5, 5, or 10 mg/200 g, p.o. 10 doses. Every 24 h for 10 days | ↑ Memory in cognitively impaired rats ↑ Number of pyramidal neurons of hippocampus [118] |
AGE | Wistar 180–220 g Amyloid-β toxicity | 125, 250, or 500 mg/Kg, p.o. 65 doses. Every 24 h for 65 days | ↑ Memory in cognitively impaired rats ↓ Loss of cholinergic neurons ↑ Vesicular glutamate transporter 1 and glutamate decarboxylase levels [119] |
SAMP8 and SAMR1 8 weeks old Senescence-accelerated mice | Diet containing 2% of extract, p.o. 60 doses. Every 24 h for 60 days | ↑ Life span (SAMP8) ↑ Improvement in memory [120] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bautista-Perez, S.M.; Silva-Islas, C.A.; Sandoval-Marquez, O.U.; Toledo-Toledo, J.; Bello-Martínez, J.M.; Barrera-Oviedo, D.; Maldonado, P.D. Antioxidant and Anti-Inflammatory Effects of Garlic in Ischemic Stroke: Proposal of a New Mechanism of Protection through Regulation of Neuroplasticity. Antioxidants 2023, 12, 2126. https://doi.org/10.3390/antiox12122126
Bautista-Perez SM, Silva-Islas CA, Sandoval-Marquez OU, Toledo-Toledo J, Bello-Martínez JM, Barrera-Oviedo D, Maldonado PD. Antioxidant and Anti-Inflammatory Effects of Garlic in Ischemic Stroke: Proposal of a New Mechanism of Protection through Regulation of Neuroplasticity. Antioxidants. 2023; 12(12):2126. https://doi.org/10.3390/antiox12122126
Chicago/Turabian StyleBautista-Perez, Sandra Monserrat, Carlos Alfredo Silva-Islas, Oscar Uriel Sandoval-Marquez, Jesús Toledo-Toledo, José Manuel Bello-Martínez, Diana Barrera-Oviedo, and Perla D. Maldonado. 2023. "Antioxidant and Anti-Inflammatory Effects of Garlic in Ischemic Stroke: Proposal of a New Mechanism of Protection through Regulation of Neuroplasticity" Antioxidants 12, no. 12: 2126. https://doi.org/10.3390/antiox12122126
APA StyleBautista-Perez, S. M., Silva-Islas, C. A., Sandoval-Marquez, O. U., Toledo-Toledo, J., Bello-Martínez, J. M., Barrera-Oviedo, D., & Maldonado, P. D. (2023). Antioxidant and Anti-Inflammatory Effects of Garlic in Ischemic Stroke: Proposal of a New Mechanism of Protection through Regulation of Neuroplasticity. Antioxidants, 12(12), 2126. https://doi.org/10.3390/antiox12122126