Evaluation of the Efficacy of Antioxidant Extract from Lemon By-Products on Preservation of Quality Attributes of Minimally Processed Radish (Raphanus sativus L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Preparation of Lemon Byproduct Phenolic Extract (LPE)
2.3. Preparation of Radish Sample
2.4. Headspace Gas Composition
2.5. Microbiological Analysis
2.6. Physicochemical Analysis
2.7. Total Polyphenol and Anthocyanin Determinations
2.8. Antioxidant Activity
2.9. Identification and Quantification of Antioxidant Compounds in Minimally Processed Radishes
2.10. Statistical Analysis
3. Results and Discussion
3.1. Antioxidant Lemon Byproduct Extract Characterization
3.2. Headspace Gas Composition
3.3. Effect of Functionalized Edible Coating on Minimally Processed Radish Quality Parameters
3.4. Characterization of Bioactive Compounds and Antioxidant Activity of Minimally Processed Radishes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oms-Oliu, G.; Soliva-Fortuny, R.; Martìın-Belloso, O. Edible coatings with antibrowning agents to maintain sensory quality and antioxidant properties of fresh-cut pears. Postharvest Biol. Technol. 2008, 50, 87–94. [Google Scholar] [CrossRef]
- Sun, T.; Simon, P.W.; Tanumihardjo, S.A. Antioxidant phytochemicals and antioxidant capacity of biofortified carrots (Daucus carota L.) of various colors. J. Agric. Food Chem. 2009, 57, 4142–4147. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, P.; Martha, R.; Lule Perez, R. Raphanus sativus (Radish): Their Chemistry and Biology. Review. Sci. World J. 2004, 4, 811–837. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Qiu, X.; Tan, Q.; Xiao, Q.; Mei, S. A Comparative Metabolomics Study of Flavonoids in Radish with Different Skin and Flesh Colors (Raphanus sativus L.). Agric. Food Chem. 2020, 68, 14463–14470. [Google Scholar] [CrossRef] [PubMed]
- Martìn-Belloso, O.; Soliva-Fortuny, R.; Oms-Oliu, G. Fresh-cut fruits. In Handbook of Food Products Manufacturing. Principles, Bakery, Beverages, Cereals, Cheese, Confectionary, Fats, Fruits, and Functional Foods; Hui, Y.H., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007; pp. 879–899. [Google Scholar]
- Dhall, R.K. Advances in Edible Coatings for Fresh Fruits and Vegetables: A Review. Crit Rev Food Sci Nutr. 2013, 53, 435–450. [Google Scholar] [CrossRef]
- Kluge, R.A.; Nachtigal, J.C.; Fachinello, J.C.; Bilhalva, A.B. Fisiologia e Manejop’os-Colheita de Frutas de Clima Temperado; Livraria e Editora Rural Ltd.: Sao Paulo, Brazil, 2002; p. 214. [Google Scholar]
- Ghoora Manjula, D.; Srividya, N. Effect of Packaging and Coating Technique on Postharvest Quality and Shelf Life of Raphanus sativus L. and Hibiscus sabdariffa L. Microgreens. Foods 2020, 9, 653. [Google Scholar] [CrossRef]
- Piscopo, A.; Zappia, A.; Princi, M.P.; De Bruno, A.; Araniti, F.; Lupini, A.; Abenavoli, M.R.; Poiana, M. Quality of shredded carrots minimally processed by different dipping solutions. J. Food Sci. Technol. 2019, 56, 2584–2593. [Google Scholar] [CrossRef]
- Zappia, A.; De Bruno, A.; Piscopo, A.; Poiana, M. Physico-chemical and microbiological quality of ready-to-eat rocket (Eruca vesicaria (L.) Cav.) treated with organic acids during storage in dark and light conditions. Food Sci. Biotechnol. 2019, 28, 965–973. [Google Scholar] [CrossRef]
- Campos, C.A.; Gerschenson, L.N.; Flores, S.K. Development of Edible Films and Coatings with Antimicrobial Activity. Food Bioproc. Technol. 2011, 4, 849–875. [Google Scholar] [CrossRef]
- Arvanitoyannis, I.; Gorris, L.G.M. Edible and Biodegradable Polymeric Materials for Food Packaging or Coating in Processing Foods: Quality Optimization and Process Assessment; CRC Press: Boca Raton, FL, USA, 1999; pp. 357–371. [Google Scholar]
- Misir, J.; Brishti, F.H.; Hoque, M.M. Aloe vera gel as a novel edible coating for fresh fruits: A review. Am. J. Food Sci. Technol. 2004, 2, 93–97. [Google Scholar] [CrossRef]
- Sicari, V.; Loizzo, M.R.; Pellicanò, T.M.; Giuffrè, A.M.; Poiana, M. Evaluation of Aloe arborescens gel as new coating to maintain the organoleptic and functional properties of strawberry (Fragaria × ananassa cv. Cadonga) fruits. Int. J. Food Sci. Technol. 2020, 55, 861–870. [Google Scholar] [CrossRef]
- Galgano, F.; Condelli, N.; Favati, F.; Di Bianco, V.; Perretti, G.; Caruso, M.C. Biodegradable packaging and edible coating for fresh-cut fruits and vegetables. Ital. J. Food Sci. 2015, 27, 1–20. [Google Scholar]
- Rux, G.; Labude, C.; Herppich, W.B.; Geyer, M. Investigation on the potential of applying bio-based edible coatings for horticultural products exemplified with cucumbers. Curr. Res. Food Sci. 2023, 6, 100407. [Google Scholar] [CrossRef]
- Chihoub, W.; Dias, M.I.; Barros, L.; Calhelha, R.C.; Alves, M.J.; Harzallah-Skhiri, F.; Ferreira, C.F.R. Valorisation of green waste parts from turnip, radish and wild cardoon: Nutritional value, phenolic profile and bioactivity evaluation. Food Res. Int. 2019, 126, 108651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, K.; Mahato, N.; Cho, M.H.; Lee, Y.R. Converting citrus wastes into value-added products: Economic and environmentally friendly approaches. Nutrition 2017, 34, 29–46. [Google Scholar] [CrossRef] [PubMed]
- De Bruno, A.; Romeo, R.; Gattuso, A.; Piscopo, A.; Poiana, M. Functionalization of a Vegan Mayonnaise with High Value Ingredient Derived from the Agro-Industrial Sector. Foods 2021, 10, 2684. [Google Scholar] [CrossRef]
- Sharma, K.; Mahato, N.; Lee, Y.R. Extraction, characterization and biological activity of citrus flavonoids. Rev. Chem. Eng. 2018, 35, 265–284. [Google Scholar] [CrossRef]
- Imeneo, V.; Piscopo, A.; Martín-Belloso, O.; Soliva-Fortuny, R. Efficacy of Pectin-Based Coating Added with a Lemon Byproduct Extract on Quality Preservation of Fresh-Cut Carrots. Foods 2022, 11, 1314. [Google Scholar] [CrossRef]
- Larrea, M.; Chang, Y.; Martinez-Bustos, F. Some functional properties of extruded orange pulp and its effect on the quality of cookies. LWT-Food Sci. Technol. 2005, 38, 213–220. [Google Scholar] [CrossRef]
- Nawaz, R.; Safdar, N.; Ainee, A.; Jabbar, S. Development and storage stability studies of functional fruit drink supplemented with polyphenols extracted from lemon peels. J. Food Process. Preserv. 2021, 45, e15268. [Google Scholar] [CrossRef]
- Nair, A.K.; Mukherjee, M.; Nag, S.; Pandimadevi, M. Antioxidant and antimicrobial activities of citrus lemon peels encapsulated in PVA. Carpathian J. Food Sci. Technol. 2019, 11, 111–126. [Google Scholar]
- Mathew, B.B.; Shajie, D.; Wadhwa, N.; Murthy, N.K.; Murthy, T.K.; Rashmi, M.V. Comparative antioxidant efficacy of Citrus limonum pulp and peel—An in vitro study. Drug Inven. Today 2013, 5, 296–301. [Google Scholar] [CrossRef]
- Al-Qassabi, J.S.A.; Weli, A.M.; Hossain, M.A. Comparison of total phenols content and antioxidant potential of peel extracts of local and imported lemons samples. Sustain. Chem. Pharm. 2018, 8, 71–75. [Google Scholar] [CrossRef]
- O’Shea, N.; Arendt, E.K.; Gallagher, E. Dietary fibre and phytochemical characteristics of fruit and vegetable by-products and their recent applications as novel ingredients in food products. Innov. Food Sci. Emerg. Technol. 2012, 16, 1–10. [Google Scholar] [CrossRef]
- Putnik, P.; Bursać Kovačcević, D.; Režek Jambrak, A.; Barba, F.J.; Cravotto, G.; Binello, A.; Lorenzo, J.M.; Shpigelman, A. Innovative “green” and novel strategies for the extraction of bioactive added value compounds from citrus wastes—A review. Molecules 2017, 22, 680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russo, M.; Bonaccorsi, I.; Torre, G.; Sarò, M.; Dugo, P.; Mondello, L. Underestimated sources of flavonoids, limonoids and dietary fibre: Availability in lemon’s by-products. J. Funct. Foods 2014, 9, 18–26. [Google Scholar] [CrossRef]
- Imeneo, V.; Romeo, R.; De Bruno, A.; Piscopo, A. Green-sustainable extraction techniques for the recovery of antioxidant compounds from “citrus Limon” by-products. J. Environ. Sci. Health B 2022, 57, 220–232. [Google Scholar] [CrossRef] [PubMed]
- Del Aguila, J.S.; Sasaki, F.F.; Heiffig, L.S.; Ortega, E.M.M.; Trevisan, M.J.; Kluge, R.A. Effect of Antioxidants in Fresh Cut Radishes During the Cold Storage. Braz. Arch. Biol. Technol. 2008, 51, 1217–1223. [Google Scholar] [CrossRef]
- Fan, L.; Song, J. Microbial quality assessment methods for fresh-cut fruits and vegetables. Stewart Postharvest Rev. 2008, 4, 1–9. [Google Scholar] [CrossRef]
- AOAC. Acidity of fruit products. In Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 2000. [Google Scholar]
- AOAC. Determination of Water/Dry Matter (Moisture) in Animal Feed, Grain, and Forage (Plant Tissue). In Official Methods of Analysis, 17th ed.; Horwitz, W., Ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2000; p. 12. [Google Scholar]
- Oms-Oliu, G.; Aguil’o-Aguayo, I.; Martìn-Belloso, O. Inhibition of browning on fresh-cut pear wedges by natural compounds. J. Food Sci. 2006, 71, 216–224. [Google Scholar] [CrossRef]
- Thompson, B. Printing Materials Science and Technology, 2nd ed.; Pira International: Leatherhead, UK, 2004. [Google Scholar]
- Marotti, M.; Piccaglia, R. Characterization of Flavonoids in Different Cultivars of Onion (Allium cepa L.). J. Food Sci. 2002, 67, 1229–1232. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A., Jr. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- AOAC. Total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines. In Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 2005. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT–Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Romeo, R.; De Bruno, A.; Imeneo, V.; Piscopo, A.; Poiana, M. Evaluation of Enrichment with Antioxidants from Olive Oil Mill Wastes in Hydrophilic Model System. J. Food Process. Preserv. 2019, 43, 1–9. [Google Scholar] [CrossRef]
- Sielicka-Rozynska, M.; Gwiazdowska, D. Antioxidant and Antibacterial Properties of Lemon, Sweet, and Cereal Grasses. J. Food Process. Preserv. 2020, 44, e14984. [Google Scholar] [CrossRef]
- Ayranci, E.; Tunc, S. A method for the measurement of the oxygen permeability and the development of edible films to reduce the rate of oxidative reactions in fresh foods. Food Chem. 2003, 80, 423–431. [Google Scholar] [CrossRef]
- Rojas-Graü, M.A.; Tapia, M.S.; Martìın-Belloso, O. Using polysaccharide-based edible coatings to maintain quality of fresh-cut Fuji apples. LWT-Food Sci. Technol. 2008, 41, 139–147. [Google Scholar] [CrossRef]
- Wong, D.; Tillin, S.J.; Hudson, J.S.; Pavlath, A.E. Gas exchange in cut apples with bilayer coatings. J. Agric. Food Chem. 1994, 42, 2278–2285. [Google Scholar] [CrossRef]
- Lee, J.Y.; Park, H.J.; Lee, C.Y.; Choi, W.Y. Extending shelf-life of minimally processed apples with edible coatings and antibrowning agents. LWT-Food Sci. Technol. 2003, 36, 323–329. [Google Scholar] [CrossRef]
- Raybaudi-Massilia, R.M.; Mosqueda-Melgar, J.; Sobrino-Lopez, A.; Soliva-Fortuny, R.; Martìn-Belloso, O. Shelf-life extension of fresh-cut ‘Fuji’ apples at different ripeness stages using natural substances. Postharvest Biol. Technol. 2007, 45, 265–275. [Google Scholar] [CrossRef]
- Ivasenko, S.; Orazbayeva, P.; Skalicka-Wozniak, K.; Ludwiczuk, A.; Marchenko, A.; Ishmuratova, M.; Poleszak, E.; KoronaGlowniak, I.; Akhmetova, S.; Karilkhan, I.; et al. Antimicrobial Activity of Ultrasonic Extracts of Two Chemotypes of Thymus serpyllum L. Of Central Kazakhstan and Their Polyphenolic Profiles. Maced. Open Access Maced. J. Med. Sci. 2021, 9, 61–67. [Google Scholar] [CrossRef]
- Budiati, T.; Suryaningsih, W.; Yudistira, H.; Azhar, S.W. Antimicrobial Activity of Jengkol and Petai Peel Extract to Inhibit listeria monocytogenes. IOP Conf. Ser. Earth Environ. Sci. 2021, 672, 012046. [Google Scholar] [CrossRef]
- Crisosto, C.H.; Crisosto, G.M. Relationship between ripe soluble solids concentration (RSSC) and consumer acceptance of high and low acid melting flesh peach and nectarine (Prunus persica (L.) Batsch) cultivars. Postharvest Biol. Technol. 2005, 38, 239–246. [Google Scholar] [CrossRef]
- Benítez, S.; Achaerandio, I.; Sepulcre, F.; Pujola, M. Aloe vera based edible coatings improve the quality of minimally processed ‘Hayward’ kiwifruit. Postharvest Biol. Technol. 2013, 81, 29–36. [Google Scholar] [CrossRef]
- Das, D.K.; Dutta, H.; Mahanta, C.L. Development of a rice starch-based coating with antioxidant and microbe-barrier properties and study of its effect on tomatoes stored at room temperature. LWT-Food Sci. Technol. 2013, 50, 272–278. [Google Scholar] [CrossRef]
- Diaz-Mula, H.M.; Serrano, M.; Valero, D. Alginate Coatings Preserve Fruit Quality and Bioactive Compounds during Storage of Sweet Cherry Fruit. Food Bioprocess Technol. 2011, 5, 2990–2997. [Google Scholar] [CrossRef]
- Vanaclocha, A.C. Teconologia de Los Alimentos de Origen Vegetal; Editorial Síntesis: Madrid, Spain, 2014; Volume 1. [Google Scholar]
- Carbone, K.; Macchioni, V.; Petrella, G.; Cicero, D.O.; Micheli, L. Humulus lupulus cone extract efficacy in alginate-based edible coatings on the quality and nutraceutical traits of fresh-cut kiwifruit. Antioxidants 2021, 10, 1395. [Google Scholar] [CrossRef]
- Malien-Aubert, C.; Dangles, O.; Amiot, M.J. Color stability of commercial anthocyanin-based extracts in relation to the phenolic composition. Protective effects by intra- and intermolecular copigmentation. J. Agric. Food Chem. 2001, 49, 170–176. [Google Scholar] [CrossRef]
- Rojas-Graü, M.A.; Grasa-Guillem, R.; Martìn-Belloso, O. Quality changes in fresh-cut Fuji apple as affected by ripeness stage, antibrowning agents, and storage atmosphere. J. Food Sci. 2007, 72, 36–43. [Google Scholar] [CrossRef]
- Mastromatteo, M.; Conte, A.; Del Nobile, M.A. Packaging strategies to prolong the shelf life of fresh carrots (Daucus carota L.). Innov. Food Sci. Emerg. Technol. 2012, 13, 215–220. [Google Scholar] [CrossRef]
- Galvis-Sánchez, A.C.; Gil-Izquierdo, A.; Gil, M.I. Comparative study of six pear cultivars in terms of their phenolic and vitamin C contents and antioxidant capacity. J. Sci. Food Agric. 2003, 83, 995–1003. [Google Scholar] [CrossRef]
- Reyes, L.F.; Villarreal, J.E.; Cisneros-Zevallos, L. The increase in antioxidant capacity after wounding depends on the type of fruit or vegetable tissue. Food Chem. 2007, 101, 1254–1262. [Google Scholar] [CrossRef]
- Paja̧k, P.; Socha, R.; Gałkowska, D.; Rożnowski, J.; Fortuna, T. Phenolic profile and antioxidant activity in selected seeds and sprouts. Food Chem. 2014, 143, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Lee, H.W.; Liang, X.; Liang, D.; Wang, Q.; Huang, D.; Ong, C.N. Profiling of phenolic compounds and antioxidant activity of 12 cruciferous vegetables. Molecules 2018, 23, 1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Oliveira, K.Á.R.; Fernandes, K.F.D.; de Souza, E.L. Current advances on the development and application of probiotic-loaded edible films and coatings for the bioprotection of fresh and minimally processed fruit and vegetables. Foods 2021, 10, 2207. [Google Scholar] [CrossRef] [PubMed]
- Muley, A.B.; Singhal, R.S. Extension of postharvest shelf life of strawberries (Fragaria ananassa) using a coating of chitosan-whey protein isolate conjugate. Food Chem. 2020, 329, 127213. [Google Scholar] [CrossRef]
- Ben-Fadhel, Y.; Maherani, B.; Manus, J.; Salmieri, S.; Lacroix, M. Physicochemical and microbiological characterization of pectin-based gelled emulsions coating applied on pre-cut carrots. Food Hydrocoll. 2020, 101, 105573. [Google Scholar] [CrossRef]
TPC (mg GAE g−1 d.w.) | 6.75 ± 0.34 |
TF (mg CE g−1 d.w.) | 2.04 ± 0.09 |
DPPH (µmol TE g−1 d.w.) | 8.25 ± 0.24 |
ABTS (µmol TE g−1 d.w.) | 19.42 ± 0.63 |
Eriocitrin (mg 100 g−1 d.w.) | 33.4 ± 0.14 |
Hesperidin (mg 100 g−1 d.w.) | 47.2 ± 0.19 |
Time (Days) | Samples | ||||||
---|---|---|---|---|---|---|---|
UCR | DRa | DRb | CRc | CRd | Sign. | ||
Total aerobic bacterial count (log CFU g−1) | 1 | 2.55 ± 0.55 C | 2.68 ± 0.11 C | 2.43 ± 0.20 B | 2.16 ± 0.35 B | 2.74 ± 0.26 B | n.s. |
3 | 4.29 ± 0.56 B | 4.46 ± 0.66 AB | 4.58 ± 0.38 A | 3.79 ± 0.27 A | 4.48 ± 0.69 AB | n.s. | |
7 | 4.60 ± 0.03 B,a | 4.53 ± 0.70 AB,a | 4.38 ± 0.11 A,a | 2.58 ± 0.16 B,b | 4.22 ± 0.04 AB,a | ** | |
10 | 5.27 ± 0.67 AB,a | 3.94 ± 0.65 BC,b | 4.75 ± 0.32 A,ab | n.d. | 5.09 ± 0.46 A,ab | ** | |
14 | 6.05 ± 0.34 A | 5.67 ± 0.51 A | 5.01 ± 1.13 A | n.d. | 4.49 ± 1.43 AB | n.s. | |
SIGN. | ** | ** | ** | ** | * | ||
Total acidity | 1 | 0.14 ± 0.00 A,a | 0.10 ± 0.01 A,c | 0.11 ± 0.01 A,bc | 0.13 ± 0.00 ab | 0.12 ± 0.02 A,abc | ** |
3 | 0.08 ± 0.02 B,bc | 0.07 ± 0.00 B,c | 0.07 ± 0.00 B,c | 0.13 ± 0.00 a | 0.10 ± 0.01 AB,b | ** | |
7 | 0.07 ± 0.00 B,c | 0.10 ± 0.00 A,ab | 0.08 ± 0.02 B,bc | 0.12 ± 0.00 a | 0.09 ± 0.00 B,bc | ** | |
10 | 0.06 ± 0.03 B | 0.08 ± 0.00 B | 0.08 ± 0.00 B | n.d. | 0.09 ± 0.00 B | n.s. | |
14 | 0.08 ± 0.02 B,b | 0.08 ± 0.00 B,b | 0.09 ± 0.00 AB,ab | n.d. | 0.11 ± 0.00 AB,a | ** | |
SIGN. | ** | ** | ** | N.S. | * | ||
pH | 1 | 6.36 ± 0.02 B,a | 6.26 ± 0.01 C,a | 6.26 ± 0.00 C,a | 5.84 ± 0.01 A,b | 5.97 ± 0.13 B,b | ** |
3 | 6.48 ± 0.08 B,b | 6.62 ± 0.05 AB,a | 6.51 ± 0.06 B,ab | 5.70 ± 0.01 B,d | 6.17 ± 0.00 B,c | ** | |
7 | 6.67 ± 0.13 AB,a | 6.41 ± 0.25 BC,a | 6.59 ± 0.01 B,a | 5.68 ± 0.04 B,b | 6.50 ± 0.11 A,a | ** | |
10 | 6.91 ± 0.06 A,a | 6.87 ± 0.04 A,a | 6.84 ± 0.01 A,a | n.d. | 6.46 ± 0.13 A,b | ** | |
14 | 6.66 ± 0.28 AB,a | 6.91 ± 0.11 A,a | 6.75 ± 0.10 A,a | n.d. | 6.18 ± 0.03 B,b | ** | |
SIGN. | ** | ** | ** | ** | ** | ||
Total soluble solids | 1 | 2.95 ± 0.07 b | 1.90 ± 0.14 B,c | 1.75 ± 0.07 B,c | 3.05 ± 0.07 B,ab | 3.25 ± 0.07 a | ** |
3 | 3.05 ± 0.35 | 2.75 ± 0.64 AB | 3.00 ± 0.14 A | 3.65 ± 0.64 AB | 4.30 ± 0.85 | n.s. | |
7 | 3.10 ± 0.42 ab | 2.30 ± 0.42 AB,b | 2.50 ± 0.42 AB,b | 3.90 ± 0.14 A,a | 3.70 ± 0.57 a | ** | |
10 | 2.80 ± 0.00 ab | 2.05 ± 0.07 AB,b | 3.35 ± 0.78 A,a | n.d. | 3.50 ± 0.57 a | ** | |
14 | 2.60 ± 0.28 b | 2.90 ± 0.14 A,b | 2.75 ± 0.21 A,b | n.d. | 3.65s ± 0.35 a | ** | |
SIGN. | N.S. | * | ** | ** | N.S. | ||
Dry matter | 1 | 4.07 ± 0.44 b | 4.26 ± 0.42 AB,b | 4.06 ± 0.69 b | 5.54 ± 0.03 a | 6.06 ± 0.37 a | ** |
3 | 3.77 ± 1.12 b | 4.08 ± 0.42 AB,ab | 4.18 ± 0.28 ab | 6.02 ± 1.19 a | 5.26 ± 0.19 ab | * | |
7 | 4.72 ± 0.84 ab | 4.84 ± 0.17 A,ab | 3.67 ± 1.58 b | 6.41 ± 0.67 a | 5.14 ± 0.32 ab | * | |
10 | 4.16 ± 0.29 b | 4.58 ± 0.28 AB,ab | 5.04 ± 0.12 ab | n.d. | 5.31 ± 0.79 a | ** | |
14 | 4.17 ± 0.59 | 3.96 ± 0.01 B | 4.84 ± 0.36 | n.d. | 5.34 ± 1.09 | n.s. | |
SIGN. | N.S. | * | N.S. | N.S. | N.S. |
Inner | |||||||
---|---|---|---|---|---|---|---|
Days | 1 | 3 | 7 | 10 | 14 | SIGN. | |
Sample | |||||||
UCR | 72.69 ± 0.30 C,b | 64.39 ± 0.22 E,b | 71.58 ± 0.09 D,c | 75.30 ± 0.27 B,d | 78.52 ± 0.14 A,c | ** | |
DRa | 76.57 ± 0.28 C,a | 59.36 ± 0.32 D,c | 76.71 ± 0.18 C,b | 84.42 ± 0.14 A,a | 81.66 ± 0.41 B,b | ** | |
DRb | 77.26 ± 0.32 C,a | 56.51 ± 0.29 E,d | 80.31 ± 0.21 B,a | 81.71 ± 0.40 A,b | 74.47 ± 0.15 D,d | ** | |
CRc | 30.68 ± 0.23 A,d | 26.60 ± 0.16 B,e | 19.36 ± 0.36 C,d | n.d. | n.d. | ** | |
CRd | 40.59 ± 0.34 E,c | 68.56 ± 0.23 D,a | 80.45 ± 0.23 B,a | 76.28 ± 0.15 C,c | 85.60 ± 0.35 A,a | ** | |
Sign. | ** | ** | ** | ** | ** | ||
Outer | |||||||
Days | 1 | 3 | 7 | 10 | 14 | SIGN. | |
Sample | |||||||
UCR | 11.16 ± 0.22 A,b | 10.61 ± 0.23 A,c | 7.57 ± 0.10 B,c | −2.10 ± 0.14 D,d | 3.61 ± 0.12 C,c | ** | |
DRa | 13.55 ± 0.15 A,a | 12.63 ± 0.14 B,b | 9.46 ± 0.10 C,b | 2.58 ± 0.04 D,c | −0.28 ± 0.09 E,d | ** | |
DRb | 13.67 ± 0.12 B,a | 14.62 ± 0.31 A,a | 9.46 ± 0.21 C,b | 10.23 ± 0.13 C,a | 6.71 ± 0.24 D,b | ** | |
CRc | 11.21 ± 0.26 C,b | 15.28 ± 0.19 B,a | 23.28 ± 0.16 A,a | n.d. | n.d. | ** | |
CRd | 10.18 ± 0.23 B,c | 8.58 ± 0.22 C,d | 6.22 ± 0.23 E,d | 7.47 ± 0.28 D,b | 12.59 ± 0.23 A,a | ** | |
Sign. | ** | ** | ** | ** | ** |
Days | UCR | DRa | DRb | CRc | CRd | SIGN. | |
---|---|---|---|---|---|---|---|
TPC (mg GAE kg−1) | 1 | 399 ± 79 | 382 ± 25 | 433 ± 46 | 443 ± 12 | 467 ± 65 | N.S. |
3 | 397 ± 59 | 402 ± 28 | 442 ± 29 | 380 ± 47 | 440 ± 10 | N.S. | |
7 | 428 ± 32 | 460 ± 53 | 429 ± 24 | 493 ± 15 | 493 ± 16 | N.S. | |
10 | 374 ± 21 | 373 ± 7 | 400 ± 25 | n.d. | 362 ± 47 | N.S. | |
14 | 389 ± 26 | 334 ± 19 | 424 ± 72 | n.d. | 393 ± 7 | N.S. | |
Sign. | n.s. | n.s. | n.s. | n.s. | n.s. | ||
TAC (mg C-3-Glu kg−1) | 1 | 195 ± 37 | 205 ± 16 | 236 ± 49 | 200 ± 9 a | 246 ± 23 a | N.S. |
3 | 202 ± 45 | 211 ± 41 | 235 ± 18 | 137 ± 8 b | 225 ± 17 ab | N.S. | |
7 | 241 ± 28 | 265 ± 35 | 225 ± 8 | 197 ± 0 a | 264 ± 7 a | N.S. | |
10 | 202 ± 14 A | 206 ± 7 A | 199 ± 7 A | n.d. | 160 ± 4 B,c | * | |
14 | 205 ± 0 A | 162 ± 1 B | 194 ± 4 A | n.d. | 189 ± 9 A,bc | ** | |
Sign. | n.s. | n.s. | n.s. | ** | ** | ||
DPPH (inactivation %) | 1 | 34.26 ± 5.31 | 34.28 ± 1.17 ab | 37.18 ± 5.63 | 22.87 ± 4.08 | 33.34 ± 5.17 | N.S. |
3 | 33.50 ± 1.79 A | 34.37 ± 0.43 A,ab | 34.92 ± 0.86 A | 21.87 ± 0.16 B | 34.52 ± 1.94 A | ** | |
7 | 38.04 ± 4.60 AB | 38.08 ± 2.59 A,a | 38.62 ± 4.92 A | 18.79 ± 5.20 B | 30.31 ± 6.02 AB | * | |
10 | 36.05 ± 7.37 | 34.49 ± 0.88 ab | 35.00 ± 3.18 | n.d. | 23.62 ± 2.35 | N.S. | |
14 | 29.53 ± 4.69 | 27.28 ± 2.98 b | 33.09 ± 0.11 | n.d. | 27.98 ± 2.37 | N.S. | |
Sign. | n.s. | * | n.s. | n.s. | n.s. | ||
ABTS (inactivation %) | 1 | 32.47 ± 5.64 | 32.52 ± 0.86 | 38.45 ± 2.32 | 29.84 ± 4.33 | 36.71 ± 2.04 | N.S. |
3 | 29.57 ± 0.70 | 34.59 ± 1.44 | 34.07 ± 6.43 | 21.66 ± 2.09 | 33.26 ± 6.35 | N.S. | |
7 | 46.55 ± 5.84 | 39.64 ± 2.01 | 35.65 ± 6.21 | 30.31 ± 6.98 | 40.23 ± 6.70 | N.S. | |
10 | 31.88 ± 4.07 AB | 32.68 ± 1.58 AB | 35.85 ± 0.89 A | n.d. | 23.72 ± 1.72 B | * | |
14 | 36.48 ± 8.84 | 32.96 ± 4.34 | 41.29 ± 2.52 | n.d. | 31.42 ± 0.74 | N.S. | |
Sign. | n.s. | n.s. | n.s. | n.s. | n.s. |
Quercetin | Ferulic Acid | Luteolin | Quercetin 3,4 Glucoside | ||
---|---|---|---|---|---|
1st day | UCR | 13.20 ± 0.20 c | 2.04 ± 0.01 c | 37.88 ± 0.14 d | 17.62 ± 0.19 d |
DRa | 13.13 ± 0.14 c | 2.03 ± 0.09 c | 39.43 ± 0.02 c | 17.41 ± 0.26 d | |
DRb | 21.74 ± 0.03 a | 4.13 ± 0.11 b | 43.92 ± 0.11 b | 27.49 ± 0.08 a | |
CRc | 10.03 ± 0.17 d | 2.33 ± 0.21 c | 39.25 ± 0.28 c | 21.08 ± 0.10 c | |
CRd | 16.15 ± 0.10 b | 5.05 ± 0.03 a | 44.46 ± 0.01 a | 25.83 ± 0.02 b | |
Sign. | ** | ** | ** | ** | |
14th day | UCR | 19.13 ± 0.12 a | 2.16 ± 0.01 b | 42.10 ± 0.34 a | 23.95 ± 0.09 b |
DRa | 13.54 ± 0.03 b | 1.71 ± 0.22 c | 40.35 ± 0.06 b | 22.47 ± 0.10 c | |
DRb | 8.42 ± 0.01 c | 3.94 ± 0.03 a | 40.70 ± 0.23 b | 24.71 ± 0.31 a | |
CRc | 6.22 ± 0.17 e | 1.63 ± 0.18 c | 39.01 ± 0.05 c | 20.45 ± 0.03 d | |
CRd | 7.48 ± 0.12 d | 2.54 ± 0.21 b | 41.57 ± 0.24 a | 22.41 ± 0.11 c | |
Sign. | ** | ** | ** | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zappia, A.; Spanti, A.; Princi, R.; Imeneo, V.; Piscopo, A. Evaluation of the Efficacy of Antioxidant Extract from Lemon By-Products on Preservation of Quality Attributes of Minimally Processed Radish (Raphanus sativus L.). Antioxidants 2023, 12, 235. https://doi.org/10.3390/antiox12020235
Zappia A, Spanti A, Princi R, Imeneo V, Piscopo A. Evaluation of the Efficacy of Antioxidant Extract from Lemon By-Products on Preservation of Quality Attributes of Minimally Processed Radish (Raphanus sativus L.). Antioxidants. 2023; 12(2):235. https://doi.org/10.3390/antiox12020235
Chicago/Turabian StyleZappia, Angela, Angelica Spanti, Rossella Princi, Valeria Imeneo, and Amalia Piscopo. 2023. "Evaluation of the Efficacy of Antioxidant Extract from Lemon By-Products on Preservation of Quality Attributes of Minimally Processed Radish (Raphanus sativus L.)" Antioxidants 12, no. 2: 235. https://doi.org/10.3390/antiox12020235
APA StyleZappia, A., Spanti, A., Princi, R., Imeneo, V., & Piscopo, A. (2023). Evaluation of the Efficacy of Antioxidant Extract from Lemon By-Products on Preservation of Quality Attributes of Minimally Processed Radish (Raphanus sativus L.). Antioxidants, 12(2), 235. https://doi.org/10.3390/antiox12020235