Impact of Coenzyme Q10 Supplementation on Skeletal Muscle Respiration, Antioxidants, and the Muscle Proteome in Thoroughbred Horses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Horses
2.2. Study Design
2.3. Muscle Samples
2.4. CoQ10 Analysis
2.5. High-Resolution Respirometry
2.6. Mitochondrial Enzyme Activities
2.7. Antioxidant Analyses
2.8. Malondialdehyde (MDA) Analysis
2.9. Proteomics
2.10. Statistical Analysis
3. Results
3.1. Skeletal Muscle CoQ10 Concentrations
3.2. Mitochondrial Enzyme Activities Capacities and High Resolution Respirometry
3.3. Antioxidants
3.4. Proteomics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bentinger, M.; Brismar, K.; Dallner, G. The antioxidant role of coenzyme Q. Mitochondrion 2007, 7, S41–S50. [Google Scholar] [CrossRef]
- Hargreaves, I.P. Ubiquinone: Cholesterol’s reclusive cousin. Ann. Clin. Biochem. 2003, 40, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Henry, M.L.; Velez-Irizarry, D.; Pagan, J.D.; Sordillo, L.; Gandy, J.; Valberg, S.J. The Impact of N-Acetyl Cysteine and Coenzyme Q10 Supplementation on Skeletal Muscle Antioxidants and Proteome in Fit Thoroughbred Horses. Antioxidants 2021, 10, 1739. [Google Scholar] [CrossRef] [PubMed]
- Barbiroli, B.; Frassineti, C.; Martinelli, P.; Iotti, S.; Lodi, R.; Cortelli, P.; Montagna, P. Coenzyme Q10 improves mitochondrial respiration in patients with mitochondrial cytopathies. An in vivo study on brain and skeletal muscle by phosphorous magnetic resonance spectroscopy. Cell. Mol. Biol. 1997, 43, 741–749. [Google Scholar]
- Li, C.; White, S.H.; Warren, L.K.; Wohlgemuth, S.E. Effects of aging on mitochondrial function in skeletal muscle of American American Quarter Horses. J. Appl. Physiol. 2016, 121, 299–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, S.H.; Warren, L.K.; Li, C.; Wohlgemuth, S.E. Submaximal exercise training improves mitochondrial efficiency in the gluteus medius but not in the triceps brachii of young equine athletes. Sci. Rep. 2017, 7, 14389. [Google Scholar] [CrossRef] [Green Version]
- Latham, C.M.; Owen, R.N.; Dickson, E.C.; Guy, C.P.; White-Springer, S.H. Skeletal Muscle Adaptations to Exercise Training in Young and Aged Horses. Front. Aging 2021, 2, 708918. [Google Scholar] [CrossRef]
- Owen, R.N.; Semanchik, P.L.; Latham, C.M.; Brennan, K.M.; White-Springer, S.H. Elevated dietary selenium rescues mitochondrial capacity impairment induced by decreased vitamin E intake in young exercising horses. J. Anim. Sci. 2022, 100, skac172. [Google Scholar] [CrossRef]
- Henneke, D.R.; Potter, G.D.; Kreider, J.L.; Yeates, B.F. Relationship between condition score, physical measurements and body fat percentage in mares. Equine Vet. J. 1983, 15, 371–372. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Horses: Sixth Revised Edition; The National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- White, S.H.; Johnson, S.E.; Bobel, J.M.; Warren, L.K. Dietary selenium and prolonged exercise alter gene expression and activity of antioxidant enzymes in equine skeletal muscle. J. Anim. Sci. 2016, 94, 2867–2878. [Google Scholar] [CrossRef] [Green Version]
- Pandey, R.; Riley, C.L.; Mills, E.M.; Tiziani, S. Highly sensitive and selective determination of redox states of coenzymes Q9 and Q10 in mice tissues: Application of orbitrap mass spectrometry. Anal. Chim. Acta 2018, 1011, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Latham, C.M.; Fenger, C.K.; White, S.H. RAPID COMMUNICATION: Differential skeletal muscle mitochondrial characteristics of weanling racing-bred horses1. J. Anim. Sci. 2019, 97, 3193–3198. [Google Scholar] [CrossRef] [PubMed]
- Spinazzi, M.; Casarin, A.; Pertegato, V.; Salviati, L.; Angelini, C. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat. Protoc. 2012, 7, 1235–1246. [Google Scholar] [CrossRef]
- Larsen, S.; Nielsen, J.; Hansen, C.N.; Nielsen, L.B.; Wibrand, F.; Stride, N.; Schroder, H.D.; Boushel, R.; Helge, J.W.; Dela, F.; et al. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J. Physiol. 2012, 590, 3349–3360. [Google Scholar] [CrossRef]
- White, S.H.; Warren, L.K. Submaximal exercise training, more than dietary selenium supplementation, improves antioxidant status and ameliorates exercise-induced oxidative damage to skeletal muscle in young equine athletes1. J. Anim. Sci. 2017, 95, 657–670. [Google Scholar] [CrossRef]
- Wisniewski, J.R.; Zougman, A.; Nagaraj, N.; Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 2009, 6, 359–362. [Google Scholar] [CrossRef]
- Nesvizhskii, A.I.; Keller, A.; Kolker, E.; Aebersold, R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 2003, 75, 4646–4658. [Google Scholar] [CrossRef]
- Shadforth, I.P.; Dunkley, T.P.; Lilley, K.S.; Bessant, C. i-Tracker: For quantitative proteomics using iTRAQ. BMC Genom. 2005, 6, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oberg, A.L.; Mahoney, D.W.; Eckel-Passow, J.E.; Malone, C.J.; Wolfinger, R.D.; Hill, E.G.; Cooper, L.T.; Onuma, O.K.; Spiro, C.; Therneau, T.M.; et al. Statistical analysis of relative labeled mass spectrometry data from complex samples using ANOVA. J. Proteome Res. 2008, 7, 225–233. [Google Scholar] [CrossRef]
- Bhagavan, H.N.; Chopra, R.K. Coenzyme Q10: Absorption, tissue uptake, metabolism and pharmacokinetics. Free Radic. Res. 2006, 40, 445–453. [Google Scholar] [CrossRef]
- Cooke, M.; Iosia, M.; Buford, T.; Shelmadine, B.; Hudson, G.; Kerksick, C.; Rasmussen, C.; Greenwood, M.; Leutholtz, B.; Willoughby, D.; et al. Effects of acute and 14-day coenzyme Q10 supplementation on exercise performance in both trained and untrained individuals. J. Int. Soc. Sport. Nutr. 2008, 5, 8. [Google Scholar] [CrossRef] [PubMed]
- Thueson, E.; Leadon, D.P.; Heaton, R.; Hargreaves, I.P.; Bayly, W.M. Effect of daily supplementation with ubiquinol on muscle coenzyme Q10 concentrations in Thoroughbred racehorses. Comp. Exerc. Physiol. 2019, 15, 219–226. [Google Scholar] [CrossRef]
- Greenberg, S.; Frishman, W.H. Co-enzyme Q10: A new drug for cardiovascular disease. J. Clin. Pharmacol. 1990, 30, 596–608. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.Y.; Zheng, G.T.; Teng, K.W.; Chang, J.Y.; Lee, C.C.; Liao, P.C.; Kao, M.C. TAT-Conjugated NDUFS8 Can Be Transduced into Mitochondria in a Membrane-Potential-Independent Manner and Rescue Complex I Deficiency. Int. J. Mol. Sci. 2021, 22, 6524. [Google Scholar] [CrossRef]
- Erecinska, M.; Wilson, D.F.; Miyata, Y. Mitochondrial cytochrome b-c complex: Its oxidation-reduction components and their stoichiometry. Arch. Biochem. Biophys. 1976, 177, 133–143. [Google Scholar] [CrossRef]
- Hidalgo-Gutierrez, A.; Gonzalez-Garcia, P.; Diaz-Casado, M.E.; Barriocanal-Casado, E.; Lopez-Herrador, S.; Quinzii, C.M.; Lopez, L.C. Metabolic Targets of Coenzyme Q10 in Mitochondria. Antioxidants 2021, 10, 520. [Google Scholar] [CrossRef]
- Duong, Q.V.; Levitsky, Y.; Dessinger, M.J.; Strubbe-Rivera, J.O.; Bazil, J.N. Identifying site-specific superoxide and hydrogen peroxide production rates from the mitochondrial electron transport system using a computational strategy. Function 2021, 2, zqab050. [Google Scholar] [CrossRef]
- Pham, T.; Macrae, C.L.; Broome, S.C.; D’Souza, R.F.; Narang, R.; Wang, H.W.; Mori, T.A.; Hickey, A.J.R.; Mitchell, C.J.; Merry, T.L. MitoQ and CoQ10 supplementation mildly suppresses skeletal muscle mitochondrial hydrogen peroxide levels without impacting mitochondrial function in middle-aged men. Eur. J. Appl. Physiol. 2020, 120, 1657–1669. [Google Scholar] [CrossRef]
- Williams, Z.J.; Velez-Irizarry, D.; Gardner, K.; Valberg, S.J. Integrated proteomic and transcriptomic profiling identifies aberrant gene and protein expression in the sarcomere, mito-chondrial complex I, and the extracellular matrix in Warmblood horses with myofibrillar myopathy. BMC Genom. 2021, 22, 438. [Google Scholar] [CrossRef]
Nutrient | OBS Sport | Timothy Hay | Grass Pasture |
---|---|---|---|
DE, Mcal/kg | 3.47 | 2.08 | 1.97 |
CP, % | 15.95 | 12.75 | 18.05 |
ADF, % | 24.5 | 34.9 | 34.8 |
NDF, % | 37.85 | 59.75 | 59.90 |
Starch, % | 4.6 | 0.9 | 2.15 |
Crude Fat, % | 8.89 | 2.87 | 3.88 |
Ca, % | 1.19 | 0.38 | 0.59 |
P, % | 0.81 | 0.22 | 0.42 |
Mg, % | 0.33 | 0.23 | 0.28 |
K, % | 1.60 | 1.83 | 2.62 |
Na, % | 0.33 | 0.02 | 0.03 |
Fe, ppm | 530.5 | 148.0 | 276.5 |
Zn, ppm | 181.5 | 28.0 | 47.5 |
Cu, ppm | 68.5 | 7.0 | 66.0 |
Gene ID | Protein Name | Adjusted p Value | Log2 Fold Change |
---|---|---|---|
Mitochondria | |||
NDUFS8 | NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, mitochondrial | 0.002 | −0.12 |
NDUFB5 | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 5, mitochondrial | 0.001 | −0.11 |
UQCRFS1 | cytochrome b-c1 complex subunit Rieske, mitochondrial | 0.002 | −0.09 |
UQCRH | cytochrome b-c1 complex subunit 6, mitochondrial isoform X2 | 0.001 | −0.14 |
ATP5F1c | ATP synthase subunit gamma, mitochondrial isoform X3 | 0.00091 | −0.11 |
ATP5ME | ATP synthase subunit e, mitochondrial | 0.0007 | −0.14 |
ATP5PD | ATP synthase subunit d, mitochondrial isoform X2 | 0.00029 | −0.11 |
MT-ATP6 | ATP synthase subunit alpha, mitochondrial | <0.0001 | −0.09 |
PHB2 | prohibitin-2 | 0.001 | −0.07 |
OGDH | Cluster of 2-oxoglutarate dehydrogenase, mitochondrial isoform X3 | 0.00097 | −0.08 |
IDH2 | Cluster of isocitrate dehydrogenase [NADP], mitochondrial | 0.001 | −0.07 |
ACO2 | aconitate hydratase, mitochondrial | <0.0001 | −0.09 |
MDH2 | malate dehydrogenase, mitochondrial | <0.0001 | −0.09 |
NNT | NAD(P) transhydrogenase, mitochondrial isoform X1 | <0.0001 | −0.06 |
HADHA | trifunctional enzyme subunit alpha, mitochondrial | 0.00046 | −0.06 |
ACAA2 | 3-ketoacyl-CoA thiolase, mitochondrial | 0.002 | −0.03 |
ETFB | electron transfer flavoprotein subunit alpha, mitochondrial | 0.001 | −0.12 |
ACADVL | very long-chain specific acyl-CoA dehydrogenase, mitochondrial isoform X6 | <0.0001 | −0.05 |
CRAT | carnitine O-acetyltransferase isoform X1 | <0.0001 | −0.06 |
AST | aspartate aminotransferase, mitochondrial | 0.00044 | −0.08 |
Aifm1 | apoptosis-inducing factor 1, mitochondrial isoform X1 | 0.00098 | −0.1 |
DLD | dihydrolipoyl dehydrogenase, mitochondrial | 0.00038 | −0.07 |
SLC25A | phosphate carrier protein, mitochondrial isoform X1 | 0.001 | −0.09 |
VDAC1 | voltage-dependent anion-selective channel protein 1 | 0.00082 | −0.07 |
VDAC2 | voltage-dependent anion-selective channel protein 2 | 0.001 | −0.09 |
Sarcomere and SR | |||
MYBPC2 | myosin-binding protein C, fast-type | <0.0001 | 0.09 |
MYL1 | myosin light chain 3 | 0.00012 | −0.17 |
MYL2 | myosin regulatory light chain 2, ventricular/cardiac muscle isoform | 0.00037 | −0.12 |
MYLK2 | myosin light chain kinase 2, skeletal/cardiac muscle | 0.00058 | 0.12 |
MYOM1 | myomesin-1 isoform X4 | 0.00065 | 0.04 |
TNNT1 | troponin I, slow skeletal muscle | 0.001 | −0.15 |
RYR1 | Cluster of ryanodine receptor 1 isoform X1 | 0.00078 | 0.04 |
Glycolysis/gluconeogenesis | |||
PYGM | Cluster of glycogen phosphorylase, muscle form | 0.00056 | 0.08 |
AGL | glycogen debranching enzyme isoform X1 | 0.0003 | 0.06 |
LDHB | L-lactate dehydrogenase B chain isoform X1 | 0.001 | −0.07 |
PPP1R3A | protein phosphatase 1 regulatory subunit 3A | 0.0014 | 0.09 |
Miscellaneous | |||
PLIN4 | perilipin-4 isoform X5 | 0.001 | −0.12 |
CA3 | carbonic anhydrase 3 | <0.0001 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henry, M.L.; Wesolowski, L.T.; Pagan, J.D.; Simons, J.L.; Valberg, S.J.; White-Springer, S.H. Impact of Coenzyme Q10 Supplementation on Skeletal Muscle Respiration, Antioxidants, and the Muscle Proteome in Thoroughbred Horses. Antioxidants 2023, 12, 263. https://doi.org/10.3390/antiox12020263
Henry ML, Wesolowski LT, Pagan JD, Simons JL, Valberg SJ, White-Springer SH. Impact of Coenzyme Q10 Supplementation on Skeletal Muscle Respiration, Antioxidants, and the Muscle Proteome in Thoroughbred Horses. Antioxidants. 2023; 12(2):263. https://doi.org/10.3390/antiox12020263
Chicago/Turabian StyleHenry, Marisa L., Lauren T. Wesolowski, Joe D. Pagan, Jessica L. Simons, Stephanie J. Valberg, and Sarah H. White-Springer. 2023. "Impact of Coenzyme Q10 Supplementation on Skeletal Muscle Respiration, Antioxidants, and the Muscle Proteome in Thoroughbred Horses" Antioxidants 12, no. 2: 263. https://doi.org/10.3390/antiox12020263
APA StyleHenry, M. L., Wesolowski, L. T., Pagan, J. D., Simons, J. L., Valberg, S. J., & White-Springer, S. H. (2023). Impact of Coenzyme Q10 Supplementation on Skeletal Muscle Respiration, Antioxidants, and the Muscle Proteome in Thoroughbred Horses. Antioxidants, 12(2), 263. https://doi.org/10.3390/antiox12020263