Characterization of Antioxidant and α-Glucosidase Inhibitory Compounds of Cratoxylum formosum ssp. pruniflorum and Optimization of Extraction Condition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. General Experimental Procedure
2.3. Analysis of Chemical Profile Using LC-MS/MS
2.4. Measurement of Antioxidant and α-Glucosidase Activity
2.5. Quantitation of Phenolic and Flavonoid Contents
2.6. Extraction and Isolation
2.6.1. Pruniflonone A (16)
2.6.2. Pruniflonone B (19)
2.7. Response Surface Methodology
3. Results and Discussion
3.1. Comparison of Different Parts of C. formosum ssp. pruniflorum
3.2. Isolation and Characterization of the Constituents of C. formosum ssp. pruniflorum
3.2.1. Structure Elucidation of New Compounds
3.2.2. Identification of Known Compounds
3.3. Evaluation of Antioxidant and α-Glucosidase Inhibitory Activity
3.4. Optimization of Extraction Conditions Using Response Surface Metholodogy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brownlee, M. The pathobiology of diabetic complications a unifying mechanism. Diabetes 2005, 54, 1615–1625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, D.; Brownlee, M. Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands. Diabetes 2010, 59, 249–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaribeygi, H.; Sathyapalan, T.; Atkin, S.L.; Sahebkar, A. Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxid. Med. Cell Longev. 2020, 2020, 8609213. [Google Scholar] [CrossRef] [Green Version]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation and cancer: How are they linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef] [Green Version]
- Rendra, E.; Riabov, V.; Mossel, D.M.; Sevastyanova, T.; Harmsen, M.C.; Kzhyshkowska, J. Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology 2018, 224, 242–253. [Google Scholar] [CrossRef]
- Maritim, A.C.; Sanders, R.A.; Watkins, J.B. Diabetes, oxidative stress, and antioxidants: A review. J. Biochem. Mol. Toxicol. 2003, 17, 24–38. [Google Scholar] [CrossRef]
- Governa, P.; Baini, G.; Borgonetti, V.; Cettolin, G.; Giachetti, D.; Magnano, A.R.; Miraldi, E.; Biagi, M. Phytotherapy in the management of diabetes: A review. Molecules 2018, 23, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, Y.H.; Lee, S.; Yeon, S.W.; Turk, A.; Lee, J.H.; Hong, S.M.; Han, Y.K.; Lee, K.Y.; Hwang, B.Y.; Kim, S.Y.; et al. Anti-diabetic potential of Masclura tricuspidata leaves: Prenylated isoflavonoids with α-glucosidase inhibitory and anti-glycation activity. Bioorg. Chem. 2021, 114, 105098. [Google Scholar] [CrossRef]
- Ghani, U. Re-exploring promising α-glucosidase inhibitors for potential development into oral anti-diabetic drugs: Finding needle in the haystack. Eur. J. Med. Chem. 2015, 103, 133–162. [Google Scholar] [CrossRef]
- Joshi, S.R.; Standl, E.; Tong, N.; Shah, P.; Kalra, S.; Rathod, R. Therapeutic potential of α-glucosidase inhibitors in type 2 diabetes mellitus: An evidence-based review. Expert Opin. Pharmacother. 2015, 16, 1959–1981. [Google Scholar] [CrossRef]
- Tabatabaei-Malazy, O.; Peimani, M.; Mohseni, S.; Nikfar, S.; Abdollahi, M.; Larijani, B. Therapeutic effects of dietary antioxidative supplements on the management of type 2 diabetes and its complications; umbrella review of observational/trials meta-analysis studies. J. Diabetes Metab. Disord. 2022, 21, 1833–1859. [Google Scholar] [CrossRef]
- Zhang, P.; Li, T.; Wu, X.; Nice, E.C.; Huang, C.; Zhang, Y. Oxidative stress and diabetes: Antioxidative strategies. Front. Med. 2020, 14, 583–600. [Google Scholar] [CrossRef] [PubMed]
- Ryu, H.W.; Cho, J.K.; Curtis-Long, M.J.; Joo, Y.H.; Kim, Y.S.; Jung, S.I.; Kim, Y.S.; Lee, B.W.; Park, K.H. α-Glucosidase inhibition and antihyperglycemic activity of prenylated xanthones from Garcinia mangostana. Phytochemistry 2011, 72, 2148–2154. [Google Scholar] [CrossRef] [PubMed]
- Hedrington, M.S.; Davis, S.N. Considerations when using alpha-glucosidase inhibitors in the treatment of type 2 diabetes. Expert Opin. Pharmacother. 2019, 20, 2229–2235. [Google Scholar] [CrossRef] [PubMed]
- Rakha, A.; Umar, N.; Rabail, R.; Butt, M.S.; Kieliszek, M.; Hassoun, A.; Aadil, R.M. Anti-inflammatory and anti-allergic potential of dietary flavonoids: A review. Biomed. Pharmacother. 2022, 156, 113945. [Google Scholar] [CrossRef]
- Umeno, A.; Horie, M.; Murotomi, K.; Nakajima, Y.; Yoshida, Y. Antioxidative and antidiabetic effects of natural polyphenols and isoflavones. Molecules 2016, 30, 708. [Google Scholar] [CrossRef] [Green Version]
- Na, Z. Chemical constituents of volatile oil from leaf of Cratoxylum formosum subsp. pruniflorum in Xishuangbanna of Yunna Province. J. Plant Resour. Environ. 2007, 16, 75–77. [Google Scholar]
- Srithi, K.; Balslev, H.; Wangpakapattanawong, P.; Srisanga, P.; Trisonthi, C. Medicinal plant knowledge and its erosion among the Mien (Yao) in northern Thailand. J. Ethnopharmacol. 2009, 123, 335–342. [Google Scholar] [CrossRef]
- Boonnak, N.; Karalai, C.; Chantrapromma, S.; Ponglimanont, C.; Kanjana-Opas, A.; Chantrapromma, K.; Kato, S. Chromene and prenylated xanthones from the roots of Cratoxylum formosum ssp. pruniflorum. Chem. Pharm. Bull. 2010, 58, 386–389. [Google Scholar] [CrossRef] [Green Version]
- Duan, Y.H.; Dai, Y.; Wang, G.H.; Zhang, X.; Chen, H.F.; Chen, J.B.; Yao, X.S.; Zhang, X.K. Bioactive xanthones from the stems of Cratoxylum formosum ssp. pruniflorum. J. Nat. Prod. 2010, 73, 1283–1287. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Liu, X.H.; Bui, V.B.; Hong, Z.L.; Wang, L.J.; Zhao, Y.; Fan, H.; Yang, G.X.; Hu, J.F. Phenolic constituents from the leaves of Cratoxylum formosum ssp. pruniflorum. Fitoterapia 2014, 94, 114–119. [Google Scholar] [CrossRef]
- Duan, Y.H.; Dai, Y.; Wang, G.H.; Chen, H.F.; Gao, H.; Chen, J.B.; Yao, X.S.; Zhang, X.K. Xanthone and benzophenone glycosides from the stems of Cratoxylum formosum ssp. pruniflorum. Chem. Pharm. Bull. 2011, 59, 231–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pocasap, P.; Weerapreeyakul, N.; Wongpoomchai, R. Chemopreventive effect of Cratoxylum formosum (Jack) ssp. pruniflorum on initial stage hepatocarcinogenesis in rats. Molecules 2021, 26, 4235. [Google Scholar] [CrossRef] [PubMed]
- Kaewpiboon, C.; Boonnak, N.; Kaowinn, S.; Yawut, N.; Chung, Y.H. Formoxanthone C inhibits malignant tumor phenotypes of human A549 multidrug resistant-cancer cells through signal transducer and activator of transcription 1-histone deacetylase 4 signaling. J. Cancer Prev. 2022, 27, 112–121. [Google Scholar] [CrossRef]
- Senggunprai, L.; Thammaniwit, W.; Kukongviriyapan, V.; Prawan, A.; Kaewseejan, N.; Siriamornpun, S. Cratoxylum formosum extracts inhibit growth and metastasis of cholangiocarcinoma cells by modulating the NF-κB and STAT3 pathways. Nutr. Cancer 2016, 68, 328–341. [Google Scholar] [CrossRef]
- Kaewpiboon, C.; Boonnak, N.; Kaowinn, S.; Chung, Y.H. Formoxanthone C, isolated from Cratoxylum formosum ssp. pruniflorum, reverses anticancer drug resistance by inducing both apoptosis and autophagy in human A549 lung cancer cells. Bioorg. Med. Chem. Lett. 2018, 28, 820–825. [Google Scholar] [CrossRef] [PubMed]
- Keowkase, R.; Weerapreeyaku, N. Cratoxylum formosum extract protects against amyloid-beta toxicity in a Caenorhabditis elegans model of Alzheimerʼs disease. Planta Med. 2016, 82, 516–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raksat, A.; Laphookhieo, S.; Cheenpracha, S.; Ritthiwigrom, T.; Maneerat, W. Antibacterial compounds from the roots of Cratoxylum formosum spp. Pruniflorum. Nat. Prod. Commun. 2014, 9, 1487–1489. [Google Scholar] [CrossRef] [Green Version]
- Boonsri, S.; Karalai, C.; Ponglimanont, C.; Kanjana-opas, A.; Chantrapromma, K. Antibacterial and cytotoxic xanthones from the roots of Cratoxylum formosum. Phytochemistry 2006, 67, 723–727. [Google Scholar] [CrossRef]
- Ahn, J.H.; Ryu, S.H.; Lee, S.; Yeon, S.W.; Turk, A.; Han, Y.K.; Lee, K.Y.; Hwang, B.Y.; Lee, M.K. Aromatic constituents from the leaves of Actinidia arguta with antioxidant and α-glucosidase inhibitory activity. Antioxidants 2021, 10, 1896. [Google Scholar] [CrossRef]
- Kim, S.B.; Jo, Y.H.; Liu, Q.; Ahn, J.H.; Hong, I.P.; Han, S.M.; Hwang, B.Y.; Lee, M.K. Optimization of extraction condition of bee pollen using response surface methodology: Correlation between anti-melanogenesis, antioxidant activity, and phenolic content. Molecules 2015, 20, 9656. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.Y.; Shin, H.; Lim, J.W.; Ahn, J.H.; Jo, Y.H.; Lee, K.Y.; Hwang, B.Y.; Jung, S.J.; Kang, S.Y.; Lee, M.K. Comparison of antibacterial activity and phenolic constituents of bark, lignum, leaves and fruit of Rhus verniciflua. PLoS ONE 2018, 13, e0200257. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.H.; Kim, S.B.; Liu, Q.; Do, S.G.; Hwang, B.Y.; Lee, M.K. Comparison of pancreatic lipase inhibitory isoflavonoids from unripe and ripe fruits of Cudrania tricuspidata. PLoS ONE 2017, 12, e0172069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Mu, X.; Liang, J.; Zhang, J.; Qiang, T.; Li, H.; Li, B.; Liu, H.; Zhang, B. Metabolic profiling on the analysis of different parts of Schisandra chinensis based on UPLC-QTOF-MS with comparative bioactivity assays. Front. Plant Sci. 2022, 13, 970535. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.H.; Shin, B.; Liu, Q.; Lee, K.Y.; Oh, D.-C.; Hwang, B.Y.; Lee, M.K. Antiproliferative prenylated xanthones and benzophenones from the roots of Cudrania tricuspidata in HSC-T6 cells. J. Nat. Prod. 2014, 77, 2361–2366. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.Y.; Lin, H.C.; Teng, C.M.; Wu, Y.C. Phytochemical and pharmacological studies on Chinese Paeonia species. J. Chin. Chem. Soc. 2000, 47, 381–388. [Google Scholar] [CrossRef]
- Park, C.H.; Kim, K.H.; Lee, I.K.; Lee, S.Y.; Choi, S.U.; Lee, J.H.; Lee, K.R. Phenolic constituents of Acorus gramineus. Arch. Pharm. Res. 2011, 34, 1289–1296. [Google Scholar] [CrossRef]
- Li, H.Z.; Song, H.J.; Li, H.M.; Pan, Y.Y.; Li, R.T. Characterization of phenolic compounds from Rhododendron alutaceum. Arch. Pharm. Res. 2012, 35, 1887–1893. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.G.; Cho, J.Y.; Kim, C.M.; Lee, S.H.; Kim, W.S.; Jeon, T.I.; Park, K.H.; Moon, J.H. Coumaroyl quinic acid derivatives and flavonoids from immature pear (Pyrus pyrifolia Nakai) fruit. Food Sci. Biotechnol. 2013, 22, 803–810. [Google Scholar] [CrossRef]
- Prachayasittikul, S.; Suphapong, S.; Worachartcheewan, A.; Lawung, R.; Ruchirawat, S.; Prachayasittikul, V. Bioacitive metabolites from Spilanthes acmella Murr. Molecules 2009, 14, 850. [Google Scholar] [CrossRef] [Green Version]
- Bohlmann, F.; Chen, Z.L.; Schuster, A. Aromatic esters from Solidago decurrens. Phytochemstry 1981, 20, 2601–2602. [Google Scholar] [CrossRef]
- Itoh, T.; Ninomiya, M.; Yasuda, M.; Koshikawa, K.; Deyashiki, Y.; Nozawa, Y.; Akao, Y.; Koketsu, M. Inhibitory effects of flavonoids isolated from Fragaria ananassa Duch on IgE-mediated degranulation in rat basophilic leukemia RBL-2H3. Bioorg. Med. Chem. 2009, 17, 5374–5379. [Google Scholar] [CrossRef]
- Han, J.T.; Bang, M.H.; Chun, O.K.; Kim, D.O.; Lee, C.Y.; Baek, N.I. Flavonol glycosides from the aerial parts of Aceriphyllum rossii and their antioxidant activities. Arch. Pharm. Res. 2004, 27, 390–395. [Google Scholar] [CrossRef]
- Jeon, S.H.; Chun, W.J.; Choi, Y.J.; Kwon, Y.S. Cytotoxic constituents from the bark of Salix hulteni. Arch. Pharm. Res. 2008, 31, 978–982. [Google Scholar] [CrossRef]
- Lim, E.K.; Ashford, D.A.; Hou, B.K.; Jackson, R.G.; Bowles, D.J. Arabidopsis glycosyltransferases as biocatalysts in fermentation for regioselective synthesis of diverse quercetin glucosides. Biotechnol. Bioeng. 2004, 87, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Fico, G.; Rodondi, G.; Flamini, G.; Passarella, D.; Tome, F. Comparative phytochemical and morphological analyses of three Italian Primula species. Phytochemistry 2007, 68, 1683–1691. [Google Scholar] [CrossRef]
- He, Z.; Lian, W.; Liu, J.; Zheng, R.; Xu, H.; Du, G.; Liu, A. Isolation, structural characterization and neuraminidase inhibitory activities of polyphenolic constituents from Flos caryophylli. Phytochem. Lett. 2017, 19, 160–167. [Google Scholar] [CrossRef]
- Zheng, Z.P.; Cheng, K.W.; Chao, J.; Wu, J.; Wang, M. Tyrosinase inhibitors from paper mulberry (Broussonetia papyrifera). Food Chem. 2008, 106, 529–535. [Google Scholar] [CrossRef]
- Calzada, F.; Cedillo-Rivera, R.; Mata, R. Antiprotozoal activity of the constituents of Conyza filaginoides. J. Nat. Prod. 2001, 64, 671–673. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.P.; Yuan, T.; Cirello, A.L.; Seeram, N.P. Antioxidant and α-glucosidase inhibitory phenolics isolated from highbush blueberry flowers. Food Chem. 2012, 135, 1929–1937. [Google Scholar] [CrossRef]
- Pizzolatti, M.G.; Venson, A.F.; Junior, A.S.; Smania, E.F.A.; Braz-Filho, R. Two epimeric flavalignans from Trichilia catigua (Meliaceae) with antimicrobial activity. J. Biosci. 2002, 57, 483–488. [Google Scholar] [CrossRef]
- Kim, T.H.; Ito, H.; Hayashi, K.; Hasegawa, T.; Machiguchi, T.; Yoshida, T. Aromatic constituents from the Heartwood of Santalum album L. Chem. Pharm. Bull. 2005, 53, 641–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, J.M.; Lee, C.K.; Cheng, Y.S. Lignans from leaves of Juniperus chinensis. Phytochemistry 1992, 31, 3659–3661. [Google Scholar]
- Kang, W.; Wang, J. In vitro antioxidant properties and in vivo lowering blood lipid of Forsythia suspense leaves. Med. Chem. Res. 2010, 19, 617–628. [Google Scholar] [CrossRef]
- Moon, S.S.; Rahman, A.A.; Kim, J.Y.; Kee, S.H. Hanultarin, a cytotoxic lignin as an inhibitor of actin cytoskeleton polymerization from the seeds of Trichosanthes kirilowii. Bioorg. Med. Chem. 2008, 16, 7264–7269. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.X.; Yuan, Z. New lignin glycosides from Glehnia littralis. Chin. Chem. Lett. 2008, 19, 1459–1461. [Google Scholar] [CrossRef]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef]
- Ferreira, S.L.C.; Bruns, R.E.; Ferreira, H.S.; Matos, G.D.; David, J.M.; Brandao, G.C.; da Silva, E.G.P.; Portugal, L.A.; Reis, P.S.; Souza, A.S. Box-Behnken design an alternative for the optimization of analytical methods. Anal. Chim. Acta 2007, 597, 179–186. [Google Scholar] [CrossRef]
- Hu, X.; Xu, F.; Li, J.; Li, J.; Mo, C.; Zhao, M.; Wang, L. Ultrasonic-assisted extraction of polysaccharides from coix seeds: Optimization, purification, and in vitro digestibility. Food Chem. 2022, 374, 131636. [Google Scholar] [CrossRef]
- Pinto, D.; Vieira, E.F.; Peixoto, A.F.; Freire, C.; Freitas, V.; Costa, P.; Delerue-Matos, C.; Rodrigues, F. Optimizing the extraction of phenolic antioxidants from chestnut shells by subcritical water extraction using response surface methodology. Food Chem. 2021, 334, 127521. [Google Scholar] [CrossRef]
Antioxidant Activity (IC50, μg/mL) | α-Glucosidase Inhibition (IC50, μg/mL) | Total Phenolic Content (mg GAE/g Extracts) | Total Flavonoid Content (mg CE/g Extracts) | |
---|---|---|---|---|
Leaves | 14.9 | 3.9 | 132.3 | 101.6 |
Roots | 17.0 | 2.0 | 94.9 | 49.8 |
Stems | 47.8 | 23.0 | 85.5 | 28.7 |
Peak No. | Compound Identification | tR (min) | m/z | Molecular Formular [M-H]− | UV (λmax, nm) | Compd No in This Study | |
---|---|---|---|---|---|---|---|
Observed | Calculated | ||||||
A | mangiferin | 4.14 | 421.0769 | 421.0776 | C19H18O11 | 204, 256, 316, 364 | 18 |
B | quercetin-3-O-glucopyranoside | 4.75 | 463.0877 | 463.0882 | C21H20O12 | 204, 256, 356 | 22 |
C | γ-mangostin | 9.00 | 395.1507 | 395.1500 | C23H23O6 | 208, 268, 316, 364 | 12 |
D | α-mangostin | 9.57 | 409.1664 | 409.1657 | C24H26O6 | 240, 316 | 8 |
E | 7-geranyloxy-1,3-dihydroxyxanthone | 9.96 | 379.1541 | 379.1551 | C23H24O5 | 224, 236, 260, 308, 368 | 1 |
F | cochinchinone A | 10.31 | 447.2177 | 447.2177 | C28H32O5 | 220, 240, 268, 316, 408 | 5 |
Run | Actual Variables (Coded Variables) | Observed Values | ||||
---|---|---|---|---|---|---|
Extraction Solvent (X1, %) | Extraction Time (X2, h) | Extraction Temperature (X3, °C) | α-Glucosidase Inhibition (% of Control) | Yield (%) | Total Phenolic Content (mg GAE/g Extract) | |
1 | 100 (1) | 7 (1) | 40 (0) | 67.9 | 10.30 | 154.2 |
2 | 0 (−1) | 4 (0) | 20 (−1) | 29.2 | 4.76 | 80.2 |
3 | 100 (1) | 4 (0) | 60 (1) | 67.2 | 10.58 | 153.9 |
4 | 50 (0) | 1 (−1) | 20 (−1) | 64.3 | 7.73 | 159.4 |
5 | 50 (0) | 4 (0) | 40 (0) | 70.7 | 7.70 | 165.4 |
6 | 50 (0) | 1 (−1) | 60 (1) | 53.5 | 8.41 | 166.1 |
7 | 0 (−1) | 7 (1) | 40 (0) | 34.6 | 3.50 | 82.1 |
8 | 50 (0) | 4 (0) | 40 (0) | 68.5 | 7.74 | 165.1 |
9 | 100 (1) | 1 (−1) | 40 (0) | 68.3 | 8.68 | 153.3 |
10 | 50 (0) | 7 (1) | 20 (−1) | 72.2 | 7.31 | 154.9 |
11 | 100 (1) | 4 (0) | 20 (−1) | 68.1 | 9.21 | 130.5 |
12 | 0 (−1) | 1 (−1) | 40 (0) | 25.3 | 4.04 | 87.3 |
13 | 50 (0) | 7 (1) | 60 (1) | 71,8 | 7.59 | 157.8 |
14 | 50 (0) | 4 (0) | 40 (0) | 64.3 | 8.01 | 159.3 |
15 | 0 (−1) | 4 (0) | 60 (1) | 18.6 | 4.31 | 78.2 |
Responses | Category | Sum of Square | Degree of Freedom | Mean Square | F Value | p Value |
---|---|---|---|---|---|---|
Yield | Regression | 67.3248 | 9 | 7.4805 | 45.57 | <0.001 |
Linear | 61.7689 | 3 | 20.5896 | 125.44 | <0.001 | |
Square | 3.5177 | 3 | 1.1726 | 7.14 | 0.029 | |
Interaction | 2.0382 | 3 | 0.6794 | 4.14 | 0.08 | |
Residual error | 0.8207 | 5 | 0.1641 | |||
Lack-of-fit | 0.7439 | 3 | 0.248 | 6.45 | 0.137 | |
Pure error | 0.0769 | 2 | 0.0384 | |||
Total | 68.1455 | 14 | ||||
R2 = 0.988, adjusted R2 = 0.966 | ||||||
Total phenolic | Regression | 17,170.61 | 9 | 1907.85 | 139.74 | <0.001 |
Linear | 8868.86 | 3 | 2956.29 | 216.53 | <0.001 | |
Square | 8126.41 | 3 | 2708.8 | 198.4 | <0.001 | |
Interaction | 178.34 | 3 | 58.45 | 4.28 | 0.076 | |
Residual error | 68.27 | 5 | 13.65 | |||
Lack-of-fit | 42.03 | 3 | 15.01 | 1.29 | 0.464 | |
Pure error | 23.24 | 2 | 11.62 | |||
Total | 17,238.9 | 14 | ||||
R2 = 0.996, adjusted R2 = 0.989 | ||||||
α-Glucosidase | Regression | 5033.5 | 9 | 559.28 | 37.13 | <0.001 |
inhibition | Linear | 9570.43 | 3 | 1190.14 | 79.02 | <0.001 |
Square | 1389.17 | 3 | 463.06 | 30.74 | 0.001 | |
Interaction | 73.9 | 3 | 24.63 | 1.64 | 0.294 | |
Residual error | 75.31 | 5 | 15.06 | |||
Lack-of-fit | 53.81 | 3 | 17.94 | 1.67 | 0.396 | |
Pure error | 21.5 | 2 | 10.75 | |||
Total | 5108.81 | 14 | ||||
R2 = 0.985, adjusted R2 = 0.959 |
Optimized Extraction Condition | Responses | |||||||
---|---|---|---|---|---|---|---|---|
Extraction Solvent (% MeOH in EtOAc) | Extraction Time (h) | Extraction Temperature (°C) | α-Glucosidase Inhibitory Activity a (% of Control) | Yield (%) | Total Phenolic Content (mg GAE/g extract) | |||
88.1 | 6.02 | 60.0 | Predicted | Observed | Predicted | Observed | Predicted | Observed |
72.2 | 73.9 | 10.4 | 10.9 | 163.9 | 163.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, H.; Thanh, L.N.; Khanh, L.Q.; Ryu, S.H.; Lee, S.; Yeon, S.W.; Lee, H.H.; Turk, A.; Lee, K.Y.; Hwang, B.Y.; et al. Characterization of Antioxidant and α-Glucosidase Inhibitory Compounds of Cratoxylum formosum ssp. pruniflorum and Optimization of Extraction Condition. Antioxidants 2023, 12, 511. https://doi.org/10.3390/antiox12020511
An H, Thanh LN, Khanh LQ, Ryu SH, Lee S, Yeon SW, Lee HH, Turk A, Lee KY, Hwang BY, et al. Characterization of Antioxidant and α-Glucosidase Inhibitory Compounds of Cratoxylum formosum ssp. pruniflorum and Optimization of Extraction Condition. Antioxidants. 2023; 12(2):511. https://doi.org/10.3390/antiox12020511
Chicago/Turabian StyleAn, Heewon, Le Nguyen Thanh, Le Quoc Khanh, Se Hwan Ryu, Solip Lee, Sang Won Yeon, Hak Hyun Lee, Ayman Turk, Ki Yong Lee, Bang Yeon Hwang, and et al. 2023. "Characterization of Antioxidant and α-Glucosidase Inhibitory Compounds of Cratoxylum formosum ssp. pruniflorum and Optimization of Extraction Condition" Antioxidants 12, no. 2: 511. https://doi.org/10.3390/antiox12020511
APA StyleAn, H., Thanh, L. N., Khanh, L. Q., Ryu, S. H., Lee, S., Yeon, S. W., Lee, H. H., Turk, A., Lee, K. Y., Hwang, B. Y., & Lee, M. K. (2023). Characterization of Antioxidant and α-Glucosidase Inhibitory Compounds of Cratoxylum formosum ssp. pruniflorum and Optimization of Extraction Condition. Antioxidants, 12(2), 511. https://doi.org/10.3390/antiox12020511