GC-MS Profiling and Biomedical Applications of Essential Oil of Euphorbia larica Boiss.: A New Report
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Identification
2.2. Extraction of EO
2.3. GC/MS Profiling of the ELEO
2.4. Identification of Compounds
2.5. In Vitro Cytotoxic Capacity
2.6. In Vitro α-Glucosidase Potential
2.7. In Vitro Carbonic Anhydrase-II Bioassay
2.8. Antimicrobial Assessment
2.8.1. Antibacterial Screening
2.8.2. Antifungal Evaluation
2.9. Antioxidant Screening
2.9.1. DPPH Assay
2.9.2. ABTS Test
2.10. In Vivo Activities
2.10.1. Analgesic Assessment
2.10.2. Anti-Inflammatory Evaluation
3. Statistical Analysis
4. Result and Discussion
4.1. Chemical Composition Identification of the ELEO
4.2. In Vitro Cytotoxicity Potential
4.3. α-Glucosidase and Carbonic Anhydrase-II Bioassays
4.4. Antimicrobial Potential
4.4.1. Antibacterial Significance
4.4.2. Antifungal Capabilities
4.5. Antioxidant Capability
4.6. Anti-Inflammatory Significance
4.7. Analgesic Capabilities
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cazella, L.N.; Glamoclija, J.; Soković, M.; Gonçalves, J.E.; Linde, G.A.; Colauto, N.B.; Gazim, Z.C. Antimicrobial activity of essential oil of Baccharis dracunculifolia DC (Asteraceae) aerial parts at flowering period. Front. Plant Sci. 2019, 10, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chebbac, K.; Ghneim, H.K.; El Moussaoui, A.; Bourhia, M.; El Barnossi, A.; Benziane Ouaritini, Z.; Salamatullah, A.M.; Alzahrani, A.; Aboul-Soud, M.A.; Giesy, J.P. Antioxidant and antimicrobial activities of chemically characterized essential oil from Artemisia aragonensis Lam. against drug-resistant microbes. Molecules 2022, 27, 1136. [Google Scholar] [CrossRef] [PubMed]
- Salamatullah, A.M. Identification of volatile compounds and antioxidant, antibacterial, and antifungal properties against drug-resistant microbes of essential oils from the leaves of Mentha rotundifolia var. apodysa Briq. (Lamiaceae). Open Chem. 2022, 20, 484–493. [Google Scholar] [CrossRef]
- Miguel, M.G. Antioxidant and anti-inflammatory activities of essential oils: A short review. Molecules 2010, 15, 9252–9287. [Google Scholar] [CrossRef] [Green Version]
- Pérez, G.S.; Zavala, S.M.; Arias, G.L.; Ramos, L.M. Anti-inflammatory activity of some essential oils. J. Essent. Oil Res. 2011, 23, 38–44. [Google Scholar] [CrossRef]
- Al-Reza, S.M.; Yoon, J.I.; Kim, H.J.; Kim, J.-S.; Kang, S.C. Anti-inflammatory activity of seed essential oil from Zizyphus jujuba. Food Chem. Toxicol. 2010, 48, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Rehman, N.U.; Alsabahi, J.N.; Alam, T.; Khan, A.; Ullah, S.; Al-Harrasi, A. Carbonic Anhydrase-II, α-Glucosidase, and Chemical Composition of Essential Oils from Stem and Leaves of Zygophyllum qatarense. J. Essent. Oil Bear. Plants 2022, 25, 835–843. [Google Scholar] [CrossRef]
- Rehman, N.U.; Alsabahi, J.N.; Alam, T.; Khan, A.; Rafiq, K.; Khan, M.; Al-Harrasi, A. Chemical constituents and carbonic anhydrase II activity of essential oil of Acridocarpus orientalis A. Juss. in comparison with stem and leaves. J. Essent. Oil Bear. Plants 2021, 24, 68–74. [Google Scholar] [CrossRef]
- Rehman, N.U.; Alsabahi, J.N.; Alam, T.; Rafiq, K.; Khan, A.; Hidayatullah; Khan, N.A.; Khan, A.L.; Al Ruqaishi, H.; Al-Harrasi, A. Chemical Composition and Biological Activities of Essential Oil from Aerial Parts of Frankenia pulverulenta L. and Boerhavia elegans Choisy from Northern Oman. J. Essent. Oil Bear. Plants 2021, 24, 1180–1191. [Google Scholar] [CrossRef]
- De Cássia da Silveira e Sá, R.; Lima, T.C.; da Nobrega, F.R.; de Brito, A.E.M.; de Sousa, D.P. Analgesic-like activity of essential oil constituents: An update. Int. J. Mol. Sci. 2017, 18, 2392. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Chen, X.; Luan, F.; Wang, M.; Wang, Z.; Wang, J.; He, X. Euphorbia helioscopia L.: A phytochemical and pharmacological overview. Phytochemistry 2021, 184, 112649. [Google Scholar] [CrossRef]
- Nasri, H. Toxicity and safety of medicinal plants. J. HerbMed Pharmacol. 2013, 2, 21–22. [Google Scholar]
- Bhalla, Y.; Gupta, V.K.; Jaitak, V. Anticancer activity of essential oils: A review. J. Sci. Food Agric. 2013, 93, 3643–3653. [Google Scholar] [CrossRef]
- Blowman, K.; Magalhães, M.; Lemos, M.; Cabral, C.; Pires, I. Anticancer properties of essential oils and other natural products. Evid. -Based Complement. Altern. Med. 2018, 2018, 3149362. [Google Scholar] [CrossRef] [PubMed]
- Velazquez-Kronen, R.; Nelson, J. World Cancer Day 2020—Reflecting on a Decade of NIOSH Cancer Research; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2020. [Google Scholar]
- Oliveira, P.F.d.; Alves, J.M.; Damasceno, J.L.; Oliveira, R.A.M.; Dias Júnior, H.; Crotti, A.E.M.; Tavares, D.C. Cytotoxicity screening of essential oils in cancer cell lines. Rev. Bras. De Farmacogn. 2015, 25, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Maher, M.; Kassab, A.E.; Zaher, A.F.; Mahmoud, Z. Novel pyrazolo [3,4-d] pyrimidines: Design, synthesis, anticancer activity, dual EGFR/ErbB2 receptor tyrosine kinases inhibitory activity, effects on cell cycle profile and caspase-3-mediated apoptosis. J. Enzym. Inhib. Med. Chem. 2019, 34, 532–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De SS Quintans, J.; Soares, B.M.; Ferraz, R.P.; Oliveira, A.C.; da Silva, T.B.; Menezes, L.R.; Sampaio, M.F.; Prata, A.P.d.N.; Moraes, M.O.; Pessoa, C. Chemical constituents and anticancer effects of the essential oil from leaves of Xylopia laevigata. Planta Med. 2013, 29, 123–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, E.V.; Menezes, L.R.; Rocha, S.L.; Baliza, I.R.; Dias, R.B.; Rocha, C.A.G.; Soares, M.B.; Bezerra, D.P. Antitumor properties of the leaf essential oil of Zornia brasiliensis. Planta Med. 2015, 81, 563–567. [Google Scholar] [CrossRef]
- Fitsiou, E.; Pappa, A. Anticancer activity of essential oils and other extracts from aromatic plants grown in Greece. Antioxidants 2019, 8, 290. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.; Grewal, K.; Jandrotia, R.; Batish, D.R.; Singh, H.P.; Kohli, R.K. Essential oils as anticancer agents: Potential role in malignancies, drug delivery mechanisms, and immune system enhancement. Biomed. Pharmacother. 2022, 146, 112514. [Google Scholar] [CrossRef] [PubMed]
- Sahin, H.; Can, Z.; Yildiz, O.; Kolayli, S.; Innocenti, A.; Scozzafava, G.; Supuran, C.T. Inhibition of carbonic anhydrase isozymes I and II with natural products extracted from plants, mushrooms and honey. J. Enzym. Inhib. Med. Chem. 2012, 27, 395–402. [Google Scholar] [CrossRef]
- Tripp, B.C.; Smith, K.; Ferry, J.G. Carbonic anhydrase: New insights for an ancient enzyme. J. Biol. Chem. 2001, 276, 48615–48618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Supuran, C.T. Carbonic anhydrases: Novel therapeutic applications for inhibitors and activators. Nat. Rev. Drug Discov. 2008, 7, 168–181. [Google Scholar] [CrossRef] [PubMed]
- Sangkaew, A.; Samritsakulchai, N.; Sanachai, K.; Rungrotmongkol, T.; Chavasiri, W.; Yompakdee, C. Two flavonoid-based compounds from Murraya paniculata as novel human carbonic anhydrase isozyme II inhibitors detected by a resazurin yeast-based assay. J. Microbiol. Biotechnol. 2020, 30, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Supuran, C.T. Carbonic anhydrase activators. Future Med. Chem. 2018, 10, 561–573. [Google Scholar] [CrossRef]
- Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N.S.; Montales, M.T.; Kuriakose, K. Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management. Front. Endocrinol. 2017, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Rehman, N.U.; Maqsood, R.; Ullah, S.; Halim, S.A.; Anwar, M.U.; Khan, A.; Hussain, A.; Hussain, J.; Al-Harrasi, A. Eupholaricanone, A potent α-glucosidase anthracene derivative from Euphorbia larica Boiss. S. Afr. J. Bot. 2022, 148, 88–92. [Google Scholar] [CrossRef]
- Garg, R.; Gopal, J.; Jones, G.R. Rosiglitazone: Safety and efficacy in combination with insulin in poorly controlled type 2 diabetes mellitus patients treated with insulin alone. J. Diabetes Its Complicat. 2007, 21, 1–6. [Google Scholar] [CrossRef]
- Rehman, N.U.; Khan, A.; Al-Harrasi, A.; Hussain, H.; Wadood, A.; Riaz, M.; Al-Abri, Z. New α-glucosidase inhibitors from the resins of Boswellia species with structure–glucosidase activity and molecular docking studies. Bioorg. Chem. 2018, 79, 27–33. [Google Scholar] [CrossRef]
- Jassbi, A.R. Chemistry and biological activity of secondary metabolites in Euphorbia from Iran. Phytochemistry 2006, 67, 1977–1984. [Google Scholar] [CrossRef]
- Shi, Q.-W.; Su, X.-H.; Kiyota, H. Chemical and pharmacological research of the plants in genus Euphorbia. Chem. Rev. 2008, 108, 4295–4327. [Google Scholar] [CrossRef]
- Divakar, M.C.; Al-Siyabi, A.; Varghese, S.S.; Al Rubaie, M. The practice of ethnomedicine in the northern and southern provinces of Oman. Oman Med. J. 2016, 31, 245. [Google Scholar] [CrossRef]
- Al-Mahmooli, I.; Al-Bahri, Y.; Al-Sadi, A.; Deadman, M. First report of Euphorbia larica dieback caused by Fusarium brachygibbosum in Oman. Plant Dis. 2013, 97, 687. [Google Scholar] [CrossRef]
- Ulubelen, A.; Öksüz, S.; Halfon, B.; Aynehchi, Y.; Mabry, T.J. Flavonoids from Euphorbia larica, E. virgata, E. chamaesyce and E. magalanta. J. Nat. Prod. 1983, 46, 598. [Google Scholar] [CrossRef]
- Ulubelen, A.; Aynehchi, Y.; Halfon, B. Hydrocarbons from Euphorbia larica. Doga: Tip Eczacilik 10, 211–213. Chem. Abstr. 1986, 105, 168929. [Google Scholar]
- Ullah, O.; Shah, M.; Rehman, N.U.; Ullah, S.; Al-Sabahi, J.N.; Alam, T.; Khan, A.; Khan, N.A.; Rafiq, N.; Bilal, S. Aroma Profile and Biological Effects of Ochradenus arabicus Essential Oils: A Comparative Study of Stem, Flowers, and Leaves. Molecules 2022, 27, 5197. [Google Scholar] [CrossRef]
- Welsh, J. Animal models for studying prevention and treatment of breast cancer. In Animal Models for the Study of Human Disease; Elsevier: Amsterdam, The Netherlands, 2013; pp. 997–1018. [Google Scholar]
- Sakhi, M.; Khan, A.; Iqbal, Z.; Khan, I.; Raza, A.; Ullah, A.; Nasir, F.; Khan, S.A. Design, and characterization of paclitaxel-loaded polymeric nanoparticles decorated with trastuzumab for the effective treatment of breast cancer. Front. Pharmacol. 2022, 13, 855294. [Google Scholar] [CrossRef] [PubMed]
- Rehman, N.U.; Halim, S.A.; Khan, A.; Khan, M.; Al-Hatmi, S.; Al-Harrasi, A. Commikuanoids AC: New cycloartane triterpenoids with exploration of carbonic anhydrase-II inhibition from the resins of Commiphora kua by in vitro and in silico molecular docking. Fitoterapia 2022, 157, 105125. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Bibi, S.; Kamal, Z.; Al-Sabahi, J.N.; Alam, T.; Ullah, O.; Murad, W.; Rehman, N.U.; Al-Harrasi, A. Bridging the chemical profile and biomedical effects of Scutellaria edelbergii essential oils. Antioxidants 2022, 11, 1723. [Google Scholar] [CrossRef]
- Mubin, S.; Rehman, N.U.; Murad, W.; Shah, M.; Al-Harrasi, A.; Afza, R. Scutellaria petiolata Hemsl. ex Lace & Prain (Lamiaceae).: A New Insight in Biomedical Therapies. Antioxidants 2022, 11, 1446. [Google Scholar]
- Shah, M.; Murad, W.; Ur Rehman, N.; Mubin, S.; Al-Sabahi, J.N.; Ahmad, M.; Zahoor, M.; Ullah, O.; Waqas, M.; Ullah, S. GC-MS analysis and biomedical therapy of oil from n-hexane fraction of Scutellaria edelbergii Rech. f.: In vitro, in vivo, and in silico approach. Molecules 2021, 26, 7676. [Google Scholar] [CrossRef]
- Mondal, M.; Hossain, M.S.; Das, N.; Khalipha, A.B.R.; Sarkar, A.P.; Islam, M.T.; Smrity, S.Z.; Biswas, S.; Kundu, S.K. Phytochemical screening and evaluation of pharmacological activity of leaf Methanolic extract of Colocasia affinis Schott. Clin. Phytosci. 2019, 5, 8. [Google Scholar] [CrossRef]
- Rojas, J.; Baldovino, S.; Vizcaya, M.; Rojas, L.B.; Morales, A. The Chemical Composition of the Essential Oils of Euphorbia caracasana and E. cotinifolia (Euphorbiaceae) from Venezuela. Nat. Prod. Commun. 2012, 7, 141. [Google Scholar] [CrossRef] [Green Version]
- Jie, C.; Xin, Y.; Ai-jun, D.; Da-you, C.; Jing, W.; Haitian, Z.; Ren-bo, X.; Pu, W.; Wen-jing, L. Chemical composition and antioxidant activity of Euphorbia fischeriana essential oil from China. J. Med. Plants Res. 2011, 5, 4794–4797. [Google Scholar]
- Essa, A.F.; El-Hawary, S.S.; Abd-El Gawad, A.M.; Kubacy, T.M.; AM El-Khrisy, E.E.D.; Elshamy, A.I.; Younis, I.Y. Prevalence of diterpenes in essential oil of Euphorbia mauritanica L.: Detailed chemical profile, antioxidant, cytotoxic and phytotoxic activities. Chem. Biodivers. 2021, 18, e2100238. [Google Scholar] [CrossRef] [PubMed]
- Lokar, L.C.; Maurich, V.; Poldini, L. Chemical aspect of floral biology in Euphorbia fragifera. Folia Geobot. Phytotaxon. 1986, 21, 277–285. [Google Scholar] [CrossRef]
- Salehi, B.; Iriti, M.; Vitalini, S.; Antolak, H.; Pawlikowska, E.; Kręgiel, D.; Sharifi-Rad, J.; Oyeleye, S.I.; Ademiluyi, A.O.; Czopek, K. Euphorbia-derived natural products with potential for use in health maintenance. Biomolecules 2019, 9, 337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loizzo, M.R.; Tundis, R.; Menichini, F.; Saab, A.M.; Statti, G.A.; Menichini, F. Cytotoxic activity of essential oils from Labiatae and Lauraceae families against in vitro human tumor models. Anticancer Res. 2007, 27, 3293–3299. [Google Scholar]
- Yang, Y.; Yue, Y.; Runwei, Y.; Guolin, Z. Cytotoxic, apoptotic and antioxidant activity of the essential oil of Amomum tsaoko. Bioresour. Technol. 2010, 101, 4205–4211. [Google Scholar] [CrossRef]
- Maraveas, C.; Bayer, I.S.; Bartzanas, T. Recent advances in antioxidant polymers: From sustainable and natural monomers to synthesis and applications. Polymers 2021, 13, 2465. [Google Scholar] [CrossRef]
- Compagnone, R.S.; Chavez, K.; Mateu, E.; Orsini, G.; Arvelo, F.; Suárez, A.I. Composition, and cytotoxic activity of essential oils from Croton matourensis and Croton micans from Venezuela. Rec. Nat. Prod. 2010, 4, 101–108. [Google Scholar]
- Azaat, A.; Babojian, G.; Nizar, I. Phytochemical Screening, Antioxidant and Anticancer Activities of Euphorbia hyssopifolia L. against MDA-MB-231 Breast Cancer Cell Line. J. Turk. Chem. Soc. Sect. A Chem. 2022, 9, 295–310. [Google Scholar] [CrossRef]
- Yagi, S.; Babiker, R.; Tzanova, T.; Schohn, H. Chemical composition, antiproliferative, antioxidant and antibacterial activities of essential oils from aromatic plants growing in Sudan. Asian Pac. J. Trop. Med. 2016, 9, 763–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estanislao Gómez, C.; Aquino Carreño, A.; Pérez Ishiwara, D.; San Martín Martínez, E.; Morales López, J.; Pérez Hernández, N.; García, G. Decatropis bicolor (Zucc.) Radlk essential oil induces apoptosis of the MDA-MB-231 breast cancer cell line. BMC Complement. Altern. Med. 2016, 16, 266. [Google Scholar] [CrossRef] [Green Version]
- Lahmadi, G.; Lahmar, A.; Znati, M.; Elaieb, M.T.; Khouja, M.L.; Ascrizzi, R.; Flamini, G.; Harrath, A.H.; Chekir-Ghedira, L.; Jannet, H.B. Chemical composition and cytotoxic activity of Eucalyptus torquata Luehm. and Eucalyptus salmonophloia F. Muell. Trunk bark essential oils against human SW620 and MDA-MB-231 cancer cell lines. Chem. Biodivers. 2021, 18, e2100315. [Google Scholar] [CrossRef] [PubMed]
- Rawat, S.; Bhatt, I.D.; Rawal, R. Variation in essential oil composition in rhizomes of natural populations of Hedychium spicatum in different environmental condition and habitats. J. Essent. Oil Res. 2020, 32, 348–360. [Google Scholar] [CrossRef]
- Najibullah, S.N.M.; Ahamad, J.; Aldahish, A.A.; Sultana, S.; Sultana, S. Chemical characterization and α-glucosidase inhibitory activity of essential oil of Lavandula angustifolia flowers. J. Essent. Oil Bear. Plants 2021, 24, 431–438. [Google Scholar] [CrossRef]
- Basak, S.S.; Candan, F. Effect of Laurus nobilis L. essential oil and its main components on α-glucosidase and reactive oxygen species scavenging activity. Iran. J. Pharm. Res. IJPR 2013, 12, 367. [Google Scholar]
- Jelassi, A.; Hassine, M.; Besbes Hlila, M.; Ben Jannet, H. Chemical composition, antioxidant properties, α-glucosidase inhibitory, and antimicrobial activity of essential oils from Acacia mollissima and Acacia cyclops cultivated in Tunisia. Chem. Biodivers. 2017, 14, e1700252. [Google Scholar] [CrossRef]
- Bigham, M.; Hosseininaveh, V.; Nabavi, B.; Talebi, K.; Esmaeilzadeh, N.S. Effects of essential oil from Teucrium polium on some digestive enzyme activities of Musca domestica. Entomol. Res. 2010, 40, 37–45. [Google Scholar] [CrossRef]
- Riyaphan, J.; Pham, D.-C.; Leong, M.K.; Weng, C.-F. In silico approaches to identify polyphenol compounds as α-glucosidase and α-amylase inhibitors against type-II diabetes. Biomolecules 2021, 11, 1877. [Google Scholar] [CrossRef] [PubMed]
- Valarezo, E.; Gaona-Granda, G.; Morocho, V.; Cartuche, L.; Calva, J.; Meneses, M.A. Chemical constituents of the essential oil from Ecuadorian endemic species Croton ferrugineus and its antimicrobial, antioxidant and α-Glucosidase Inhibitory Activity. Molecules 2021, 26, 4608. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.-F.; Cheng, Y.-C.; Wu, C.-M.; Ran, K.; Wei, B.; Xu, Y.-K.; Shan, W.-G.; Ying, Y.-M.; Zhan, Z.-J. Diverse diterpenoids with α-glucosidase and β-glucuronidase inhibitory activities from Euphorbia milii. Phytochemistry 2022, 196, 113106. [Google Scholar] [CrossRef] [PubMed]
- Salazar, M.O.; Osella, M.I.; Arcusin, D.E.; Lescano, L.E.; Furlan, R.L. New α-glucosidase inhibitors from a chemically engineered essential oil of Origanum vulgare L. Ind. Crops Prod. 2020, 156, 112855. [Google Scholar] [CrossRef]
- Dang, N.H.; Nhung, P.H.; Mai Anh, B.T.; Thu Thuy, D.T.; Minh, C.V.; Dat, N.T. Chemical composition and α-glucosidase inhibitory activity of Vietnamese citrus peels essential oils. J. Chem. 2016, 2016, 6787952. [Google Scholar] [CrossRef] [Green Version]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial activity of some essential oils—Present status and future perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.d.N.; Uetanabaro, A.P.T.; Lucchese, A.M. Chemical composition and antibacterial activity of essential oils from Myrcia alagoensis (Myrtaceae). Nat. Prod. Commun. 2013, 8, 1934578X1300800235. [Google Scholar] [CrossRef] [Green Version]
- Utegenova, G.A.; Pallister, K.B.; Kushnarenko, S.V.; Özek, G.; Özek, T.; Abidkulova, K.T.; Kirpotina, L.N.; Schepetkin, I.A.; Quinn, M.T.; Voyich, J.M. Chemical composition and antibacterial activity of essential oils from Ferula L. species against methicillin-resistant Staphylococcus aureus. Molecules 2018, 23, 1679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moo, C.-L.; Yang, S.-K.; Osman, M.-A.; Yuswan, M.H.; Loh, J.-Y.; Lim, W.-M.; Swee-Hua-Erin, L.; Lai, K.-S. Antibacterial Activity and Mode of Action of β-caryophyllene on. Pol. J. Microbiol. 2020, 69, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Su, F.; Yang, G.; Hu, D.; Ruan, C.; Wang, J.; Zhang, Y.; Zhu, Q. Chemical composition, antibacterial and antioxidant activities of essential oil from Centipeda minima. Molecules 2023, 28, 824. [Google Scholar] [CrossRef] [PubMed]
- Elegir, G.; Kindl, A.; Sadocco, P.; Orlandi, M. Development of antimicrobial cellulose packaging through laccase-mediated grafting of phenolic compounds. Enzym. Microb. Technol. 2008, 43, 84–92. [Google Scholar] [CrossRef]
- Zhu, Q.; Jiang, M.-L.; Shao, F.; Ma, G.-Q.; Shi, Q.; Liu, R.-H. Chemical composition and antimicrobial activity of the essential oil from Euphorbia helioscopia L. Nat. Prod. Commun. 2020, 15, 1934578X20953249. [Google Scholar] [CrossRef]
- Adedoyin, B.; Okeniyi, S.; Garba, S.; Salihu, L. Cytotoxicity, antioxidant and antimicrobial activities of essential oil extracted from Euphorbia heterophylla plant. Topclass J. Herb. Med. 2013, 2, 84–89. [Google Scholar]
- Olaoluwa, O.; Moronkola, D.; Taiwo, O.; Iganboh, P. Volatile oil composition, antioxidant and antimicrobial properties of Boerhavia erecta L. and Euphorbia hirta L. Trends Phytochem. Res. 2018, 2, 171–178. [Google Scholar]
- Carović-Stanko, K.; Orlić, S.; Politeo, O.; Strikić, F.; Kolak, I.; Milos, M.; Satovic, Z. Composition and antibacterial activities of essential oils of seven Ocimum taxa. Food Chem. 2010, 119, 196–201. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Cavanagh, H.M. Antibacterial activity of essential oils from Australian native plants. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2005, 19, 643–646. [Google Scholar] [CrossRef] [PubMed]
- Nazzaro, F.; Fratianni, F.; Coppola, R.; De Feo, V. Essential oils and antifungal activity. Pharmaceuticals 2017, 10, 86. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.; Tu, X.-F.; Thakur, K.; Hu, F.; Li, X.-L.; Zhang, Y.-S.; Zhang, J.-G.; Wei, Z.-J. Comparison of antifungal activity of essential oils from different plants against three fungi. Food Chem. Toxicol. 2019, 134, 110821. [Google Scholar] [CrossRef]
- Ho, C.-L.; Liao, P.-C.; Wang, E.I.-C.; Su, Y.-C. Composition and antifungal activities of the leaf essential oil of Neolitsea parvigemma from Taiwan. Nat. Prod. Commun. 2011, 6, 1934578X1100600935. [Google Scholar] [CrossRef] [Green Version]
- Angioni, A.; Barra, A.; Coroneo, V.; Dessi, S.; Cabras, P. Chemical composition, seasonal variability, and antifungal activity of Lavandula stoechas L. ssp. stoechas essential oils from stem/leaves and flowers. J. Agric. Food Chem. 2006, 54, 4364–4370. [Google Scholar] [CrossRef]
- Mitić, Z.S.; Jovanović, B.; Jovanović, S.Č.; Stojanović-Radić, Z.Z.; Mihajilov-Krstev, T.; Jovanović, N.M.; Nikolić, B.M.; Marin, P.D.; Zlatković, B.K.; Stojanović, G.S. Essential oils of Pinus halepensis and P. heldreichii: Chemical composition, antimicrobial and insect larvicidal activity. Ind. Crops Prod. 2019, 140, 111702. [Google Scholar] [CrossRef]
- Chen, C.J.; Li, Q.Q.; Ma, Y.N.; Wang, W.; Cheng, Y.X.; Xu, F.R.; Dong, X. Antifungal effect of essential oils from five kinds of Rutaceae plants–avoiding pesticide residue and resistance. Chem. Biodivers. 2019, 16, e1800688. [Google Scholar] [CrossRef] [PubMed]
- Neves, J.S.; Lopes-da-Silva, Z.; Neta, M.d.S.B.; Chaves, S.B.; de Medeiros Nóbrega, Y.K.; de Lira Machado, A.H.; Machado, F. Preparation of terpolymer capsules containing Rosmarinus officinalis essential oil and evaluation of its antifungal activity. RSC Adv. 2019, 9, 22586–22596. [Google Scholar] [CrossRef] [Green Version]
- Rao, K.V.B.; Karthik, L.; Elumalai, E.; Srinivasan, K.; Kumar, G. Antibacterial and antifungal activity of Euphorbia hirta L. Leaves: A comparative study. J. Pharm. Res. 2010, 3, 548. [Google Scholar]
- Mahmoud, H.; Mohamed, N.T.; Abd-El-Sayed, M.A. Fungicidal activity of nanoemulsified essential oils against botrytis leaf blight of Poinsettia (Euphorbia pulcherrima) in Egypt. Egypt. J. Agric. Res. 2018, 96, 1259–1273. [Google Scholar] [CrossRef]
- Bansod, S.; Rai, M. Antifungal activity of essential oils from Indian medicinal plants against human pathogenic Aspergillus fumigatus and A. niger. World J. Med. Sci. 2008, 3, 81–88. [Google Scholar]
- Oumzil, H.; Ghoulami, S.; Rhajaoui, M.; Ilidrissi, A.; Fkih-Tetouani, S.; Faid, M.; Benjouad, A. Antibacterial and antifungal activity of essential oils of Mentha suaveolens. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2002, 16, 727–731. [Google Scholar] [CrossRef]
- Shah, M.; Al-Housni, S.K.; Khan, F.; Ullah, S.; Al-Sabahi, J.N.; Khan, A.; Al-Yahyaei, B.E.M.; Al-Ruqaishi, H.; Rehman, N.U.; Al-Harrasi, A. First Report on Comparative Essential Oil Profile of Stem and Leaves of Blepharispermum hirtum Oliver and Their Antidiabetic and Anticancer Effects. Metabolites 2022, 12, 907. [Google Scholar] [CrossRef]
- Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant activity of essential oils. J. Agric. Food Chem. 2013, 61, 10835–10847. [Google Scholar] [CrossRef]
- Chandra, M.; Prakash, O.; Kumar, R.; Bachheti, R.K.; Bhushan, B.; Kumar, M.; Pant, A.K. β-Selinene-rich essential oils from the parts of Callicarpa macrophylla and their antioxidant and pharmacological activities. Medicines 2017, 4, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmadvand, H.; Amiri, H.; Dalvand, H.; Bagheri, S.; GhasemiDehnoo, M.; Moghadam, S.; HadipourMoradi, F. Chemical composition and antioxidant properties of Lorestan province Artemisia persica. J. Chem. Pharm. Res. 2015, 7, 16–22. [Google Scholar]
- Elshamy, A.I.; Abd-ElGawad, A.M.; El Gendy, A.E.N.G.; Assaeed, A.M. Chemical characterization of Euphorbia heterophylla L. essential oils and their antioxidant activity and allelopathic potential on Cenchrus echinatus L. Chem. Biodivers. 2019, 16, e1900051. [Google Scholar] [CrossRef]
- Chao, L.K.; Hua, K.F.; Hsu, H.-Y.; Cheng, S.-S.; Liu, J.-Y.; Chang, S.T. Study on the antiinflammatory activity of essential oil from leaves of Cinnamomum osmophloeum. J. Agric. Food Chem. 2005, 53, 7274–7278. [Google Scholar] [CrossRef]
- Siani, A.C.; Souza, M.C.; Henriques, M.G.; Ramos, M.F. Anti-inflammatory activity of essential oils from Syzygium cumini and Psidium guajava. Pharm. Biol. 2013, 51, 881–887. [Google Scholar] [CrossRef] [PubMed]
- Sinan, K.I.; Etienne, O.K.; Stefanucci, A.; Mollica, A.; Mahomoodally, M.F.; Jugreet, S.; Rocchetti, G.; Lucini, L.; Aktumsek, A.; Montesano, D. Chemodiversity and biological activity of essential oils from three species from the Euphorbia genus. Flavour Fragr. J. 2021, 36, 148–158. [Google Scholar] [CrossRef]
- De Morais Oliveira-Tintino, C.D.; Pessoa, R.T.; Fernandes, M.N.M.; Alcântara, I.S.; da Silva, B.A.F.; de Oliveira, M.R.C.; Martins, A.O.B.P.B.; da Silva, M.d.S.; Tintino, S.R.; Rodrigues, F.F.G. Anti-inflammatory and anti-edematogenic action of the Croton campestris A. St.-Hil (Euphorbiaceae) essential oil and the compound β-caryophyllene in in vivo models. Phytomedicine 2018, 41, 82–95. [Google Scholar] [CrossRef] [PubMed]
- Adeosun, T.E.; Ogunwande, I.A.; Avoseh, O.N.; Raji, I.P.; Lawal, O.A. Composition and anti-inflammatory activity of essential oil of Jatropha curcas. Nat. Prod. Commun. 2017, 12, 1934578X1701200333. [Google Scholar] [CrossRef] [Green Version]
- Souza, M.; Siani, A.C.; Ramos, M.; Menezes-de-Lima, O., Jr.; Henriques, M. Evaluation of anti-inflammatory activity of essential oils from two Asteraceae species. Die Pharm. Int. J. Pharm. Sci. 2003, 58, 582–586. [Google Scholar]
- Aboluwodi, A.S.; Avoseh, N.; Lawal, A.; Ogunwande, I.; Giwa, A. Chemical constituents and anti-inflammatory activity of essential oils of Datura stramonium L. J. Med. Plants Stud. 2017, 5, 21–25. [Google Scholar]
- Shah, M.; Mubin, S.; Hassan, S.S.u.; Tagde, P.; Ullah, O.; Rahman, M.H.; Al-Harrasi, A.; Rehman, N.U.; Murad, W. Phytochemical Profiling and Bio-Potentiality of Genus Scutellaria: Biomedical Approach. Biomolecules 2022, 12, 936. [Google Scholar] [CrossRef]
- Scuteri, D.; Hamamura, K.; Sakurada, T.; Watanabe, C.; Sakurada, S.; Morrone, L.A.; Rombolà, L.; Tonin, P.; Bagetta, G.; Corasaniti, M.T. Efficacy of essential oils in pain: A systematic review and meta-analysis of preclinical evidence. Front. Pharmacol. 2021, 12, 640128. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, A.G.; Quintans, J.S.; Quintans-Júnior, L.J. Monoterpenes with analgesic activity—A systematic review. Phytother. Res. 2013, 27, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Bakır, B.; Him, A.; Özbek, H.; Düz, E.; Tütüncü, M. Investigation of the anti-inflammatory and analgesic activities of β-caryophyllene. Int. J. Essent. Oil Ther. 2008, 2, 41–44. [Google Scholar]
- Ahmad, V.U.; Hussain, H.; Bukhari, I.A.; Hussain, J.; Jassbi, A.R.; Dar, A. Antinociceptive diterpene from Euphorbia decipiens. Fitoterapia 2005, 76, 230–232. [Google Scholar] [CrossRef]
- Majid, M.; Khan, M.R.; Shah, N.A.; Haq, I.U.; Farooq, M.A.; Ullah, S.; Sharif, A.; Zahra, Z.; Younis, T.; Sajid, M. Studies on phytochemical, antioxidant, anti-inflammatory and analgesic activities of Euphorbia dracunculoides. BMC Complement. Altern. Med. 2015, 15, 349. [Google Scholar] [CrossRef] [Green Version]
- Kaskoos, R.A. Essential oil analysis by GC-MS and analgesic activity of Lippia citriodora and Citrus limon. J. Essent. Oil Bear. Plants 2019, 22, 273–281. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, Y.-Y.; Wang, X.-Y.; Liu, J.T.; Huang, L.Q.; Peng, C.-S. GC-MS analysis and analgesic activity of essential oil from fresh rhizoma of Cyperus rotundus. Zhong Yao Cai = Zhongyaocai = J. Chin. Med. Mater. 2011, 34, 1225–1229. [Google Scholar]
- Aboukhalid, K.; Al Faiz, C.; Douaik, A.; Bakha, M.; Kursa, K.; Agacka-Mołdoch, M.; Machon, N.; Tomi, F.; Lamiri, A. Influence of environmental factors on essential oil variability in Origanum compactum Benth. growing wild in Morocco. Chem. Biodivers. 2017, 14, e1700158. [Google Scholar] [CrossRef]
Compound’s Name | Rt (min) | Rel. Conc. (%) | KI (a) | KI (b) | Identification (c) |
---|---|---|---|---|---|
3-Thujene | 7.65 | 0.62 | 928 | 935 | KI, MS |
Camphene | 7.85 | 16.41 | 935 | 942 | KI, MS |
2,4-Thujadiene | 8.39 | 0.26 | 957 | 963 | KI, MS |
Sabinene | 8.91 | 1.68 | 964 | 972 | KI, MS |
Laevo-β-pinene | 9.00 | 0.59 | 965 | 975 | KI, MS |
β-Myrcene | 9.37 | 2.21 | 981 | 999 | KI, MS |
α-Phellandrene | 9.75 | 0.39 | 997 | 1013 | KI, MS |
3-Carene | 9.92 | 0.21 | 1005 | 1019 | KI, MS |
p-Cymene | 10.30 | 1.04 | 1011 | 1033 | KI, MS |
Limonene | 10.42 | 4.29 | 1018 | 1037 | KI, MS |
γ-Terpinene | 11.25 | 0.28 | 1047 | 1067 | KI, MS |
Linalool | 12.34 | 0.17 | 1082 | 1106 | KI, MS |
Perillen | 12.40 | 0.17 | 1086 | 1108 | KI, MS |
α-Campholenal | 13.10 | 0.38 | 1102 | 1134 | KI, MS |
2,9-Dimethyl-5-decyne | 13.17 | 0.17 | 1103 | 1136 | KI, MS |
L-Pinocarveol | 13.46 | 0.67 | 1143 | 1147 | KI, MS |
cis-Verbenol | 13.52 | 0.21 | 1110 | 1149 | KI, MS |
trans-Verbenol | 13.61 | 0.94 | 1128 | 1153 | KI, MS |
p-Mentha-1,5-dien-8-ol | 14.18 | 0.48 | 1148 | 1174 | KI, MS |
Terpinen-4-ol | 14.48 | 0.42 | 1175 | 1185 | KI, MS |
Myrtenol | 15.00 | 0.41 | 1174 | 1204 | KI, MS |
Levoverbenone | 15.34 | 0.23 | 1191 | 1218 | KI, MS |
cis-Carveol | 15.54 | 0.14 | 1208 | 1226 | KI, MS |
Bornyl acetate | 17.26 | 1.24 | 1269 | 1292 | KI, MS |
α-Terpinyl acetate | 18.79 | 1.53 | 1322 | 1355 | KI, MS |
Copaene | 19.48 | 0.63 | 1376 | 1383 | KI, MS |
β-Bourbonene | 19.71 | 1.31 | 1386 | 1393 | KI, MS |
β-Elemene | 19.84 | 2.71 | 1398 | 1398 | KI, MS |
β-Caryophyllene | 20.54 | 3.47 | 1421 | 1428 | KI, MS |
Humulene | 21.32 | 1.89 | 1454 | 1462 | KI, MS |
Alloaromadendrene | 21.49 | 0.49 | 1459 | 1469 | KI, MS |
γ-Muurolene | 21.80 | 1.02 | 1471 | 1483 | KI, MS |
Germacrene D | 21.93 | 0.78 | 1480 | 1489 | KI, MS |
Eremophilene | 22.07 | 3.77 | 1486 | 1494 | KI, MS |
δ-Selinene | 22.14 | 0.17 | 1509 | 1497 | KI, MS |
α-Selinene | 22.26 | 3.26 | 1500 | 1503 | KI, MS |
Cubebol | 22.68 | 2.97 | 1512 | 1522 | KI, MS |
δ-Cadinene | 22.83 | 2.48 | 1514 | 1529 | KI, MS |
Elemol | 23.39 | 0.65 | 1535 | 1554 | KI, MS |
Germacrene D-4-ol | 23.99 | 0.21 | 1570 | 1582 | KI, MS |
Caryophyllene oxide | 24.19 | 2.85 | 1575 | 1591 | KI, MS |
Viridiflorol | 24.61 | 0.18 | 1594 | 1611 | KI, MS |
Humulene 1,2-epoxide | 24.74 | 1.18 | 1596 | 1617 | KI, MS |
γ-Eudesmol | 24.79 | 0.71 | 1627 | 1620 | KI, MS |
Cubenol | 25.09 | 0.46 | 1631 | 1634 | KI, MS |
τ-Cadinol | 25.34 | 2.45 | 1637 | 1646 | KI, MS |
δ-Cadinol | 25.45 | 0.56 | 1646 | 1651 | KI, MS |
β-Eudesmol | 25.58 | 3.51 | 1648 | 1656 | KI, MS |
Benzyl Benzoate | 27.77 | 0.21 | 1765 | 1767 | KI, MS |
α-Phellandrene, dimer | 28.32 | 1.11 | 1801 | 1795 | KI, MS |
m-Camphorene | 31.10 | 1.06 | 1960 | 1945 | KI, MS |
Cembrene A | 31.42 | 0.95 | 1970 | 1963 | KI, MS |
p-Camphorene | 31.70 | 0.29 | 1977 | 1979 | KI, MS |
geranyl-α-terpinene | 32.22 | 0.16 | 2001 | 2008 | KI, MS |
Verticiol | 32.70 | 0.43 | 2036 | 2036 | KI, MS |
Cembrenol | 34.52 | 1.43 | 2061 | 2140 | KI, MS |
Thunbergol | 34.73 | 15.33 | 2073 | 2157 | KI, MS |
24-Norursa-3,9(11),12-triene | 46.48 | 0.23 | 3042 | 2999 | KI, MS |
24-Noroleana-3,12-diene | 46.64 | 0.33 | 3057 | 3013 | KI, MS |
24-Norursa-3,12-diene | 47.19 | 0.87 | 3105 | 3060 | KI, MS |
Total identified compounds (%) | 95.25 |
Cell Line Used | Conc (μg/mL) | % Viability | % Inhibition | IC50 (μg/mL) |
---|---|---|---|---|
MDA-MB-231 | 3 | 96.57 | 3.42 | 183.8 ± 1.6 |
10 | 88.37 | 11.62 | ||
30 | 79.82 | 20.17 | ||
100 | 61.76 | 38.23 | ||
300 | 35.24 | 64.75 | ||
MCF-10A | 3 | 97.40 | 2.59 | >300 |
10 | 91.04 | 8.95 | ||
30 | 86.16 | 13.83 | ||
100 | 83.99 | 16.08 | ||
300 | 81.24 | 18.75 |
Changes in Paw Diameter Experimental Animals (Mean ± SEM) | ||||||
---|---|---|---|---|---|---|
Tested Sample | Dosage | 1 h | 2 h | 3 h | Aver. Paw Diameter | % Inhibition |
Carrageenan | 1 mL | 1.18 ± 0.06 | 1.46 ± 0.02 | 1.81 ± 0.02 | 1.48 ± 0.01 | --- |
Normal saline | 1 mL | 1.15 ± 0.05 | 1.43 ± 0.02 | 1.77 ± 0.05 | 1.45 ± 0.03 | --- |
Diclofenac sodium | 50 mg/kg | 0.47 ± 0.03 | 0.41 ± 0.04 | 0.30 ± 0.02 | 0.39 ± 0.06 | 73.64 |
EO | 25 | 0.75 ± 0.04 | 0.66 ± 0.03 | 0.59 ± 0.04 | 0.66 ± 0.02 * | 55.40 |
50 | 0.71 ± 0.02 | 0.62 ± 0.04 | 0.51 ± 0.03 | 0.61 ± 0.05 * | 58.78 | |
100 | 0.57 ± 0.05 | 0.51 ± 0.03 | 0.45 ± 0.05 | 0.51 ± 0.04 * | 65.54 |
Tested Samples | Dosage Used | Counted Writhes’ Average (Mean ± SEM) | Percentage in Writhes’ Reduction |
---|---|---|---|
Acetic acid | 1 mL | 27.6 ± 0.04 | |
Normal saline | 1 mL | 27.4 ± 0.06 | |
Aspirin | 1 mL | 8.7 ± 0.05 | 68.47 |
EO | 25 mg/kg | 17.4 ± 0.04 ** | 36.95 |
50 | 14.3 ± 0.06 ** | 48.18 | |
100 | 11.5 ± 0.03 ** | 58.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, M.; Khan, F.; Ullah, S.; Mohanta, T.K.; Khan, A.; Zainab, R.; Rafiq, N.; Ara, H.; Alam, T.; Rehman, N.U.; et al. GC-MS Profiling and Biomedical Applications of Essential Oil of Euphorbia larica Boiss.: A New Report. Antioxidants 2023, 12, 662. https://doi.org/10.3390/antiox12030662
Shah M, Khan F, Ullah S, Mohanta TK, Khan A, Zainab R, Rafiq N, Ara H, Alam T, Rehman NU, et al. GC-MS Profiling and Biomedical Applications of Essential Oil of Euphorbia larica Boiss.: A New Report. Antioxidants. 2023; 12(3):662. https://doi.org/10.3390/antiox12030662
Chicago/Turabian StyleShah, Muddaser, Faizullah Khan, Saeed Ullah, Tapan Kumar Mohanta, Ajmal Khan, Rimsha Zainab, Naseem Rafiq, Hussan Ara, Tanveer Alam, Najeeb Ur Rehman, and et al. 2023. "GC-MS Profiling and Biomedical Applications of Essential Oil of Euphorbia larica Boiss.: A New Report" Antioxidants 12, no. 3: 662. https://doi.org/10.3390/antiox12030662
APA StyleShah, M., Khan, F., Ullah, S., Mohanta, T. K., Khan, A., Zainab, R., Rafiq, N., Ara, H., Alam, T., Rehman, N. U., & Al-Harrasi, A. (2023). GC-MS Profiling and Biomedical Applications of Essential Oil of Euphorbia larica Boiss.: A New Report. Antioxidants, 12(3), 662. https://doi.org/10.3390/antiox12030662