Release of High-Mobility Group Box-1 after a Raynaud’s Attack Leads to Fibroblast Activation and Interferon-γ Induced Protein-10 Production: Role in Systemic Sclerosis Pathogenesis
Abstract
:1. Introduction
2. Materials and Methods
- Patient involvement
- Three groups of study subjects have been involved in Raynaud’s attack induction study. The first group comprised 10 healthy controls with no history of RP. The second group comprised 10 PRP patients (primary Raynaud’s phenomenon with the absence of underlying SSc disease) while the third group was composed of 10 SSc patients with RP. All SSc patients met the American College of Rheumatology/European League Against Rheumatism 2013 (ACR/EULAR 2013) criteria [21]. The diagnosis of primary RP was confirmed by the treating physician and patients had no SSc-related autoantibodies and absence of aberrant nail-fold capillaries and digital ulcers.
- The independent cohort comprised two groups of sex- and age-matched study subjects: SSc patients (n = 20) and healthy controls (n = 20). This cohort (Cohort B) is completely independent of the induced Raynaud’s attack cohort (Cohort A).
- Photoelectric plethysmography (PPG) of the fingers (Raynaud’s induction)
- Enzyme-linked immunosorbent assay (ELISA)
- Dermal fibroblasts culture and treatment
- Reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) analysis
- Statistical analysis
3. Results
3.1. Patient Characteristics
- Original inclusion found 32 eligible subjects; however, we had to exclude two subjects due to the unavailability of PPG measurements. The clinical characteristics of the 30 study subjects can be found in Table 1. The median age was 43 years (18–73) and two-thirds of the subjects were females (HC = 7, PRP = 8, SSc = 5). Importantly, we were able to induce Raynaud attack in all PRP and SSc subjects but not in healthy controls. The premature ending of the cooling experiment due to unendurable pain was carried out in three PRP and seven SSc subjects.
- The independent cohort consisted of 40 subjects; SSc patients and age- and sex-matched healthy controls (50:50). The clinical characteristics of the study subjects can be found in Table 2. Logistic regression analysis showed that no confounders could have influenced the HMGB-1 or IP-10 measurements except for every smoker status (p = 0.057 and p = 0.43, respectively). To be more specific, the analysis showed that every smoker status could have significant independent effects on HMGB-1 measurement (p = 0.039). However, when correcting using the number of packyears, the analysis showed that smoking had no independent effects (p = 0.339) on HMGB-1 (p = 0.032) or IP-10 (p = 0.029) levels between groups.
Healthy Controls (HC) n = 10 | Primary Raynaud Phenomenon (PRP) n = 10 | Systemic Sclerosis (SSc) n = 10 | |
---|---|---|---|
Age (years), mean ±SD | 29.9 ± 2.7 | 47.8 ± 16.2 | 56.2 ± 11.5 |
Female gender, n | 7 | 8 | 5 |
Disease duration (years), median (IQR) | N/A | 8.0 (4.0–17.0) | 4.5 (3.0–6.3) |
Abnormal NCM pattern, n | 0 | 0 | 10 |
Positive autoantibodies, n | 0 | 0 | 8 |
Organ involvement, n | |||
Pulmonary | 0 | 0 | 0 |
Oesophageal | 0 | 0 | 3 |
Comorbidities | |||
Diabetes, n | 0 | 1 | 0 |
Hypertension, n | 0 | 1 | 2 |
Hypercholesteremia, n | 0 | 0 | 1 |
Creatinine, median (IQR) | 72.1 [66.5–77.6] | 72.0 [63.5–72.0] | 76.2 [63.5–88.6] |
eGFR, median (IQR) | 94.5 [90.6–114.8] | 79.3 [68.3–97.4] | 86.6 [74.1–98.5] |
History of Digital ulcers, n | 0 | 0 | 6 |
Relevant medication, n | |||
Immunosuppressants | |||
Plaquenil | 0 | 0 | 1 |
Mycophenolate mofetil | 0 | 0 | 1 |
Calcium channel blockers | |||
Nifedipine | 0 | 1 | 2 |
Vasodilators | |||
Iloprost | 0 | 0 | 2 |
Bosentan | 0 | 0 | 3 |
Other antihypertensives | 0 | 1 | 3 |
Lipid-lowering drugs | 0 | 0 | 1 |
Glucose-lowering drugs | 0 | 1 | 0 |
Anticoagulants | 0 | 1 | 2 |
Healthy Controls (n = 20) | SSc Patients (n = 20) | |
---|---|---|
Female, n (%) | 14 (70.0) | 13 (65.0) |
Age in years, median (IQR) | 52 (45–62) | 51 (44–58) |
Caucasian ethnicity, n (%) | 19 (95.0) | 18 (90.0) |
Smoker (ever), n (%) | 7 (35.0) | 15 (75.0) |
RP duration in years, median (IQR) | 8.5 (4.3–13.0) | |
Disease duration since first non-RP symptom in years, median (IQR) | 2.0 (1.0–7.8) | |
Organ involvement, n (%) | ||
Lung | 10 (50.0) | |
PAH | 1 (5.0) | |
ILD | 9 (45.0) | |
Gastrointestinal | 8 (40.0) |
3.2. Digital Perfusion Recovery Is Slower in SSc Patients after Raynaud’s Attack
3.3. Cold Stress in SSc Patients Leads to the Release of HMGB1
3.4. HMGB1 Stimulation of Dermal Fibroblasts Induce Inflammatory Gene and Protein Expression
3.5. HMGB1 and IP-10 Levels in SSc Patients (Independent Cohort)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Denton, C.P.; Khanna, D. Systemic sclerosis. Lancet 2017, 390, 1685–1699. [Google Scholar] [CrossRef] [PubMed]
- Walker, U.; Tyndall, A.; Czirjak, L.; Denton, C.; Farge-Bancel, D.; Kowal-Bielecka, O.; Muller-Ladner, U.; Bocelli-Tyndall, C.; Matucci-Cerinic, M. Clinical risk assessment of organ manifestations in systemic sclerosis: A report from the EULAR Scleroderma Trials and Research group database. Ann. Rheum. Dis. 2007, 66, 754–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Vries, D.; Kortekaas, K.A.; Tsikas, D.; Wijermars, L.G.M.; Van Noorden, C.J.F.; Suchy, M.-T.; Cobbaert, C.; Klautz, R.J.M.; Schaapherder, A.F.M.; Lindeman, J.H.N. Oxidative Damage in Clinical Ischemia/Reperfusion Injury: A Reappraisal. Antioxid. Redox Signal 2013, 19, 535–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gourdin, M.J.; Bree, B.; De Kock, M. The impact of ischaemia–reperfusion on the blood vessel. Eur. J. Anaesthesiol. 2009, 26, 537–547. [Google Scholar] [CrossRef]
- Abdulahad, D.; Westra, J.; Reefman, E.; Zuidersma, E.; Bijzet, J.; Limburg, P.; Kallenberg, C.; Bijl, M. High mobility group box1 (HMGB1) in relation to cutaneous inflammation in systemic lupus erythematosus (SLE). Lupus 2013, 22, 597–606. [Google Scholar] [CrossRef]
- Chen, R.; Kang, R.; Tang, D. The mechanism of HMGB1 secretion and release. Exp. Mol. Med. 2022, 54, 91–102. [Google Scholar] [CrossRef]
- Weber, D.J.; Allette, Y.M.; Wilkes, D.S.; White, F.A. The HMGB1-RAGE Inflammatory Pathway: Implications for Brain Injury-Induced Pulmonary Dysfunction. Antioxid. Redox Signal 2015, 23, 1316–1328. [Google Scholar] [CrossRef] [Green Version]
- Yoshizaki, A.; Komura, K.; Iwata, Y.; Ogawa, F.; Hara, T.; Muroi, E.; Takenaka, M.; Shimizu, K.; Hasegawa, M.; Fujimoto, M.; et al. Clinical significance of serum HMGB-1 and sRAGE levels in systemic sclerosis: Association with disease severity. J. Clin. Immunol. 2008, 29, 180–189. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, H.; Son, M. The immune tolerance role of the HMGB1-RAGE axis. Cells 2021, 10, 564. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S.Y.; Pribis, J.P.; Lotze, M.; Mollen, K.P.; Shapiro, R.; Loughran, P.; Scott, M.J.; Billiar, T.R. Signaling of High Mobility Group Box 1 (HMGB1) through Toll-like Receptor 4 in Macrophages Requires CD14. Mol. Med. 2013, 19, 88–98. [Google Scholar] [CrossRef]
- Frasca, L.; Lande, R. Toll-like receptors in mediating pathogenesis in systemic sclerosis. Clin. Exp. Immunol. 2020, 201, 14–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brkic, Z.; van Bon, L.; Cossu, M.; van Helden-Meeuwsen, C.G.; Vonk, M.C.; Knaapen, H.; Berg, W.V.D.; Dalm, V.; Van Daele, P.L.; Severino, A.; et al. The interferon type I signature is present in systemic sclerosis before overt fibrosis and might contribute to its pathogenesis through high BAFF gene expression and high collagen synthesis. Ann. Rheum. Dis. 2015, 75, 1567–1573. [Google Scholar] [CrossRef] [PubMed]
- McNab, F.; Mayer-Barber, K.; Sher, A.; Wack, A.; O’Garra, A. Type I interferons in infectious disease. Nat. Rev. Immunol. 2015, 15, 87–103. [Google Scholar] [CrossRef] [PubMed]
- Nagarsheth, N.; Wicha, M.S.; Zou, W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat. Rev. Immunol. 2017, 17, 559–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Ge, M.; Lu, S.; Shi, J.; Li, X.; Wang, M.; Huang, J.; Shao, Y.; Huang, Z.; Zhang, J.; et al. Pro-inflammatory effects of the Th1 chemokine CXCL10 in acquired aplastic anaemia. Cytokine 2017, 94, 45–51. [Google Scholar] [CrossRef]
- Kuo, P.T.; Zeng, Z.; Salim, N.; Mattarollo, S.; Wells, J.W.; Leggatt, G.R. The Role of CXCR3 and Its Chemokine Ligands in Skin Disease and Cancer. Front. Med. 2018, 5, 271. [Google Scholar] [CrossRef] [Green Version]
- Groom, J.R.; Luster, A.D. CXCR3 ligands: Redundant, collaborative and antagonistic functions. Immunol. Cell Biol. 2011, 89, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Antonelli, A.; Ferri, C.; Fallahi, P.; Ferrari, S.M.; Giuggioli, D.; Colaci, M.; Manfredi, A.; Frascerra, S.; Franzoni, F.; Galetta, F.; et al. CXCL10 (α) and CCL2 (β) chemokines in systemic sclerosis a longitudinal study. Rheumatology 2008, 47, 45–49. [Google Scholar] [CrossRef] [Green Version]
- Fujii, H.; Shimada, Y.; Hasegawa, M.; Takehara, K.; Sato, S. Serum levels of a Th1 chemoattractant IP-10 and Th2 chemoattractants, TARC and MDC, are elevated in patients with systemic sclerosis. J. Dermatol. Sci. 2004, 35, 43–51. [Google Scholar] [CrossRef]
- Abdulle, A.E.; Van Roon, A.M.; Smit, A.J.; Pasch, A.; Van Meurs, M.; Bootsma, H.; Bakker, S.J.L.; Said, Y.; Fernandez, B.; Feelisch, M.; et al. Rapid free thiol rebound is a physiological response following cold-induced vasoconstriction in healthy humans, primary Raynaud and systemic sclerosis. Physiol. Rep. 2019, 7, e14017. [Google Scholar] [CrossRef]
- van den Hoogen, F.; Khanna, D.; Fransen, J.; Johnson, S.R.; Baron, M.; Tyndall, A.; Matucci-Cerinic, M.; Naden, R.P.; Medsger, T.A., Jr.; Carreira, P.E.; et al. 2013 classification criteria for systemic sclerosis: An American College of Rheumatology/European League against Rheumatism collaborative initiative. Arthritis Rheum. 2013, 65, 2737–2747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Roon, A.M.; Smit, A.J.; Van Roon, A.M.; Bootsma, H.; Mulder, D.J. Digital ischaemia during cooling is independently related to nailfold capillaroscopic pattern in patients with Raynaud’s phenomenon. Rheumatology 2016, 55, 1083–1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suichies, H.; Aarnoudse, J.; Wouda, A.; Jentink, H.; De Mul, F.; Greve, J. Digital Blood Flow in Cooled and Contralateral Finger in Patients with Raynaud’s Phenomenon. Comparative Measurements Between Photoelectrical Plethysmography and Laser Doppler Flowmetry. Angiology 1992, 43, 134–141. [Google Scholar] [CrossRef]
- Wang, H.; Bloom, O.; Zhang, M.; Vishnubhakat, J.M.; Ombrellino, M.; Che, J.; Frazier, A.; Yang, H.; Ivanova, S.; Borovikova, L.; et al. HMG-1 as a Late Mediator of Endotoxin Lethality in Mice. Science 1999, 285, 248–251. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Tang, D.; Kang, R. Oxidative stress-mediated HMGB1 biology. Front. Physiol. 2015, 6, 93. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Hu, X.; Jiang, H. Nrf-2–HO-1–HMGB1 axis: An important therapeutic approach for protection against myocardial ischemia and reperfusion injury. Int. J. Cardiol. 2014, 172, 223–224. [Google Scholar] [CrossRef]
- Kavian, N.; Mehlal, S.; Jeljeli, M.; Saidu, N.E.B.; Nicco, C.; Cerles, O.; Chouzenoux, S.; Cauvet, A.; Camus, C.; Ait-Djoudi, M.; et al. The Nrf2-Antioxidant Response Element Signaling Pathway Controls Fibrosis and Autoimmunity in Scleroderma. Front. Immunol. 2018, 9, 1896. [Google Scholar] [CrossRef] [Green Version]
- Steen, V.D. The Many Faces of Scleroderma. Rheum. Dis. Clin. N. Am. 2008, 34, 1–15. [Google Scholar] [CrossRef]
- Clark, K.E.N.; Campochiaro, C.; Host, L.V.; Sari, A.; Harvey, J.; Denton, C.P.; Ong, V.H. Combinations of scleroderma hallmark autoantibodies associate with distinct clinical phenotypes. Sci. Rep. 2022, 12, 11212. [Google Scholar] [CrossRef]
- Raschi, E.; Privitera, D.; Bodio, C.; Lonati, P.A.; Borghi, M.O.; Ingegnoli, F.; Meroni, P.L.; Chighizola, C.B. Scleroderma-specific autoantibodies embedded in immune complexes mediate endothelial damage: An early event in the pathogenesis of systemic sclerosis. Thromb. Haemost. 2020, 22, 265. [Google Scholar] [CrossRef]
- Servettaz, A.; Goulvestre, C.; Kavian, N.; Nicco, C.; Guilpain, P.; Chéreau, C.; Vuiblet, V.; Guillevin, L.; Mouthon, L.; Weill, B.; et al. Selective Oxidation of DNA Topoisomerase 1 Induces Systemic Sclerosis in the Mouse. J. Immunol. 2009, 182, 5855–5864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, W.; Jiao, Y.; Cui, B.; Gao, X.; Xia, Y.; Zhao, Y. Immune complexes activate human endothelium involving the cell-signaling HMGB1-RAGE axis in the pathogenesis of lupus vasculitis. Lab. Investig. 2013, 93, 626–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frangogiannis, N.G. Transforming growth factor–β in tissue fibrosis. J. Exp. Med. 2020, 217, e20190103. [Google Scholar] [CrossRef]
- Rice, L.M.; Padilla, C.M.; McLaughlin, S.R.; Mathes, A.L.; Ziemek, J.; Goummih, S.; Nakerakanti, S.; York, M.; Farina, G.; Whitfield, M.L.; et al. Fresolimumab treatment decreases biomarkers and improves clinical symptoms in systemic sclerosis patients. J. Clin. Investig. 2015, 125, 2795–2807. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Suarez, J.S.; Minaai, M.; Li, S.; Gaudino, G.; Pass, H.I.; Carbone, M.; Yang, H. HMGB1 as a therapeutic target in disease. J. Cell Physiol. 2020, 236, 3406–3419. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Adwi, Y.; Atzeni, I.M.; Doornbos-van der Meer, B.; Abdulle, A.E.; van Roon, A.M.; Stel, A.; van Goor, H.; Smit, A.J.; Westra, J.; Mulder, D.J. Release of High-Mobility Group Box-1 after a Raynaud’s Attack Leads to Fibroblast Activation and Interferon-γ Induced Protein-10 Production: Role in Systemic Sclerosis Pathogenesis. Antioxidants 2023, 12, 794. https://doi.org/10.3390/antiox12040794
Al-Adwi Y, Atzeni IM, Doornbos-van der Meer B, Abdulle AE, van Roon AM, Stel A, van Goor H, Smit AJ, Westra J, Mulder DJ. Release of High-Mobility Group Box-1 after a Raynaud’s Attack Leads to Fibroblast Activation and Interferon-γ Induced Protein-10 Production: Role in Systemic Sclerosis Pathogenesis. Antioxidants. 2023; 12(4):794. https://doi.org/10.3390/antiox12040794
Chicago/Turabian StyleAl-Adwi, Yehya, Isabella M. Atzeni, Berber Doornbos-van der Meer, Amaal Eman Abdulle, Anniek M. van Roon, Alja Stel, Harry van Goor, Andries J. Smit, Johanna Westra, and Douwe J. Mulder. 2023. "Release of High-Mobility Group Box-1 after a Raynaud’s Attack Leads to Fibroblast Activation and Interferon-γ Induced Protein-10 Production: Role in Systemic Sclerosis Pathogenesis" Antioxidants 12, no. 4: 794. https://doi.org/10.3390/antiox12040794
APA StyleAl-Adwi, Y., Atzeni, I. M., Doornbos-van der Meer, B., Abdulle, A. E., van Roon, A. M., Stel, A., van Goor, H., Smit, A. J., Westra, J., & Mulder, D. J. (2023). Release of High-Mobility Group Box-1 after a Raynaud’s Attack Leads to Fibroblast Activation and Interferon-γ Induced Protein-10 Production: Role in Systemic Sclerosis Pathogenesis. Antioxidants, 12(4), 794. https://doi.org/10.3390/antiox12040794