Disturbances of the Lung Glutathione System in Adult Guinea Pigs Following Neonatal Vitamin C or Cysteine Deficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Procedures
2.2. Biochemical Assessments
2.2.1. GSH, GSSG and Ascorbate
2.2.2. RT-qPCR
2.2.3. Keap1, GR and GRX Protein Levels
2.2.4. Biotin Switch and Methionine Adenosyltransferase (MAT) Oxidation
2.2.5. Statistics
3. Results
3.1. Lung GSH and GSSG Levels and Redox Potential
3.2. Pulmonary Ascorbate
3.3. Lung Gene Expression
3.4. Protein Levels of Keap1, GR and GRX
3.5. Hepatic Methionine-Adenosyltransferase (MAT) Oxidation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohamed, I.; Elremaly, W.; Rouleau, T.; Lavoie, J.C. Ascorbylperoxide Contaminating Parenteral Nutrition Is Associated with Bronchopulmonary Dysplasia or Death in Extremely Preterm Infants. J. Parenter. Enter. Nutr. 2017, 41, 1023–1029. [Google Scholar] [CrossRef] [PubMed]
- Bui, D.S.; Perret, J.L.; Walters, E.H.; Lodge, C.J.; Bowatte, G.; Hamilton, G.S.; Thompson, B.R.; Frith, P.; Erbas, B.; Thomas, P.S.; et al. Association between Very to Moderate Preterm Births, Lung Function Deficits, and COPD at Age 53 Years: Analysis of a Prospective Cohort Study. Lancet Respir. Med. 2022, 10, 478–484. [Google Scholar] [CrossRef]
- Mowitz, M.E.; Gao, W.; Sipsma, H.; Zuckerman, P.; Wong, H.; Ayyagari, R.; Sarda, S.P.; Siffel, C. Long-Term Burden of Respiratory Complications Associated with Extreme Prematurity: An Analysis of US Medicaid Claims. Pediatr. Neonatol. 2022, 63, 503–511. [Google Scholar] [CrossRef]
- Ozsurekci, Y.; Aykac, K. Oxidative Stress Related Diseases in Newborns. Oxid. Med. Cell. Longev. 2016, 2016, 2768365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuyt, A.M.; Lavoie, J.C.; Mohamed, I.; Paquette, K.; Luu, T.M. Adult Consequences of Extremely Preterm Birth: Cardiovascular and Metabolic Diseases Risk Factors, Mechanisms, and Prevention Avenues. Clin. Perinatol. 2017, 44, 315–332. [Google Scholar] [CrossRef] [PubMed]
- Breij, L.M.; Kerkhof, G.F.; Hokken-Koelega, A.C.S. Risk for Nonalcoholic Fatty Liver Disease in Young Adults Born Preterm. Horm. Res. Paediatr. 2015, 84, 199–205. [Google Scholar] [CrossRef]
- Teixeira, V.; Mohamed, I.; Lavoie, J.-C. Neonatal Vitamin C and Cysteine Deficiencies Program Adult Hepatic Glutathione and Specific Activities of Glucokinase, Phosphofructokinase, and Acetyl-CoA Carboxylase in Guinea Pigs’ Livers. Antioxidants 2021, 10, 953. [Google Scholar] [CrossRef]
- Parkinson, J.R.C.; Hyde, M.J.; Gale, C.; Santhakumaran, S.; Modi, N. Preterm Birth and the Metabolic Syndrome in Adult Life: A Systematic Review and Meta-Analysis. Pediatrics 2013, 131, e1240–e1263. [Google Scholar] [CrossRef] [Green Version]
- Ravizzoni Dartora, D.; Flahault, A.; Pontes, C.N.R.; He, Y.; Deprez, A.; Cloutier, A.; Cagnone, G.; Gaub, P.; Altit, G.; Bigras, J.-L.; et al. Cardiac Left Ventricle Mitochondrial Dysfunction After Neonatal Exposure to Hyperoxia: Relevance for Cardiomyopathy After Preterm Birth. Hypertension 2021, 79, 575–587. [Google Scholar] [CrossRef]
- Flahault, A.; Paquette, K.; Fernandes, R.O.; Delfrate, J.; Cloutier, A.; Henderson, M.; Lavoie, J.-C.; Mâsse, B.; Nuyt, A.M.; Luu, T.M.; et al. Increased Incidence but Lack of Association Between Cardiovascular Risk Factors in Adults Born Preterm. Hypertension 2020, 75, 796–805. [Google Scholar] [CrossRef]
- Parkinson, J.R.C.; Emsley, R.; Adkins, J.L.T.; Longford, N.; Ozanne, S.E.; Holmes, E.; Modi, N. Clinical and Molecular Evidence of Accelerated Ageing Following Very Preterm Birth. Pediatr. Res. 2020, 87, 1005–1010. [Google Scholar] [CrossRef]
- Kirkham, P.A.; Barnes, P.J. Oxidative Stress in COPD. Chest 2013, 144, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Knafo, L.; Chessex, P.; Rouleau, T.; Lavoie, J.C. Association between Hydrogen Peroxide-Dependent Byproducts of Ascorbic Acid and Increased Hepatic Acetyl-CoA Carboxylase Activity. Clin. Chem. 2005, 51, 1462–1471. [Google Scholar] [CrossRef] [PubMed]
- Laborie, S.; Lavoie, J.C.; Chessex, P. Increased Urinary Peroxides in Newborn Infants Receiving Parenteral Nutrition Exposed to Light. J. Pediatr. 2000, 136, 628–632. [Google Scholar] [CrossRef] [PubMed]
- Laborie, S.; Lavoie, J.-C.; Pineault, M.; Chessex, P. Contribution of Multivitamins, Air, and Light in the Generation of Peroxides in Adult and Neonatal Parenteral Nutrition Solutions. Ann. Pharmacother. 2000, 34, 440–445. [Google Scholar] [CrossRef]
- Lavoie, J.C.; Rouleau, T.; Tsopmo, A.; Friel, J.; Chessex, P. Influence of Lung Oxidant and Antioxidant Status on Alveolarization: Role of Light-Exposed Total Parenteral Nutrition. Free Radic. Biol. Med. 2008, 45, 572–577. [Google Scholar] [CrossRef]
- Elremaly, W.; Rouleau, T.; Lavoie, J.C. Inhibition of Hepatic Methionine Adenosyltransferase by Peroxides Contaminating Parenteral Nutrition Leads to a Lower Level of Glutathione in Newborn Guinea Pigs. Free Radic. Biol. Med. 2012, 53, 2250–2255. [Google Scholar] [CrossRef]
- Pajares, M.A.; Durán, C.; Corrales, F.; Pliego, M.M.; Mato, J.M. Modulation of Rat Liver S-Adenosylmethionine Synthetase Activity by Glutathione. J. Biol. Chem. 1992, 267, 17598–17605. [Google Scholar] [CrossRef]
- Beatty, P.; Reed, D.J. Influence of Cysteine upon the Glutathione Status of Isolated Rat Hepatocytes. Biochem. Pharmacol. 1981, 30, 1227–1230. [Google Scholar] [CrossRef]
- Lavoie, J.C.; Rouleau, T.; Truttmann, A.C.; Chessex, P. Postnatal Gender-Dependent Maturation of Cellular Cysteine Uptake. Free Radic. Res. 2002, 36, 811–817. [Google Scholar] [CrossRef]
- Mungala Lengo, A.; Guiraut, C.; Mohamed, I.; Lavoie, J.-C. Relationship between Redox Potential of Glutathione and DNA Methylation Level in Liver of Newborn Guinea Pigs. Epigenetics 2020, 15, 1348–1360. [Google Scholar] [CrossRef]
- Niu, Y.; Desmarais, T.L.; Tong, Z.; Yao, Y.; Costa, M. Oxidative Stress Alters Global Histone Modification and DNA Methylation. Free Radic. Biol. Med. 2015, 82, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Turcot, V.; Rouleau, T.; Tsopmo, A.; Germain, N.; Potvin, L.; Nuyt, A.M.; Lavoie, J.C. Long-Term Impact of an Antioxidant-Deficient Neonatal Diet on Lipid and Glucose Metabolism. Free Radic. Biol. Med. 2009, 47, 275–282. [Google Scholar] [CrossRef]
- Maghdessian, R.; Côté, F.; Rouleau, T.; Ouadda, A.B.D.; Levy, É.; Lavoie, J.C. Ascorbylperoxide Contaminating Parenteral Nutrition Perturbs the Lipid Metabolism in Newborn Guinea Pig. J. Pharmacol. Exp. Ther. 2010, 334, 278–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teixeira, V.; Guiraut, C.; Mohamed, I.; Lavoie, J.-C. Neonatal Parenteral Nutrition Affects the Metabolic Flow of Glucose in Newborn and Adult Male Hartley Guinea Pigs’ Liver. J. Dev. Orig. Health Dis. 2021, 12, 484–495. [Google Scholar] [CrossRef] [PubMed]
- Jaffrey, S.R.; Snyder, S.H. The Biotin Switch Method for the Detection of S -Nitrosylated Proteins. Sci. STKE 2001, 2001, pl1. [Google Scholar] [CrossRef] [PubMed]
- Lavoie, J.C.; Chessex, P.; Rouleau, T.; Tsopmo, A.; Friel, J. Shielding Parenteral Multivitamins from Light Increases Vitamin A and E Concentration in Lung of Newborn Guinea Pigs. Clin. Nutr. 2007, 26, 341–347. [Google Scholar] [CrossRef]
- Figueiredo-Freitas, C.; Dulce, R.A.; Foster, M.W.; Liang, J.; Yamashita, A.M.S.; Lima-Rosa, F.L.; Thompson, J.W.; Moseley, M.A.; Hare, J.M.; Nogueira, L.; et al. S-Nitrosylation of Sarcomeric Proteins Depresses Myofilament Ca2+)Sensitivity in Intact Cardiomyocytes. Antioxid. Redox Signal. 2015, 23, 1017–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujii, J.; Osaki, T.; Bo, T. Ascorbate Is a Primary Antioxidant in Mammals. Molecules 2022, 27, 6187. [Google Scholar] [CrossRef]
- Pérez-Mato, I.; Castro, C.; Ruiz, F.A.; Corrales, F.J.; Mato, J.M. Methionine Adenosyltransferase S-Nitrosylation Is Regulated by the Basic and Acidic Amino Acids Surrounding the Target Thiol. J. Biol. Chem. 1999, 274, 17075–17079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindermayr, C.; Saalbach, G.; Bahnweg, G.; Durner, J. Differential Inhibition of Arabidopsis Methionine Adenosyltransferases by Protein S-Nitrosylation. J. Biol. Chem. 2006, 281, 4285–4291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mårtensson, J.; Jain, A.; Frayer, W.; Meister, A. Glutathione Metabolism in the Lung: Inhibition of Its Synthesis Leads to Lamellar Body and Mitochondrial Defects. Proc. Natl. Acad. Sci. USA 1989, 86, 5296–5300. [Google Scholar] [CrossRef] [Green Version]
- Griffith, O.W.; Meister, A. Glutathione: Interorgan Translocation, Turnover, and Metabolism. Proc. Natl. Acad. Sci. USA 1979, 76, 5606–5610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kretzschmar, M.; Pfeifer, U.; Machnik, G.; Klinger, W. Glutathione Homeostasis and Turnover in the Totally Hepatectomized Rat: Evidence for a High Glutathione Export Capacity of Extrahepatic Tissues. Exp. Toxicol. Pathol. 1992, 44, 273–281. [Google Scholar] [CrossRef]
- Tebay, L.E.; Robertson, H.; Durant, S.T.; Vitale, S.R.; Penning, T.M.; Dinkova-Kostova, A.T.; Hayes, J.D. Mechanisms of Activation of the Transcription Factor Nrf2 by Redox Stressors, Nutrient Cues, and Energy Status and the Pathways through Which It Attenuates Degenerative Disease. Free Radic. Biol. Med. 2015, 88, 108–146. [Google Scholar] [CrossRef] [Green Version]
- Ogata, F.T.; Branco, V.; Vale, F.F.; Coppo, L. Glutaredoxin: Discovery, Redox Defense and Much More. Redox Biol. 2021, 43, 101975. [Google Scholar] [CrossRef]
- Hanschmann, E.-M.; Berndt, C.; Hecker, C.; Garn, H.; Bertrams, W.; Lillig, C.H.; Hudemann, C. Glutaredoxin 2 Reduces Asthma-Like Acute Airway Inflammation in Mice. Front. Immunol. 2020, 11, 561724. [Google Scholar] [CrossRef]
- Chia, S.B.; Nolin, J.D.; Aboushousha, R.; Erikson, C.; Irvin, C.G.; Poynter, M.E.; van der Velden, J.; Taatjes, D.J.; van der Vliet, A.; Anathy, V.; et al. Glutaredoxin Deficiency Promotes Activation of the Transforming Growth Factor Beta Pathway in Airway Epithelial Cells, in Association with Fibrotic Airway Remodeling. Redox Biol. 2020, 37, 101720. [Google Scholar] [CrossRef]
- Nolin, J.D.; Tully, J.E.; Hoffman, S.M.; Guala, A.S.; van der Velden, J.L.; Poynter, M.E.; van der Vliet, A.; Anathy, V.; Janssen-Heininger, Y.M.W. The Glutaredoxin/S-Glutathionylation Axis Regulates Interleukin-17A-Induced Proinflammatory Responses in Lung Epithelial Cells in Association with S-Glutathionylation of Nuclear Factor ΚB Family Proteins. Free Radic. Biol. Med. 2014, 73, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Cahill, L.; Corey, P.N.; El-Sohemy, A. Vitamin C Deficiency in a Population of Young Canadian Adults. Am. J. Epidemiol. 2009, 170, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Schleicher, R.L.; Carroll, M.D.; Ford, E.S.; Lacher, D.A. Serum Vitamin C and the Prevalence of Vitamin C Deficiency in the United States: 2003-2004 National Health and Nutrition Examination Survey (NHANES). Am. J. Clin. Nutr. 2009, 90, 1252–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellis, P.J.I.; Morris, T.J.; Skinner, B.M.; Sargent, C.A.; Vickers, M.H.; Gluckman, P.D.; Gilmour, S.; Affara, N.A. Thrifty metabolic programming in rats is induced by both maternal undernutrition and postnatal leptin treatment, but masked in the presence of both: Implications for models of developmental programming. BMC Genom. 2014, 15, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elremaly, W.; Mohamed, I.; Mialet-Marty, T.; Rouleau, T.; Lavoie, J.C. Ascorbylperoxide from Parenteral Nutrition Induces an Increase of Redox Potential of Glutathione and Loss of Alveoli in Newborn Guinea Pig Lungs. Redox Biol. 2014, 2, 725–731. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, I.; Elremaly, W.; Rouleau, T.; Lavoie, J.C. Oxygen and Parenteral Nutrition Two Main Oxidants for Extremely Preterm Infants: “It All Adds Up”. J. Neonatal-Perinat. Med. 2015, 8, 189–197. [Google Scholar] [CrossRef]
- Wang, H.; Li, F.; Feng, J.; Wang, J.; Liu, X. The Effects of S-Nitrosylation-Induced PPARγ/SFRP5 Pathway Inhibition on the Conversion of Non-Alcoholic Fatty Liver to Non-Alcoholic Steatohepatitis. Ann. Transl. Med. 2021, 9, 684. [Google Scholar] [CrossRef]
- Tsukahara, Y.; Ferran, B.; Minetti, E.T.; Chong, B.S.H.; Gower, A.C.; Bachschmid, M.M.; Matsui, R. Administration of Glutaredoxin-1 Attenuates Liver Fibrosis Caused by Aging and Non-Alcoholic Steatohepatitis. Antioxidants 2022, 11, 867. [Google Scholar] [CrossRef]
- Scalcon, V.; Folda, A.; Lupo, M.G.; Tonolo, F.; Pei, N.; Battisti, I.; Ferri, N.; Arrigoni, G.; Bindoli, A.; Holmgren, A.; et al. Mitochondrial Depletion of Glutaredoxin 2 Induces Metabolic Dysfunction-Associated Fatty Liver Disease in Mice. Redox Biol. 2022, 51, 102277. [Google Scholar] [CrossRef]
- Qian, Q.; Zhang, Z.; Orwig, A.; Chen, S.; Ding, W.-X.; Xu, Y.; Kunz, R.C.; Lind, N.R.L.; Stamler, J.S.; Yang, L. S-Nitrosoglutathione Reductase Dysfunction Contributes to Obesity-Associated Hepatic Insulin Resistance via Regulating Autophagy. Diabetes 2018, 67, 193–207. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Sheng, J.; Fan, Y.; Zhu, X.; Tao, Q.; Liu, K.; Hu, C.; Ruan, L.; Yang, L.; Tao, F.; et al. The Effect of Chinese Famine Exposure in Early Life on Dietary Patterns and Chronic Diseases of Adults. Public Health Nutr. 2019, 22, 603–613. [Google Scholar] [CrossRef]
- Xin, X.; Wang, W.; Xu, H.; Li, Z.; Zhang, D. Exposure to Chinese Famine in Early Life and the Risk of Dyslipidemia in Adulthood. Eur. J. Nutr. 2019, 58, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Painter, R.C.; Roseboom, T.J.; Bleker, O.P. Prenatal Exposure to the Dutch Famine and Disease in Later Life: An Overview. Reprod. Toxicol. 2005, 20, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J.P.; Osmond, C. Infant Mortality, Childhood Nutrition, and Ischaemic Heart Disease in England and Wales. Lancet 1986, 327, 1077–1081. [Google Scholar] [CrossRef]
- Lech, M.A.; Leśkiewicz, M.; Kamińska, K.; Rogóż, Z.; Lorenc-Koci, E. Glutathione Deficiency during Early Postnatal Development Causes Schizophrenia-Like Symptoms and a Reduction in BDNF Levels in the Cortex and Hippocampus of Adult Sprague–Dawley Rats. Int. J. Mol. Sci. 2021, 22, 6171. [Google Scholar] [CrossRef]
- Chen, Y.; Curran, C.P.; Nebert, D.W.; Patel, K.V.; Williams, M.T.; Vorhees, C.V. Effect of Vitamin C Deficiency during Postnatal Development on Adult Behavior: Functional Phenotype of Gulo(−/−) Knockout Mice. Genes Brain Behav. 2012, 11, 269–277. [Google Scholar] [CrossRef]
- Legault, L.M.; Doiron, K.; Lemieux, A.; Caron, M.; Chan, D.; Lopes, F.L.; Bourque, G.; Sinnett, D.; McGraw, S. Developmental Genome-Wide DNA Methylation Asymmetry between Mouse Placenta and Embryo. Epigenetics 2020, 15, 800–815. [Google Scholar] [CrossRef] [PubMed]
- Langley-Evans, S.C.; Welham, S.J.M.; Jackson, A.A. Fetal Exposure to a Maternal Low Protein Diet Impairs Nephrogenesis and Promotes Hypertension in the Rat. Life Sci. 1999, 64, 965–974. [Google Scholar] [CrossRef] [PubMed]
Gene and Ensemble Code | Coded Protein | Primer | Primer Sequence | Concentration Used (nM) |
---|---|---|---|---|
Nfe2l2 (ENSCPOG00000031261) | Nuclear factor erythroid 2–related factor 2 (Nrf2) | Forward | GCTAGATGAAGAGACAGGGGA | 500 |
Reverse | ACAAATGGGAATGTTTCTGCCA | |||
Keap1 (ENSCPOG00000038105) | Kelch-like ECH-associated protein 1 (Keap1) | Forward | TGCTACAACCCCATGACCAA | 400 |
Reverse | ACCAAGTGCCACTCGTCC | |||
Gclc (ENSCPOG00000008314) | Glutamate—cysteine ligase catalytic subunit (GCLC) | Forward | TGGGGAGAAGTACAACGACA | 400 |
Reverse | GGCATCATCCAGGTCGATCT | |||
Gclm (ENSCPOG00000037468) | Glutamate—cysteine ligase modifier subunit (GCLM) | Forward | CCTAGACAAAACACAGTTGGAGC | 300 |
Reverse | AGCTTCTTGGAAACTTGCTTCA | |||
Gsr (ENSCPOG00000005290) | Glutathione-disulfide reductase (GR) | Forward | ATGTTGACTGCCTGCTCTGG | 300 |
Reverse | TGCGTAGATGCCTTTGACACT | |||
Glrx (ENSCPOG00000040776) | Glutaredoxin (GRX) | Forward | GATCCTCAGTCAGTTGCCCT | 500 |
Reverse | CGATGCAGTCTCTCCCGATG | |||
Vcl (ENSCPOG00000005058) | Vinculin (VCL) | Forward | ACCACAACTCCCATCAAGCT | 500 |
Reverse | ACCACAACTCCCATCAAGCT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teixeira, V.; Mohamed, I.; Lavoie, J.-C. Disturbances of the Lung Glutathione System in Adult Guinea Pigs Following Neonatal Vitamin C or Cysteine Deficiency. Antioxidants 2023, 12, 1361. https://doi.org/10.3390/antiox12071361
Teixeira V, Mohamed I, Lavoie J-C. Disturbances of the Lung Glutathione System in Adult Guinea Pigs Following Neonatal Vitamin C or Cysteine Deficiency. Antioxidants. 2023; 12(7):1361. https://doi.org/10.3390/antiox12071361
Chicago/Turabian StyleTeixeira, Vitor, Ibrahim Mohamed, and Jean-Claude Lavoie. 2023. "Disturbances of the Lung Glutathione System in Adult Guinea Pigs Following Neonatal Vitamin C or Cysteine Deficiency" Antioxidants 12, no. 7: 1361. https://doi.org/10.3390/antiox12071361
APA StyleTeixeira, V., Mohamed, I., & Lavoie, J. -C. (2023). Disturbances of the Lung Glutathione System in Adult Guinea Pigs Following Neonatal Vitamin C or Cysteine Deficiency. Antioxidants, 12(7), 1361. https://doi.org/10.3390/antiox12071361