Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (108)

Search Parameters:
Keywords = glutaredoxin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3906 KB  
Article
Systematic Survey and Expression Analysis of the Glutaredoxin Gene Family in Capsicum annuum Under Hypoxia Stress
by Yixian Guo, Sirui Ma, Ziying Li, Yang Yu, Di Liu, Tianyi Zhang, Ruiwen Hu, Demian Zhou, Ying Zhou, Shi Xiao, Qinfang Chen and Lujun Yu
Biology 2025, 14(9), 1106; https://doi.org/10.3390/biology14091106 - 22 Aug 2025
Viewed by 279
Abstract
Glutaredoxins (GRXs) are important proteins in plant development and environmental adaptation. Despite extensive characterization of GRX gene family members in various plant species, limited research has been conducted on the identification and functional analysis of GRXs in the economically important Solanaceae family pepper [...] Read more.
Glutaredoxins (GRXs) are important proteins in plant development and environmental adaptation. Despite extensive characterization of GRX gene family members in various plant species, limited research has been conducted on the identification and functional analysis of GRXs in the economically important Solanaceae family pepper (Capsicum annuum). This study identified 35 typical GRX genes in pepper and categorized them into three distinct groups: CC-, CGFS-, and CPYC-type, based on the phylogenetic topology, which was consistent with motif or domain arrangement, and gene structures. Furthermore, the determination of ω values indicated that purifying selection was a significant factor in the evolutionary diversification of GRX genes in the eudicot family. Intra-genome investigations demonstrated that both segmental and tandem duplications were involved in the expansion of CaGRX genes. Moreover, examination of collinearity within the Solanaceae family revealed 53 orthologous pairs of GRX genes. Additionally, prediction of cis-regulatory elements and analysis of expression profiles revealed the significant involvement of GRX genes in plant stress response, specifically in relation to hypoxia and submergence. Subsequent subcellular localization examination suggested CaGRX may be involved in the endomembrane system and regulation of oxidative balance in plants. Collectively, these findings enhance our comprehension of the structural and functional properties of GRX in pepper, and establish a groundwork for subsequent functional characterization of the CaGRX genes. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

23 pages, 4653 KB  
Article
Zinc-Induced Folding and Solution Structure of the Eponymous Novel Zinc Finger from the ZC4H2 Protein
by Rilee E. Harris, Antonio J. Rua and Andrei T. Alexandrescu
Biomolecules 2025, 15(8), 1091; https://doi.org/10.3390/biom15081091 - 28 Jul 2025
Viewed by 470
Abstract
The ZC4H2 gene is the site of congenital mutations linked to neurodevelopmental and musculoskeletal pathologies collectively termed ZARD (ZC4H2-Associated Rare Disorders). ZC4H2 consists of a coiled coil and a single novel zinc finger with four cysteines and two histidines, from which the protein [...] Read more.
The ZC4H2 gene is the site of congenital mutations linked to neurodevelopmental and musculoskeletal pathologies collectively termed ZARD (ZC4H2-Associated Rare Disorders). ZC4H2 consists of a coiled coil and a single novel zinc finger with four cysteines and two histidines, from which the protein obtains its name. Alpha Fold 3 confidently predicts a structure for the zinc finger but also for similarly sized random sequences, providing equivocal information on its folding status. We show using synthetic peptide fragments that the zinc finger of ZC4H2 is genuine and folds upon binding a zinc ion with picomolar affinity. NMR pH titration of histidines and UV–Vis of a cobalt complex of the peptide indicate its four cysteines coordinate zinc, while two histidines do not participate in binding. The experimental NMR structure of the zinc finger has a novel structural motif similar to RANBP2 zinc fingers, in which two orthogonal hairpins each contribute two cysteines to coordinate zinc. Most of the nine ZARD mutations that occur in the ZC4H2 zinc finger are likely to perturb this structure. While the ZC4H2 zinc finger shares the folding motif and cysteine-ligand spacing of the RANBP2 family, it is missing key substrate-binding residues. Unlike the NZF branch of the RANBP2 family, the ZC4H2 zinc finger does not bind ubiquitin. Since the ZC4H2 zinc finger occurs in a single copy, it is also unlikely to bind DNA. Based on sequence homology to the VAB-23 protein, the ZC4H2 zinc finger may bind RNA of a currently undetermined sequence or have alternative functions. Full article
(This article belongs to the Special Issue Functional Peptides and Their Interactions (3rd Edition))
Show Figures

Figure 1

20 pages, 1227 KB  
Review
Oxidative Stress Defense Module in Lung Cancers: Molecular Pathways and Therapeutic Approaches
by Eunsun Lee and Jeong Hee Hong
Antioxidants 2025, 14(7), 857; https://doi.org/10.3390/antiox14070857 - 13 Jul 2025
Viewed by 793
Abstract
The regulation of oxidative stress is an effective strategy for treating cancers. Therapeutic strategies for modulating an undesirable redox balance against cancers have included the enhancement of oxidative components, reducing the action of antioxidant systems, and the combined application of radiation and redox-modulating [...] Read more.
The regulation of oxidative stress is an effective strategy for treating cancers. Therapeutic strategies for modulating an undesirable redox balance against cancers have included the enhancement of oxidative components, reducing the action of antioxidant systems, and the combined application of radiation and redox-modulating drugs. A precise understanding of redox regulation is required to treat different kinds of cancer. This review focuses on the redox regulation and oxidative stress defense systems of lung cancers. Thus, we highlighted several enzymatic antioxidant components, such as superoxide dismutase, catalase, heme oxygenase-1, peroxiredoxin, glutaredoxin, thioredoxin, thioredoxin reductase, glutathione peroxidase, and antioxidant components, including glutathione, nuclear factor erythroid 2–related factor 2, 8-oxo-7,8-dihydro-2′-deoxyguanosine, and mitochondrial citrate carrier SLC25A1, based on PubMed and Scopus-indexed literature. Understanding the oxidative stress defense system in lung cancer would be beneficial for developing and expanding therapeutic strategies, such as drug development, drug design, and advanced delivery platforms. Full article
Show Figures

Figure 1

20 pages, 1787 KB  
Article
HSP70 Modulators for the Correction of Cognitive, Mnemonic, and Behavioral Disorders After Prenatal Hypoxia
by Olena Aliyeva, Igor F. Belenichev, Ivan Bilai, Iryna Duiun, Lyudmyla Makyeyeva, Valentyn Oksenych and Oleksandr Kamyshnyi
Biomedicines 2025, 13(4), 982; https://doi.org/10.3390/biomedicines13040982 - 17 Apr 2025
Viewed by 706
Abstract
Background/Objectives: Prenatal hypoxia (PH) is a leading cause of nervous system disorders in early childhood and subsequently leads to a decline in the cognitive and mnemonic functions of the central nervous system (such as memory impairment, reduced learning ability, and information processing). It [...] Read more.
Background/Objectives: Prenatal hypoxia (PH) is a leading cause of nervous system disorders in early childhood and subsequently leads to a decline in the cognitive and mnemonic functions of the central nervous system (such as memory impairment, reduced learning ability, and information processing). It also increases anxiety and the risk of brain disorders in adulthood. Compensatory–adaptive mechanisms of the mother–placenta–fetus system, which enhance the fetus’s CNS resilience, are known, including the activation of endogenous neuroprotection in response to hypoxic brain injury through the pharmacological modulation of HSP70. Methods: To evaluate the effect of HSP70 modulators—Cerebrocurin, Angiolin, Tamoxifen, Glutaredoxin, Thiotriazoline, and HSF-1 (heat shock factor 1 protein), as well as Mildronate and Mexidol—on the motor skills, exploratory behaviors, psycho-emotional activities, learning, and memories of offspring after PH. Experimental PH was induced by daily intraperitoneal injections of sodium nitrite solution into pregnant female rats from the 16th to the 21st day of pregnancy at a dose of 50 mg/kg. The newborns received intraperitoneal injections of Angiolin (50 mg/kg), Thiotriazoline (50 mg/kg), Mexidol (100 mg/kg), Cerebrocurin (150 µL/kg), L-arginine (200 mg/kg), Glutaredoxin (200 µg/kg), HSF-1 (50 mg/kg), or Mildronate (50 mg/kg) for 30 days. At 1 month, the rats were tested in the open field test, and at 2 months, they were trained and tested for working and spatial memory in the radial maze. Results: Modeling PH led to persistent impairments in exploratory activity, psycho-emotional behavior, and a decrease in the cognitive–mnestic functions of the CNS. It was found that Angiolin and Cerebrocurin had the most pronounced effects on the indicators of exploratory activity and psycho-emotional status in 1-month-old animals after PH. They also exhibited the most significant cognitive-enhancing and memory-supporting effects during the training and evaluation of skill retention in the maze in 2-month-old offspring after PH. Conclusions: for the first time, we obtained experimental data on the effects of HSP70 modulators on exploratory activity, psycho-emotional behavior, and cognitive–mnestic functions of the central nervous system in offspring following intrauterine hypoxia. Based on the results of this study, we identified the pharmacological agents Angiolin and Cerebrocurin as promising neuroprotective agents after perinatal hypoxia. Full article
Show Figures

Figure 1

13 pages, 1205 KB  
Review
Dual Roles of Reducing Systems in Protein Persulfidation and Depersulfidation
by Zhichao Liu, Nicolas Rouhier and Jérémy Couturier
Antioxidants 2025, 14(1), 101; https://doi.org/10.3390/antiox14010101 - 16 Jan 2025
Cited by 3 | Viewed by 1696
Abstract
The oxidative modification of specific cysteine residues to persulfides is thought to be the main way by which hydrogen sulfide (H2S) exerts its biological and signaling functions. Therefore, protein persulfidation represents an important thiol-switching mechanism as other reversible redox post-translational modifications. [...] Read more.
The oxidative modification of specific cysteine residues to persulfides is thought to be the main way by which hydrogen sulfide (H2S) exerts its biological and signaling functions. Therefore, protein persulfidation represents an important thiol-switching mechanism as other reversible redox post-translational modifications. Considering their reductase activity but also their connections with proteins that generate H2S and its related molecules, the glutaredoxin (GRX) and thioredoxin (TRX)-reducing systems have potential dual roles in both protein persulfidation and depersulfidation. In this review, we will first focus on recent advances describing the physiological pathways leading to protein persulfidation before discussing the dual roles of the physiological TRX and glutathione/GRX-reducing systems in protein persulfidation/depersulfidation. Full article
(This article belongs to the Section ROS, RNS and RSS)
Show Figures

Figure 1

17 pages, 2352 KB  
Article
Ochratoxin A Degradation and Stress Response Mechanism of Brevundimonas naejangsanensis ML17 Determined by Transcriptomic Analysis
by Zitong Zhao, Zehui Niu and Zhihong Liang
Foods 2024, 13(23), 3732; https://doi.org/10.3390/foods13233732 - 21 Nov 2024
Viewed by 1417
Abstract
Ochratoxin A (OTA) is a naturally occurring mycotoxin mainly produced by certain species of Aspergillus and Penicillium and is a serious threat to human health and food safety. Previous studies showed that Brevundimonas naejangsanensis ML17 can completely degrade 1 μg/mL of OTA. The [...] Read more.
Ochratoxin A (OTA) is a naturally occurring mycotoxin mainly produced by certain species of Aspergillus and Penicillium and is a serious threat to human health and food safety. Previous studies showed that Brevundimonas naejangsanensis ML17 can completely degrade 1 μg/mL of OTA. The aim of this study was to investigate the degradation effect of ML17 at different concentrations of OTA, and specifically, to investigate the mechanism of OTA degradation by ML17. The growth of ML17 was not affected by exposure to 6 μg/mL OTA within 24 h. ML17 could almost completely degrade 12 μg/mL of OTA within 36 h, converting it into the non-toxic OTα and L-phenylalanine. Transcriptomic analysis showed that 275 genes were upregulated, whereas three genes were downregulated in ML17 under the stress of 1 μg/mL OTA. Functional enrichment analysis showed that exposure to OTA enhanced translation, amide and peptide biosynthesis and metabolism, promoted oxidative phosphorylation, and increased ATP production. Further analysis revealed that, when exposed to OTA, ML17 exerted a stress-protective effect by synthesizing large amounts of heat shock proteins, which contributed to the correct folding of proteins. Notably, genes related to antioxidant activity, such as peroxiredoxin, superoxide dismutase, and glutaredoxin 3, were significantly upregulated, indicating that ML17 can resist the toxic effects of OTA through adjusting its metabolic processes, and the enzyme-coding gene0095, having OTA degradation activity, was found to be upregulated. This suggests that ML17 can achieve OTA degradation by regulating its metabolism, upregulating its antioxidant system, and upregulating enzyme-encoding genes with OTA degradation activity. Our work provides a theoretical reference for clarifying the mechanism of OTA degradation by ML17. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

17 pages, 5213 KB  
Article
A CC-Type Glutaredoxins GRX480 Functions in Cadmium Tolerance by Maintaining Redox Homeostasis in Arabidopsis
by Ying-Rui Li, Wei Cai, Ya-Xuan Zhang, Ning-Xin Zhang, Qiao-Ling Huang, Ying-Tang Lu and Ting-Ting Yuan
Int. J. Mol. Sci. 2024, 25(21), 11455; https://doi.org/10.3390/ijms252111455 - 25 Oct 2024
Viewed by 1249
Abstract
Cadmium (Cd) toxicity causes oxidative stress damage in plant cells. Glutaredoxins (GRXs), a type of small oxidoreductase, play a crucial role in modulating thiol redox states. However, whether GRXs act in Cd stress remains to be identified. Here, we reveal that Arabidopsis GRX480, [...] Read more.
Cadmium (Cd) toxicity causes oxidative stress damage in plant cells. Glutaredoxins (GRXs), a type of small oxidoreductase, play a crucial role in modulating thiol redox states. However, whether GRXs act in Cd stress remains to be identified. Here, we reveal that Arabidopsis GRX480, a member of the CC-type family, enhances plant Cd stress tolerance. The GRX480 mutants exhibit enhanced sensitivity to Cd stress, manifested by shortened root, reduced biomass, lower chlorophyll and proline levels, and decreased photosynthetic efficiency compared with the wild type. The Cd concentration in GRX480 mutants is higher than the wild type, resulting from the inhibition of Cd efflux and transport genes transcription. Lower levels of GSH were detected in Cd-treated GRX480 mutants than in the wild type, indicating that GRX480 regulates plant Cd tolerance by influencing the balance between GSH and GSSG. Furthermore, the hyperaccumulation of reactive oxygen species (ROS) is associated with decreased expression of H2O2 scavenging genes in Cd-treated GRX480 mutants. Additionally, more toxic reactive carbonyl species (RCS), produced during oxidative stress, accumulate in Cd-treated GRX480 mutants than in wild type. Overall, our study establishes a critical role of GRX480 in response to Cd stress, highlighting its multifaceted contributions to detoxification and the maintenance of redox homeostasis. Full article
(This article belongs to the Special Issue Advances in Plant Genomics and Genetics)
Show Figures

Figure 1

12 pages, 3965 KB  
Review
Oxidative Stress, Glutaredoxins, and Their Therapeutic Potential in Posterior Capsular Opacification
by Chenshuang Li, Weijia Yan and Hong Yan
Antioxidants 2024, 13(10), 1210; https://doi.org/10.3390/antiox13101210 - 8 Oct 2024
Cited by 2 | Viewed by 1549
Abstract
Posterior capsular opacification (PCO) is the most common long-term complication of cataract surgery. Traditionally, the pathogenesis of PCO involves the residual lens epithelial cells (LECs), which undergo transdifferentiation into a myofibroblast phenotype, hyperproliferation, matrix contraction, and matrix deposition. This process is driven by [...] Read more.
Posterior capsular opacification (PCO) is the most common long-term complication of cataract surgery. Traditionally, the pathogenesis of PCO involves the residual lens epithelial cells (LECs), which undergo transdifferentiation into a myofibroblast phenotype, hyperproliferation, matrix contraction, and matrix deposition. This process is driven by the marked upregulation of inflammatory and growth factors post-surgery. Recently, research on the role of redox environments has gained considerable attention. LECs, which are in direct contact with the aqueous humour after cataract surgery, are subjected to oxidative stress due to decreased levels of reduced glutathione and increased oxygen content compared to contact with the outer fibre layer of the lens before surgery. In this review, we examine the critical role of oxidative stress in PCO formation. We also focus on glutaredoxins (Grxs), which are antioxidative enzymes produced via deglutathionylation, their protective role against PCO formation, and their therapeutic potential. Furthermore, we discuss the latest advancements in PCO therapy, particularly the development of advanced antioxidative pharmacological agents, and emphasise the importance and approaches of anti-inflammatory and antioxidant treatments in PCO management. In conclusion, this review highlights the significant roles of oxidative stress in PCO, the protective effects of Grxs against PCO formation, and the potential of anti-inflammatory and antioxidant therapies in treating PCO. Full article
(This article belongs to the Special Issue Oxidative Stress in Cataracts: Mechanisms and Therapies)
Show Figures

Figure 1

20 pages, 6190 KB  
Article
The Roles of Glutaredoxins in Wheat (Triticum aestivum L.) under Biotic and Abiotic Stress Conditions, including Fungal and Hormone Treatments
by Mengyuan Song, Xiao Xu, Ye Dong, Daniel Bimpong, Lijun Liu, Yanli Li, Huiquan Shen and Youning Wang
Agronomy 2024, 14(9), 2057; https://doi.org/10.3390/agronomy14092057 - 9 Sep 2024
Cited by 2 | Viewed by 1684
Abstract
Glutaredoxins (GRXs) are widely distributed oxidoreductase enzymes that play important roles in plant growth, development, and responses to various stresses. In this study, bioinformatics methods were used to identify and analyze the wheat GRX gene family and predict their properties and potential functions. [...] Read more.
Glutaredoxins (GRXs) are widely distributed oxidoreductase enzymes that play important roles in plant growth, development, and responses to various stresses. In this study, bioinformatics methods were used to identify and analyze the wheat GRX gene family and predict their properties and potential functions. RNA-seq and RT-qPCR expression analyses were used to investigate their regulatory functions under hormone treatment and fungal diseases. In this study, 86 GRX genes were identified in wheat and classified into CC-type, CGFS-type, and CPYC-type categories with no TaGRX located on chromosome 4B. The results show that TaGRXs regulate wheat transcriptional responses and have an integrative role in biotic and abiotic stress responses. TaGRXs are involved in wheat responses to Fusarium graminearum, Puccinia striiformis, and Erysiphe graminis diseases. TaGRX73-7D, TaGRX20-3A, and TaGRX29-3B play a negative regulatory role in E. graminis infection but a positive regulatory role in F. graminearum and P. striiformis infection. These TaGRXs play potential regulatory functions in wheat responses to the plant hormones and signaling molecules, including IAA, ABA, H2O2, and SA. The findings of this study lay the groundwork for further investigation of the functions of wheat GRX genes and their potential use as candidate genes for molecular breeding of stress-resistant wheat varieties. Full article
(This article belongs to the Special Issue Mechanism and Sustainable Control of Crop Diseases)
Show Figures

Figure 1

14 pages, 10765 KB  
Article
Causal Relationship between Mitochondrial Biological Function and Periodontitis: Evidence from a Mendelian Randomization Study
by Huan Zhou, Yan-Xin Qi, Ruo-Yan Cao, Xi-Xuan Zhang, Ang Li and Dan-Dan Pei
Int. J. Mol. Sci. 2024, 25(14), 7955; https://doi.org/10.3390/ijms25147955 - 21 Jul 2024
Cited by 3 | Viewed by 2749
Abstract
A growing number of studies indicate that mitochondrial dysfunction serves as a pathological mechanism for periodontitis. Therefore, this two-sample Mendelian randomization (MR) study was carried out to explore the causal associations between mitochondrial biological function and periodontitis, because the specific nature of this [...] Read more.
A growing number of studies indicate that mitochondrial dysfunction serves as a pathological mechanism for periodontitis. Therefore, this two-sample Mendelian randomization (MR) study was carried out to explore the causal associations between mitochondrial biological function and periodontitis, because the specific nature of this causal relationship remains inconclusive in existing MR studies. Inverse variance weighting, Mendelian randomization-Egger, weighted mode, simple mode, and weighted median analyses were performed to assess the causal relationships between the exposure factors and periodontitis. The results of the present study revealed a causal association between periodontitis and medium-chain specific acyl-CoA dehydrogenase (MCAD), malonyl-CoA decarboxylase (MLYCD), glutaredoxin 2 (Grx2), oligoribonuclease (ORN), and pyruvate carboxylase (PC). Notably, MCAD and MLYCD are causally linked to periodontitis, and serve as protective factors. However, Grx2, ORN, and PC function as risk factors for periodontitis. Our study established a causal relationship between mitochondrial biological function and periodontitis, and such insights may provide a promising approach for treating periodontitis via mitochondrial regulation. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

12 pages, 3077 KB  
Article
Molecular Identification of the Glutaredoxin 5 Gene That Plays Important Roles in Antioxidant Defense in Arma chinensis (Fallou)
by Qiaozhi Luo, Zhongjian Shen, Nipapan Kanjana, Xingkai Guo, Huihui Wu and Lisheng Zhang
Insects 2024, 15(7), 537; https://doi.org/10.3390/insects15070537 - 17 Jul 2024
Cited by 1 | Viewed by 1264
Abstract
Glutaredoxin (Grx) is a group of redox enzymes that control reactive oxygen species (ROS), traditionally defined as redox regulators. Recent research suggested that members of the Grx family may be involved in more biological processes than previously thought. Therefore, we cloned the AcGrx5 [...] Read more.
Glutaredoxin (Grx) is a group of redox enzymes that control reactive oxygen species (ROS), traditionally defined as redox regulators. Recent research suggested that members of the Grx family may be involved in more biological processes than previously thought. Therefore, we cloned the AcGrx5 gene and identified its role in A. chinensis diapause. Sequence analysis revealed the ORF of AcGrx5 was 432 bp, encoding 143 amino acids, which was consistent with the homologous sequence of Halyomorpha halys. RT-qPCR results showed that AcGrx5 expression was the highest in the head, and compared with non-diapause conditions, diapause conditions significantly increased the expression of AcGrx5 in the developmental stages. Further, we found that 15 °C low-temperature stress significantly induced AcGrx5 expression, and the expression of antioxidant enzyme genes AcTrx2 and AcTrx-like were significantly increased after AcGrx5 knockdown. Following AcGrx5 silencing, there was a considerable rise in the levels of VC content, CAT activity, and hydrogen peroxide content, indicating that A. chinensis was exposed to high levels of reactive oxygen species. These results suggested that the AcGrx5 gene may play a key role in antioxidant defense. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

18 pages, 10587 KB  
Article
Comprehensive Analysis of Genes Associated with the Reactive Oxygen Species Metabolism in Citrus sinensis during Pathogen Infection
by Guiyan Huang, Fuxuan Li, Yanan Hu, Zhigang Ouyang and Ruimin Li
Horticulturae 2024, 10(6), 625; https://doi.org/10.3390/horticulturae10060625 - 11 Jun 2024
Cited by 4 | Viewed by 1629
Abstract
Reactive oxygen species (ROS) are pivotal in signal transduction processes in plant–pathogen interactions. The ROS signaling pathways involved in Candidatus Liberibacter asiaticus (CLas) and Xanthomonas citri subspecies citri (Xcc) infections in Citrus sinensis (sweet orange) are unclear. In this study, we comprehensively identified [...] Read more.
Reactive oxygen species (ROS) are pivotal in signal transduction processes in plant–pathogen interactions. The ROS signaling pathways involved in Candidatus Liberibacter asiaticus (CLas) and Xanthomonas citri subspecies citri (Xcc) infections in Citrus sinensis (sweet orange) are unclear. In this study, we comprehensively identified ROS metabolism-associated genes, including 9 NADPH oxidase (RBOH), 14 superoxide dismutase (SOD), 1 catalase (CAT), 9 peroxiredoxin (PrxR), 5 ascorbate peroxidase (APX), 4 glutathione peroxidase (GPX), 3 monodehydroascorbate reductase (MDAR), 2 dehydroascorbate reductase (DHAR), 2 glutathione reductase (GR), 24 thioredoxin (Trx), and 18 glutaredoxin (GLR) genes in C. sinensis. An analysis revealed variable gene structures but conserved motifs and domains in ROS subfamilies. A comparative synteny analysis with Arabidopsis thaliana and Vitis vinifera indicated evolutionary conservation of most ROS metabolism-associated genes, with some originating from gene duplication events post-species divergence in C. sinensis. Expression profiling revealed five up-regulated genes and four down-regulated genes during both CLas and Xcc infections. Promoter analysis revealed numerous stress-responsive elements in the promoter of ROS metabolism-associated genes. Protein–protein interaction network analysis highlighted the involvement of ROS metabolism in various biological processes. A comparison of ROS metabolism-associated genes between C. sinensis and Poncirus trifoliata indicated multiple gene gain and loss events within ROS subfamilies of C. sinensis. This study enhances our understanding of ROS metabolism in C. sinensis and sheds light on citrus–pathogen interactions. Full article
Show Figures

Figure 1

16 pages, 3172 KB  
Article
Comparison of Transcriptome Differences between Two Rice Cultivars Differing in Cadmium Translocation from Spike-Neck to Grain
by Shouping Zhao, Qi Zhang, Wendan Xiao, De Chen, Jing Hu, Na Gao, Miaojie Huang and Xuezhu Ye
Int. J. Mol. Sci. 2024, 25(7), 3592; https://doi.org/10.3390/ijms25073592 - 22 Mar 2024
Cited by 3 | Viewed by 1709
Abstract
At present, the mechanism of varietal differences in cadmium (Cd) accumulation in rice is not well understood. Two rice cultivars, ZZY (high translocation-high grain Cd) and SJ18 (low translocation-low grain Cd), were used to analyze transcriptome differences in the spike-neck tissue in field [...] Read more.
At present, the mechanism of varietal differences in cadmium (Cd) accumulation in rice is not well understood. Two rice cultivars, ZZY (high translocation-high grain Cd) and SJ18 (low translocation-low grain Cd), were used to analyze transcriptome differences in the spike-neck tissue in field trials. The results showed that, compared with ZZY, 22,367 differentially expressed genes (DEGs) were identified in SJ18, including 2941 upregulated and 19,426 downregulated genes. GO analysis enriched 59 downregulated terms, concerning 24 terms enriched for more than 1000 DEGs, including cellular and metabolic processes, biological regulation, localization, catalytic activity, transporter activity, signaling, etc. KEGG enrichment identified 21 significant downregulated pathways, regarding the ribosome, metabolic pathways, biosynthesis of secondary metabolism, signaling transduction, cell membrane and cytoskeleton synthesis, genetic information transfer, amino acid synthesis, etc. Weighted gene co-expression network analysis (WGCNA) revealed that these DEGs could be clustered into five modules. Among them, the yellow module was significantly related to SJ18 with hub genes related to OsHMA and OsActin, whereas the brown module was significantly related to ZZY with hub genes related to mitogen-activated protein kinase (MAPK), CBS, and glutaredoxin. This suggests that different mechanisms are involved in the process of spike-neck–grain Cd translocation among varieties. This study provides new insights into the mechanisms underlying differences in Cd transport among rice varieties. Full article
(This article belongs to the Special Issue Plant Responses to Heavy Metals: From Deficiency to Excess)
Show Figures

Graphical abstract

16 pages, 2601 KB  
Article
Effects of Aspirin Eugenol Ester on Liver Oxidative Damage and Energy Metabolism in Immune-Stressed Broilers
by Jiale Zhong, Wenrui Zhen, Dongying Bai, Xiaodi Hu, Haojie Zhang, Ruilin Zhang, Koichi Ito, Yi Zhang, Bingkun Zhang and Yanbo Ma
Antioxidants 2024, 13(3), 341; https://doi.org/10.3390/antiox13030341 - 13 Mar 2024
Cited by 7 | Viewed by 2577
Abstract
The aim of this study was to investigate the effects of aspirin eugenol ester (AEE) on liver oxidative damage and energy metabolism in immune-stressed broilers. In total, 312 broilers were divided into 4 groups (saline, LPS, SAEE, and LAEE). Broilers in the saline [...] Read more.
The aim of this study was to investigate the effects of aspirin eugenol ester (AEE) on liver oxidative damage and energy metabolism in immune-stressed broilers. In total, 312 broilers were divided into 4 groups (saline, LPS, SAEE, and LAEE). Broilers in the saline and LPS groups were fed a basal diet; the SAEE and LAEE groups had an added 0.01% AEE in their diet. Broilers in the LPS and LAEE groups were injected with lipopolysaccharides, while the saline and SAEE groups were injected with saline. Results showed that AEE increased the body weight, average daily gain, and average daily feed intake, as well as decreasing the feed conversion ratio of immune-stressed broilers. AEE protects against oxidative damage in immune-stressed broiler livers by elevating the total antioxidant capacity, superoxide dismutase activity, and glutathione S-transferase alpha 3 (GSTA3) and glutaredoxin 2 (GLRX2) expression, while decreasing malondialdehyde content. AEE lessened inflammation by reducing prostaglandin-F2α production and prostaglandin-endoperoxide synthase 2 (PTGS2) and interleukin-1beta (IL-1β) expression. AEE decreased oxidative phosphorylation rates by increasing succinic acid levels and lowering both adenosine diphosphate (ADP) levels and ceroid lipofuscinosis neuronal 5 (CLN5) expression. AEE modulated the metabolism of phenylalanine, tyrosine, lipids, and cholesterol by reducing the phenyllactate and L-arogenate levels, lowering dopachrome tautomerase (DCT) and apolipoprotein A4 (APOA4) expression, and increasing phenylpyruvic acid and dopa decarboxylase (DDC) expression. In summary, AEE can effectively alleviate liver oxidative damage and energy metabolism disorders in immune-stressed broilers. Full article
Show Figures

Figure 1

20 pages, 1950 KB  
Review
Insights into the Multifaceted Roles of Thioredoxin-1 System: Exploring Knockout Murine Models
by Tetiana Shcholok and Eftekhar Eftekharpour
Biology 2024, 13(3), 180; https://doi.org/10.3390/biology13030180 - 12 Mar 2024
Cited by 6 | Viewed by 3433
Abstract
Redox balance is increasingly identified as a major player in cellular signaling. A fundamentally simple reaction of oxidation and reduction of cysteine residues in cellular proteins is the central concept in this complex regulatory mode of protein function. Oxidation of key cysteine residues [...] Read more.
Redox balance is increasingly identified as a major player in cellular signaling. A fundamentally simple reaction of oxidation and reduction of cysteine residues in cellular proteins is the central concept in this complex regulatory mode of protein function. Oxidation of key cysteine residues occurs at the physiological levels of reactive oxygen species (ROS), but they are reduced by a supply of thiol antioxidant molecules including glutathione, glutaredoxin, and thioredoxin. While these molecules show complex compensatory roles in experimental conditions, transgenic animal models provide a comprehensive picture to pinpoint the role of each antioxidant. In this review, we have specifically focused on the available literature on thioredoxin-1 system transgenic models that include thioredoxin and thioredoxin reductase proteins. As the identification of thioredoxin protein targets is technically challenging, the true contribution of this system in maintaining cellular balance remains unidentified, including the role of this system in the brain. Full article
(This article belongs to the Section Cell Biology)
Show Figures

Figure 1

Back to TopTop