The Effect of Berry Consumption on Oxidative Stress Biomarkers: A Systematic Review of Randomized Controlled Trials in Humans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Information Sources
2.2. Search Strategy
Search Filters
2.3. Inclusion and Exclusion Criteria
2.4. Data Extraction
3. Results
3.1. Study and Subject Characteristics
3.2. Oxidative Stress Markers Assessed
3.3. Risk of Bias
3.4. Synthesis of Results
3.4.1. Antioxidants
3.4.2. DNA Damage
3.4.3. Isoprostanes
3.4.4. Malondialdehyde
3.4.5. Oxidized LDL
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bakhtina, A.A.; Pharaoh, G.A.; Campbell, M.D.; Keller, A.; Stuppard, R.S.; Marcinek, D.J.; Bruce, J.E. Skeletal muscle mitochondrial interactome remodeling is linked to functional decline in aged female mice. Nat. Aging 2023, 3, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Hajam, Y.A.; Rani, R.; Ganie, S.Y.; Sheikh, T.A.; Javaid, D.; Qadri, S.S.; Pramodh, S.; Alsulimani, A.; Alkhanani, M.F.; Harakeh, S.; et al. Oxidative Stress in Human Pathology and Aging: Molecular Mechanisms and Perspectives. Cells 2022, 11, 552. [Google Scholar] [CrossRef] [PubMed]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef] [PubMed]
- Vatner, S.F.; Zhang, J.; Oydanich, M.; Berkman, T.; Naftalovich, R.; Vatner, D.E. Healthful aging mediated by inhibition of oxidative stress. Ageing Res. Rev. 2020, 64, 101194. [Google Scholar] [CrossRef]
- Aune, D. Plant Foods, Antioxidant Biomarkers, and the Risk of Cardiovascular Disease, Cancer, and Mortality: A Review of the Evidence. Adv. Nutr. 2019, 10, S404–S421. [Google Scholar] [CrossRef] [Green Version]
- Avila-Escalante, M.L.; Coop-Gamas, F.; Cervantes-Rodriguez, M.; Mendez-Iturbide, D.; Aranda-González, I.I. The effect of diet on oxidative stress and metabolic diseases-Clinically controlled trials. J. Food Biochem. 2020, 44, e13191. [Google Scholar] [CrossRef]
- Satija, A.; Bhupathiraju, S.N.; Spiegelman, D.; Chiuve, S.E.; Manson, J.E.; Willett, W.; Rexrode, K.M.; Rimm, E.B.; Hu, F.B. Healthful and Unhealthful Plant-Based Diets and the Risk of Coronary Heart Disease in U.S. Adults. J. Am. Coll. Cardiol. 2017, 70, 411–422. [Google Scholar] [CrossRef]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2013, 18, 1818–1892. [Google Scholar] [CrossRef] [Green Version]
- U.S. Department of Agriculture ARS. FoodData Central. 2019. Available online: https://fdc.nal.usda.gov/ (accessed on 1 May 2023).
- Kiyimba, T.; Yiga, P.; Bamuwamye, M.; Ogwok, P.; Van der Schueren, B.; Matthys, C. Efficacy of Dietary Polyphenols from Whole Foods and Purified Food Polyphenol Extracts in Optimizing Cardiometabolic Health: A Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2023, 14, 270–282. [Google Scholar] [CrossRef]
- Wallace, T.C.; Giusti, M.M. Anthocyanins-Nature’s Bold, Beautiful, and Health-Promoting Colors. Foods 2019, 8, 550. [Google Scholar] [CrossRef] [Green Version]
- Borges, G.; Degeneve, A.; Mullen, W.; Crozier, A. Identification of flavonoid and phenolic antioxidants in black currants, blueberries, raspberries, red currants, and cranberries. J. Agric. Food Chem. 2010, 58, 3901–3909. [Google Scholar] [CrossRef]
- Xu, L.; Tian, Z.; Chen, H.; Zhao, Y.; Yang, Y. Anthocyanins, Anthocyanin-Rich Berries, and Cardiovascular Risks: Systematic Review and Meta-Analysis of 44 Randomized Controlled Trials and 15 Prospective Cohort Studies. Front. Nutr. 2021, 8, 747884. [Google Scholar] [CrossRef]
- Wallace, T.C.; Giusti, M.M. Anthocyanins. Adv. Nutr. 2015, 6, 620–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, T.C.; Bailey, R.L.; Blumberg, J.B.; Burton-Freeman, B.; Chen, C.O.; Crowe-White, K.M.; Drewnowski, A.; Hooshmand, S.; Johnson, E.; Lewis, R.; et al. Fruits, vegetables, and health: A comprehensive narrative, umbrella review of the science and recommendations for enhanced public policy to improve intake. Crit. Rev. Food Sci. Nutr. 2020, 60, 2174–2211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogiatzoglou, A.; Mulligan, A.A.; Lentjes, M.A.; Luben, R.N.; Spencer, J.P.; Schroeter, H.; Khaw, K.T.; Kuhnle, G.G. Flavonoid intake in European adults (18 to 64 years). PLoS ONE 2015, 10, e0128132. [Google Scholar] [CrossRef]
- Ovaskainen, M.L.; Torronen, R.; Koponen, J.M.; Sinkko, H.; Hellstrom, J.; Reinivuo, H.; Mattila, P. Dietary intake and major food sources of polyphenols in Finnish adults. J. Nutr. 2008, 138, 562–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Department of Agriculture ARS. Flavonoid Intakes from Food and Beverages: Mean Amounts Consumed per Individual, by Gender and Age, What We Eat in America, NHANES 2017–2018. 2022. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/fndds-flavonoid-database/ (accessed on 1 May 2023).
- Golovinskaia, O.; Wang, C.K. Review of Functional and Pharmacological Activities of Berries. Molecules 2021, 26, 3904. [Google Scholar] [CrossRef] [PubMed]
- Njus, D.; Kelley, P.M.; Tu, Y.J.; Schlegel, H.B. Ascorbic acid: The chemistry underlying its antioxidant properties. Free Radic. Biol. Med. 2020, 159, 37–43. [Google Scholar] [CrossRef]
- Si, H.; Liu, D. Dietary antiaging phytochemicals and mechanisms associated with prolonged survival. J. Nutr. Biochem. 2014, 25, 581–591. [Google Scholar] [CrossRef] [Green Version]
- Kalt, W.; Cassidy, A.; Howard, L.R.; Krikorian, R.; Stull, A.J.; Tremblay, F.; Zamora-Ros, R. Recent Research on the Health Benefits of Blueberries and Their Anthocyanins. Adv. Nutr. 2020, 11, 224–236. [Google Scholar] [CrossRef]
- Martini, D.; Marino, M.; Venturi, S.; Tucci, M.; Klimis-Zacas, D.; Riso, P.; Porrini, M.; Del Bo, C. Blueberries and their bioactives in the modulation of oxidative stress, inflammation and cardio/vascular function markers: A systematic review of human intervention studies. J. Nutr. Biochem. 2023, 111, 109154. [Google Scholar] [CrossRef] [PubMed]
- Onali, T.; Kivimaki, A.; Mauramo, M.; Salo, T.; Korpela, R. Anticancer Effects of Lingonberry and Bilberry on Digestive Tract Cancers. Antioxidants 2021, 10, 850. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Rethlefsen, M.L.; Kirtley, S.; Waffenschmidt, S.; Ayala, A.P.; Moher, D.; Page, M.J.; Koffel, J.B.; Group, P.-S. PRISMA-S: An extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews. Syst. Rev. 2021, 10, 39. [Google Scholar] [CrossRef]
- Lefebvre, C.; Glanville, J.; Briscoe, S.; Featherstone, R.; Littlewood, A.; Marshall, C.; Metzendorf, M.-I.; Noel-Storr, A.; Paynter, R.; Rader, T.; et al. Chapter 4: Searching for and Selecting Studies. In Cochrane Handbook for Systematic Reviews of Interventions, version 6.3 (updated February 2022); Higgins, J.P.T., Thomasm, J., Chandler, J., Cumpston, M., Li, T., Page, M.J., Welch, V.A., Eds.; Cochrane, Wiley-Blackwell: Malden, MA, USA, 2022; Volume 21, pp. 1–148. [Google Scholar]
- Higgins, J.P.; Altman, D.G.; Gotzsche, P.C.; Juni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.; et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [Green Version]
- Arevstrom, L.; Bergh, C.; Landberg, R.; Wu, H.; Rodriguez-Mateos, A.; Waldenborg, M.; Magnuson, A.; Blanc, S.; Frobert, O. Freeze-dried bilberry (Vaccinium myrtillus) dietary supplement improves walking distance and lipids after myocardial infarction: An open-label randomized clinical trial. Nutr. Res. 2019, 62, 13–22. [Google Scholar] [CrossRef]
- Asgary, S.; Soltani, R.; Mirvakili, S.; Sarrafzadegan, N. Evaluation of the effect of Vaccinium arctostaphylos L. fruit extract on serum inflammatory biomarkers in adult hyperlipidemic patients: A randomized double-blind placebo-controlled clinical trial. Res. Pharm. Sci. 2016, 11, 343–348. [Google Scholar] [CrossRef] [Green Version]
- Basu, A.; Betts, N.M.; Nguyen, A.; Newman, E.D.; Fu, D.; Lyons, T.J. Freeze-dried strawberries lower serum cholesterol and lipid peroxidation in adults with abdominal adiposity and elevated serum lipids. J. Nutr. 2014, 144, 830–837. [Google Scholar] [CrossRef] [Green Version]
- Bowtell, J.L.; Aboo-Bakkar, Z.; Conway, M.E.; Adlam, A.R.; Fulford, J. Enhanced task-related brain activation and resting perfusion in healthy older adults after chronic blueberry supplementation. Appl. Physiol. Nutr. Metab. 2017, 42, 773–779. [Google Scholar] [CrossRef] [Green Version]
- Chan, S.W.; Chu, T.T.W.; Choi, S.W.; Benzie, I.F.F.; Tomlinson, B. Impact of short-term bilberry supplementation on glycemic control, cardiovascular disease risk factors, and antioxidant status in Chinese patients with type 2 diabetes. Phytother. Res. 2021, 35, 3236–3245. [Google Scholar] [CrossRef]
- Chew, B.; Mathison, B.; Kimble, L.; McKay, D.; Kaspar, K.; Khoo, C.; Chen, C.O.; Blumberg, J. Chronic consumption of a low calorie, high polyphenol cranberry beverage attenuates inflammation and improves glucoregulation and HDL cholesterol in healthy overweight humans: A randomized controlled trial. Eur. J. Nutr. 2019, 58, 1223–1235. [Google Scholar] [CrossRef] [PubMed]
- Curtis, P.J.; van der Velpen, V.; Berends, L.; Jennings, A.; Feelisch, M.; Umpleby, A.M.; Evans, M.; Fernandez, B.O.; Meiss, M.S.; Minnion, M.; et al. Blueberries improve biomarkers of cardiometabolic function in participants with metabolic syndrome-results from a 6-month, double-blind, randomized controlled trial. Am. J. Clin. Nutr. 2019, 109, 1535–1545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davinelli, S.; Bertoglio, J.C.; Zarrelli, A.; Pina, R.; Scapagnini, G. A Randomized Clinical Trial Evaluating the Efficacy of an Anthocyanin-Maqui Berry Extract (Delphinol(R)) on Oxidative Stress Biomarkers. J. Am. Coll. Nutr. 2015, 34 (Suppl. S1), 28–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Liz, S.; Cardoso, A.L.; Copetti, C.L.K.; Hinnig, P.F.; Vieira, F.G.K.; da Silva, E.L.; Schulz, M.; Fett, R.; Micke, G.A.; Di Pietro, P.F. Acai (Euterpe oleracea Mart.) and jucara (Euterpe edulis Mart.) juices improved HDL-c levels and antioxidant defense of healthy adults in a 4-week randomized cross-over study. Clin. Nutr. 2020, 39, 3629–3636. [Google Scholar] [CrossRef]
- Ekhlasi, G.; Shidfar, F.; Agah, S.; Merat, S.; Hosseini, A.F. Effects of Pomegranate and Orange Juice on Antioxidant Status in Non-Alcoholic Fatty Liver Disease Patients: A Randomized Clinical Trial. Int. J. Vitam. Nutr. Res. 2015, 85, 292–298. [Google Scholar] [CrossRef]
- Espinosa-Moncada, J.; Marin-Echeverri, C.; Galvis-Perez, Y.; Ciro-Gomez, G.; Aristizabal, J.C.; Blesso, C.N.; Fernandez, M.L.; Barona-Acevedo, J. Evaluation of Agraz Consumption on Adipocytokines, Inflammation, and Oxidative Stress Markers in Women with Metabolic Syndrome. Nutrients 2018, 10, 1639. [Google Scholar] [CrossRef] [Green Version]
- Hsia, D.S.; Zhang, D.J.; Beyl, R.S.; Greenway, F.L.; Khoo, C. Effect of daily consumption of cranberry beverage on insulin sensitivity and modification of cardiovascular risk factors in adults with obesity: A pilot, randomised, placebo-controlled study. Br. J. Nutr. 2020, 124, 577–585. [Google Scholar] [CrossRef]
- Hurst, R.D.; Lyall, K.A.; Wells, R.W.; Sawyer, G.M.; Lomiwes, D.; Ngametua, N.; Hurst, S.M. Daily Consumption of an Anthocyanin-Rich Extract Made From New Zealand Blackcurrants for 5 Weeks Supports Exercise Recovery Through the Management of Oxidative Stress and Inflammation: A Randomized Placebo Controlled Pilot Study. Front. Nutr. 2020, 7, 16. [Google Scholar] [CrossRef] [Green Version]
- Hutchison, A.T.; Flieller, E.B.; Dillon, K.J.; Leverett, B.D. Black Currant Nectar Reduces Muscle Damage and Inflammation Following a Bout of High-Intensity Eccentric Contractions. J. Diet. Suppl. 2016, 13, 1–15. [Google Scholar] [CrossRef]
- Johnson, S.A.; Figueroa, A.; Navaei, N.; Wong, A.; Kalfon, R.; Ormsbee, L.T.; Feresin, R.G.; Elam, M.L.; Hooshmand, S.; Payton, M.E.; et al. Daily blueberry consumption improves blood pressure and arterial stiffness in postmenopausal women with pre- and stage 1-hypertension: A randomized, double-blind, placebo-controlled clinical trial. J. Acad. Nutr. Diet. 2015, 115, 369–377. [Google Scholar] [CrossRef]
- Khan, F.; Ray, S.; Craigie, A.M.; Kennedy, G.; Hill, A.; Barton, K.L.; Broughton, J.; Belch, J.J. Lowering of oxidative stress improves endothelial function in healthy subjects with habitually low intake of fruit and vegetables: A randomized controlled trial of antioxidant- and polyphenol-rich blackcurrant juice. Free Radic. Biol. Med. 2014, 72, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Simbo, S.Y.; Fang, C.; McAlister, L.; Roque, A.; Banerjee, N.; Talcott, S.T.; Zhao, H.; Kreider, R.B.; Mertens-Talcott, S.U. Acai (Euterpe oleracea Mart.) beverage consumption improves biomarkers for inflammation but not glucose- or lipid-metabolism in individuals with metabolic syndrome in a randomized, double-blinded, placebo-controlled clinical trial. Food Funct. 2018, 9, 3097–3103. [Google Scholar] [CrossRef] [PubMed]
- Marin-Echeverri, C.; Blesso, C.N.; Fernandez, M.L.; Galvis-Perez, Y.; Ciro-Gomez, G.; Nunez-Rangel, V.; Aristizabal, J.C.; Barona-Acevedo, J. Effect of Agraz (Vaccinium meridionale Swartz) on High-Density Lipoprotein Function and Inflammation in Women with Metabolic Syndrome. Antioxidants 2018, 7, 185. [Google Scholar] [CrossRef] [Green Version]
- McAnulty, L.S.; Collier, S.R.; Landram, M.J.; Whittaker, D.S.; Isaacs, S.E.; Klemka, J.M.; Cheek, S.L.; Arms, J.C.; McAnulty, S.R. Six weeks daily ingestion of whole blueberry powder increases natural killer cell counts and reduces arterial stiffness in sedentary males and females. Nutr. Res. 2014, 34, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, M.B.R.; Razzaq, B.A.; Al-Naqqash, M.; Jasim, S.Y. Effects of Cranberry-PACs against Urinary Problems associated with Radiotherapy in Iraqi Patients with Bladder Carcinoma. Int. J. Pharm. Sci. Rev. Res. 2016, 39, 179–188. [Google Scholar]
- Nilsson, A.; Salo, I.; Plaza, M.; Bjorck, I. Effects of a mixed berry beverage on cognitive functions and cardiometabolic risk markers; A randomized cross-over study in healthy older adults. PLoS ONE 2017, 12, e0188173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paquette, M.; Medina Larque, A.S.; Weisnagel, S.J.; Desjardins, Y.; Marois, J.; Pilon, G.; Dudonne, S.; Marette, A.; Jacques, H. Strawberry and cranberry polyphenols improve insulin sensitivity in insulin-resistant, non-diabetic adults: A parallel, double-blind, controlled and randomised clinical trial. Br. J. Nutr. 2017, 117, 519–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrovic, S.; Arsic, A.; Glibetic, M.; Cikiriz, N.; Jakovljevic, V.; Vucic, V. The effects of polyphenol-rich chokeberry juice on fatty acid profiles and lipid peroxidation of active handball players: Results from a randomized, double-blind, placebo-controlled study. Can. J. Physiol. Pharmacol. 2016, 94, 1058–1063. [Google Scholar] [CrossRef] [Green Version]
- Riso, P.; Klimis-Zacas, D.; Del Bo, C.; Martini, D.; Campolo, J.; Vendrame, S.; Moller, P.; Loft, S.; De Maria, R.; Porrini, M. Effect of a wild blueberry (Vaccinium angustifolium) drink intervention on markers of oxidative stress, inflammation and endothelial function in humans with cardiovascular risk factors. Eur. J. Nutr. 2013, 52, 949–961. [Google Scholar] [CrossRef] [Green Version]
- Sangild, J.; Faldborg, A.; Schousboe, C.; Fedder, M.D.K.; Christensen, L.P.; Lausdahl, A.K.; Arnspang, E.C.; Gregersen, S.; Jakobsen, H.B.; Knudsen, U.B.; et al. Effects of Chokeberries (Aronia spp.) on Cytoprotective and Cardiometabolic Markers and Semen Quality in 109 Mildly Hypercholesterolemic Danish Men: A Prospective, Double-Blinded, Randomized, Crossover Trial. J. Clin. Med. 2023, 12, 373. [Google Scholar] [CrossRef]
- Stote, K.S.; Sweeney, M.I.; Kean, T.; Baer, D.J.; Novotny, J.A.; Shakerley, N.L.; Chandrasekaran, A.; Carrico, P.M.; Melendez, J.A.; Gottschall-Pass, K.T. The effects of 100% wild blueberry (Vaccinium angustifolium) juice consumption on cardiometablic biomarkers: A randomized, placebo-controlled, crossover trial in adults with increased risk for type 2 diabetes. BMC Nutr. 2017, 3, 45. [Google Scholar] [CrossRef] [PubMed]
- Terrazas, S.; Galan, B.S.M.; De Carvalho, F.G.; Venancio, V.P.; Antunes, L.M.G.; Papoti, M.; Toro, M.J.U.; da Costa, I.F.; de Freitas, E.C. Acai pulp supplementation as a nutritional strategy to prevent oxidative damage, improve oxidative status, and modulate blood lactate of male cyclists. Eur. J. Nutr. 2020, 59, 2985–2995. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Vance, T.; Kim, B.; Lee, S.G.; Caceres, C.; Wang, Y.; Hubert, P.A.; Lee, J.Y.; Chun, O.K.; Bolling, B.W. Aronia berry polyphenol consumption reduces plasma total and low-density lipoprotein cholesterol in former smokers without lowering biomarkers of inflammation and oxidative stress: A randomized controlled trial. Nutr. Res. 2017, 37, 67–77. [Google Scholar] [CrossRef]
- Turner, N.D.; Lupton, J.R. Dietary Fiber. Adv. Nutr. 2021, 12, 2553–2555. [Google Scholar] [CrossRef] [PubMed]
- Baptista, S.L.; Copetti, C.L.K.; Cardoso, A.L.; Di Pietro, P.F. Biological activities of acai (Euterpe oleracea Mart.) and jucara (Euterpe edulis Mart.) intake in humans: An integrative review of clinical trials. Nutr. Rev. 2021, 79, 1375–1391. [Google Scholar] [CrossRef] [PubMed]
- Redan, B.W.; Buhman, K.K.; Novotny, J.A.; Ferruzzi, M.G. Altered Transport and Metabolism of Phenolic Compounds in Obesity and Diabetes: Implications for Functional Food Development and Assessment. Adv. Nutr. 2016, 7, 1090–1104. [Google Scholar] [CrossRef] [Green Version]
- Galano, J.M.; Lee, Y.Y.; Durand, T.; Lee, J.C. Special Issue on “Analytical Methods for Oxidized Biomolecules and Antioxidants” The use of isoprostanoids as biomarkers of oxidative damage, and their role in human dietary intervention studies. Free Radic. Res. 2015, 49, 583–598. [Google Scholar] [CrossRef]
- Klawitter, J.; Haschke, M.; Shokati, T.; Klawitter, J.; Christians, U. Quantification of 15-F2t-isoprostane in human plasma and urine: Results from enzyme-linked immunoassay and liquid chromatography/tandem mass spectrometry cannot be compared. Rapid Commun. Mass Spectrom. 2011, 25, 463–468. [Google Scholar] [CrossRef]
- Milne, G.L. Classifying oxidative stress by F2-Isoprostane levels in human disease: The re-imagining of a biomarker. Redox Biol. 2017, 12, 897–898. [Google Scholar] [CrossRef]
- van ’t Erve, T.J.; Kadiiska, M.B.; London, S.J.; Mason, R.P. Classifying oxidative stress by F2-isoprostane levels across human diseases: A meta-analysis. Redox Biol. 2017, 12, 582–599. [Google Scholar] [CrossRef]
- Aluganti Narasimhulu, C.; Parthasarathy, S. Preparation of LDL, Oxidation, Methods of Detection, and Applications in Atherosclerosis Research. Methods Mol. Biol. 2022, 2419, 213–246. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef] [PubMed]
- Papadea, P.; Skipitari, M.; Kalaitzopoulou, E.; Varemmenou, A.; Spiliopoulou, M.; Papasotiriou, M.; Papachristou, E.; Goumenos, D.; Onoufriou, A.; Rosmaraki, E.; et al. Methods on LDL particle isolation, characterization, and component fractionation for the development of novel specific oxidized LDL status markers for atherosclerotic disease risk assessment. Front. Med. 2022, 9, 1078492. [Google Scholar] [CrossRef] [PubMed]
- Candel, M.; van Breukelen, G.J.P. Best (but oft forgotten) practices: Efficient sample sizes for commonly used trial designs. Am. J. Clin. Nutr. 2023, 117, 1063–1085. [Google Scholar] [CrossRef]
- Cerda, B.; Periago, P.; Espin, J.C.; Tomas-Barberan, F.A. Identification of urolithin a as a metabolite produced by human colon microflora from ellagic acid and related compounds. J. Agric. Food Chem. 2005, 53, 5571–5576. [Google Scholar] [CrossRef]
- Espin, J.C.; Gonzalez-Sarrias, A.; Tomas-Barberan, F.A. The gut microbiota: A key factor in the therapeutic effects of (poly)phenols. Biochem. Pharmacol. 2017, 139, 82–93. [Google Scholar] [CrossRef]
- Luca, S.V.; Macovei, I.; Bujor, A.; Miron, A.; Skalicka-Wozniak, K.; Aprotosoaie, A.C.; Trifan, A. Bioactivity of dietary polyphenols: The role of metabolites. Crit. Rev. Food Sci. Nutr. 2020, 60, 626–659. [Google Scholar] [CrossRef]
- van Duynhoven, J.; Vaughan, E.E.; Jacobs, D.M.; Kemperman, R.A.; van Velzen, E.J.; Gross, G.; Roger, L.C.; Possemiers, S.; Smilde, A.K.; Dore, J.; et al. Metabolic fate of polyphenols in the human superorganism. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. S1), 4531–4538. [Google Scholar] [CrossRef]
- Boto-Ordonez, M.; Urpi-Sarda, M.; Queipo-Ortuno, M.I.; Tulipani, S.; Tinahones, F.J.; Andres-Lacueva, C. High levels of Bifidobacteria are associated with increased levels of anthocyanin microbial metabolites: A randomized clinical trial. Food Funct. 2014, 5, 1932–1938. [Google Scholar] [CrossRef] [Green Version]
- Espley, R.V.; Butts, C.A.; Laing, W.A.; Martell, S.; Smith, H.; McGhie, T.K.; Zhang, J.; Paturi, G.; Hedderley, D.; Bovy, A.; et al. Dietary flavonoids from modified apple reduce inflammation markers and modulate gut microbiota in mice. J. Nutr. 2014, 144, 146–154. [Google Scholar] [CrossRef] [Green Version]
- Igwe, E.O.; Charlton, K.E.; Probst, Y.C.; Kent, K.; Netzel, M.E. A systematic literature review of the effect of anthocyanins on gut microbiota populations. J. Hum. Nutr. Diet. 2019, 32, 53–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jennings, A.; Koch, M.; Bang, C.; Franke, A.; Lieb, W.; Cassidy, A. Microbial Diversity and Abundance of Parabacteroides Mediate the Associations Between Higher Intake of Flavonoid-Rich Foods and Lower Blood Pressure. Hypertension 2021, 78, 1016–1026. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, M.; Burns, G.; Sturgeon, N.; Mears, K.; Stote, K.; Blanton, C. The Effects of Berry Polyphenols on the Gut Microbiota and Blood Pressure: A Systematic Review of Randomized Clinical Trials in Humans. Nutrients 2022, 14, 2263. [Google Scholar] [CrossRef] [PubMed]
- Brunelli, E.; Domanico, F.; La Russa, D.; Pellegrino, D. Sex differences in oxidative stress biomarkers. Curr. Drug Targets 2014, 15, 811–815. [Google Scholar] [CrossRef]
- Rosner, B. Fundamentals of Biostatistics; Cengage Learning: Boston, MA, USA, 2016. [Google Scholar]
- Higgins, T.J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions; Version 6.2 (updated February 2021); Cochrane Wiley-Blackwell: Malden, MA, USA, 2021; Available online: www.training.cochrane.org/handbook (accessed on 1 June 2023).
Study Characteristics | Total | Antioxidants | Isoprostanes | MDA | OxLDL |
---|---|---|---|---|---|
n | 28 | 19 | 9 | 7 | 7 |
Study design, n (% of studies) | |||||
Parallel | 19 (68%) | 12 (63%) | 6 (67%) | 5 (71%) | 5 (71%) |
Crossover | 9 (32%) | 7 (37) | 3 (33%) | 2 (29%) | 2 (29%) |
Blinding | |||||
Double-blind | 18 (64%) | 12 (63%) | 8 (89%) | 3 (43%) | 4 (57 %) |
Single-blind | 4 (14%) | 2 (11%) | 1 (11%) | 2 (29%) | 1 (14%) |
Not blinded | 3 (11%) | 2 (11%) | 0 (0%) | 2 (29%) | 2 (29%) |
Unclear | 3 (11%) | 3 (15%) | 0 (0%) | 0 (0%) | 0 (0%) |
Region, n (% of studies) | |||||
Asia | 1 (4%) | 1 (5%) | 0 (0%) | 0 (0%) | 0 (0%) |
New Zealand | 1 (4%) | 1 (5%) | 0 (0%) | 1 (14%) | 0 (0%) |
Europe | 9 (32%) | 5 (26%) | 3 (33%) | 2 (29%) | 3 (43%) |
North America | 10 (36%) | 6 (32%) | 5 (56%) | 1 (14%) | 4 (57%) |
South America | 4 (14%) | 4 (21%) | 1 (11%) | 1 (14%) | 0 (0%) |
Middle East | 3 (11%) | 2 (11%) | 0 (0%) | 2 (29%) | 0 (0%) |
Sample size, n (% of studies) | |||||
10–20 | 4 (14%) | 3 (15%) | 1 (11%) | 1 (14%) | 1 (14%) |
21–30 | 3 (11%) | 3 (15%) | 0 (0%) | 1 (14%) | 0 (0%) |
31–50 | 12 (43%) | 7 (38%) | 4 (44%) | 2 (29%) | 3 (43%) |
51–100 | 7 (25%) | 4 (21%) | 3 (33%) | 3 (43%) | 3 (43%) |
>100 | 2 (7%) | 2 (11%) | 1 (11%) | 0 (0%) | 0 (0%) |
Intervention duration, n (% of studies) | |||||
≥1 week to 4 weeks | 7 (25%) | 3 (15%) | 1 (11%) | 1 (14%) | 1 (14%) |
>1 month to 3 months | 20 (71%) | 12 (64%) | 7 (78%) | 6 (86%) | 5 (71%) |
>3 months | 1 (4%) | 4 (21%) | 1 (11%) | 0 (0%) | 1 (14%) |
Mean age, n (% of studies) | |||||
<50 years | 16 (57%) | 10 (53%) | 6 (67%) | 5 (71%) | 2 (29%) |
≥50 years | 12 (43%) | 9 (47%) | 3 (33%) | 2 (29%) | 5 (71%) |
Baseline health, n (% of studies) | |||||
Healthy | 10 (36%) | 7 (38%) | 3 (33%) | 4 (57%) | 3 (43%) |
At-risk | 18 (64%) | 12 (62%) | 6 (67%) | 3 (43%) | 4 (57%) |
Weight status, n (% of studies) | |||||
Normal weight: BMI 18.5 kg/m² and 25 kg/m² | 7 (25%) | 5 (26%) | 0 (0%) | 3 (43%) | 1 (14%) |
Overweight: BMI 25 kg/m² and 29.9 kg/m² | 13 (46%) | 10 (53%) | 5 (56%) | 3 (43%) | 3 (43%) |
Obese: BMI 30 kg/m² or higher | 8 (29%) | 4 (21%) | 4 (44%) | 1 (14%) | 3 (43%) |
Intervention, n (% of studies) | |||||
Acai | 3 (11%) | 2 (11%) | 1 (11%) | 1 (14%) | 0 (0%) |
Agraz | 2 (7%) | 2 (11%) | 1 (11%) | 0 (0%) | 0 (0%) |
Aronia (Chokeberry) | 3 (11%) | 2 (11%) | 2 (22%) | 0 (0%) | 1 (14%) |
Bilberry | 2 (7%) | 2 (11%) | 0 (0%) | 0 (0%) | 1 (14%) |
Blackcurrant | 3 (11%) | 2 (11%) | 1 (11%) | 1 (14%) | 0 (0%) |
Blueberry | 6 (21%) | 5 (26%) | 1 (11%) | 1 (14%) | 1 (14%) |
Cranberry | 3 (11%) | 2 (11%) | 2 (22%) | 0 (0%) | 1 (14%) |
Maqui berry | 1 (4%) | 0 (0%) | 1 (11%) | 0 (0%) | 1 (14%) |
Pomegranate | 1 (4%) | 1 (5%) | 0 (0%) | 1 (14%) | 0 (0%) |
Strawberry | 1 (4%) | 0 (0%) | 0 (0%) | 1 (14%) | 0 (0%) |
Whortleberry | 1 (4%) | 0 (0%) | 0 (0%) | 1 (14%) | 0 (0%) |
Mixed berries | 2 (7%) | 1 (5%) | 0 (0%) | 1 (14%) | 2 (29%) |
Author, Year, Country | Study Funding Sources | Study Design | Duration of Study Intervention | Total n Enrolled; Total n Female; Dropout Rate (%) | Mean (SD) Age, Years | Health Status | Mean (SD) BMI (kg/m); Weight Status | Berry Intervention; Formulation; Amount | Control Group | Oxidative Stress Bio-Markers | Key Findings for Berries vs. Control Group | Sample Size Calculation |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Arevström et al., 2019, Sweden [29] | Örebro University Hospital Research Foundation | Parallel | 8 weeks | 55; NR; 9% | 68 (62–74) median (IQR) | Post acute myocardial infarction (AMI); at risk | ~27.7 (5.5); overweight | Bilberry (Vaccinium myrtillus); freeze-dried powder; 40 g, equivalent to 480 g fresh bilberries, 2250 mg anthocyanins | Post AMI standard medical nutrition therapy | Serum ox-LDL Serum antioxidant capacity | Compared to the control group, ox-LDL was significantly decreased (~20%) in the bilberry group (p = 0.017). Differences in antioxidant activity between groups were not statistically significant. | High sensitivity C-reactive protein |
Asgary et al., 2016, Iran [30] | None declared | Parallel | 4 weeks | 54; NR; 7% | 47 (16) | Hyperlipidemia; at risk | 25.3 (1.9); overweight | Caucasian whortleberry (Vaccinium arctostaphylos L.); extract; 2 capsules, 500 mg dried granules, 90 mg anthocyanins | 2 placebo capsules | Serum MDA | Compared to placebo, Vaccinium arctistaphylos fruit extract significantly decreased MDA (p = 0.013). | NR |
Basu et al., 2014, USA [31] | California Strawberry Commission; National Institutes of Health | Parallel | 12 weeks | 66; NR; 9% | 49 (10) | Abdominal adiposity and dyslipidemia (elevated serum lipids); at risk | ~36.0 (4.8); obese | Strawberries (cultivars Camarosa (37%), Ventana (13%), Diamante (13%), and 2 proprietary varieties (37%); freeze-dried powder; 25 g, 78 mg anthocyanins and 50 g, 155 mg anthocyanins | Isocaloric placebo powder (sugar and matched for fiber) without poly-phenols | Serum MDA and HNE | After 12 weeks, MDA and HNE were significantly decreased in the 25 g group vs. the 25 g control group (p < 0.01) and in the 50 g group vs. the 50 g control group (p < 0.001). | Total cholesterol and LDL cholesterol |
Bowtell et al., 2017, United Kingdom [32] | Alzheimer Charity BRACE; Cherry Active Ltd | Parallel | 12 weeks | 26; 13; NR | ~68 (1) | Healthy | ~26.5 (1.4) overweight | Blueberry concentrate; extract; 30 mL, 387 mg anthocyanins | 30 mL isocaloric placebo: a synthetic blackcurrant and apple cordial (Robinsons cordial, Britvic Ltd., Hemel Hempstead, UK) with sugar added to match blueberry energy content | Serum Glutathione Serum MDA Serum HNE protein carbonylation | Compared to baseline, serum glutathione concentration was significantly decreased in both the placebo group and blueberry group (main time effect p < 0.001). The blueberry group experienced a smaller decrease (placebo: −11.7 ± 2.8%; blueberry: −6.5 ± 2.4%; p = 0.09). No statistically significant differences in MDA or HNE protein carbonylation. | NR |
Chan et al., 2021, China [33] | Caritas Institute of Higher Education | Cross-over | 4 weeks | 20; 11; 0% | ~56 (10) | Type 2 diabetes; at risk | ~27.2 (4.2); overweight | European Bilberry (Vaccinium vitis-idaea L.); extract; 4 capsules, 1.4 g anthocyanins | 4 placebo capsules | Erythrocyte SOD Erythrocyte GPx Plasma FRAP Urinary 8-oxoguanine H2O2-induced DNA damage (Comet assay) | No statistically significant differences. | Hemo-globin A1C, plasma ascorbic acid, uric acid, total cholesterol and LDL cholesterol |
Chew et al., 2019, USA [34] | Ocean Spray Cranberries Inc.; USDA | Parallel | 8 weeks | 79; NR; 1% | 43 (1) | Healthy, non-smokers | 30.8 (0.4); obese | Cranberry (Vaccinium macrocarpon); extract beverage; 450 mL, 6.22 mg anthocyanins | 450 mL isocaloric placebo beverage without poly-phenols | Erythrocyte GSH Erythrocyte GSSG Erythrocyte GPx Erythrocyte SOD Urinary F2-isoprostanes Urinary 8-OHdG Plasma ox-LDL | No statistically significant differences. | 8-OHdG |
Curtis et al., 2019, United Kingdom [35] | US Highbush Blueberry Council | Parallel | 6 months | 138; NR; 17% | 63 (7) | Metabolic syndrome; at risk | 31.2 (3.0); obese | Blueberry (Vaccinium corymbosum L.); freeze-dried powder; 26 g equivalent to 1 cup fresh blueberries, 364 mg anthocyanins and 13 g equivalent to 1/2 cup fresh blueberries, 182 mg anthocyanins | Isocaloric placebo powder without poly-phenols | Total free thiols in plasma | No statistically significant differences. | Homeo-stasis model assessment of insulin resistance |
Davinelli et al., 2015, Italy [36] | Enervit S.p.A; Maqui New Life Inc. | Parallel | 4 weeks | 42; 13; 0% | NR; 45–65 years inclusion criteria | Smokers; at risk | ~28.7 (4.4); overweight | Maqui berry (Aristotelia chilensis), Delphinol™; extract; 3 capsules, 162 mg anthocyanins | 3 placebo capsules | Plasma ox-LDL Urinary F2-isoprostanes | Compared to baseline, there were significant decreases in ox-LDL and F2-isoprostanes in the treatment group after 4 weeks of Delphinol maqui berry extract consumption (p < 0.05). | NR |
deLiz et al., 2020, Brazil [37] | National Council for Scientific and Technological Development; Ministry of Education, Brazil | Cross-over | 12 weeks | 38; NR; 21% | ~64 (13) | Healthy | 22.2 (2.5); normal weight | Açaí (E. oleracea); juice; 200 mL, 100 mg anthocyanins | Juçara (E. edulis); juice; 200 mL, 627 mg anthocyanins | Erythrocyte GPx Erythrocyte CAT Erythrocyte SOD Serum TOS Serum TAC OSI (TOS:TAC) | Açaí juice intake caused significant increases in TAC activity, CAT activity, GPx activity and OSI compared to baseline (p < 0.05). Juçara juice intake caused a significant increase in CAT activity compared to baseline (p < 0.05) with no statistically significant effects on TAC activity, GPx activity and OSI. | CAT, TAC, total cholesterol, LDL-cholesterol and tri-glycerides |
Ekhlasi et al., 2015, Iran [38] | Iran University of Medical Sciences | Parallel | 12 weeks | 70; 21; 7% | 39 (8) | Non-alcoholic fatty liver disease, metabolic syndrome; at risk | 29.7 (2.7); overweight | Pomegranate (Punica granatum); juice, 250 mL | Orange juice, 250 mL | Plasma TAC Plasma MDA | Compared to baseline, TAC increased in both the pomegranate juice group (p < 0.01) and orange juice group (p < 0.05). The mean change in TAC was significantly greater in the pomegranate group (p = 0.03). No statistically significant differences for MDA. | NR |
Espinosa-Moncada et al., 2018, Colombia [39] | Departamento Administrativo de Ciencia, Tecnologíae Innovación Colciencias; University of Antioquia UdeA, Medellin-Colombia | Cross-over | 4 weeks | 40; 40; 0% | 47 (9) | Metabolic syndrome; at risk | ~29.8 (4.1); overweight | Agraz or Andean berry (Vaccinium meridionale Swartz); freeze-dried powder; equivalent to 200 g fresh fruit, 76 mg anthocyanins | Isocaloric placebo without poly-phenols | TBARS Serum antioxidant capacity Urinary F2-isoprostanes Urinary 8-OHdG | After 4 weeks, serum antioxidant capacity was significantly increased (p = 0.028) and 8-OHdG was significantly lower (p = 0.041) in the treatment group compared to the placebo group. No statistically significant differences for TBARS and F2-isoprostanes. | Blood pressure, plasma tri-glyceride, LDL cholesterol, oxidative stress, and inflammatory biomarkers |
Hsia et al., 2020, USA [40] | Ocean Spray Cranberries Inc; National Institute of General Medical Sciences of the National Institutes of Health; Nutrition Obesity Research Center | Parallel | 8 weeks | 37; NR; 5% | ~48 (14) | At-risk for CVD, metabolic syndrome, elevated fasting glucose or impaired glucose tolerance; at risk | ~36.9 (2.7); obesity | Cranberry (Vaccinium macrocarpon); freeze-dried powder; beverage 450 mL, 6.5 mg anthocyanins | 450 mL isocaloric placebo beverage without poly-phenols | 8-isoprostanes ox-LDL MDA | Changes in 8-isoprostane were significantly different between groups: –2.18 (cranberry) vs. +20.81 (placebo) (p = 0.02). No statistically significant differences for ox-LDL and MDA. | Insulin sensitivity |
Hurst et al., 2020, New Zealand [41] | New Zealand Ministry for Business Innovation and Employment | Parallel | 5 weeks | 36; NR; 6% | 38 (11) | Healthy | ~24.8 (2.8); normal weight | New Zealand blackcurrant (Ribes nigrum); extract; 2 capsules, 240 mg anthocyanins | 2 placebo capsules | Plasma MDA Plasma reactive oxygen species-generating capability Plasma superoxide-generating capability Plasma FRAP | No statistically significant differences. | NR |
Hutchison et al., 2016, USA [42] | None reported | Parallel | 7 days | 24; 18; 33% | ~20 (1) | Healthy | ~23.2 (2.2); normal weight | Blackcurrant (Ribes nigrum); extract beverage; 480 mL, 369 mg anthocyanins | Isocaloric placebo beverage without polyphenols | Plasma ORAC | No statistically significant differences. | Pain |
Johnson et al., 2015, USA [43] | US Highbush Blueberry Council/US Department of Agriculture | Parallel | 8 weeks | 48; 48; 17% | ~59 (5) | Pre- and stage 1-hyper-tension; at risk | ~31.4 (6.4); obese | Blueberry (50/50 blend of tifblue (Vaccinium virgatum) and rubel (Vaccinium corymbosum); freeze-dried powder; 22 g; 470 mg anthocyanins | Isocaloric placebo powder without poly-phenols | Serum SOD | No statistically significant differences. | Blood pressure |
Khan et al., 2014, Scotland [44] | GlaxoSmithKline | Parallel | 6 weeks | 66; 22; 3% | ~53 (9) | Healthy | ~28.8 (6.3); overweight | Blackcurrant (Ribes nigrum); low (6.4% juice) drink and high (20% juice) drink; 250 mL, low drink, 10 mg anthocyanins and high drink, 36 mg anthocyanins | 250 mL placebo flavored water beverage | Plasma F2-isoprostanes | After 6 weeks, F2-isoprostanes were significantly decreased in the high blackcurrant juice group compared to the low blackcurrant juice group (p = 0.002) and the placebo group (p = 0.003). | Flow-mediated dilation |
Kim et al., 2018, USA [45] | None stated | Parallel | 12 weeks | 43; NR; 14% | ~44 (13) | Metabolic syndrome; at risk | ~33.5 (6.2); obese | Açaí (E. oleracea); juice; 650 mL, 307 mg anthocyanins | 650 mL placebo beverage | Urinary 8-isoprostanes | After 12 weeks of açaí beverage consumption, 8-isoprostanes were significantly decreased by 31.2% compared to the placebo group (p = 0.0099). | C-reactive protein |
Marín-Echeverri et al., 2018, Colombia [46] | Departamento Administrativo de Ciencia, Tecnologíae Innovación; University of Antioquia UdeA, Medellin-Colombia | Cross-over | 12 weeks | 40; 40; 0% | 47 (9) | Metabolic syndrome; at risk | >25; overweight | Agraz or Andean berry (Vaccinium meridionale Swartz); freeze-dried powder; equivalent to 200 g fresh agraz | Isocaloric placebo powder without poly-phenols | Serum MPO Serum advanced oxidation protein products | No statistically significant differences. | NR |
McAnulty et al., 2014, USA [47] | Appala-chian State University; US Highbush Blueberry Council | Parallel | 6 weeks | 25; NR; NR | 40 (14) | Healthy, pre-hyper-tensive; at risk | 27.8 (5.5); overweight | Blueberry (50/50 blend of tifblue (Vaccinium virgatum) and rubel (Vaccinium corymbosum)); freeze-dried powder; 38 g equivalent to 250 g fresh fruit | Isocaloric placebo powder without poly-phenols | Plasma ORAC Plasma FRAP | No statistically significant differences. | NR |
Mohammed et al., 2016, Iraq [48] | None | Parallel | 6 weeks | 45; 12; 11% | Range: 60–70 years; mean and SD NR | Bladder cancer; at risk | >25; overweight | American cranberry (Vaccinium macrocarpon); extract; 2 capsules containing 36 mg proanthocyanidins | 2 placebo capsules | Serum SOD1 Serum TAC | Following treatment, SOD1 and TAC were significantly increased in the cranberry group than in the placebo group (p < 0.05). | NR |
Nilsson et al., 2017, Sweden [49] | Lund University | Cross-over | 5 weeks | 46; NR; 11% | 63 (1) | Healthy | 24.4 (0.4); normal weight | Mixed berries; juice; 150 g blueberries, 50 g blackcurrant, 50 g elderberry, 50 g lingonberries, 50 g strawberry, and 100 g tomatoes, 600 mL, 795 mg polyphenols | 600 mL isocaloric beverage without poly-phenols | Plasma MDA Serum ox-LDL | No statistically significant differences. | Verbal working memory test |
Paquette et al., 2017, Canada [50] | Consortium de recherche et innovations en bio-procédés industriels au Québec, Atrium Innovations Inc. and Nutra Canada | Parallel | 6 weeks | 50; NR; 8% | ~59 (7) | Insulin resistant, impaired fasting plasma glucose; at risk | ~31.1 (7.1); obese | Strawberry (Fragaria × ananassa Duch) and cranberry (Vaccinium macrocarpon L.); extract; 120 mL, 333 mg poly-phenols | 120 mL placebo flavored water beverage | Ox-LDL Plasma FRAP | No statistically significant differences. | Insulin sensitivity |
Petrovic et al., 2016, Serbia [51] | Ministry of Education, Science and Technological Development of the Republic of Serbia. Nutrika d.o.o. Belgrade, Serbia | Parallel | 4 weeks | 32; 17; NR | ~18 (1) | Healthy; non-smokers; handball players | ~22.8 (4.0); normal weight | Aronia (Aronia melanocarpa), chokeberry; juice; 100 mL, 587 mg polyphenols | 100 mL isocaloric beverage without poly-phenols | Plasma TBARS | After chokeberry juice consumption, TBARS levels were significantly decreased in male handball players (p < 0.05), but not in female handball players. | NR |
Riso et al., 2013, Italy [52] | Cariplo Foundation; Wild Blueberry Association of North America; Future Ceuticals | Cross-over | 6 weeks | 20; 0; 10% | 48 (10) | At risk of CVD; at risk | 24.8 (2.6); normal weight | Blueberry (Vaccinium angustifolium); freeze-dried powder; 25 g equivalent to 1 cup fresh fruit, 375 mg anthocyanins | Isocaloric placebo powder without poly-phenols | Erythrocyte SOD activity Erythrocyte GSH-Px activity Lymphocyte GST activity H2O2-induced DNA damage (Comet assay) | Levels of H2O2-induced DNA damage were significantly decreased in the wild blueberry drink group (p ≤ 0.01), but not in the placebo group (p = 0.84). No significant differences for SOD, GSH-Px, and GST. | Reactive hyperemia index |
Sangild et al., 2023, Denmark [53] | Ministry of Food, Agriculture and Fisheries of Denmark | Cross-over | 12 weeks | 109; 0; 13% | ~50 (10) | Healthy, hyper-lipidemia, mildly hyper-cholesterolemic, smokers and non-smokers; at risk | ~27.3 (3.3); overweight | Aronia, chokeberry (A. arbutifolia var. Virinia (9%), A. prunifolia var. Vikilia (9%), and A. melanocarpa var. Swecia (3%) and the cultivated Aronia hybrid × Sorbaronia mitschurinii var Roar (79%)); freeze-dried powder; 9 capsules per day equivalent to 150 mg total anthocyanins | 9 placebo capsules | Plasma Isoprostanes Plasma Glutathione Plasma CAT Plasma SOD | Compared to placebo, Aronia intake significantly increased glutathione levels (p ≤ 0.05). No significant differences for SOD, CAT, and isoprostanes. | HDL cholesterol |
Stote et al., 2017, Canada [54] | Wild Blueberry Association of North American | Cross-over | 2 one-week treatment periods separated by an 8-day washout period | 20; 20; 5% | 53 (6.3) | Prediabetic, pre and stage 1 hyper-tension, hyper-lipidemia, insulin resistance, insulin sensitive; at risk | 31.4 (2.9); obese | Blueberry (Vaccinium angustifolium); juice; 240 mL, 314 mg anthocyanins | 240 mL isocaloric beverage without poly-phenols | Plasma total 8-isoprostanes Plasma ox-LDL | No statistically significant differences. | Systolic blood pressure |
Terrazas et al., 2020, Brazil [55] | Petruz Fruity Group; Coordenação de Aperfeiço-amento de Pessoal de Nível Superior, Brasil | Cross-over | Two 15-day trials (1 and 2), within a 30-day wash-out between trials | 10; 0; 0% | 34 (5) | Healthy; male cyclists | 23.9 (1.4); normal weight | Açai (Euterpe oleracea Martius); pulp; 400 g, 71 mg anthocyanins | 400 g placebo pulp without poly-phenols | Serum MDA Serum Antioxidant capacity (TEAC) DNA damage in peripheral blood (Comet assay) | Açai pulp intervention decreased serum lipid peroxidation (MDA) by 8.53% (p = 0.005) and increased serum antioxidant capacity (p = 0.005). No significant effect on DNA damage. | DNA damage |
Xie et al., 2017, USA [56] | Connecticut Department of Public Health | Parallel | 12 weeks | 56; 30; 12.5% | ~35 (19) | Healthy; former smokers | ~26.3 (7.5); overweight | Aronia chokeberry (Aronia melanocarpa); extract; 500 mg, 2 capsules, 45 mg anthocyanins | 2 placebo capsules | Plasma ox-LDL Plasma TAC Plasma CAT Plasma GPx Plasma SOD Urinary 8-isoprostanes | No statistically significant differences. | LDL cholesterol |
Author, Year, Country | Sequence Generation 1 | Allocation Concealment 2 | Blinding of Participants and Personnel 3 | Blinding of Outcome Assessment 4 | Incomplete Outcome Data 5 | Overall Risk-of-Bias Judgement 6 |
---|---|---|---|---|---|---|
Arevström et al., 2019, Sweden [29] | Low risk | Unclear | High risk | Low risk | High risk | High risk of bias |
Asgary et al., 2016, Iran [30] | Low risk | Unsure | Low risk | Unsure | Low risk | Some concerns |
Basu et al., 2014, USA [31] | Unsure | Unsure | Low risk | Low risk | Low risk | Some concerns |
Bowtell et al., 2017, United Kingdom [32] | Low risk | Unsure | Low risk | Low risk | Unsure | Some concerns |
Chan et al., 2021, China [33] | Low risk | Unsure | Low risk | Unsure | Low risk | Some concerns |
Chew et al., 2019, USA [34] | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk of bias |
Curtis et al., 2019, United Kingdom [35] | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk of bias |
Davinelli et al., 2015, Italy [36] | Unsure | Unsure | Low risk | Low risk | Low risk | Some concerns |
deLiz et al., 2020, Brazil [37] | Low risk | Low risk | Low risk | High risk | Low risk | Some concerns |
Ekhlasi et al., 2015, Iran [38] | Unsure | Unsure | High risk | High risk | Low risk | High risk of bias |
Espinosa-Moncada et al., 2018, Colombia [39] | Low risk | Unsure | Low risk | Unsure | Unsure | Some concerns |
Hsia et al., 2020, USA [40] | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk of bias |
Hurst et al., 2020, New Zealand [41] | Low risk | Low risk | Low risk | Unsure | High risk | Some concerns |
Hutchison et al., 2016, USA [42] | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk of bias |
Johnson et al., 2015, USA [43] | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk of bias |
Khan et al., 2014, Scotland [44] | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk of bias |
Kim et al., 2018, USA [45] | Unsure | Unsure | Low risk | Low risk | Low risk | Some concerns |
Marín-Echeverri et al., 2018, Colombia [46] | Unsure | Unsure | Low risk | Low risk | Unsure | Some concerns |
McAnulty et al., 2014, USA [47] | Low risk | Unsure | Unsure | Unsure | Unsure | Some concerns |
Mohammed et al., 2016, Iraq [48] | Unsure | Unsure | Unsure | Unsure | Low risk | Some concerns |
Nilsson et al., 2017, Sweden [49] | Low risk | Unsure | High risk | High risk | Low risk | High risk of bias |
Paquette et al., 2017, Canada [50] | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk of bias |
Petrovic et al., 2016, Serbia [51] | Unsure | Unsure | Low risk | Low risk | Unsure | Some concerns |
Riso et al., 2013, Italy [52] | Low risk | Unsure | Low risk | Unsure | Low risk | Some concerns |
Sangild et al., 2023, Denmark [53] | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk of bias |
Stote et al., 2017, Canada [54] | Low risk | Low risk | Low risk | Unsure | Low risk | Some concerns |
Terrazas et al., 2020, Brazil [55] | Unsure | Unsure | Unsure | Unsure | Unsure | Some concerns |
Xie et al., 2017, USA [56] | Low risk | Unsure | Low risk | Unsure | Low risk | Some concerns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stote, K.S.; Burns, G.; Mears, K.; Sweeney, M.; Blanton, C. The Effect of Berry Consumption on Oxidative Stress Biomarkers: A Systematic Review of Randomized Controlled Trials in Humans. Antioxidants 2023, 12, 1443. https://doi.org/10.3390/antiox12071443
Stote KS, Burns G, Mears K, Sweeney M, Blanton C. The Effect of Berry Consumption on Oxidative Stress Biomarkers: A Systematic Review of Randomized Controlled Trials in Humans. Antioxidants. 2023; 12(7):1443. https://doi.org/10.3390/antiox12071443
Chicago/Turabian StyleStote, Kim S., Gracie Burns, Kim Mears, Marva Sweeney, and Cynthia Blanton. 2023. "The Effect of Berry Consumption on Oxidative Stress Biomarkers: A Systematic Review of Randomized Controlled Trials in Humans" Antioxidants 12, no. 7: 1443. https://doi.org/10.3390/antiox12071443
APA StyleStote, K. S., Burns, G., Mears, K., Sweeney, M., & Blanton, C. (2023). The Effect of Berry Consumption on Oxidative Stress Biomarkers: A Systematic Review of Randomized Controlled Trials in Humans. Antioxidants, 12(7), 1443. https://doi.org/10.3390/antiox12071443