Chemical Composition, Antioxidant Potential, and Nutritional Evaluation of Cultivated Sorghum Grains: A Combined Experimental, Theoretical, and Multivariate Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Determination of 3-Deoxyanthocyanidin Composition
2.3. Determination of Antioxidant Activity
2.3.1. DPPH Radical Scavenging Assay
2.3.2. ABTS Assay
2.3.3. FRAP Assay
2.3.4. Hydroxyl Radical (HO•) Scavenging Assay by Electron Paramagnetic Resonance (EPR) Spectroscopy
2.3.5. Ascorbyl Radical (Asc•) Scavenging Assay by Electron Paramagnetic Resonance (EPR) Spectroscopy
2.4. Content of the Major and Trace Elements
ICP-OES Measurement
2.5. Determination of the Thermodynamically Preferred Mechanism of Antiradical Activity
2.6. Statistics
3. Results and Discussion
3.1. Phenolic Profile of Analysed Sorghum Grain Samples
3.2. Antioxidant Activity
3.3. Content of the Major and Trace Elements
3.4. Nutritional Assessment
3.5. Multivariate Analysis
3.5.1. PCA and HCA Based on Phenolic Content
3.5.2. PCA and HCA Based on Elemental Analysis
3.6. Preferred Anti-HO• Scavenging Mechanism of Luteolinidin and Apigeninidin
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mundia, W.C.; Secchi, S.; Akamani, K.; Wang, G. A Regional Comparison of Factors Affecting Global Sorghum Production: The Case of North America, Asia and Africa’s Sahel. Sustainability 2019, 11, 2135. [Google Scholar] [CrossRef] [Green Version]
- Bazie, D.; Dibala, C.I.; Kondombo, C.P.; Diao, M.; Konaté, K.; Sam, H.; Kayodé, A.P.P.; Dicko, M.H. Physicochemical and Nutritional Potential of Fifteen Sorghum Cultivars from Burkina Faso. Agriculture 2023, 13, 675. [Google Scholar] [CrossRef]
- Kolozsvári, I.; Kun, A.; Jancs, M.; Palágyi, A.; Bozán, C.; Gyuricza, C. Agronomic Performance of Grain Sorghum (Sorghum bicolor (L.) Moench) Cultivars under Intensive Fish Farm Effluent Irrigation. Agronomy 2022, 12, 1185. [Google Scholar] [CrossRef]
- Tovignan, T.K.; Bash, Y.; Windpassinger, S.; Augustine, S.M.; Snowdon, R.; Vukasovic, S. Precision Phenotyping of Agro-Physiological Responses and Water Use of Sorghum under Different Drought Scenarios. Agronomy 2023, 13, 722. [Google Scholar] [CrossRef]
- Hossain, S.; Islam, N.; Rahman, M.; Mosfora, G.M.; Khan, R.A. Sorghum: A prospective crop for climatic vulnerability, food and nutritional security. J. Agric. Food Res. 2022, 8, 100300. [Google Scholar] [CrossRef]
- Pontieri, P.; Mamone, G.; De Caro, S.; Tuinstra, M.R.; Roemer, E.; Okot, J.; De Vita, P.; Ficco, D.B.; Alifano, P.; Pignone, D. Sorghum, a healthy and gluten-free food for celiac patients as demonstrated by genome, biochemical and immunochemical analyses. J. Agric. Food Chem. 2013, 61, 2565–2571. [Google Scholar] [CrossRef]
- Palavecino, P.M.; Ribotta, P.D.; León, A.E.; Bustos, M.C. Gluten-free sorghum pasta: Starch digestibility and antioxidant capacity compared with commercial products. J. Sci. Food Agric. 2019, 99, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, H.E.; Peiris, K.H.S.; Bean, S.R. Assessment of Grain Protein in Tropical Sorghum Accessions from the NPGS Germplasm Collection. Agronomy 2023, 13, 1330. [Google Scholar] [CrossRef]
- Rao, S.; Santhakumar, A.B.; Chinkwo, K.A.; Wu, G.; Johnson, S.K.; Blanchard, C.L. Characterization of phenolic compounds and antioxidant activity in sorghum grains. J. Cereal Sci. 2018, 84, 103–111. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, P.; Warner, R.D.; Fang, Z. Sorghum grain: From genotype, nutrition, and phenolic profile to its health benefits and food applications. Compr. Rev. Food Sci. Food Saf. 2019, 18, 2025–2046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Zhao, X.; Zhang, X.; Liu, H. Bioactive Compounds and Biological Activities of Sorghum Grains. Foods 2021, 10, 2868. [Google Scholar] [CrossRef] [PubMed]
- Nagy, R.; Szőllősi, E.; Molnár, P.B.; Murányi, E.; Czimbalmos, R.; Sipos, P. Condensed Tannin Content and Antioxidant Activity of Hungarian Sorghum Varieties Grown at Research Institute in Karcag. Acta Agrar. Debr. 2021, 11, 155–160. [Google Scholar] [CrossRef]
- Frankowski, J.; Przybylska-Balcerek, A.; Stuper-Szablewska, K. Concentration of Pro-Health Compound of Sorghum Grain-Based Foods. Foods 2022, 11, 216. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.R.; Schober, T.J.; Bean, S.R. Novel food and non-food uses for sorghum and millets. J. Cereal Sci. 2006, 44, 252–271. [Google Scholar] [CrossRef]
- Pinheiro, S.S.; Cardoso, L.d.M.; Anunciação, P.C.; de Menezes, C.B.; Queiroz, V.A.V.; Martino, H.S.D.; Della Lucia, C.M.; Pinheiro Sant’Ana, H.M. Water stress increased the flavonoid content in tannin-free sorghum grains. J. Food Composit. Anal. 2021, 100, 103892. [Google Scholar] [CrossRef]
- Khan, A.; Khan, N.A.; Bean, S.R.; Chen, J.; Xin, Z.; Jiao, Y. Variations in total protein and amino acids in the sequenced sorghum mutant library. Plants 2023, 12, 1662. [Google Scholar] [CrossRef] [PubMed]
- Garman, F.E.; Geoffrey, W.G. Elemental analysis of proteins by micropixel. Prog. Biophys. Mol. Biol. 2005, 2, 173–205. [Google Scholar] [CrossRef]
- Pontieri, P.; Troisi, J.; Di Fiore, R.; Di Maro, A.; Bean, S.R.; Tuinstra, M.R.; Roemer, E.; Boffa, A.; Del Giudice, A.; Pizzolante, G.; et al. Mineral contents in grains of seven food-grade sorghum hybrids grown in a Mediterranean environment. Aust. J. Crop Sci. 2014, 8, 1550–1559. [Google Scholar]
- Nazari, L.; Ropelewska, E.; Zadeh, M.A. Micronutrient Content and Geometrical Features of Grain Sorghum Subjected to Water Stress. Chem. Proc. 2022, 10, 25. [Google Scholar]
- Wu, G.C.; Bennett, S.J.; Bornman, J.F.; Clarke, M.W.; Fang, Z.X.; Johnson, S.K. Phenolic profile and content of sorghum grains under different irrigation managements. Food Res. Int. 2017, 97, 347–355. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.C.; Bornman, J.E.; Bennett, S.J.; Clarke, M.W.; Fang, Z.X.; Johnson, S.K. Individual polyphenolic profiles and antioxidant activity in sorghum grains are influenced by very low and high solar UV radiation and genotype. J. Cereal Sci. 2017, 77, 17–23. [Google Scholar] [CrossRef]
- Wu, G.C.; Johnson, S.K.; Bornman, J.F.; Bennett, S.J.; Fang, Z.X. Changes in whole grain polyphenols and antioxidant activity of six sorghum genotypes under different irrigation treatments. Food Chem. 2017, 214, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Istrati, D.I.; Constantin, O.E.; Vizireanu, C.; Rodica, D.; Furdui, B. Sorghum as source of functional compounds and their importance in human nutrition. AUDJG—Food Technol. 2019, 43, 189–205. [Google Scholar] [CrossRef]
- Xu, J.; Wang, W.; Zhao, Y. Phenolic Compounds in Whole Grain Sorghum and Their Health Benefits. Foods 2021, 10, 1921. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Y.; Liu, Z.; Wang, J. Extraction, Identification and Antioxidant Activity of 3-Deoxyanthocyanidins from Sorghum bicolor L. Moench Cultivated in China. Antioxidants 2023, 12, 468. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, J.; Herald, T.; Cox, S.; Noronha, L.; Perumal, R.; Lee, H.S.; Smolensky, D. Anticancer activity of a novel high phenolic sorghum bran in human colon cancer cells. Oxid. Med. Cell Longev. 2020, 2020, 2890536. [Google Scholar] [CrossRef] [PubMed]
- Pontieri, P.; Troisi, J.; Calcagnile, M.; Bean, S.R.; Tilley, M.; Aramouni, F.; Boffa, A.; Pepe, G.; Campiglia, P.; Del Giudice, F.; et al. Chemical Composition, Fatty Acid and Mineral Content of Food-Grade White, Red and Black Sorghum Varieties Grown in the Mediterranean Environment. Foods 2022, 11, 436. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Pangloli, P.; Perumal, R.; Cox, S.; Noronha, L.E.; Dia, V.P.; Smolensky, D. A Comparative Study on Phenolic Content, Antioxidant Activity and Anti-Inflammatory Capacity of Aqueous and Ethanolic Extracts of Sorghum in Lipopolysaccharide-Induced RAW 264.7 Macrophages. Antionxidants 2020, 9, 1297. [Google Scholar] [CrossRef]
- Barros, F.; Dykes, L.; Awika, J.M.; Rooney, L.W. Accelerated solvent extraction of phenolic compounds from sorghum brans. J. Cereal Sci. 2013, 58, 305–312. [Google Scholar] [CrossRef]
- Dykes, L.; Zhao, Z.Y.; Dahlberg, J. Tannin Analysis in Sorghum Grains. Methods in Molecular Biology; Humana Press: New York, NY, USA, 2019; Volume 1931. [Google Scholar]
- Wang, X.; Han, X.; Li, L.; Zheng, X. Optimization for quantification of sorghum tannins by ferric ammonium citrate assay. GOST 2020, 4, 146–153. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, P.; Warner, R.D.; Shen, S.; Johnson, S.; Fang, Z. Comprehensive profiling of phenolic compounds by HPLC-DAD-ESI-QTOF-MS/MS to reveal their location and form of presence in different sorghum grain genotypes. Food Res. Int. 2020, 137, 109671. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Assessment of the Antioxidant Activity of Catechin in Nutraceuticals: Comparison between a Newly Developed Electrochemical Method and Spectrophotometric Methods. Int. J. Mol. Sci 2022, 23, 8110. [Google Scholar] [CrossRef]
- Mitevski, J.; Pantelić, Đ.N.; Dodevska, S.M.; Kojić, J.; Vulić, J.; Zlatanović, S.; Gorjanović, S.; Laličić-Petronijević, J.; Marjanović, S.; Antić, V. Effect of Beetroot Powder Incorporation on Functional Properties and Shelf Life of Biscuits. Foods 2023, 12, 322. [Google Scholar] [CrossRef]
- Savić, A.G.; Mojović, M. Free radicals identification from the complex EPR signals by applying higher order statistics. Anal. Chem. 2012, 84, 3398–3402. [Google Scholar] [CrossRef] [PubMed]
- Nakarada, Đ.; Pejin, B.; Tommonaro, G.; Mojović, M. Liposomal integration method for assessing antioxidative activity of water insoluble compounds towards biologically relevant free radicals: Example of avarol. J. Liposome Res. 2019, 30, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Villamena, F.A.; Hadad, C.M.; and Zweier, J.L. Kinetic study and theoretical analysis of hydroxyl radical trapping and spin adduct decay of alkoxycarbonyl and dialkoxyphosphoryl nitrones in aqueous media. J. Phys. Chem. 2023, 107, 4407–4414. [Google Scholar] [CrossRef]
- Buettner, G.R. Ascorbate oxidation: UV absorbance of ascorbate and ESR spectroscopy of the ascorbyl radical as assays for iron. Free Radic. Res. 1990, 10, 5–9. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Fox, Gaussian 09, Revision C.01; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Foster, J.P.; Weinhold, F. Natural hybrid orbitals. J. Am. Chem. Soc. 1980, 102, 7211–7218. [Google Scholar] [CrossRef]
- Alvarez-Diduk, R.; Galano, A. Adrenaline and Noradrenaline: Protectors against Oxidative Stress or Molecular Targets? J. Phys. Chem. 2015, 119, 3479–3491. [Google Scholar] [CrossRef]
- Dimić, D.; Milenković, D.; Avdović, E.; Nakarada, Đ.; Dimitrić-Marković, J.; Marković, Z. Advanced oxidation processes of coumarins by hydroperoxyl radical: An experimental and theoretical study, and ecotoxicology assessment. Chem. Eng. J. 2021, 424, 130331. [Google Scholar] [CrossRef]
- Dimitrić Marković, J.; Milenković, D.; Amić, D.; Popović-Bijelić, A.; Mojović, M.; Pašti, I.A.; Marković, Z. Energy requirements of the reactions of kaempferol and selected radical species in different media: Towards the prediction of the possible radical scavenging mechanisms. Struct. Chem. 2014, 25, 1795. [Google Scholar] [CrossRef]
- de Morais Cardoso, L.; Pinheiro, S.S.; Duarte Martino, H.S.; Pinheiro-Sant’Ana, H.M. Sorghum (Sorghum bicolor L.): Nutrients, bioactive compounds, and potential impact on human health. Crit. Rev. Food Sci. Nutr. 2017, 57, 372–390. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Zhang, P.; Warner, R.D.; Fang, Z. 3-Deoxyanthocyanidin colorant: Nature, health, synthesis and food applications. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1533–1549. [Google Scholar] [CrossRef] [PubMed]
- Awika, J.M.; Rooney, L.W.; Wu, X.; Prior, R.L.; Cisneros Zevallos, L. Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. J. Agric. Food Chem. 2003, 51, 6657–6662. [Google Scholar] [CrossRef]
- Kumari, P.K.; Umakanth, A.V.; Narsaiah, T.B.; Uma, A. Exploring anthocyanins, antioxidant capacity and α-glucosidase inhibition in bran and flour extracts of selected sorghum genotypes. Food Biosci. 2021, 41, 100979. [Google Scholar] [CrossRef]
- Ofosu, F.K.; Elahi, F.; Daliri, E.B.M.; Yeon, S.J.; Ham, H.J.; Kim, J.H.; Oh, D.H. Flavonoids in decorticated sorghum grains exert antioxidant, antidiabetic and antiobesity activities. Molecules 2020, 25, 2854. [Google Scholar] [CrossRef]
- Dimić, D.; Milenković, D.; Marković, Z.; Dimitrić Marković, J. The reactivity of dopamine precursors and metabolites towards ABTS•-: An experimental and theoretical study. J. Serb. Chem. Soc. 2019, 84, 1–13. [Google Scholar] [CrossRef]
- Paiva, C.L.; Queiroz, V.A.V.; Simeone, M.L.F.; Schaffert, R.E.; de Oliveira, A.C.; da Silva, C.S. Mineral content of sorghum genotypes and the influence of water stress. Food Chem. 2017, 214, 400–405. [Google Scholar] [CrossRef]
- Motlhaodi, T.; Bryngelsson, T.; Chite, S.; Fatih, M.; Ortiz, R.; Geleta, M. Nutritional variation in sorghum [Sorghum bicolor (L.) Moench] accessions from southern Africa revealed by protein and mineral composition. J. Cereal Sci. 2018, 83, 123–129. [Google Scholar] [CrossRef]
- Ikem, A.; Odumosu, O.P.; Udousoro, I. Elemental composition of cereal grains and the contribution to the dietar intake in the Nigerian population. J. Food Compost. Anal. 2023, 118, 105207. [Google Scholar] [CrossRef]
- Soetan, K.O.; Olaiya, C.O.; Oyewole, O.E. The importance of mineral elements for humans, domestic animals and plants: A review. Afr. J. Food Sci. 2010, 4, 200–222. [Google Scholar]
- Victora, C.G.; Christian, P.; Vidaletti, L.P.; Gatica-Domínguez, G.; Menon, P.; Black, R.E. Revisiting maternal and child undernutrition in low-income and middle-income countries: Variable progress towards an unfinished agenda. Lancet 2021, 397, 1388–1399. [Google Scholar] [CrossRef]
- Zlotkin, S.; Dewey, K.G. Perspective: Putting the youngest among us into the nutrition “call for action” for food fortification strategies. Am. J. Clin. Nutr. 2021, 114, 1257–1260. [Google Scholar] [CrossRef] [PubMed]
- Madhusudhan, R.; Hariprasanna, K.; Aruna, C.; Sajjanar, G.M.; Hanamaratti, N.G.; Sameera, S.; Tonapi, V.A. Genetic variability, G × E interaction and stability for iron and zinc content in sorghum grains in advanced breeding lines. J. Cereal Sci. 2023, 110, 103653. [Google Scholar] [CrossRef]
- National Institute of Health US. Available online: https://ods.od.nih.gov/HealthInformation/nutrientrecommendations.aspx (accessed on 11 July 2023).
- Institute of Medicine US. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; Food and Nutrition Board, National Academy of Sciences, The National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Institute of Medicine US. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; Food and Nutrition Board, National Academy of Sciences, The National Academy Press: Washington, DC, USA, 2000. [Google Scholar]
- Institute of Medicine US. Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate; Food and Nutrition Board, National Academy of Sciences, The National Academy Press: Washington, DC, USA, 2005. [Google Scholar]
- Medeiros, R.J.; dos Santos, L.M.G.; Freire, A.S.; Santelli, R.E.; Braga, A.M.C.B.; Krauss, T.M.; Jacob, S.C. Determination of inorganic trace elements in edible marine fish from Rio de Janeiro State, Brazil. Food Control 2012, 23, 535–541. [Google Scholar] [CrossRef] [Green Version]
- Dimić, D.; Milenković, D.; Dimitrić Marković, J.; Marković, Z. Antiradical activity of catecholamines and metabolites of dopamine: Theoretical and experimental study. Phys. Chem. Chem. Phys. 2017, 19, 12970–12980. [Google Scholar] [CrossRef]
- Ali, H.M.; Ali, I.H. Energetic and electronic computation of the two-hydrogen atom donation process in catecholic and non-catecholic anthocyanidins. Food Chem. 2018, 243, 145–150. [Google Scholar] [CrossRef]
- Milenković, D.; Dimić, D.; Avdović, E.; Amić, A.; Dimitrić-Marković, J.; Marković, Z. Advanced oxidation process of coumarins by hydroxyl radical: Towards the new mechanism leading to less toxic products. Chem. Eng. J. 2020, 395, 124971. [Google Scholar] [CrossRef]
Sample | DPPH (mm TE * g−1) | FRAP (mm TE g−1) | ABTS (mm TE g−1) | HO• (%) | Asc• (%) |
---|---|---|---|---|---|
S1 | 0.61 ± 0.05 | 1.01 ± 0.07 | 0.95 ± 0.11 | 42.10 ± 0.14 | 38.40 ± 0.28 |
S2 | 1.46 ± 0.05 | 1.92 ± 0.00 | 2.80 ± 0.01 | 27.45 ± 0.21 | 32.15 ± 0.21 |
S3 | 0.58 ± 0.00 | 0.99 ± 0.03 | 1.14 ± 0.08 | 39.85 ± 0.21 | 40.55 ± 0.35 |
S4 | 3.62 ± 0.05 | 3.47 ± 0.05 | 4.17 ± 0.01 | 45.50 ± 0.57 | 36.25 ± 0.35 |
S5 | 2.09 ± 0.07 | 2.48 ± 0.03 | 3.17 ± 0.08 | 26.05 ± 0.21 | 30.60 ± 0.42 |
S6 | 3.75 ± 0.00 | 3.41 ± 0.08 | 4.16 ± 0.02 | 39.35 ± 0.35 | 35.45 ± 0.35 |
S7 | 3.05 ± 0.08 | 3.04 ± 0.01 | 3.58 ± 0.08 | 36.95 ± 0.35 | 22.00 ± 0.42 |
S8 | 3.06 ± 0.12 | 3.19 ± 0.01 | 3.85 ± 0.03 | 32.4 ± 0.42 | 34.50 ± 0.42 |
S9 | 0.36 ± 0.02 | 0.94 ± 0.02 | 0.76 ± 0.04 | 26.1 ± 0.42 | 37.45 ± 0.49 |
S10 | 0.33 ± 0.03 | 1.12 ± 0.11 | 0.62 ± 0.03 | 16.55 ± 0.35 | 35.45 ± 0.49 |
S11 | 3.51 ± 0.01 | 3.25 ± 0.08 | 3.84 ± 0.10 | 28.25 ± 0.35 | 40.25 ± 0.35 |
S12 | 3.03 ± 0.18 | 2.94 ± 0.05 | 3.71 ± 0.07 | 26.9 ± 0.28 | 34.35 ± 0.35 |
S13 | 2.43 ± 0.14 | 2.70 ± 0.05 | 3.22 ± 0.01 | 27.85 ± 0.35 | 42.60 ± 0.42 |
S14 | 1.68 ± 0.01 | 2.20 ± 0.10 | 2.66 ± 0.03 | 56.55 ± 0.35 | 37.45 ± 0.35 |
S15 | 0.57 ± 0.01 | 1.08 ± 0.02 | 1.07 ± 0.05 | 37.35 ± 0.21 | 32.15 ± 0.49 |
S16 | 0.37 ± 0.01 | 0.95 ± 0.06 | 0.71 ± 0.01 | 15.80 ± 0.28 | 40.35 ± 0.35 |
Sample | Ca | K | Mg | Na | P | S |
---|---|---|---|---|---|---|
S1 | 98.26 ± 3.51 | 963.30 ± 20.12 | 575.81 ± 16.37 | 4.59 ± 0.24 | 3080.87 ± 22.17 | 881.32 ± 5.80 |
S2 | 151.20 ± 1.64 | 2055.46 ± 14.65 | 786.71 ± 7.33 | 3.91 ± 0.03 | 5375.47 ± 17.44 | 772.15 ± 0.70 |
S3 | 189.93 ± 2.86 | 1951.90 ± 12.12 | 835.95 ± 11.79 | 5.39 ± 0.04 | 6069.05 ± 3.37 | 849.05 ± 1.35 |
S4 | 141.78 ± 0.61 | 1709.71 ± 26.67 | 816.78 ± 17.55 | 3.24 ± 0.02 | 5196.2 ± 10.13 | 897.46 ± 2.03 |
S5 | 145.70 ± 1.18 | 1961.74 ± 4.37 | 776.14 ± 0.00 | 3.51 ± 0.03 | 5320.82 ± 16.8 | 760.46 ± 0.00 |
S6 | 163.49 ± 1.00 | 2249.17 ± 18.89 | 812.45 ± 5.49 | 2.96 ± 0.10 | 5917.35 ± 3.43 | 780.40 ± 0.69 |
S7 | 146.63 ± 1.55 | 1586.28 ± 9.31 | 840.57 ± 2.41 | 4.39 ± 0.03 | 5123.39 ± 3.45 | 837.89 ± 0.00 |
S8 | 113.99 ± 2.73 | 1700.97 ± 22.39 | 790.87 ± 2.45 | 3.01 ± 0.04 | 5051.45 ± 20.99 | 725.31 ± 0.70 |
S9 | 123.79 ± 0.37 | 1638.96 ± 17.85 | 856.75 ± 5.73 | 2.97 ± 0.02 | 5561.64 ± 23.58 | 893.67 ± 1.35 |
S10 | 134.58 ± 3.44 | 2133.49 ± 5.62 | 888.96 ± 7.02 | 3.69 ± 0.06 | 6163.09 ± 7.02 | 895.91 ± 0.70 |
S11 | 174.06 ± 0.21 | 2233.90 ± 32.42 | 927.35 ± 7.05 | 3.64 ± 0.09 | 6781.94 ± 28.19 | 1030.00 ± 2.11 |
S12 | 183.20 ± 1.65 | 2322.58 ± 0.00 | 878.04 ± 4.71 | 4.23 ± 0.04 | 6342.75 ± 10.09 | 817.40 ± 1.68 |
S13 | 135.75 ± 2.42 | 1818.34 ± 21.11 | 841.49 ± 4.15 | 3.40 ± 0.02 | 5759.25 ± 17.31 | 807.71 ± 2.08 |
S14 | 161.11 ± 3.20 | 1985.60 ± 39.78 | 823.80 ± 5.39 | 3.45 ± 0.04 | 5792.33 ± 13.48 | 859.55 ± 0.00 |
S15 | 80.11 ± 0.07 | 1627.88 ± 27.89 | 734.82 ± 9.41 | 2.99 ± 0.03 | 4791.95 ± 10.46 | 853.63 ± 3.14 |
S16 | 119.50 ± 0.31 | 1994.87 ± 29.45 | 831.32 ± 1.03 | 3.16 ± 0.10 | 6322.65 ± 30.82 | 1031.82 ± 4.45 |
Sample | Al | B | Cd | Cr | Cu | Li | Ni | Pb | Se | Sr | Mn | Zn | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | 0.33 ± 0.10 | 0.58 ± 0.00 | <0.005 | 0.15 ± 0.00 | 1.20 ± 0.03 | 0.06 ± 0.00 | 0.25 ± 0.02 | <0.005 | 0.32 ± 0.03 | 0.10 ± 0.00 | 4.65 ± 0.18 | 13.16 ± 0.17 | 13.60 ± 0.62 |
S2 | 0.63 ± 0.22 | 0.44 ± 0.03 | <0.005 | 0.47 ± 0.23 | 2.13 ± 0.02 | 0.09 ± 0.00 | 0.25 ± 0.02 | <0.005 | 0.38 ± 0.04 | 0.15 ± 0.00 | 6.80 ± 0.19 | 18.23 ± 0.09 | 18.79 ± 0.65 |
S3 | 1.13 ± 0.14 | 0.69 ± 0.01 | 0.01 ± 0.00 | 0.29 ± 0.17 | 2.83 ± 0.01 | 0.11 ± 0.01 | 0.65 ± 0.00 | 0.15 ± 0.06 | 0.69 ± 0.22 | 0.21 ± 0.00 | 13.05 ± 0.13 | 23.55 ± 0.02 | 23.44 ± 0.18 |
S4 | 0.48 ± 0.15 | 0.33 ± 0.01 | <0.005 | 0.37 ± 0.12 | 1.74 ± 0.03 | 0.08 ± 0.00 | 0.33 ± 0.00 | <0.005 | 0.38 ± 0.05 | 0.16 ± 0.00 | 7.99 ± 0.16 | 17.21 ± 0.00 | 18.39 ± 0.31 |
S5 | 1.43 ± 0.21 | 0.38 ± 0.02 | 0.02 ± 0.00 | 0.13 ± 0.01 | 2.07 ± 0.00 | 0.09 ± 0.00 | 0.16 ± 0.00 | <0.005 | 0.36 ± 0.10 | 0.14 ± 0.00 | 6.68 ± 0.08 | 17.40 ± 0.02 | 20.60 ± 0.76 |
S6 | 0.78 ± 0.15 | 0.27 ± 0.01 | 0.03 ± 0.00 | 0.17 ± 0.01 | 2.73 ± 0.02 | 0.10 ± 0.00 | 0.17 ± 0.01 | <0.005 | 0.39 ± 0.07 | 0.16 ± 0.01 | 8.53 ± 0.04 | 20.76 ± 0.00 | 23.30 ± 0.15 |
S7 | 1.65 ± 0.10 | 0.52 ± 0.01 | 0.02 ± 0.00 | 0.14 ± 0.01 | 2.01 ± 0.03 | 0.09 ± 0.00 | 0.61 ± 0.00 | <0.005 | 0.34 ± 0.23 | 0.15 ± 0.01 | 10.56 ± 0.02 | 15.68 ± 0.02 | 19.85 ± 0.18 |
S8 | 0.87 ± 0.01 | 0.57 ± 0.02 | <0.005 | 0.57 ± 0.08 | 1.87 ± 0.04 | 0.07 ± 0.00 | 0.39 ± 0.01 | <0.005 | 0.40 ± 0.02 | 0.09 ± 0.00 | 7.57 ± 0.07 | 15.55 ± 0.04 | 19.96 ± 0.06 |
S9 | 0.42 ± 0.43 | 0.53 ± 0.01 | 0.01 ± 0.01 | 0.25 ± 0.14 | 2.51 ± 0.03 | 0.08 ± 0.00 | 0.29 ± 0.00 | <0.005 | 0.38 ± 0.01 | 0.12 ± 0.00 | 10.16 ± 0.01 | 19.88 ± 0.04 | 24.94 ± 0.20 |
S10 | 1.05 ± 0.20 | 0.61 ± 0.02 | <0.005 | 0.28 ± 0.06 | 2.67 ± 0.02 | 0.08 ± 0.01 | 0.32 ± 0.00 | <0.005 | 0.41 ± 0.02 | 0.14 ± 0.01 | 9.71 ± 0.01 | 20.81 ± 0.01 | 27.16 ± 0.50 |
S11 | 1.69 ± 0.10 | 1.07 ± 0.03 | 0.02 ± 0.00 | 0.09 ± 0.02 | 2.34 ± 0.02 | 0.10 ± 0.00 | 0.71 ± 0.01 | <0.005 | 0.46 ± 0.06 | 0.15 ± 0.01 | 12.03 ± 0.12 | 24.20 ± 0.04 | 33.74 ± 0.35 |
S12 | 1.81 ± 0.03 | 0.90 ± 0.02 | 0.01 ± 0.00 | 0.34 ± 0.03 | 2.42 ± 0.03 | 0.11 ± 0.00 | 0.62 ± 0.00 | <0.005 | 0.24 ± 0.06 | 0.15 ± 0.00 | 8.48 ± 0.03 | 19.70 ± 0.04 | 30.82 ± 0.03 |
S13 | 0.75 ± 0.16 | 0.56 ± 0.03 | <0.005 | <0.005 | 2.19 ± 0.02 | 0.09 ± 0.00 | 0.39 ± 0.01 | <0.005 | 0.34 ± 0.04 | 0.13 ± 0.01 | 8.03 ± 0.15 | 19.91 ± 0.03 | 23.71 ± 0.77 |
S14 | 1.10 ± 0.09 | 0.97 ± 0.02 | 0.02 ± 0.01 | 0.43 ± 0.03 | 2.60 ± 0.00 | 0.09 ± 0.00 | 0.84 ± 0.00 | <0.005 | 0.31 ± 0.05 | 0.16 ± 0.01 | 6.69 ± 0.01 | 20.89 ± 0.08 | 21.06 ± 0.31 |
S15 | 1.06 ± 0.19 | 0.23 ± 0.02 | 0.02 ± 0.00 | 0.18 ± 0.07 | 1.64 ± 0.00 | 0.05 ± 0.00 | 0.37 ± 0.00 | <0.005 | 0.41 ± 0.07 | 0.06 ± 0.00 | 6.27 ± 0.01 | 16.42 ± 0.04 | 19.01 ± 0.23 |
S16 | 0.87 ± 0.08 | 0.44 ± 0.02 | 0.02 ± 0.00 | 0.08 ± 0.03 | 3.05 ± 0.00 | 0.08 ± 0.00 | 0.54 ± 0.01 | <0.005 | 0.40 ± 0.14 | 0.12 ± 0.01 | 9.08 ± 0.07 | 25.45 ± 0.10 | 27.45 ± 0.52 |
Analyte | Daily Intake mg/100 g Grain | RDA/AI * (F) (mg/day) | RDA/AI * (M) (mg/day) | % Intake (F) | % Intake (M) |
---|---|---|---|---|---|
Mg | 57.58–92.74 | 320 | 420 | 18–29 | 14–22 |
P | 308.06–678.19 | 700 | 700 | 44–97 | 44–97 |
K | 96.35–232.26 | 2600 | 3400 | 4–9 | 3–7 |
Ca | 8.01–19.00 | 1000 | 1000 | 1–2 | 1–2 |
Na | 0.30–0.54 | 1500 * | 1500 * | 0 | 0 |
Mn | 0.47–1.31 | 1.80 * | 2.30 * | 26–73 | 20–57 |
Fe | 1.36–3.37 | 18.00 | 8.00 | 8–19 | 17–42 |
Cu | 0.12–0.30 | 0.90 | 0.90 | 13–33 | 13–33 |
Zn | 1.32–2.54 | 8.00 | 11.00 | 17–32 | 12–23 |
Cr | 0.01–0.06 | 0.025 * | 0.035 * | 32–228 | 23–163 |
Se | 0.02–0.07 | 0.055 | 0.055 | 44–125 | 44–125 |
Compound | Position | HAT | SPLET | SET-PT | ||
---|---|---|---|---|---|---|
ΔHBDE | ΔHPA | ΔHETE | ΔHIP | ΔHPDE | ||
5 | −127 | −295 | 167 | 287 | −415 | |
apigeninidin | 7 | −115 | −295 | 180 | 287 | −402 |
4′ | −125 | −284 | 159 | 287 | −413 | |
luteolinidin | 5 | −127 | −295 | 168 | 276 | −403 |
7 | −115 | −295 | 180 | 276 | −391 | |
3′ | −147 | −262 | 115 | 276 | −423 | |
4′ | −149 | −301 | 152 | 276 | −425 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaćimović, S.; Kiprovski, B.; Ristivojević, P.; Dimić, D.; Nakarada, Đ.; Dojčinović, B.; Sikora, V.; Teslić, N.; Pantelić, N.Đ. Chemical Composition, Antioxidant Potential, and Nutritional Evaluation of Cultivated Sorghum Grains: A Combined Experimental, Theoretical, and Multivariate Analysis. Antioxidants 2023, 12, 1485. https://doi.org/10.3390/antiox12081485
Jaćimović S, Kiprovski B, Ristivojević P, Dimić D, Nakarada Đ, Dojčinović B, Sikora V, Teslić N, Pantelić NĐ. Chemical Composition, Antioxidant Potential, and Nutritional Evaluation of Cultivated Sorghum Grains: A Combined Experimental, Theoretical, and Multivariate Analysis. Antioxidants. 2023; 12(8):1485. https://doi.org/10.3390/antiox12081485
Chicago/Turabian StyleJaćimović, Simona, Biljana Kiprovski, Petar Ristivojević, Dušan Dimić, Đura Nakarada, Biljana Dojčinović, Vladimir Sikora, Nemanja Teslić, and Nebojša Đ. Pantelić. 2023. "Chemical Composition, Antioxidant Potential, and Nutritional Evaluation of Cultivated Sorghum Grains: A Combined Experimental, Theoretical, and Multivariate Analysis" Antioxidants 12, no. 8: 1485. https://doi.org/10.3390/antiox12081485
APA StyleJaćimović, S., Kiprovski, B., Ristivojević, P., Dimić, D., Nakarada, Đ., Dojčinović, B., Sikora, V., Teslić, N., & Pantelić, N. Đ. (2023). Chemical Composition, Antioxidant Potential, and Nutritional Evaluation of Cultivated Sorghum Grains: A Combined Experimental, Theoretical, and Multivariate Analysis. Antioxidants, 12(8), 1485. https://doi.org/10.3390/antiox12081485