The Role of the si-Face Tyrosine of a Homodimeric Ferredoxin-NADP+ Oxidoreductase from Bacillus subtilis during Complex Formation and Redox Equivalent Transfer with NADP+/H and Ferredoxin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparations of Tyr50 BsFNR Mutants and BsFd
2.2. Stopped-Flow Spectrophotometry
2.3. Spectroscopic Measurements and Protein Structure Representation
3. Results
3.1. Reduction of Oxidized BsFNRs with NADPH
3.2. Oxidation of Reduced BsFNRs with NADP+
3.3. Reduction of Oxidized BsFNR Mutants with Reduced BsFd
4. Discussion
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atkinson, J.T.; Campbell, I.; Bennett, G.N.; Silberg, J.J. Cellular Assays for Ferredoxins: A Strategy for Understanding Electron Flow through Protein Carriers That Link Metabolic Pathways. Biochemistry 2016, 55, 7047–7064. [Google Scholar] [CrossRef]
- Ceccarelli, E.A.; Arakaki, A.K.; Cortez, N.; Carrillo, N. Functional plasticity and catalytic efficiency in plant and bacterial ferredoxin-NADP(H) reductases. Biochim. Biophys. Acta 2004, 1698, 155–165. [Google Scholar]
- Aliverti, A.; Pandini, V.; Pennati, A.; de Rosa, M.; Zanetti, G. Structural and functional diversity of ferredoxin-NADP+ reductases. Arch. Biochem. Biophys. 2008, 474, 283–291. [Google Scholar] [CrossRef]
- Hanke, G.; Mulo, P. Plant type ferredoxins and ferredoxin-dependent metabolism. Plant Cell Environ. 2013, 36, 1071–1084. [Google Scholar] [CrossRef]
- Lodeyro, A.F.; Ceccoli, R.D.; Pierella Karlusich, J.J.; Carrillo, N. The importance of flavodoxin for environmental stress tolerance in photosynthetic microorganisms and transgenic plants. Mechanism, evolution and biotechnological potential. FEBS Lett. 2012, 586, 2917–2924. [Google Scholar]
- Li, S.; Du, L.; Bernhardt, R. Redox Partners: Function Modulators of Bacterial P450 Enzymes. Trends Microbiol. 2020, 28, 445–454. [Google Scholar] [CrossRef]
- Marquet, A.; Bui, B.T.S.; Smith, A.G.; Warren, M.J. Iron-sulfur proteins as initiators of radical chemistry. Nat. Prod. Rep. 2007, 24, 1027–1040. [Google Scholar] [CrossRef]
- Arcinas, A.J.; Maiocco, S.J.; Elliott, S.J.; Silakov, A.; Booker, S.J. Ferredoxins as interchangeable redox components in support of MiaB, a radical S-adenosylmethionine methylthiotransferase. Protein Sci. 2019, 28, 267–282. [Google Scholar] [CrossRef]
- Schulz, V.; Basu, S.; Freibert, S.A.; Webert, H.; Boss, L.; Mühlenhoff, U.; Pierrel, F.; Essen, L.O.; Warui, D.M.; Booker, S.J.; et al. Functional spectrum and specificity of mitochondrial ferredoxins FDX1 and FDX2. Nat. Chem. Biol. 2023, 19, 206–217. [Google Scholar] [CrossRef]
- Cornelis, P.; Wei, Q.; Andrews, S.C.; Vinckx, T. Iron homeostasis and management of oxidative stress response in bacteria. Metallomics 2011, 3, 540–549. [Google Scholar] [CrossRef]
- Dym, O.; Eisenberg, D. Sequence-structure analysis of FAD-containing proteins. Protein Sci. 2001, 10, 1712–1728. [Google Scholar] [CrossRef] [PubMed]
- Ojha, S.; Meng, E.C.; Babbitt, P.C. Evolution of function in the “two dinucleotide binding domains” flavoproteins. PLoS Comput. Biol. 2007, 3, 1268–1280. [Google Scholar]
- Hammerstad, M.; Hersleth, H.P. Overview of structurally homologous flavoprotein oxidoreductases containing the low Mr thioredoxin reductase-like fold—A functionally diverse group. Arch. Biochem. Biophys. 2021, 702, 108826. [Google Scholar] [CrossRef] [PubMed]
- Komori, H.; Seo, D.; Sakurai, T.; Higuchi, Y. Crystal structure analysis of Bacillus subtilis ferredoxin-NADP+ oxidoreductase and the structural basis for its substrate selectivity. Protein Sci. 2010, 19, 2279–2290. [Google Scholar] [CrossRef]
- Gudim, I.; Hammerstad, M.; Lofstad, M.; Hersleth, H.-P. The Characterization of Different Flavodoxin Reductase-Flavodoxin (FNR-Fld) Interactions Reveals an Efficient FNR-Fld Redox Pair and Identifies a Novel FNR Subclass. Biochem 2018, 57, 5427–5436. [Google Scholar] [CrossRef]
- Seo, D.; Muraki, N.; Kurisu, G. Kinetic and structural insight into a role of the re-face Tyr328 residue of the homodimer type ferredoxin-NADP+ oxidoreductase from Rhodopseudomonas palustris in the reaction with NADP+/NADPH. Biochim. Biophys. Acta 2020, 1861, 148140. [Google Scholar] [CrossRef]
- Mandai, T.; Fujiwara, S.; Imaoka, S. A novel electron transport system for thermostable CYP175A1 from Thermus thermophilus HB27. FEBS J. 2009, 276, 2416–2429. [Google Scholar] [CrossRef]
- Waksman, G.; Krishna, T.S.; Williams, C.H., Jr.; Kuriyan, J. Crystal structure of Escherichia coli thioredoxin reductase refined at 2 Å resolution. Implications for a large conformational change during catalysis. J. Mol. Biol. 1994, 236, 800–816. [Google Scholar] [CrossRef]
- Sevrioukova, I.F.; Li, H.; Poulos, T.L. Crystal Structure of Putidaredoxin Reductase from Pseudomonas putida, the Final Structural Component of the Cytochrome P450cam Monooxygenase. J. Mol. Biol. 2004, 336, 889–902. [Google Scholar] [CrossRef]
- Meints, C.E.; Simtchouk, S.; Wolthers, K.R. Aromatic substitution of the FAD-shielding tryptophan reveals its differential role in regulating electron flux in methionine synthase reductase and cytochrome P450 reductase. FEBS J. 2013, 280, 1460–1474. [Google Scholar] [CrossRef]
- Pérez-Domínguez, S.; Caballero-Mancebo, S.; Marcuello, C.; Medina, M.; Lostao, A. Nanomechanical Study of Enzyme: Coenzyme Complexes: Bipartite Sites in Plastidic Ferredoxin-NADP+ Reductase for the Interaction with NADP+. Antioxidants 2022, 11, 537. [Google Scholar] [CrossRef] [PubMed]
- Arakaki, A.K.; Orellano, E.G.; Calcaterra, N.B.; Ottado, J.; Ceccarelli, E.A. Involvement of the Flavin si-Face Tyrosine on the Structure and Function of Ferredoxin-NADP+ Reductases. J. Biol. Chem. 2001, 276, 44419–44426. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Azqueta, A.; Herguedas, B.; Hurtado-Guerrero, R.; Martínez-Júlvez, M.; Medina, M. A hydrogen bond network in the active site of Anabaena ferredoxin-NADP+ reductase modulates its catalytic efficiency. Biochim. Biophy. Acta Bioener. 2014, 1837, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Kimura, S.; Nishida, H.; Iyanagi, T. Effects of flavin-binding motif amino acid mutations in the NADH-cytochrome b5 reductase catalytic domain on protein stability and catalysis. J. Biochem. 2001, 130, 481–490. [Google Scholar] [CrossRef]
- Marohnic, C.C.; Crowley, L.J.; Davis, C.A.; Smith, E.T.; Barber, M.J. Cytochrome b5 reductase: Role of the si-face residues, proline 92 and tyrosine 93, in structure and catalysis. Biochem 2005, 44, 2449–2461. [Google Scholar] [CrossRef]
- Swenson, R.P.; Krey, G.D. Site-directed mutagenesis of tyrosine-98 in the flavodoxin from Desulfovibrio vulgaris (Hildenborough): Regulation of oxidation-reduction properties of the bound FMN cofactor by aromatic, solvent, and electrostatic interactions. Biochem 1994, 33, 8505–8514. [Google Scholar] [CrossRef]
- Casaus, J.L.; Navarro, J.A.; Hervás, M.; Lostao, A.; De la Rosa, M.A.; Gómez-Moreno, C.; Sancho, J.; Medina, M. Anabaena sp. PCC 7119 flavodoxin as electron carrier from photosystem I to ferredoxin-NADP+ reductase. Role of Trp(57) and Tyr(94). J. Biol. Chem. 2002, 277, 22338–22344. [Google Scholar] [CrossRef]
- Lostao, A.; Gómez-Moreno, C.; Mayhew, S.G.; Sancho, J. Differential stabilization of the three FMN redox forms by tyrosine 94 and tryptophan 57 in flavodoxin from Anabaena and its influence on the redox potentials. Biochem 1997, 36, 14334–14344. [Google Scholar] [CrossRef]
- Seo, D.; Naito, H.; Nishimura, E.; Sakurai, T. Replacement of Tyr50 stacked on the si-face of the isoalloxazine ring of the flavin adenine dinucleotide prosthetic group modulates Bacillus subtilis ferredoxin-NADP+ oxidoreductase activity toward NADPH. Photosynth. Res. 2015, 125, 321–328. [Google Scholar] [CrossRef]
- Batie, C.J.; Kamin, H. Ferredoxin: NADP+ oxidoreductase. Equilibria in binary and ternary complexes with NADP+ and ferredoxin. J. Biol. Chem. 1984, 259, 8832–8839. [Google Scholar] [CrossRef]
- Morales, R.; Charon, M.H.; Kachalova, G.; Serre, L.; Medina, M.; Gómez-Moreno, C.; Frey, M. A redox-dependent interaction between two electron-transfer partners involved in photosynthesis. EMBO Rep. 2000, 1, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Kurisu, G.; Kusunoki, M.; Katoh, E.; Yamazaki, T.; Teshima, K.; Onda, Y.; Kimata-Ariga, Y.; Hase, T. Structure of the electron transfer complex between ferredoxin and ferredoxin-NAPD+ reductase. Nat. Struc. Biol. 2001, 8, 117–121. [Google Scholar] [CrossRef]
- Medina, M.; Gómez-Moreno, C. Interaction of ferredoxin-NADP+ reductase with its substrates: Optimal interaction for efficient electron transfer. Photosynth. Res. 2004, 79, 113–131. [Google Scholar] [CrossRef]
- Mulo, P.; Medina, M. Interaction and electron transfer between ferredoxin-NADP+ oxidoreductase and its partners: Structural, functional, and physiological implications. Photosynth. Res. 2017, 134, 265–280. [Google Scholar] [CrossRef] [PubMed]
- Moser, C.C.; Anderson, J.L.R.; Dutton, P.L. Guidelines for tunneling in enzymes. Biochim. Biophys. Acta Bioenerg. 2010, 1797, 1573–1586. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, B.; Seo, D.; Aleksandrov, A.; Vos, M.H. Characterization of light-induced, short-lived interacting radicals in the active site of flavoprotein ferredoxin-NADP+ oxidoreductase. J. Am. Chem. Soc. 2021, 143, 2757–2768. [Google Scholar] [CrossRef]
- Seo, D.; Soeta, T.; Sakurai, H.; Sétif, P.; Sakurai, T. Pre-steady-state kinetic studies of redox reactions catalysed by Bacillus subtilis ferredoxin-NADP+ oxidoreductase with NADP+/NADPH and ferredoxin. Biochim. Biophys. Acta 2016, 1857, 678–687. [Google Scholar] [CrossRef]
- Seo, D.; Asano, T.; Komori, H.; Sakurai, T. Role of the C-terminal extension stacked on the re-face of the isoalloxazine ring moiety of the flavin adenine dinuc leotide prosthetic group in ferredoxin-NADP(+) oxidoreductase from Bacillus subtilis. Plant Physiol. Biochem. 2014, 81, 143–148. [Google Scholar] [CrossRef]
- Green, A.J.; Munro, A.W.; Cheesman, M.R.; Reid, G.A.; Von Wachenfeldt, C.; Chapman, S.K. Expression, purification and characterisation of a Bacillus subtilis ferredoxin: A potential electron transfer donor to cytochrome P450 BioI. J. Inorg. Biochem. 2003, 93, 92–99. [Google Scholar] [CrossRef]
- Alonso-de Castro, S.; Ruggiero, E.; Ruiz-De-Angulo, A.; Rezabal, E.; Mareque-Rivas, J.C.; Xabier, L.; López-Gallego, F.; Salassa, L. Riboflavin as a bioorthogonal photocatalyst for the activation of a PtIV prodrug. Chem. Sci. 2017, 8, 4619–4625. [Google Scholar] [CrossRef]
- Gonçalves, L.C.P.; Mansouri, H.R.; Bastos, E.L.; Abdellah, M.; Fadiga, B.S.; Sá, J.; Rudroff, F.; Mihovilovic, M.D. Morpholine-based buffers activate aerobic photobiocatalysis via spin correlated ion pair formation. Catal. Sci. Technol. 2019, 9, 1365–1371. [Google Scholar] [CrossRef]
- Zhuang, B.; Aleksandrov, A.; Seo, D.; Vos, M.H. Excited-State Properties of Fully Reduced Flavins in Ferredoxin-NADP+ Oxidoreductase. J. Phys. Chem. Let. 2023, 14, 1096–1102. [Google Scholar] [CrossRef] [PubMed]
- Bozovic, O.; Ruf, J.; Jankovic, B.; Buhrke, D.; Johnson, P.J.M.; Hamm, P. The speed of allosteric signaling within a single-domain protein. J. Phys. Chem. Lett. 2021, 12, 4262–4267. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Swenson, R.P. The cumulative electrostatic effect of aromatic stacking interactions and the negative electrostatic environment of the flavin mononucleotide binding site is a major determinant of the reduction potential for the flavodoxin from Desulfovibrio vulgaris [Hildenborough]. Biochem 1996, 35, 15980–15988. [Google Scholar]
- Medina, M. Structural and mechanistic aspects of flavoproteins: Photosynthetic electron transfer from photosystem I to NADP+. FEBS J. 2009, 276, 3942–3958. [Google Scholar] [CrossRef] [PubMed]
[NADPH] | 100 μM a | 200 μM a | 300 μM | 500 μM a | 100 μM S-NADPD b | |
---|---|---|---|---|---|---|
Y50G | kI | 46.6 ± 0.3 (43.7 ± 1.5) | 49.9 ± 0.3 (48 ± 2) | 49.9 ± 0.4 (49 ± 2) | 50.7 ± 0.4 (50 ± 4) | 9.48 ± 0.03 (9.8 ± 0.4) |
AI | 0.0302 ± 0.0001 | 0.0290 ± 0.0001 | 0.0289 ± 0.0001 | 0.0300 ± 0.0001 | 0.0262 ± <0.0001 | |
kII | 2.01 ± 0.02 (1.88 ± 0.07) | 1.96 ± 0.01 (1.89 ± 0.09) | 1.97 ± 0.02 (1.92 ± 0.06) | 1.81 ± 0.02 (1.76 ± 0.05) | 0.861 ± 0.004 (0.88 ± 0.04) | |
AII | 0.0221 ± <0.0001 | 0.0249 ± <0.0001 | 0.0251 ± <0.0001 | 0.0267 ± <0.0001 | 0.0318 ± <0.0001 | |
Y50S | kI | 19.39 ± 0.09 (16.5 ± 0.4) | 19.24 ± 0.08 (16.2 ± 0.3) | 19.59 ± 0.08 (15.7 ± 0.5) | 19.25 ± 0.08 (16.0 ± 0.4) | - |
AI | 0.0411 ± 0.0001 | 0.0422 ± 0.0001 | 0.0408 ± <0.0001 | 0.0429 ± <0.0001 | - | |
kII | 2.17 ± 0.02 (1.21 ± 0.03) | 2.14 ± 0.02 (1.12 ± 0.04) | 2.29 ± 0.02 (1.10 ± 0.05) | 2.19 ± 0.02 (1.04 ± 0.04) | - | |
AII | 0.0224 ± <0.0001 | 0.0249 ± <0.0001 | 0.0260 ± <0.0001 | 0.0255 ± <0.0001 | - | |
Y50W | kI | 37.4 ± 0.13 (35.9 ± 0.6) | 37.5 ± 0.12 (36.2 ± 1.1) | 37.4 ± 0.12 (33.5 ± 0.7) | 38.4 ± 0.14 (36.8 ± 1.4) | 3.757 ± 0.005 (3.69 ± 0.04) |
AI | 0.0622 ± 0.0001 | 0.0618 ± 0.0001 | 0.0611 ± 0.0001 | 0.0613 ± 0.0001 | 0.0651 ± <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, D. The Role of the si-Face Tyrosine of a Homodimeric Ferredoxin-NADP+ Oxidoreductase from Bacillus subtilis during Complex Formation and Redox Equivalent Transfer with NADP+/H and Ferredoxin. Antioxidants 2023, 12, 1741. https://doi.org/10.3390/antiox12091741
Seo D. The Role of the si-Face Tyrosine of a Homodimeric Ferredoxin-NADP+ Oxidoreductase from Bacillus subtilis during Complex Formation and Redox Equivalent Transfer with NADP+/H and Ferredoxin. Antioxidants. 2023; 12(9):1741. https://doi.org/10.3390/antiox12091741
Chicago/Turabian StyleSeo, Daisuke. 2023. "The Role of the si-Face Tyrosine of a Homodimeric Ferredoxin-NADP+ Oxidoreductase from Bacillus subtilis during Complex Formation and Redox Equivalent Transfer with NADP+/H and Ferredoxin" Antioxidants 12, no. 9: 1741. https://doi.org/10.3390/antiox12091741
APA StyleSeo, D. (2023). The Role of the si-Face Tyrosine of a Homodimeric Ferredoxin-NADP+ Oxidoreductase from Bacillus subtilis during Complex Formation and Redox Equivalent Transfer with NADP+/H and Ferredoxin. Antioxidants, 12(9), 1741. https://doi.org/10.3390/antiox12091741