Green Extraction of Bioactive Compounds from Apple Pomace from the Cider Industry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Standards and Reagents
2.3. Optimization of the Extraction Method
2.4. Extraction Method
2.5. Total Phenols and Total Flavonoid Analyses
2.6. Chromatographic Analyses
2.7. Antioxidant Activity Measurements
2.7.1. DPPH Assay
2.7.2. FRAP Assay
2.8. Statistical Analyses
3. Results
3.1. Model Fitting
3.2. Antioxidant Composition of Apple By-Products
3.2.1. Polyphenolic Compound Profile
3.2.2. Triterpenic Acid Profiles
3.3. Antioxidant Activity and Composition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization (FAO). Available online: www.fao.org/faostat/data (accessed on 2 July 2024).
- Kandemir, K.; Piskin, E.; Xiao, J.; Tomas, M.; Capanoglu, E. Fruit juice industry wastes as a source of bioactives. J. Agric. Food Chem. 2022, 70, 6805–6832. [Google Scholar] [CrossRef] [PubMed]
- European Cider and Fruit Wine Association (AICV). Available online: https://www.aicv.org/en/industry-data/Publications/AICV_Cider Trends_2019.pdf (accessed on 2 July 2024).
- Grigoras, C.G.; Destandau, E.; Fougère, L.; Elfakir, C. Evaluation of apple pomace extracts as a source of bioactive compounds. Ind. Crops Prod. 2013, 49, 794–804. [Google Scholar] [CrossRef]
- Barreira, J.C.M.; Alvarez Arraibi, A.; Ferreira, I.C.F.R. Bioactive and functional compounds in apple pomace from juice and cider manufacturing: Potential use in dermal formulations. Trends Food Sci. Technol. 2019, 90, 76–87. [Google Scholar] [CrossRef]
- Cargnin, S.T.; Gnoatto, S.B. Ursolic acid from apple pomace and traditional plants: A valuable triterpenoid with functional properties. Review. Food Chem. 2017, 220, 477–489. [Google Scholar] [CrossRef] [PubMed]
- Diñeiro García, Y.; Suárez Valles, B.; Picinelli Lobo, A. Phenolic and antioxidant composition of by-products from the cider industry: Apple pomace. Food Chem. 2009, 117, 731–738. [Google Scholar] [CrossRef]
- Alonso-Salces, R.M.; Barranco, A.; Abad, B.; Berrueta, L.A.; Gallo, B.; Vicente, F. Polyphenolic profiles of Basque Cider apple cultivars and their technological properties. J. Agric. Food Chem. 2004, 52, 2938–2952. [Google Scholar] [CrossRef]
- Butkevičūte, A.; Liaudanskas, M.; Kviklys, D.; Gelvonauskiene, D.; Janulis, V. The Qualitative and Quantitative Compositions of Phenolic Compounds in Fruits of Lithuanian Heirloom Apple Cultivars. Molecules 2020, 25, 5263. [Google Scholar] [CrossRef]
- Andre, C.M.; Greenwood, J.M.; Walker, E.G.; Rassam, M.; Sullivan, M.; Evers, D.; Perry, N.B.; Laing, W.A. Anti-inflammatory procyanidins and triterpenes in 109 apple varieties. J. Agric. Food Chem. 2012, 60, 10546–10554. [Google Scholar] [CrossRef]
- Antonic, B.; Jancikova, S.; Dordevic, D.; Tremlova, B. Apple pomace as food fortification ingredient: A systematic review and meta-analysis. J. Food Sci. 2020, 85, 2977–2985. [Google Scholar] [CrossRef]
- Lyu, F.; Selma, F.; Luiz, S.F.; Perdomo Azeredo, D.R.; Cruz, A.G.; Ajlouni, S.; Ranadheera, C.S. Apple Pomace as a Functional and Healthy Ingredient in Food Products: A Review. Processes 2020, 8, 319. [Google Scholar] [CrossRef]
- Zaky, A.A.; Witrowa-Rajchert, D.; Nowacka, M. Turning Apple Pomace into Value: Sustainable Recycling in Food Production—A Narrative Review. Sustainability 2024, 16, 7001. [Google Scholar] [CrossRef]
- Rodríguez Madrera, R.; Suárez Valles, B. Analysis of Cyanogenic Compounds Derived from Mandelonitrile by Ultrasound-Assisted Extraction and High-Performance Liquid Chromatography in Rosaceae and Sambucus Families. Molecules 2021, 26, 7563. [Google Scholar] [CrossRef] [PubMed]
- Skinner, R.C.; Gigliotti, J.C.; Ku, K.-M.; Tou, J.C. A comprehensive analysis of the composition, health benefits, and safety of apple pomace. Nutr. Rev. 2018, 76, 893–909. [Google Scholar] [CrossRef] [PubMed]
- Putra, N.R.; Rizkiyah, D.N.; Abdul Aziz, A.H.; Che Yunus, M.A.; Veza, I.; Harny, I.; Tirta, A. Waste to Wealth of Apple Pomace Valorization by Past and Current Extraction Processes: A Review. Sustainability 2023, 15, 830. [Google Scholar] [CrossRef]
- Da Silva, L.C.; Viganó, J.; de Souza Mesquita, L.M.; Baião Dias, A.L.; de Souza, M.C.; Sanches, V.L.; Chaves, J.O.; Pizani, R.S.; Contieri, L.S.; Rostagno, M.A. Recent advances and trends in extraction techniques to recover polyphenols compounds from apple by-products. Food Chem. X 2021, 12, 100133. [Google Scholar] [CrossRef]
- Tiwari, B.K. Ultrasound: A clean, green extraction technology. Trends Anal. Chem. 2015, 71, 100–109. [Google Scholar] [CrossRef]
- Lavilla, I.; Bendicho, C. Fundamentals of Ultrasound-Assisted Extraction. In Water Extraction of Bioactive Compounds, 1st ed.; Domínguez González, H., González Muñoz, M.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 291–316. [Google Scholar]
- Virot, M.; Tomao, V.; Le Bourvellec, C.; Renard, C.C.G.; Chemat, F. Towards the industrial production of antioxidants from food processing by-products with ultrasound-assisted extraction. Ultrason. Sonochemistry 2010, 17, 1066–1074. [Google Scholar] [CrossRef]
- Pingret, D.; Fabiano-Tixier, A.-S.; Le Bourvellec, C.; Renard, C.M.G.C.; Chemat, F. Lab and pilot-scale ultrasound-assisted water extraction of polyphenols from apple pomace. J. Food Eng. 2012, 111, 73–81. [Google Scholar] [CrossRef]
- Egués, I.; Hernández-Ramos, F.; Rivilla, I.; Labidi, J. Optimization of Ultrasound Assisted Extraction of Bioactive Compounds from Apple Pomace. Molecules 2021, 26, 3783. [Google Scholar] [CrossRef]
- Razola-Díaz, M.C.; Aznar-Ramos, M.J.; Guerra-Hernández, E.J.; García-Villanova, B.; Gómez-Caravaca, A.M.; Verardo, V. Establishment of a Sonotrode Ultrasound-Assisted Extraction of Phenolic Compounds from Apple Pomace. Foods 2022, 11, 3809. [Google Scholar] [CrossRef]
- Nile, S.H.; Nile, A.; Liu, J.; Kim, D.H.; Kai, G. Exploitation of apple pomace towards extraction of triterpenic acids, antioxidant potential, cytotoxic effects, and inhibition of clinically important enzymes. Food Chem. Toxicol. 2019, 131, 110563. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.-P.; Liao, D.-D.; Zhang, X.-H. Ultrasonic assisted extraction of ursolic acid from apple pomace: A novel and facile technique. Sep. Sci. Technol. 2016, 51, 1344–1350. [Google Scholar] [CrossRef]
- López-Hortas, L.; Pérez-Larrán, P.; González-Muñoz, M.J.; Falqué, E.; Domínguez, H. Recent developments on the extraction and application of ursolic acid. A review. Food Res. Int. 2018, 103, 130–149. [Google Scholar] [CrossRef] [PubMed]
- Woźniak, L.; Szakiel, A.; Pączkowski, C.; Marszałek, K.; Skąpska, S.; Hanna Kowalska, H.; Jędrzejczak, R. Extraction of Triterpenic Acids and Phytosterols from Apple Pomace with Supercritical Carbon Dioxide: Impact of Process Parameters, Modelling of Kinetics, and Scaling-Up Study. Molecules 2018, 23, 2790. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Kim, D.O.; Chun, O.K.; Kim, Y.J.; Moon, H.Y.; Lee, C.Y. Quantification of polyphenolics and their antioxidant capacity in fresh-plums. J. Agric. Food Chem. 2003, 51, 6509–6515. [Google Scholar] [CrossRef]
- Suárez, B.; Palacios, N.; Fraga, N.; Rodríguez, R. Liquid chromatographic method for quantifying polyphenols in ciders by direct injection. J. Chromatogr. A 2005, 1066, 105–110. [Google Scholar] [CrossRef]
- Rodríguez Madrera, R.; Suárez Valles, B. Development and validation of Ultrasound Assisted Extraction (UAE) and HPLC-DAD method for determination of polyphenols in dry beans (Phaseolus vulgaris). J. Food Compos. Anal. 2020, 85, 103334. [Google Scholar] [CrossRef]
- Ilaiyaraja, N.; Likhith, K.R.; Sharath Babu, G.R.; Khanum, F. Optimisation of extraction of bioactive compounds from Feronia limonia (wood apple) fruit using Response Surface Methodology (RSM). Food Chem. 2015, 173, 348–354. [Google Scholar] [CrossRef]
- Um, M.; Han, T.-H.; Lee, J.-W. Ultrasound-assisted extraction and antioxidant activity of phenolic and flavonoid compounds and ascorbic acid from rugosa rose (Rosa rugosa Thunb.) fruit. Food Sci. Biotechnol. 2018, 27, 375–382. [Google Scholar] [CrossRef]
- Zhu, Z.; Guan, Q.; Koubaa, M.; Barba, F.J.; Roohinejad, S.; Cravotto, G.; Yang, X.; He, J. HPLC-DAD-ESI-MS2 analytical profile of extracts obtained from purple sweet potato after green ultrasound-assisted extraction. Food Chem. 2017, 215, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Betz, J.M.; Brown, P.N.; Roman, M.C. Accuracy, precision, and reliability of chemical measurements in natural products research. Fitoterapia 2011, 82, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Mangas, J.J.; Rodríguez, R.; Suárez, B.; Picinelli, A.; Dapena, E. Study of the Phenolic Profile of Cider Apple Cultivars at Maturity by Multivariate Techniques. J. Agric. Food Chem. 1999, 47, 4046–4052. [Google Scholar] [CrossRef] [PubMed]
- Renard, C.M.G.C.; Le Quéré, J.-M.; Bauduin, R.; Symoneaux, R.; Le Bourvellec, C.; Baron, A. Modulating polyphenolic composition and organoleptic properties of apple juices by manipulating the pressing conditions. Food Chem. 2011, 124, 117–125. [Google Scholar] [CrossRef]
- Fernandes, P.A.R.; Le Bourvellec, C.; Renard, C.M.G.C.; Nunes, F.M.; Bastos, R.; Coelho, E.; Wessel, D.F.; Coimbra, M.A.; Cardoso, S.M. Revisiting the chemistry of apple pomace polyphenols. Food Chem. 2019, 294, 9–18. [Google Scholar] [CrossRef]
- Liang, X.; Zhu, T.; Yang, S.; Li, X.; Song, B.; Wang, Y.; Lin, Q.; Cao, J. Analysis of Phenolic Components and Related Biological Activities of 35 Apple (Malus pumila Mill.) Cultivars. Molecules 2020, 25, 4153. [Google Scholar] [CrossRef]
- Anastasiadi, M.; Mohareb, F.; Redfern, S.P.; Berry, M.; Simmonds, M.S.J.; Terry, L.A. Biochemical Profile of Heritage and Modern Apple Cultivars and Application of Machine Learning Methods to Predict Usage, Age, and Harvest Season. J. Agric. Food Chem. 2017, 65, 5339–5356. [Google Scholar] [CrossRef]
- Lavelli, V.S.; Corti, S. Phloridzin and other phytochemicals in apple pomace: Stability evaluation upon dehydration and storage of dried product. Food Chem. 2011, 129, 1578–1583. [Google Scholar] [CrossRef]
- Bouayed, J.; Deußer, H.; Hoffmann, L.; Bohn, T. Bioaccessible and dialysable polyphenols in selected apple varieties following in vitro digestion vs. their native patterns. Food Chem. 2012, 131, 1466–1472. [Google Scholar] [CrossRef]
- Butkevičiūte, A.; Valdimaras Janulis, V.; Kviklys, D. Triterpene Content in Flesh and Peel of Apples Grown on Different Rootstocks. Plants 2022, 11, 1247. [Google Scholar] [CrossRef]
- Sut, S.; Zengin, G.; Maggi, F.; Malagoli, M.; Dall’Acqua, S. Triterpene Acid and Phenolics from Ancient Apples of Friuli Venezia Giulia as Nutraceutical Ingredients: LC-MS Study and In Vitro Activities. Molecules 2019, 24, 1109. [Google Scholar] [CrossRef] [PubMed]
- Oszmiański, J.; Sabina Lachowicz, S.; Gławdel, E.; Cebulak, T.; Ochmian, I. Determination of phytochemical composition and antioxidant capacity of 22 old apple cultivars grown in Poland. Eur. Food Res. Technol. 2018, 244, 647–662. [Google Scholar] [CrossRef]
- Cefarelli, G.; D’abrosca, B.; Fiorentino, A.; Izzo, A.; Mastellone, C.; Pacifico, S.; Piscopo, V. Free-Radical-Scavenging and Antioxidant Activities of Secondary Metabolites from Reddened Cv. Annurca Apple Fruits. J. Agric. Food Chem. 2006, 54, 803–809. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, B.; Xie, H.; He, Y.; Zhong, D.; Chen, D. Antioxidant Structure–Activity Relationship Analysis of Five Dihydrochalcones. Molecules 2018, 23, 1162. [Google Scholar] [CrossRef]
- Speisky, H.; Shahidi, F.; Costa de Camargo, A.; Fuentes, J. Revisiting the Oxidation of Flavonoids: Loss, Conservation or Enhancement of Their Antioxidant Properties. Antioxidants 2022, 11, 133. [Google Scholar] [CrossRef]
Independent Factors | Response Variables | |||||
---|---|---|---|---|---|---|
X1 (Time, min) | X2 (Mass, g/30mL) | X3 (Solvent, % ethanol) | X4 (Amplitude, %) | Ursolic Acid (Area/mg) | TPC (mg Gallic Acid/g Dry Weight) | |
1 | 2.5 (−1) | 0.4 (−1) | 55 (−1) | 70 (−1) | 242.59 | 7.69 |
2 | 5.5 (+1) | 0.4 (−1) | 55 (−1) | 70 (−1) | 760.81 | 9.11 |
3 | 2.5 (−1) | 0.8 (+1) | 55 (−1) | 70 (−1) | 235.62 | 7.78 |
4 | 5.5 (+1) | 0.8 (+1) | 55 (−1) | 70 (−1) | 331.61 | 8.29 |
5 | 2.5 (−1) | 0.4 (−1) | 85 (+1) | 70 (−1) | 1206.62 | 5.77 |
6 | 5.5 (+1) | 0.4 (−1) | 85 (+1) | 70 (−1) | 1188.93 | 5.72 |
7 | 2.5 (−1) | 0.8 (+1) | 85 (+1) | 70 (−1) | 1159.67 | 4.90 |
8 | 5.5 (+1) | 0.8 (+1) | 85 (+1) | 70 (−1) | 1209.29 | 5.69 |
9 | 2.5 (−1) | 0.4 (−1) | 55 (−1) | 90 (+1) | 446.61 | 8.53 |
10 | 5.5 (+1) | 0.4 (−1) | 55 (−1) | 90 (+1) | 842.24 | 9.42 |
11 | 2.5 (−1) | 0.8 (+1) | 55 (−1) | 90 (+1) | 376.27 | 8.70 |
12 | 5.5 (+1) | 0.8 (+1) | 55 (−1) | 90 (+1) | 455.52 | 9.15 |
13 | 2.5 (−1) | 0.4 (−1) | 85 (+1) | 90 (+1) | 1231.74 | 5.68 |
14 | 5.5 (+1) | 0.4 (−1) | 85 (+1) | 90 (+1) | 1246.13 | 6.42 |
15 | 2.5 (−1) | 0.8 (+1) | 85 (+1) | 90 (+1) | 1246.16 | 5.53 |
16 | 5.5 (+1) | 0.8 (+1) | 85 (+1) | 90 (+1) | 1226.05 | 6.05 |
17 | 1.0 (−2) | 0.6 (0) | 70 (0) | 80 (0) | 349.25 | 6.17 |
18 | 7.0 (+2) | 0.6 (0) | 70 (0) | 80 (0) | 1180.45 | 9.38 |
19 | 4.0 (0) | 0.2 (−2) | 70 (0) | 80 (0) | 1235.57 | 9.41 |
20 | 4.0 (0) | 1.0 +2) | 70 (0) | 80 (0) | 1165.03 | 7.84 |
21 | 4.0 (0) | 0.6 (0) | 40 (−2) | 80 (0) | 5.02 | 8.96 |
22 | 4.0 (0) | 0.6 (0) | 100 (+2) | 80 (0) | 1173.05 | 3.07 |
23 | 4.0 (0) | 0.6 (0) | 70 (0) | 60 (−2) | 919.83 | 8.25 |
24 | 4.0 (0) | 0.6 (0) | 70 (0) | 100 (+2) | 1199.66 | 9.06 |
25 | 4.0 (0) | 0.6 (0) | 70 (0) | 80 (0) | 1093.69 | 8.34 |
26 | 4.0 (0) | 0.6 (0) | 70 (0) | 80 (0) | 1185.21 | 8.21 |
27 | 4.0 (0) | 0.6 (0) | 70 (0) | 80 (0) | 1221.85 | 8.37 |
28 | 4.0 (0) | 0.6 (0) | 70 (0) | 80 (0) | 1107.48 | 8.36 |
29 | 4.0 (0) | 0.6 (0) | 70 (0) | 80 (0) | 1238.02 | 8.98 |
30 | 4.0 (0) | 0.6 (0) | 70 (0) | 80 (0) | 1192.89 | 9.02 |
TPC (mg Gallic Acid/g Dry Weight) | Ursolic Acid (Area/mg) | |||
---|---|---|---|---|
Model | *** | *** | ||
Intercept | 8.39 | 1172.48 | ||
β1-Time | 0.49 | *** | 101.59 | *** |
β2-Mass | 0.22 | ** | −44.44 | ** |
β3-Ethanol | −1.45 | *** | 348.31 | *** |
β4-Amplitude | 0.26 | ** | 53.97 | ** |
β12 | - | - | −44.11 | * |
β13 | - | - | −66.43 | ** |
β23 | - | - | 53.81 | ** |
β11 | −0.28 | *** | −130.62 | *** |
β33 | −0.72 | *** | −153.35 | *** |
β44 | - | - | −35.67 | * |
Lack of Fit | n.s. | n.s. | ||
R2 | 0.933 | 0.961 | ||
Adj R2 | 0.915 | 0.941 | ||
Predicted R2 | 0.816 | 0.864 | ||
C.V. % | 6.4 | 10.5 |
TPC (mg Gallic Acid/g Dry Weight) | Ursolic Acid (Area/mg) | |
---|---|---|
Prediction | 9.26 | 1237.00 |
95% CI low | 8.85 | 1146.00 |
95% CI high | 9.66 | 1327.44 |
95% PI low | 8.18 | 1015.40 |
95% PI high | 10.33 | 1457.73 |
Real samples (n = 3) | 8.43 | 1214.20 |
Repeatability, r (RSD%) | 2.33 | 2.70 |
Whole Apple Pomace | Apple Peel | Apple Flesh | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Max | Min | Mean | SD | Max | Min | Mean | SD | Max | Min | |
Total phenols (mg gallic acid/g dry weight) | 9.9b | 1.5 | 12.3 | 7.4 | 15.1c | 2.3 | 17.5 | 11.0 | 4.8a | 1.5 | 7.5 | 3.4 |
Total flavonoids (mg rutin/g dry weight) | 18.2b | 3.4 | 25.0 | 14.3 | 32.0c | 4.6 | 37.7 | 22.2 | 7.2a | 2.3 | 13.3 | 5.4 |
Polyphenols (µg/g dry weight) | ||||||||||||
Sum of HPLC polyphenols | 2733b | 443 | 3459 | 2027 | 4161c | 701 | 5175 | 2736 | 1175a | 395 | 2035 | 739 |
(-)-Epicatechin | 79b | 31 | 120 | 31 | 87b | 38 | 161 | 32 | 29a | 10 | 50 | 19 |
Chlorogenic acid | 162a | 52 | 252 | 84 | 134a | 45 | 201 | 62 | 132a | 35 | 184 | 85 |
Dihydrochalcone-1 | 79b | 25 | 110 | 27 | 119c | 43 | 181 | 27 | 44a | 12 | 64 | 29 |
Phloretin 2′-Xyloglucoside | 196b | 79 | 321 | 50 | 255b | 93 | 408 | 57 | 110a | 47 | 188 | 51 |
Phloridzin | 930b | 237 | 1290 | 521 | 1064b | 413 | 1652 | 248 | 529a | 117 | 700 | 335 |
Hyperin | 399b | 72 | 518 | 279 | 803c | 160 | 1032 | 600 | 90a | 104 | 330 | 18 |
Rutin + Isoquercitrin | 228b | 40 | 305 | 184 | 449c | 82 | 575 | 350 | 50a | 58 | 189 | 12 |
Reynoutrin | 118b | 16 | 153 | 103 | 229c | 37 | 290 | 185 | 32a | 33 | 113 | 7 |
Avicularin | 342b | 48 | 435 | 275 | 648c | 108 | 788 | 483 | 88a | 90 | 309 | 26 |
Quercitrin | 201b | 28 | 250 | 147 | 371c | 60 | 476 | 301 | 69a | 52 | 186 | 17 |
Triterpenic acids (µg/g dry weight) | ||||||||||||
Sum of triterpenic acids | 5913b | 749 | 7011 | 4933 | 11881c | 1282 | 13673 | 10094 | 1576a | 1351 | 4656 | 406 |
Corosolic acid | 169b | 41 | 232 | 98 | 323c | 69 | 446 | 206 | 20a | 43 | 102 | nd |
Oleanolic acid | 1525b | 216 | 1891 | 1238 | 3021c | 395 | 3818 | 2540 | 453a | 327 | 1184 | 146 |
Ursolic acid | 4219b | 546 | 5064 | 3529 | 8537c | 921 | 9915 | 7294 | 1103a | 986 | 3369 | 261 |
Antioxidant activity (mg Ascorbic acid/g dry weight) | ||||||||||||
DPPH | 9.7b | 2.6 | 12.7 | 5.5 | 15.2c | 1.9 | 17.2 | 10.9 | 4.2a | 1.1 | 7.0 | 3.2 |
FRAP | 10.7b | 1.1 | 12.2 | 9.0 | 17.9b | 2.1 | 20.1 | 13.6 | 2.0a | 0.6 | 3.5 | 1.5 |
Dependent Variables | Regression Model | Coefficients | Model Results |
---|---|---|---|
DPPH | β0 | −0.398 | R2: 0.959 R2adjusted: 0.955 |
Dihydrochalcone-1 | 46.893 | Standard estimation error: 1.0577 | |
Rutin + Isoquercitrin | 18.131 | Estimation (%) | |
Chlorogenic acid | 13.642 | Mean: 101.5 | |
SD: 12.17 | |||
Maximum: 126.2 | |||
Minimum: 68.3 | |||
FRAP | β0 | −2.053 | R2: 0.972 R2adjusted: 0.968 |
Rutin + Isoquercitrin | 16.367 | Standard estimation error: 1.199 | |
Phloridzin | 5.153 | Estimation (%): | |
Oleanolic acid | 2.372 | Mean: 103.7 | |
SD: 31.06 | |||
Maximum: 190.6 | |||
Minimum: 37.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pando Bedriñana, R.; Rodríguez Madrera, R.; Loureiro Rodríguez, M.D.; López-Benítez, K.; Picinelli Lobo, A. Green Extraction of Bioactive Compounds from Apple Pomace from the Cider Industry. Antioxidants 2024, 13, 1230. https://doi.org/10.3390/antiox13101230
Pando Bedriñana R, Rodríguez Madrera R, Loureiro Rodríguez MD, López-Benítez K, Picinelli Lobo A. Green Extraction of Bioactive Compounds from Apple Pomace from the Cider Industry. Antioxidants. 2024; 13(10):1230. https://doi.org/10.3390/antiox13101230
Chicago/Turabian StylePando Bedriñana, Rosa, Roberto Rodríguez Madrera, María Dolores Loureiro Rodríguez, Karelmar López-Benítez, and Anna Picinelli Lobo. 2024. "Green Extraction of Bioactive Compounds from Apple Pomace from the Cider Industry" Antioxidants 13, no. 10: 1230. https://doi.org/10.3390/antiox13101230
APA StylePando Bedriñana, R., Rodríguez Madrera, R., Loureiro Rodríguez, M. D., López-Benítez, K., & Picinelli Lobo, A. (2024). Green Extraction of Bioactive Compounds from Apple Pomace from the Cider Industry. Antioxidants, 13(10), 1230. https://doi.org/10.3390/antiox13101230