Effect of Different Salinities on the Biochemical Properties and Meat Quality of Adult Freshwater Drum (Aplodinotus grunniens) During Temporary Rearing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Experimental Fish and Rearing Conditions
2.3. Sample Collection
2.4. Biochemical Properties Analysis
2.4.1. Morphological Index Analysis
2.4.2. Osmotic Pressure Analysis
2.4.3. Oxidative Stress Analysis
2.5. Water-Holding Capacity and Texture Property Analysis
2.5.1. Determination of Centrifugal Loss
2.5.2. Determination of Drip Loss
2.5.3. Determination of Cooking Loss
2.5.4. Determination of Freezing Loss
2.5.5. Texture Profile Analysis
2.5.6. Shear Force
2.6. Quantification of Nutrition and Taste Substances
2.6.1. Chemical Composition Analysis
2.6.2. Free Amino Acid Analysis
2.6.3. Fatty Acid Analysis
2.6.4. Nucleotide Determination
2.7. Statistical Analysis
3. Results and Discussion
3.1. Biochemical Properties
3.1.1. Morphological Index Analysis
3.1.2. Osmotic Pressure Analysis
3.1.3. Oxidative Stress Analysis
3.2. Water-Holding Capacity and Texture Property Analysis
3.2.1. Water-Holding Capacity Analysis
3.2.2. Texture Profile Analysis
3.2.3. Shear Force Analysis
3.3. Quantification of Nutrition and Taste Substances
3.3.1. Chemical Composition Analysis
3.3.2. Free Amino Acid Analysis
3.3.3. Fatty Acid Analysis
3.3.4. Nucleotide Determination
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Syed, R.; Masood, Z.; Ul Hassan, H.; Khan, W.; Mushtaq, S.; Ali, A.; Gul, Y.; Jafari, H.; Habib, A.; Shah, M.I.A.; et al. Growth performance, haematological assessment and chemical composition of Nile tilapia, Oreochromis niloticus (Linnaeus, 1758) fed different levels of Aloe vera extract as feed additives in a closed aquaculture system. Saudi J. Biol. Sci. 2022, 29, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Gomez, R.E.; Contreras-Sanchez, W.M.; Hernandez-Franyutti, A.; Perera-Garcia, M.A.; Torres-Martinez, A. Testicular structure and development of the male germinal epithelium in the freshwater drum Aplodinotus grunniens (Perciformes: Sciaenidae) from the Usumacinta River, Southern Mexico. Acta Zool. 2022, 103, 414–432. [Google Scholar] [CrossRef]
- Wu, N.; Wen, H.; Xu, P.; Chen, J.; Xue, M.; Li, J.; Wang, M.; Song, C.; Li, H. PPAR signaling maintains metabolic homeostasis under hypothermia in freshwater drum (Aplodinotus grunniens). Metabolites 2023, 13, 102. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Gomez, R.E.; Contreras-Sanchez, W.M.; Hernandez-Franyutti, A.A.; Perera-Garcia, M.A.; Torres-Martinez, A. Reproductive cycle of Aplodinotus grunniens females (Rafinesque, 1819) in the Usumacinta River, Mexico. Lat. Am. J. Aquat. Res. 2019, 47, 612–625. [Google Scholar] [CrossRef]
- Wen, H.; Ma, X.; Xu, P.; Cao, Z.; Zheng, B.; Hua, D.; Jin, W.; Sun, G.; Gu, R. Structure and evolution of the complete mitochodrial genome of the freshwater drum Aplodinotus Grunnies (Actinopterygii: Perciformes: Sciaenidae). Acta Ichthyol. Piscat. 2020, 50, 23–35. [Google Scholar] [CrossRef]
- Card, J.T.; Hasler, C.T. Physiological effects of catch-and-release angling on freshwater drum (Aplodinotus grunniens). Fish. Res. 2021, 237, 105881. [Google Scholar] [CrossRef]
- Xue, M.; Xu, P.; Wen, H.; Chen, J.; Wang, Q.; He, J.; He, C.; Kong, C.; Li, X.; Li, H.; et al. A high-fat-diet-induced microbiota imbalance correlates with oxidative stress and the inflammatory response in the gut of freshwater drum (Aplodinotus grunniens). Antioxidants 2024, 13, 363. [Google Scholar] [CrossRef]
- Chen, J.; Li, H.; Xu, P.; Tang, Y.; Su, S.; Liu, G.; Wu, N.; Xue, M.; Yu, F.; Feng, W.; et al. Hypothermia-mediated apoptosis and inflammation contribute to antioxidant and immune adaption in freshwater drum, Aplodinotus grunniens. Antioxidants 2022, 11, 1657. [Google Scholar] [CrossRef]
- Chen, J.; Xu, P.; Wen, H.; Xue, M.; Wang, Q.; He, J.; He, C.; Su, S.; Li, J.; Yu, F.; et al. Hypothermia-mediated oxidative stress induces immunosuppression, morphological impairment and cell fate disorder in the intestine of freshwater drum, Aplodinotus grunniens. Aquac. 2023, 575, 739805. [Google Scholar] [CrossRef]
- Zhang, L.; Yin, M.; Zheng, Y.; Xu, C.H.; Tao, N.P.; Wu, X.; Wang, X. Brackish water improves the taste quality in meat of adult male Eriocheir sinensis during the postharvest temporary rearing. Food Chem. 2021, 343, 128409. [Google Scholar] [CrossRef]
- Du, X.; Zhang, W.; He, J.; Zhao, M.; Wang, J.; Dong, X.; Fu, Y.; Xie, X.; Miao, S. The impact of rearing salinity on flesh texture, taste, and fatty acid composition in Largemouth Bass Micropterus salmoides. Foods 2022, 11, 3261. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Li, E.; Suo, Y.; Su, Y.; Lu, M.; Zhao, Q.; Qin, J.G.; Chen, L. Histological and transcriptomic responses of two immune organs, the spleen and head kidney, in Nile tilapia (Oreochromis niloticus) to long-term hypersaline stress. Fish Shellfish Immun. 2018, 76, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Gan, L.; Xu, Z.X.; Ma, J.J.; Xu, C.; Wang, X.D.; Chen, K.; Chen, L.Q.; Li, E.C. Effects of salinity on growth, body composition, muscle fatty acid composition, and antioxidant status of juvenile Nile tilapia Oreochromis niloticus (Linnaeus, 1758). J. Appl. Ichthyol. 2016, 32, 372–374. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, Y.M.; Xu, W.B.; Chen, D.Y.; Li, B.W.; Cheng, Y.X.; Guo, X.L.; Dong, W.R.; Shu, M.A. The effects of salinities stress on histopathological changes, serum biochemical index, non-specific immune and transcriptome analysis in red swamp crayfish Procambarus clarkii. Sci. Total Environ. 2022, 840, 156502. [Google Scholar] [CrossRef] [PubMed]
- Tsuzuki, M.Y.; Sugai, J.K.; Maciel, J.C.; Francisco, C.J.; Cerqueira, V.R. Survival, growth and digestive enzyme activity of juveniles of the fat snook (Centropomus parallelus) reared at different salinities. Aquaculture 2007, 271, 319–325. [Google Scholar] [CrossRef]
- Luo, J.; Monroig, O.; Zhou, Q.; Tocher, D.R.; Yuan, Y.; Zhu, T.; Lu, J.; Song, D.; Jiao, L.; Jin, M. Environmental salinity and dietary lipid nutrition strategy: Effects on flesh quality of the marine euryhaline crab Scylla paramamosain. Food Chem. 2021, 361, 130160. [Google Scholar] [CrossRef]
- Haliloglu, H.I.; Bayir, A.; Sirkecioglu, A.N.; Aras, N.M.; Atamanalp, M. Comparison of fatty acid composition in some tissues of rainbow trout (Oncorhynchus mykiss) living in seawater and freshwater. Food Chem. 2004, 86, 55–59. [Google Scholar] [CrossRef]
- Zhou, J.; Li, N.; Wang, H.; Wang, C.; Mu, C.; Shi, C.; Liu, L.; Li, R.; Ye, Y.; Song, W. Effects of salinity on growth, nutrient composition, fatty acid composition and energy metabolism of Scylla paramamosain during indoor overwintering. Aquac. Res. 2020, 51, 1834–1843. [Google Scholar] [CrossRef]
- Qu, L.T.; Xia, T.; Du, X.X.; Lou, B.B.; Chen, X.N.; Xu, J.H.; Ding, Z.J.; Wei, C.Q.; Cheng, H.L. Effects of salinity treatment on muscle quality and off-flavour compounds of grass carp (Ctenopharyngodon idella) and black carp (Mylopharyngodon piceus). Aquac. Res. 2022, 53, 4823–4831. [Google Scholar] [CrossRef]
- Li, R.; Guo, M.; Liao, E.; Wang, Q.; Peng, L.; Jin, W.; Wang, H. Effects of repeated freezing and thawing on myofibrillar protein and quality characteristics of marinated Enshi black pork. Food Chem. 2022, 378, 131994. [Google Scholar] [CrossRef]
- Song, D.; Yun, Y.; Mi, J.; Luo, J.; Jin, M.; Nie, G.; Zhou, Q. Effects of faba bean on growth performance and fillet texture of Yellow River carp, Cyprinus carpio haematopterus. Aquacul. Rep. 2020, 17, 100379. [Google Scholar] [CrossRef]
- Dong, J.; Yu, D.; Zhang, L.; Wang, G.; Zhang, P.; You, Y.; Xu, Y.; Xia, W. Chitosan/alginate dialdehyde trilayer films with cinnamaldehyde nanoemulsions for grass carp preservation. Food Hydrocoll. 2024, 147, 109413. [Google Scholar] [CrossRef]
- Wen, X.; Chen, A.; Wu, Y.; Yang, Y.; Xu, Y.; Xia, W.; Zhang, Y.; Cao, Y.; Chen, S. Comparative evaluation of proximate compositions and taste attributes of three Asian hard clams (Meretrix meretrix) with different shell colors. Int. J. Food Prop. 2020, 23, 400–411. [Google Scholar] [CrossRef]
- Alahmad, K.; Xia, W.; Jiang, Q.; Xu, Y. Influence of drying techniques on the physicochemical, nutritional, and morphological properties of bighead carp (Hypophthalmichthys nobilis) fillets. Foods 2021, 10, 2837. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, W.; Li, B.; Liu, Y. Non-volatile taste active compounds and umami evaluation in two aquacultured pufferfish (Takifugu obscurus and Takifugu rubripes). Food Biosci. 2019, 32, 100468. [Google Scholar] [CrossRef]
- Ningsih, L.; Sulmartiwi, L.; Lutfiyah, L. The profile of Carassius auratus growth and hepatosomatic index in different salinity. Earth Environ. Sci. 2020, 441, 012114. [Google Scholar] [CrossRef]
- Trivedi, S.; Chakraborty, S.; Zaman, S. Impact of salinity on the condition factor of commercially important fin fish in the lower gangetic delta. J. Environ. Sci. 2015, 4, 473–480. [Google Scholar]
- Zhou, K.; Chen, Z.; Qin, J.; Huang, Y.; Du, X.; Zhang, C.; Pan, X.; Lin, Y. Effects of salinity on muscle nutrition, fatty acid composition, and substance anabolic metabolism of blue tilapia Oreochromis aureus. J. Appl. Ichthyol. 2024, 2024, 5549406. [Google Scholar] [CrossRef]
- Soegianto, A.; Adhim, M.D.H.; Zainuddin, A.; Putranto, T.W.C.; Irawan, B. Effect of different salinity on serum osmolality, ion levels and hematological parameters of East Java strain tilapia Oreochromis niloticus. Mar. Freshw. Behav. Physiol. 2017, 50, 105–113. [Google Scholar] [CrossRef]
- Huong, D.T.T.; Phuong, N.T.; Bayley, M.; Wang, T.; Thuy, N.H. Osmotic and ionic regulation, food intake and growth of striped catfish (Pangasianodon hypophthalmus) and sand goby (Oxyeleotris marmoratus) exposed to different salinities. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2009, 153A, S144. [Google Scholar] [CrossRef]
- Nguyen, T.K.; Nguyen, H.; Nguyen, T.E. Effects of salinity on growth performance, survival rate, digestive enzyme activities and physiological parameters of striped catfish (Pangasianodon hypophthalmus) at larval stage. J. Innov. Sustain. Dev. 2021, 13, 1–9. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, W.; Lin, H.; Shu, H.; Huang, X.; Li, T.; Huang, Z.; Wang, P.; Huang, Q.; Xun, P. Effects of acute low salinity stress on the liver structure, physiology and biochemistry of juvenile Chinese sea bass (Lateolabrax maculatus). Isr. J. Aquacult.-Bamid. 2021, 73, 1115060. [Google Scholar] [CrossRef]
- Huang, M.; Yang, X.; Zhou, Y.; Ge, J.; Davis, D.A.; Dong, Y.; Gao, Q.; Dong, S. Growth, serum biochemical parameters, salinity tolerance and antioxidant enzyme activity of rainbow trout (Oncorhynchus mykiss) in response to dietary taurine levels. Mar. Life Sci. Tech. 2021, 3, 449–462. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhu, X.; Huang, X.; Gu, L.; Chen, Y.; Yang, Z. Combined effects of cadmium and salinity on juvenile Takifugu obscurus: Cadmium moderates salinity tolerance; salinity decreases the toxicity of cadmium. Sci. Rep. 2016, 6, 30968. [Google Scholar] [CrossRef]
- Wang, J.; Hou, X.; Xue, X.; Zhu, X.; Chen, Y.; Yang, Z. Interactive effects of temperature and salinity on the survival, oxidative stress, and Na+/K+-ATPase activity of newly hatched obscure puffer (Takifugu obscurus) larvae. Fish Physiol. Biochem. 2019, 45, 93–103. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, H.; Xie, J.; Yu, W.; Sun, Y. Effects of frozen storage temperature on water-holding capacity and physicochemical properties of muscles in different parts of Bluefin Tuna. Foods 2022, 11, 2315. [Google Scholar] [CrossRef]
- Zang, X.; Wang, J.W.; Tang, R.; He, X.G.; Li, L.; Takagi, Y.; Li, D.P. Improvement of muscle quality of grass carp (Ctenopharyngodon idellus) with a bio-floating bed in culture ponds. Front. Physiol. 2019, 10, 683. [Google Scholar]
- Zhuang, H.; Savage, E.M. Comparison of cook loss, shear force, and sensory descriptive profiles of boneless skinless white meat cooked from a frozen or thawed state. Poult. Sci. 2013, 92, 3003–3009. [Google Scholar] [CrossRef]
- Chen, K.; Li, E.; Gan, L.; Wang, X.; Xu, C.; Lin, H.; Qin, J.G.; Chen, L. Growth and lipid metabolism of the pacific white shrimp Litopenaeus Vannamei at different salinities. J. Shellfish Res. 2014, 33, 825–832. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, Z.; Qi, T.; Xi, R.; Liang, L.; Tang, R.; Li, D. Slight increases in salinity improve muscle quality of Grass Carp (Ctenopharyngodon idellus). Fishes 2021, 6, 7. [Google Scholar] [CrossRef]
- Huang, M.; Gao, Q.; Yang, X.; Jiang, W.; Hao, L.; Yu, Y.; Tian, Y. Free amino acids in response to salinity changes in fishes: Relationships to osmoregulation. Fish Physiol. Biochem. 2023, 49, 1031–1042. [Google Scholar] [CrossRef] [PubMed]
- Hajirezaee, S.; Mirvaghefi, A.; Farahmand, H.; Agh, N. NMR-based metabolomic study on the toxicological effects of pesticide, diazinon on adaptation to sea water by endangered Persian sturgeon, Acipenser persicus fingerlings. Chemosphere 2017, 185, 213–226. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.; Newell, M.; Goruk, S.; Richard, C.; Field, C.J. Long chain polyunsaturated fatty acids docosahexaenoic acid and arachidonic acid supplementation in the suckling and the post-weaning diet influences the immune system development of T helper type-2 bias brown norway rat offspring. Front. Nutr. 2021, 8, 769293. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Wang, J.; Ji, P.; Sun, L.; Miao, S.; Lei, Y.; Du, X. Seawater culture increases omega-3 long-chain polyunsaturated fatty acids (N-3 LC-PUFA) levels in Japanese sea bass (Lateolabrax japonicus), probably by upregulating Elovl 5. Animals 2020, 10, 1681. [Google Scholar] [CrossRef]
- Yue, J.; Zhang, Y.; Jin, Y.; Deng, Y.; Zhao, Y. Impact of high hydrostatic pressure on non-volatile and volatile compounds of squid muscles. Food Chem. 2016, 194, 12–19. [Google Scholar] [CrossRef]
- Kido, S.; Tanaka, R. Umami-enhancing effect of mushroom stocks on Japanese fish stock based on the equivalent umami concentration (EUC) value. Int. J. Gastron. Food Sci. 2023, 34, 100832. [Google Scholar] [CrossRef]
Index | Salinity (ppt) | |||
---|---|---|---|---|
0 | 4 | 8 | 12 | |
Hepatosomatic index (%) | 1.140 ± 0.080 a | 0.985 ± 0.109 b | 0.996 ± 0.104 bc | 0.863 ± 0.088 c |
Viscerosomatic index (%) | 9.096 ± 0.438 a | 7.400 ± 0.467 b | 8.546 ± 0.837 a | 7.675 ± 1.262 a |
Condition factor (g/cm3) | 1.345 ± 0.034 a | 1.341 ± 0.031 a | 1.544 ± 0.279 a | 2.279 ± 0.155 b |
Hardness (g) | 535.128 ± 27.428 a | 624.601 ± 101.990 ab | 692.884 ± 16.394 b | 715.955 ± 90.001 b |
Springiness | 0.731 ± 0.030 | 0.745 ± 0.019 | 0.750 ± 0.049 | 0.759 ± 0.049 |
Cohesiveness | 0.453 ± 0.071 | 0.454 ± 0.033 | 0.471 ± 0.043 | 0.496 ± 0.036 |
Gumminess | 238.641 ± 89.345 | 268.713 ± 85.751 | 322.551 ± 23.506 | 273.523 ± 8.724 |
Chewiness | 193.141 ± 32.307 | 206.085 ± 49.714 | 229.440 ± 12.677 | 224.687 ± 42.349 |
Resilience | 0.271 ± 0.086 | 0.238 ± 0.028 | 0.288 ± 0.013 | 0.292 ± 0.044 |
Shear force (N) | 2.670 ± 0.069 a | 2.687 ± 0.445 a | 2.793 ± 0.381 ab | 3.420 ± 0.418 b |
Moisture (%) | 71.367 ± 1.369 | 72.468 ± 1.038 | 71.066 ± 0.172 | 72.340 ± 0.471 |
Ash (%) | 1.050 ± 0.059 | 1.057 ± 0.039 | 1.085 ± 0.072 | 1.117 ± 0.073 |
Crude protein (%) | 18.805 ± 1.149 | 19.119 ± 1.140 | 19.303 ± 0.206 | 19.287 ± 0.554 |
Crude lipid (%) | 29.297 ± 1.983 | 29.810 ± 1.026 | 31.273 ± 1.440 | 31.330 ± 2.008 |
Free Amino Acid (g/100 g Wet Basis) | Salinity (ppt) | |||
---|---|---|---|---|
0 | 4 | 8 | 12 | |
Leucine (Leu) * | 0.004 ± 0.001 | 0.005 ± 0.001 | 0.006 ± 0.001 | 0.005 ± 0.001 |
Lysine (Lys) * | 0.011 ± 0.004 | 0.018 ± 0.004 | 0.018 ± 0.004 | 0.019 ± 0.003 |
Valine (Val) * | 0.006 ± 0.001 | 0.006 ± 0.002 | 0.007 ± 0.001 | 0.006 ± 0.001 |
Phenol (Phe) * | 0.003 ± 0.001 | 0.002 ± 0.000 | 0.003 ± 0.000 | 0.002 ± 0.000 |
Isoleucine (Ile) * | 0.003 ± 0.001 | 0.003 ± 0.000 | 0.004 ± 0.001 | 0.003 ± 0.000 |
Threonine (Thr) */** | 0.012 ± 0.002 a | 0.021 ± 0.002 b | 0.021 ± 0.005 b | 0.023 ± 0.004 b |
Methionine (Met) * | 0.002 ± 0.001 | 0.002 ± 0.000 | 0.002 ± 0.000 | 0.002 ± 0.001 |
Alanine (Ala) ** | 0.029 ± 0.003 a | 0.056 ± 0.010 ab | 0.077 ± 0.039 b | 0.086 ± 0.021 b |
Glycine (Gly) ** | 0.084 ± 0.012 | 0.126 ± 0.053 | 0.117 ± 0.038 | 0.145 ± 0.046 |
Glutamate (Glu) ** | 0.017 ± 0.005 a | 0.022 ± 0.006 ab | 0.023 ± 0.007 ab | 0.030 ± 0.004 b |
Aspartate (Asp) ** | 0.011 ± 0.005 | 0.012 ± 0.003 | 0.011 ± 0.002 | 0.011 ± 0.002 |
Serine (Ser) ** | 0.003 ± 0.000 a | 0.006 ± 0.000 ab | 0.007 ± 0.004 ab | 0.008 ± 0.001 b |
Proline (Pro) | 0.005 ± 0.002 a | 0.009 ± 0.003 ab | 0.009 ± 0.000 ab | 0.010 ± 0.002 b |
Histidine (His) | 0.007 ± 0.002 a | 0.015 ± 0.002 b | 0.015 ± 0.008 b | 0.018 ± 0.005 b |
Cystine (Cys) | 0.001 ± 0.000 | 0.000 ± 0.000 | 0.000 ± 0.000 | 0.001 ± 0.000 |
Arginine (Arg) | 0.001 ± 0.000 | 0.002 ± 0.001 | 0.001 ± 0.000 | 0.001 ± 0.000 |
Tyrosine (Tyr) | 0.009 ± 0.004 | 0.009 ± 0.003 | 0.009 ± 0.005 | 0.009 ± 0.005 |
Total amino acids (TAAs) | 0.208 ± 0.025 a | 0.312 ± 0.061 ab | 0.329 ± 0.093 ab | 0.376 ± 0.060 b |
Essential amino acids (EAAs) | 0.042 ± 0.006 a | 0.056 ± 0.008 ab | 0.060 ± 0.010 b | 0.059 ± 0.007 b |
Flavor amino acids (FAAs) | 0.157 ± 0.024 a | 0.242 ± 0.057 ab | 0.256 ± 0.085 ab | 0.301 ± 0.059 b |
Fatty Acid (%) | Salinity (ppt) | |||
---|---|---|---|---|
0 | 4 | 8 | 12 | |
C14:0 | 2.221 ± 0.058 | 2.115 ± 0.274 | 2.062 ± 0.120 | 2.012 ± 0.093 |
C15:0 | 0.220 ± 0.018 | 0.232 ± 0.036 | 0.215± 0.004 | 0.211 ± 0.009 |
C16:0 | 22.108± 0.738 | 21.261 ± 0.145 | 21.249 ± 1.437 | 21.439 ± 0.779 |
C17:0 | 0.213 ± 0.020 | 0.230 ± 0.036 | 0.202 ± 0.019 | 0.199 ± 0.011 |
C18:0 | 2.268 ± 0.044 | 2.435 ± 0.375 | 2.275 ± 0.217 | 2.299± 0.210 |
C20:0 | 0.129 ± 0.012 a | 0.147 ± 0.012 b | 0.135 ± 0.002 ab | 0.133 ± 0.002 ab |
C22:0 | 0.209 ± 0.036 | 0.224 ± 0.048 | 0.207 ± 0.032 | 0.213 ± 0.042 |
∑Saturated fatty acids (SFAs) | 27.366 ± 0.653 | 26.644 ± 0.092 | 26.344 ± 1.550 | 26.506 ± 0.853 |
C14:1 | 0.182 ± 0.025 | 0.154 ± 0.037 | 0.148 ± 0.014 | 0.144 ± 0.020 |
C16:1 | 14.977± 0.320 | 14.619 ± 0.985 | 14.021 ± 1.436 | 14.297± 0.820 |
C17:1 | 0.404 ± 0.059 | 0.421 ± 0.052 | 0.418 ± 0.024 | 0.420 ± 0.026 |
C18:1 | 34.496 ± 1.670 | 32.640 ± 0.932 | 34.092 ± 0.602 | 34.794 ± 1.104 |
C20:1 | 1.326 ± 0.080 | 1.427 ± 0.040 | 1.342 ± 0.082 | 1.350 ± 0.053 |
C22:1 | 0.077 ± 0.015 | 0.077 ± 0.017 | 0.084 ± 0.018 | 0.077 ± 0.005 |
∑Monounsaturated fatty acids (MUFAs) | 51.461 ± 1.953 | 49.336 ± 1.864 | 50.104 ± 1.012 | 51.083 ± 0.360 |
C18:2 n-6 | 10.820 ± 1.131 | 12.447 ± 1.057 | 12.799 ± 1.822 | 11.482 ± 0.895 |
C20:2 n-6 | 0.248 ± 0.002 a | 0.276 ± 0.023 b | 0.247± 0.010 ab | 0.246 ± 0.010 ab |
C20:3 n-6 | 0.782± 0.037 | 0.918 ± 0.458 | 0.780± 0.111 | 0.820 ± 0.110 |
C20:4 n-6 | 0.079 ± 0.016 | 0.087 ± 0.011 | 0.071 ± 0.005 | 0.078± 0.013 |
C18:3 n-3 | 1.440 ± 0.115 | 1.558 ± 0.115 | 1.404 ± 0.099 | 1.473 ± 0.090 |
C20:5 n-3 | 2.789 ± 0.157 | 3.069 ± 0.271 | 2.926 ± 0.410 | 2.989 ± 0.096 |
C22:6 n-3 | 5.015 ± 0.317 a | 5.666 ± 0.025 b | 5.325 ± 0.430 ab | 5.322 ± 0.160 ab |
∑Polyunsaturated fatty acids (PUFAs) | 21.173 ± 1.443 | 24.021 ± 1.840 | 23.551 ± 2.523 | 22.410 ± 0.819 |
∑Unsaturated fatty acids (UFAs) | 72.634 ± 0.534 | 73.358 ± 0.074 | 73.655 ± 1.268 | 73.494 ± 0.697 |
∑Atherosclerotic index (AI) | 0.427 ± 0.011 | 0.405 ± 0.017 | 0.401 ± 0.029 | 0.401 ± 0.015 |
∑Thrombosis index (TI) | 0.442 ± 0.018 | 0.409 ± 0.006 | 0.416 ± 0.046 | 0.416 ± 0.019 |
Nucleotides | Taste Threshold | Salinity (ppt) | |||
---|---|---|---|---|---|
0 | 4 | 8 | 12 | ||
Adenosine-5′-monophosphate (AMP) (mg/100 g) | 50.000 | 13.705 ± 0.877 | 13.686 ± 1.662 | 13.595 ± 0.316 | 12.653 ± 0.353 |
Guanosine-5′-monophosphate (GMP) (mg/100 g) | 12.000 | 1.674 ± 0.119 a | 1.986 ± 0.125 bc | 2.135 ± 0.202 c | 2.453 ± 0.134 cd |
Inosine-5′-monophosphate (IMP) (mg/100 g) | 25.000 | 41.352 ± 4.608 a | 57.377 ± 4.257 b | 127.209 ± 15.193 c | 164.468 ± 12.721 d |
Taste activity value (TAV) of IMP | / | 1.654 ± 0.184 a | 2.295 ± 0.170 b | 5.088 ± 0.608 c | 6.579 ± 0.509 d |
Equivalent umami concentration (EUC) (g MSG/100 g) | / | 1.067 ± 0.242 a | 1.829 ± 0.541 a | 3.850 ± 0.617 b | 6.534 ± 0.948 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Miraji, S.M.; Tian, Y.; Ma, X.; Jin, W.; Wen, H.; Xu, G.; Xu, P.; Cheng, H. Effect of Different Salinities on the Biochemical Properties and Meat Quality of Adult Freshwater Drum (Aplodinotus grunniens) During Temporary Rearing. Antioxidants 2024, 13, 1273. https://doi.org/10.3390/antiox13101273
Chen W, Miraji SM, Tian Y, Ma X, Jin W, Wen H, Xu G, Xu P, Cheng H. Effect of Different Salinities on the Biochemical Properties and Meat Quality of Adult Freshwater Drum (Aplodinotus grunniens) During Temporary Rearing. Antioxidants. 2024; 13(10):1273. https://doi.org/10.3390/antiox13101273
Chicago/Turabian StyleChen, Wanwen, Sharifa Mohamed Miraji, Yu Tian, Xueyan Ma, Wu Jin, Haibo Wen, Gangchun Xu, Pao Xu, and Hao Cheng. 2024. "Effect of Different Salinities on the Biochemical Properties and Meat Quality of Adult Freshwater Drum (Aplodinotus grunniens) During Temporary Rearing" Antioxidants 13, no. 10: 1273. https://doi.org/10.3390/antiox13101273
APA StyleChen, W., Miraji, S. M., Tian, Y., Ma, X., Jin, W., Wen, H., Xu, G., Xu, P., & Cheng, H. (2024). Effect of Different Salinities on the Biochemical Properties and Meat Quality of Adult Freshwater Drum (Aplodinotus grunniens) During Temporary Rearing. Antioxidants, 13(10), 1273. https://doi.org/10.3390/antiox13101273