Oxidative Stress in Canine Diseases: A Comprehensive Review
Abstract
:1. Introduction
2. OS in Canine Diseases
2.1. Cardiovascular, Respiratory, and Related Diseases
2.2. Oncologic Diseases
2.3. Gastrointestinal and Exocrine Pancreatic Diseases
2.4. Hepatobiliary Diseases
2.5. Endocrine Diseases and Obesity
2.6. Hematologic Diseases
2.7. Infectious and Parasitic Diseases
2.7.1. Vector-Borne Diseases
Leishmaniosis
Ehrlichiosis
Babesiosis
Other Vector-Borne Diseases
2.7.2. Infectious and Parasitic Gastrointestinal Diseases
2.7.3. Ectoparasites and Dermal Fungal Diseases
2.8. Neurologic Diseases
2.9. Renal Diseases
2.10. Dermatologic Diseases
2.11. Ophthalmologic Diseases
2.12. Orthopedic Diseases
2.13. Reproductive System Diseases
2.14. Dental Diseases
2.15. Others
3. Conclusions
Group | Sub-Group | Disease * | Biomarkers of Oxidation* | Biomarkers of Antioxidant Defense * | Sample Type | Reference |
---|---|---|---|---|---|---|
Cardiovascular, respiratory, and related diseases | Cardiovascular | MMVD | MDA, mtDNA | - | Blood | [32] |
MMVD | MDA, OxLDL | Vitamin E | Blood | [39] | ||
MMVD and DCM | MDA | GPX, Vitamin E | Blood | [42] | ||
MMVD and DCM | MDA | GPX | Blood | [38] | ||
MMVD | - | CUPRAC, SOD, CAT, GR | Blood | [36] | ||
MMVD and DCM | - | TAS (ABTS), CUPRAC, Thiol | Blood | [40] | ||
MMVD, DCM, and others (Heart Failure) | - | TAS (ABTS), SOD, CAT, GPX | Blood | [37] | ||
MMVD stage B1 | MDA | SOD, GPX, Vitamin E | Blood | [41] | ||
MMVD and DCM (Heart Failure) | MDA, IsoP, PC | GSH:GSSG, vitamins A, C, and E, ORAC | Blood | [35] | ||
DCM | MDA | GPX, SOD, Vitamins A, C, E | Blood | [34] | ||
DCM | - | GPX, SOD, Vitamins A, C, E | Blood | [33] | ||
MMVD and Heart Failure | - | - | Review | [43] | ||
MMVD | MDA | - | Blood | [44] | ||
MMVD | IsoP | GPX | Blood | [46] | ||
MMVD | IsoP | - | Blood | [45] | ||
Experimental cardiac models | Induced atrial fibrillation | ROS, XO | GPX, SOD | Blood | [52] | |
Induced atrial fibrillation | ROS | - | Cardiac tissue | [49] | ||
Induced atrial fibrillation | ROS, XO | - | Blood | [51] | ||
Induced atrial fibrillation | ROS | - | Cardiac tissue | [47] | ||
Induced atrial fibrillation | ROS | - | Cardiac tissue | [50] | ||
Induced atrial fibrillation | ROS, 8-OHdG | - | Cardiac tissue | [48] | ||
Induced heart failure | Panel of aldehydes | - | Cardiac tissue | [55] | ||
Induced cardiac arrest | IsoP | Panel of enzymes | Cardiac tissue | [54] | ||
Induced heart failure | Panel of aldehydes | - | Cardiac tissue | [56] | ||
Induced cardiac arrest | IsoP | - | Coronary sinus plasma | [53] | ||
Respiratory | Tracheal collapse | MDA | - | Blood | [57] | |
Tracheal collapse | MDA | - | Blood | [61] | ||
Air pollution | MDA, NO | SOD, CAT, GSH, SOD | Blood | [59] | ||
Brachycephalic Obstructive Airway Syndrome | MDA | SOD, GPX | Blood | [58] | ||
Chromium pollution | MDA | SOD, CAT | Tissues | [60] | ||
Hypoxia-induced neurogenic pulmonary edema | MDA, PC | - | Tissues | [62] | ||
Oncologic diseases | Mammary gland tumors | Mammary gland tumors | MDA | - | Blood | [72] |
Mammary gland tumors | MDA | TAS (ABTS) | Blood | [65] | ||
Mammary gland tumors | MDA, 8-OHdG | - | Mammary gland tissue | [68] | ||
Mammary gland tumors | MDA | GSH, G6PD | Mammary gland tissue | [64] | ||
Mammary gland tumors | NO, AOPP | FRAP | Blood | [70] | ||
Mammary gland tumors | MDA | Vitamin E | Blood and mammary gland tissue | [66] | ||
Mammary gland tumors | MDA, LOOH | SOD, CAT, GSH, GST, Vitamin C | Mammary gland tissue | [69] | ||
Mammary gland tumors | MDA | SOD, GPX, Thiol | Blood | [73] | ||
Lymphoma and leukemia | Lymphoma and lymphoid leukemia | ROS | - | Cell culture | [75] | |
Lymphoma | d-ROMs | BAP | Blood | [76] | ||
Lymphoma | MDA, AOPP | FRAP | Blood | [74] | ||
Lymphoma | MDA, IsoP | ORAC, GPX, Vitamin C, Vitamin E | Blood | [78] | ||
Lymphoma | MDA, ROS | GSH:GSSG, GPX, FRAP, SOD | Blood and lymph node tissue | [77] | ||
Other oncologic diseases | Osteosarcoma | ROS | - | Neoplastic cells | [80] | |
Osteosarcoma | ROS | - | Neoplastic cells | [79] | ||
Mast cell tumor | d-ROMs | BAP, Vitamin E | Blood | [63] | ||
Urothelial carcinoma | IsoP | - | Urine | [81] | ||
Various cancer types: Mammary gland carcinoma, mast cell tumor, osteosarcoma, and others. | MDA | - | Blood | [71] | ||
Gastrointestinal and exocrine pancreatic diseases | Gastrointestinal diseases | Chronic inflammatory enteropathy | MDA | GSH, Albumin | Blood | [83] |
Acute Diarrhea (non-specific acute enteropathies) | d-ROMs, OSI | SAC | Blood | [82] | ||
IBD | ROS, MDA, FOX | TAS, CUPRAC, FRAP, Thiol, PON-1 | Blood | [85] | ||
IBD | - | CUPRAC | Blood | [87] | ||
IBD | - | TAS (ABTS) | Blood | [86] | ||
IBD | Metabolomic profile | Metabolomic profile | Blood | [84] | ||
Exocrine pancreatic diseases | Acute Pancreatitis | RM, IsoP | AOP | Blood, urine | [89] | |
Pancreatitis | - | - | Review | [88] | ||
Hepatobiliary diseases | Acute liver injury | MDA, H2O2, 8-OHdG | G6PD, TrxR, CAT, SOD, GPX, GR, GSH | Liver tissue | [98] | |
Liver disease (various origins) | - | GSH | Blood | [93] | ||
Liver disease (various origins) | IsoP | - | Urine | [100] | ||
Liver disease | d-ROMs | Thiol | Blood | [96] | ||
Liver injury | ROS | CAT, GPX | Liver tissue | [104] | ||
Chronic hepatitis | MDA, 4-HNE | - | Liver tissue | [103] | ||
Cooper-associated hepatitis | RM, IsoP | TAS (ABTS) | Blood and urine | [102] | ||
Liver disease (various origins) | IsoP | GSH, Vitamin E | Blood, urine, and liver tissue. | [94] | ||
Cooper-associated hepatitis | Transcriptome and gene Arrays | Transcriptome and gene Arrays | Liver tissue | [95] | ||
Chronic liver disease | MDA | - | Liver tissue | [101] | ||
Age-related hepatic alterations | Genome Arrays | Genome Arrays | Liver tissue | [99] | ||
Liver disease | - | - | Review | [91] | ||
Portosystemic Shunt | - | Vitamin C | Blood | [97] | ||
Liver disease (various origins) | - | GSH/GSSG and antioxidants gene expression | Liver tissue | [92] | ||
Liver disease (various origins) | - | GSH/GSSG | Liver tissue | [90] | ||
Endocrine diseases and obesity | Hypothyroidism | Hypothyroidism | TOS, POX-Act, d-ROMs, AOPP, MDA | CUPRAC, FRAP, TAS (ABTS), PON-1 | Blood | [106] |
Hypothyroidism | MDA | TAC | Blood | [107] | ||
Hypothyroidism | MDA, d-ROMs, TOS, POX-Act, AOPP | CUPRAC, FRAP, TAS (ABTS), Thiol, PON-1, GPX, FRAS | Blood and saliva | [105] | ||
Cushing’s syndrome | Cardiac fibrosis-Cushing’s syndrome | 8-OHdG, NADPH oxidase | SOD | Blood and cardiac tissue | [110] | |
Cushing’s syndrome | MDA | - | Blood | [109] | ||
Cushing’s syndrome | PC | - | Blood | [108] | ||
Diabetes | Diabetes | MDA | SOD | Blood | [114] | |
Diabetes | H2O2, 8-OHdG, MDA | CAT, SOD, GPX, GSH-GSSG, TrxR, NADPH-NADP+, Thiol | Cerebrum tissue | [113] | ||
Diabetes | ROS, MDA | CAT, GPX, GR, SOD | Pancreatic tissue | [112] | ||
Diabetes | MDA | CAT, GSH | Blood | [111] | ||
Hyperlipidemia | Hyperlipidemia | MDA | - | Blood | [120] | |
Obesity | Obesity | MDA | - | Blood | [115] | |
Obesity | MDA, ROS, FOX | CUPRAC, FRAP, TAS (ABTS), Thiol, PON-1 | Blood | [119] | ||
Obesity-related metabolic dysfunction | - | Proteomics | Saliva | [117] | ||
Obesity | MDA | FRAP, Ceruloplasmin | Blood | [118] | ||
Obesity | - | Transcriptomics | Blood, adipose tissue | [116] | ||
Hematologic diseases | Hemotherapy | Stored blood (transfusion medicine) | MDA, PC | TAS (ABTS), SOD, GPX, CAT | Blood | [129] |
Bone marrow mesenchymal stem cells (BMSCs) transplantation | ROS, MDA | SOD, CAT, GPX | BMSCs culture | [130] | ||
Anemia (various origins) | Anemia (hemolytic and nonhemolytic) | ROS | GSH, Vitamin E | Blood | [125] | |
Anemia (various origins) | IsoP | TAS (ABTS), GPX | Blood and urine | [126] | ||
Anemia (CKD) | MDA | GSH-GSSH, GPX, GR, SOD | Blood | [124] | ||
Immune-mediated hemolytic anemia | - | Peroxiredoxin-2 | Blood | [128] | ||
Immune-mediated hemolytic anemia | MDA | Vitamin E | Blood | [127] | ||
Infectious and parasitic diseases | Vector-borne diseases | Leishmaniosis | MDA, PC | GSH/GSSG | Blood | [136] |
Leishmaniosis | ROS, RNS, Hydroperoxides | SOD, FRAP | Blood | [139] | ||
Leishmaniosis | - | PON-1 | Blood | [143] | ||
Leishmaniosis | MDA | GSH/GSSG, Thiol | Blood | [138] | ||
Leishmaniosis | TOC, MDA | TAS (ABTS) | Blood | [134] | ||
Leishmaniosis | TOC, MDA | TAC | Blood and tissues | [142] | ||
Leishmaniosis | - | SOD | Blood | [141] | ||
Leishmaniosis | TOS | TAS (ABTS), FRAP, CUPRAC, PON-1, Thiol | Blood | [140] | ||
Leishmaniosis | - | - | Review | [131] | ||
Leishmaniosis | ROS | - | Blood | [132] | ||
Leishmaniosis | TOC, MDA | TAS (ABTS), GSH | Blood | [133] | ||
Leishmaniosis | MDA | TAS (ABTS) | Blood | [137] | ||
Leishmaniosis | MDA | GSH, Vitamin C | Blood | [135] | ||
Ehrlichiosis | R-OOHs | OXY, Thiol | Blood | [150] | ||
Ehrlichiosis | MDA, NO | - | Blood | [149] | ||
Ehrlichiosis | MDA, NO | TAC, SOD, GPX | Blood | [146] | ||
Ehrlichiosis | ROS, MDA, FOX | TAS (ABTS), CUPRAC, FRAP | Blood | [151] | ||
Ehrlichiosis | AOPP | FRAP | Blood | [144] | ||
Ehrlichiosis | - | TAS (ABTS), PON-1 | Blood | [152] | ||
Ehrlichiosis | MDA, NO, AOPP | GR | Blood | [147] | ||
Ehrlichiosis and Babesiosis | MDA, NO | - | Blood | [145] | ||
Ehrlichiosis and Babesiosis | MDA | - | Blood | [148] | ||
Babesiosis | - | GSH, SOD, CAT | Blood | [158] | ||
Babesiosis | LPO | SOD, CAT, TAS (ABTS) | Blood | [156] | ||
Babesiosis | MDA | TAS (ABTS), SOD, CAT, GPX | Blood | [155] | ||
Babesiosis | 8-OHdG, NO | TAS (ABTS) | Blood | [153] | ||
Babesiosis | MDA | - | Blood | [154] | ||
Babesiosis | MDA | - | Blood | [157] | ||
Heartworm disease | Comet assay (DNA oxidation) | - | Blood | [160] | ||
Heartworm disease | - | TAS (ABTS), GPX, PON-1 | Blood | [159] | ||
Heartworm disease | MDA | SOD, CAT | Blood | [161] | ||
Hepatozoonosis | MDA, NO | GSH | Blood | [162] | ||
Trypanosomosis | LPO | TAS (ABTS), SOD, GSH | Blood | [163] | ||
Infectious and parasitic gastrointestinal diseases | Parvoviral enteritis | MDA, NO | GST | Blood | [164] | |
Parvoviral enteritis | MDA, NO | GST | Blood | [165] | ||
Parvoviral enteritis | - | TAS (ABTS), PON-1 | Blood | [166] | ||
Parvoviral enteritis | MDA | SOD, CAT | Blood | [167] | ||
Gastrointestinal helminthiasis | R-OOHs | OXY, Thiol | Blood | [168] | ||
Gastrointestinal helminthiasis | - | TAS (ABTS), PON-1 | Blood | [169] | ||
Ectoparasites and dermal fungal diseases | Demodicosis | MDA | SOD, GPX, TAC, CAT | Blood | [173] | |
Sarcoptic mange | MDA | SOD, CAT, vitamin A, vitamin C | Blood | [176] | ||
Demodicosis | - | - | Review | [174] | ||
Demodicosis | - | PON-1, TAS (ABTS) | Blood | [172] | ||
Demodicosis | MDA | SOD, CAT, β-carotene, vitamin C | Blood | [170] | ||
Sarcoptic mange | MDA | SOC, CAT, GPX, GSH, GST | Blood | [178] | ||
Sarcoptic mange | MDA | GSH, SOD, CAT | Blood | [175] | ||
Sarcoptic mange | TOS, LOOH | TAS (ABTS), Thiol | Blood | [177] | ||
Demodicosis | MDA | GSH, SOD, CAT | Blood | [171] | ||
Dermatophytosis | MDA | SOD, CAT, β-carotene, vitamin C | Blood | [179] | ||
Neurologic diseases | Epilepsy | - | - | Review | [183] | |
Epilepsy | MDA, AOPP | GSH, PON-1, Thiol | Blood | [182] | ||
Myelomalacia | IsoP, Acrolein | GSH | Urine, cerebrospinal fluid, and spinal cord tissue samples | [180] | ||
Degenerative Myelopathy, Pembroke Welsh Corgi | NO | SOD | Spinal cord tissue samples | [186] | ||
Degenerative Myelopathy, Pembroke Welsh Corgi | IsoP | - | Cerebrospinal fluid | [184] | ||
Hereditary canine spinal muscular atrophy | - | SOD, GPX, Vitamin E | Blood | [185] | ||
Renal diseases | Chronic Kidney Disease | IsoP | - | Urine | [196] | |
Nephrotoxicity | MDA, ROS | SOD, CAT | Madin–Darby canine kidney cell culture | [194] | ||
Chronic Kidney Disease | d-ROMS | - | Blood | [190] | ||
Chronic Kidney Disease | - | CUPRAC | Blood | [189] | ||
Chronic Kidney Disease and Nephrotoxicity | MDA, ROS | TAS (ABTS) | Plasma and canine neutrophils | [191] | ||
Nephrotoxicity | 4-HNE, Hb-oxidation products | - | Renal tissue | [193] | ||
Chronic Kidney Disease | MDA | GSH-GSSH, GPX, GR, SOD | Blood | [124] | ||
Chronic Kidney Disease | MDA, ROS | TAS (ABTS) | Plasma and canine neutrophils | [195] | ||
Renal azotemia | MDA | CAT, GSH | Blood and urine | [192] | ||
Chronic Kidney Disease | - | - | Review | [187] | ||
Dermatologic diseases | Atopic dermatitis | - | - | Clinical Scores | [202] | |
Atopic dermatitis | FOX | TAS, CUPRAC, FRAP, Thiol | Blood | [199] | ||
Atopic dermatitis | MDA | TAC, GPX, SOD, Vitamin E | Blood and skin tissue | [198] | ||
Atopic dermatitis | - | Vitamin E | Blood and skin tissue | [201] | ||
Atopic dermatitis | MDA | TAS, GPX, SOD | Blood | [200] | ||
Zinc-responsive dermatosis | - | SOD, metallothionein, heat shock proteins | Skin tissue | [203] | ||
Ophthalmologic diseases | Cataracts | - | - | Ophthalmologic clinical evaluation | [210] | |
Cataracts | MDA | TAS (ABTS) | Blood | [209] | ||
Cataracts | Western immunoblotting | - | Canine lens epithelial cells | [205] | ||
Cataracts | - | - | Review | [211] | ||
Cataracts | - | TAC, Vitamin C | Aqueous humor | [208] | ||
Cataracts | - | SOD, CAT, GPX, G6PD, Vitamin C | Blood and aqueous humor | [207] | ||
Cataracts | TAC, Vitamin C | Aqueous humor | [206] | |||
Glaucoma | - | - | Review | [214] | ||
Glaucoma | - | - | Review | [215] | ||
Glaucoma | MDA, Nitrotyrosine | - | Retinal tissue | [213] | ||
Glaucoma | - | GPX | Blood | [212] | ||
Retinal oxidative damage | MDA | Vitamin E | Retinal tissue | [204] | ||
Orthopaedic diseases | Osteoarthritis | - | GSH | Blood | [221] | |
Osteoarthritis | d-ROMs | OXY, BAP | Blood | [220] | ||
Osteoarthritis | MDA, 8-OHdG | GSH | Blood | [217] | ||
Osteoarthritis | - | SOD, GSH | Canine chondrocyte cell culture | [218] | ||
Osteoarthritis | MDA | CAT | Blood | [219] | ||
Hip dysplasia | MDA | GSH, CAT, SOD, GPX | Blood | [222] | ||
Hip dysplasia | MDA | GSH, GPX, SOD, Vitamin E | Blood | [216] | ||
Reproductive system diseases | Cystic endometrial hyperplasia-Pyometra | MDA | SOD, CAT, GPX, GSH, FRAP, TAS (ABTS) | Blood, urine, and uterine tissue | [223] | |
Cystic endometrial hyperplasia | TOS, OSI | TAS (ABTS) | Blood | [224] | ||
Pyometra | - | GSH, Vitamin C | Uterine tissue | [225] | ||
Benign prostatic hyperplasia | - | - | Review | [226] | ||
Benign prostatic hyperplasia | Bityrosine, formylkynurenine | FRAP | Blood | [227] | ||
Dental diseases | Periodontal Disease | MDA | - | Saliva | [229] | |
Periodontal Disease | MDA, 8-OHdG | FRAP, SOD | Saliva | [228] | ||
Others | Ischemia-reperfusion | - | - | Review | [230] | |
Systemically ill hospitalized dogs (various causes) | IsoP | GSH, cysteine, vitamin E | Blood, urine | [231] | ||
Systemically ill hospitalized dogs (various causes) | IsoP | GSH, cysteine, vitamin E | Blood, urine | [232] |
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sies, H.; Berndt, C.; Jones, D.P. Oxidative Stress. Annu. Rev. Biochem. 2017, 86, 715–748. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Oxidative Stress: Introductory Remarks. In Oxidative Stress; Sies, H., Ed.; Academic Press: London, UK, 1985; pp. 1–8. ISBN 978-0-12-642760-8. [Google Scholar]
- Forman, H.J.; Zhang, H. Targeting Oxidative Stress in Disease: Promise and Limitations of Antioxidant Therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef]
- Sies, H. On the History of Oxidative Stress: Concept and Some Aspects of Current Development. Curr. Opin. Toxicol. 2018, 7, 122–126. [Google Scholar] [CrossRef]
- Sies, H. Oxidative Stress: Concept and Some Practical Aspects. Antioxidants 2020, 9, 852. [Google Scholar] [CrossRef]
- Halliwell, B. Reactive Species and Antioxidants. Redox Biology Is a Fundamental Theme of Aerobic Life. Plant Physiol. 2006, 141, 312–322. [Google Scholar] [CrossRef]
- Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative Stress and Antioxidant Defense. World Allergy Organ. J. 2012, 5, 9–19. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Valko, M. Advances in Metal-Induced Oxidative Stress and Human Disease. Toxicology 2011, 283, 65–87. [Google Scholar] [CrossRef] [PubMed]
- Galaris, D.; Barbouti, A.; Pantopoulos, K. Iron Homeostasis and Oxidative Stress: An Intimate Relationship. Biochim. Biophys. Acta Mol. Cell Res. 2019, 1866, 118535. [Google Scholar] [CrossRef]
- Dröge, W. Free Radicals in the Physiological Control of Cell Function. Physiol. Rev. 2002, 82, 47–95. [Google Scholar] [CrossRef]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef] [PubMed]
- Dalle-Donne, I.; Rossi, R.; Colombo, R.; Giustarini, D.; Milzani, A. Biomarkers of Oxidative Damage in Human Disease. Clin. Chem. 2006, 52, 601–623. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Whiteman, M. Measuring Reactive Species and Oxidative Damage in Vivo and in Cell Culture: How Should You Do It and What Do the Results Mean? Br. J. Pharmacol. 2004, 142, 231–255. [Google Scholar] [CrossRef]
- Tejchman, K.; Kotfis, K.; Sieńko, J. Biomarkers and Mechanisms of Oxidative Stress—Last 20 Years of Research with an Emphasis on Kidney Damage and Renal Transplantation. Int. J. Mol. Sci. 2021, 22, 8010. [Google Scholar] [CrossRef]
- Tsikas, D. Assessment of Lipid Peroxidation by Measuring Malondialdehyde (MDA) and Relatives in Biological Samples: Analytical and Biological Challenges. Anal. Biochem. 2017, 524, 13–30. [Google Scholar] [CrossRef]
- Chao, M.-R.; Evans, M.D.; Hu, C.-W.; Ji, Y.; Møller, P.; Rossner, P.; Cooke, M.S. Biomarkers of Nucleic Acid Oxidation—A Summary State-of-the-Art. Redox Biol. 2021, 42, 101872. [Google Scholar] [CrossRef] [PubMed]
- Jelic, M.D.; Mandic, A.D.; Maricic, S.M.; Srdjenovic, B.U. Oxidative Stress and Its Role in Cancer. J. Cancer Res. Ther. 2021, 17, 22–28. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, M.A.; Mendoza-Núñez, V.M. Oxidative Stress Indexes for Diagnosis of Health or Disease in Humans. Oxid. Med. Cell Longev. 2019, 2019, 4128152. [Google Scholar] [CrossRef]
- Frijhoff, J.; Winyard, P.G.; Zarkovic, N.; Davies, S.S.; Stocker, R.; Cheng, D.; Knight, A.R.; Taylor, E.L.; Oettrich, J.; Ruskovska, T.; et al. Clinical Relevance of Biomarkers of Oxidative Stress. Antioxid. Redox Signal 2015, 23, 1144–1170. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Pellegrini, N.; Vitaglione, P.; Granato, D.; Fogliano, V. Twenty-Five Years of Total Antioxidant Capacity Measurement of Foods and Biological Fluids: Merits and Limitations. J. Sci. Food Agric. 2020, 100, 5064–5078. [Google Scholar] [CrossRef] [PubMed]
- Perez-Montero, B.; Fermin-Rodriguez, M.L.; Portero-Fuentes, M.; Sarquis, J.; Caceres, S.; Del Portal, J.C.I.; de Juan, L.; Miro, G.; Cruz-Lopez, F. Serum Total Antioxidant Status in Dogs: Reference Intervals and Influence of Multiple Biological and Analytical Factors. Vet. Clin. Pathol. 2024, 00, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Colitti, M.; Stefanon, B.; Gabai, G.; Gelain, M.E.; Bonsembiante, F. Oxidative Stress and Nutraceuticals in the Modulation of the Immune Function: Current Knowledge in Animals of Veterinary Interest. Antioxidants 2019, 8, 28. [Google Scholar] [CrossRef] [PubMed]
- Passantino, A.; Quartarone, V.; Pediliggeri, M.C.; Rizzo, M.; Piccione, G. Possible Application of Oxidative Stress Parameters for the Evaluation of Animal Welfare in Sheltered Dogs Subjected to Different Environmental and Health Conditions. J. Vet. Behav. 2014, 9, 290–294. [Google Scholar] [CrossRef]
- Ferreira, C.S.; Vasconcellos, R.S.; Pedreira, R.S.; Silva, F.L.; Sá, F.C.; Kroll, F.S.A.; Maria, A.P.J.; Venturini, K.S.; Carciofi, A.C. Alterations to Oxidative Stress Markers in Dogs after a Short-Term Stress during Transport. J. Nutr. Sci. 2014, 3, e27. [Google Scholar] [CrossRef]
- Juodžentė, D.; Karvelienė, B.; Riškevičienė, V. The Influence of the Duration of the Preoperative Time Spent in the Veterinary Clinic without the Owner on the Psychogenic and Oxidative Stress in Dogs. J. Vet. Med. Sci. 2018, 80, 1129–1133. [Google Scholar] [CrossRef]
- Varney, J.L.; Fowler, J.W.; Gilbert, W.C.; Coon, C.N. Utilisation of Supplemented L-Carnitine for Fuel Efficiency, as an Antioxidant, and for Muscle Recovery in Labrador Retrievers. J. Nutr. Sci. 2017, 6, e8. [Google Scholar] [CrossRef]
- Dubois-Deruy, E.; Peugnet, V.; Turkieh, A.; Pinet, F. Oxidative Stress in Cardiovascular Diseases. Antioxidants 2020, 9, 864. [Google Scholar] [CrossRef]
- Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release. Physiol. Rev. 2014, 94, 909–950. [Google Scholar] [CrossRef]
- D’Oria, R.; Schipani, R.; Leonardini, A.; Natalicchio, A.; Perrini, S.; Cignarelli, A.; Laviola, L.; Giorgino, F. The Role of Oxidative Stress in Cardiac Disease: From Physiological Response to Injury Factor. Oxid. Med. Cell Longev. 2020, 2020, 5732956. [Google Scholar] [CrossRef]
- Chirathanaphirom, S.; Chuammitri, P.; Pongkan, W.; Manachai, N.; Chantawong, P.; Boonsri, B.; Boonyapakorn, C. Differences in Levels of Mitochondrial DNA Content at Various Stages of Canine Myxomatous Mitral Valve Disease. Animals 2023, 13, 3850. [Google Scholar] [CrossRef] [PubMed]
- Freeman, L.M.; Brown, D.J.; Rush, J.E. Antioxidant Status in Dogs with Idiopathic Dilated Cardiomyopathy. J. Nutr. 1998, 128, 2768S–2770S. [Google Scholar] [CrossRef]
- Freeman, L.M.; Brown, D.J.; Rush, J.E. Assessment of Degree of Oxidative Stress and Antioxidant Concentrations in Dogs with Idiopathic Dilated Cardiomyopathy. J. Am. Vet. Med. Assoc. 1999, 215, 644–646. [Google Scholar] [CrossRef] [PubMed]
- Freeman, L.M.; Rush, J.E.; Milbury, P.E.; Blumberg, J.B. Antioxidant Status and Biomarkers of Oxidative Stress in Dogs with Congestive Heart Failure. J. Vet. Intern. Med. 2005, 19, 537–541. [Google Scholar] [CrossRef]
- Michałek, M.; Tabiś, A.; Cepiel, A.; Noszczyk-Nowak, A. Antioxidative Enzyme Activity and Total Antioxidant Capacity in Serum of Dogs with Degenerative Mitral Valve Disease. Can. J. Vet. Res. 2020, 84, 67–73. [Google Scholar]
- Michałek, M.; Tabiś, A.; Noszczyk-Nowak, A. Serum Total Antioxidant Capacity and Enzymatic Defence of Dogs with Chronic Heart Failure and Atrial Fibrillation: A Preliminary Study. J. Vet. Res. 2020, 64, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Nemec Svete, A.; Verk, B.; Čebulj-Kadunc, N.; Salobir, J.; Rezar, V.; Domanjko Petrič, A. Inflammation and Its Association with Oxidative Stress in Dogs with Heart Failure. BMC Vet. Res. 2021, 17, 176. [Google Scholar] [CrossRef]
- Reimann, M.J.; Häggström, J.; Møller, J.E.; Lykkesfeldt, J.; Falk, T.; Olsen, L.H. Markers of Oxidative Stress in Dogs with Myxomatous Mitral Valve Disease Are Influenced by Sex, Neuter Status, and Serum Cholesterol Concentration. J. Vet. Intern. Med. 2017, 31, 295–302. [Google Scholar] [CrossRef]
- Rubio, C.P.; Saril, A.; Kocaturk, M.; Tanaka, R.; Koch, J.; Ceron, J.J.; Yilmaz, Z. Changes of Inflammatory and Oxidative Stress Biomarkers in Dogs with Different Stages of Heart Failure. BMC Vet. Res. 2020, 16, 433. [Google Scholar] [CrossRef]
- Tomsič, K.; Domanjko Petrič, A.; Nemec, A.; Pirman, T.; Rezar, V.; Seliškar, A.; Vovk, T.; Nemec Svete, A. Evaluation of Antioxidant Status and Lipid Peroxidation in Dogs with Myxomatous Mitral Valve Degeneration Stage B1. Front. Vet. Sci. 2023, 10, 1203480. [Google Scholar] [CrossRef]
- Verk, B.; Nemec Svete, A.; Salobir, J.; Rezar, V.; Domanjko Petrič, A. Markers of Oxidative Stress in Dogs with Heart Failure. J. Vet. Diagn. Investig. 2017, 29, 636–644. [Google Scholar] [CrossRef]
- Laflamme, D.P. Key Nutrients Important in the Management of Canine Myxomatous Mitral Valve Disease and Heart Failure. J. Am. Vet. Med. Assoc. 2022, 260, S61–S70. [Google Scholar] [CrossRef] [PubMed]
- Pongkan, W.; Piamsiri, C.; Dechvongya, S.; Punyapornwitthaya, V.; Boonyapakorn, C. Short-Term Melatonin Supplementation Decreases Oxidative Stress but Does Not Affect Left Ventricular Structure and Function in Myxomatous Mitral Valve Degenerative Dogs. BMC Vet. Res. 2022, 18, 24. [Google Scholar] [CrossRef] [PubMed]
- Thassakorn, P.; Patchanee, P.; Pongkan, W.; Chattipakorn, N.; Boonyapakorn, C. Effect of Atorvastatin on Oxidative Stress and Inflammation Markers in Myxomatous Mitral Valve Disease in Dogs: A Comparison of Subclinical and Clinical Stages. J. Vet. Pharmacol. Ther. 2019, 42, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Druzhaeva, N.; Nemec Svete, A.; Tavčar-Kalcher, G.; Babič, J.; Ihan, A.; Pohar, K.; Krapež, U.; Domanjko Petrič, A. Effects of Coenzyme Q10 Supplementation on Oxidative Stress Markers, Inflammatory Markers, Lymphocyte Subpopulations, and Clinical Status in Dogs with Myxomatous Mitral Valve Disease. Antioxidants 2022, 11, 1427. [Google Scholar] [CrossRef]
- Igarashi, T.; Niwano, S.; Niwano, H.; Yoshizawa, T.; Nakamura, H.; Fukaya, H.; Fujiishi, T.; Ishizue, N.; Satoh, A.; Kishihara, J.; et al. Linagliptin Prevents Atrial Electrical and Structural Remodeling in a Canine Model of Atrial Fibrillation. Heart Vessel. 2018, 33, 1258–1265. [Google Scholar] [CrossRef]
- Kishihara, J.; Niwano, S.; Niwano, H.; Aoyama, Y.; Satoh, A.; Oikawa, J.; Kiryu, M.; Fukaya, H.; Masaki, Y.; Tamaki, H.; et al. Effect of Carvedilol on Atrial Remodeling in Canine Model of Atrial Fibrillation. Cardiovasc. Diagn. Ther. 2014, 4, 28–35. [Google Scholar] [CrossRef]
- Nishinarita, R.; Niwano, S.; Niwano, H.; Nakamura, H.; Saito, D.; Sato, T.; Matsuura, G.; Arakawa, Y.; Kobayashi, S.; Shirakawa, Y.; et al. Canagliflozin Suppresses Atrial Remodeling in a Canine Atrial Fibrillation Model. J. Am. Heart Assoc. 2021, 10, e017483. [Google Scholar] [CrossRef]
- Yoshizawa, T.; Niwano, S.; Niwano, H.; Tamaki, H.; Nakamura, H.; Igarashi, T.; Oikawa, J.; Satoh, A.; Kishihara, J.; Murakami, M.; et al. Antiremodeling Effect of Xanthine Oxidase Inhibition in a Canine Model of Atrial Fibrillation. Int. Heart J. 2018, 59, 1077–1085. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, R.; Wang, X.; Li, J.; Xu, X.; Liu, T.; Liu, E.; Li, G. Suppression of Experimental Atrial Fibrillation in a Canine Model of Rapid Atrial Pacing by the Phosphodiesterase 3 Inhibitor Cilostazol. J. Electrocardiol. 2020, 60, 151–158. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, R.; Wang, X.; Li, J.; Yuan, M.; Liu, E.; Liu, T.; Li, G. Attenuation of Atrial Remodeling by Aliskiren via Affecting Oxidative Stress, Inflammation and PI3K/Akt Signaling Pathway. Cardiovasc. Drugs Ther. 2021, 35, 587–598. [Google Scholar] [CrossRef] [PubMed]
- Fischer, U.M.; Cox, C.S.; Allen, S.J.; Stewart, R.H.; Mehlhorn, U.; Laine, G.A. The Antioxidant N-Acetylcysteine Preserves Myocardial Function and Diminishes Oxidative Stress after Cardioplegic Arrest. J. Thorac. Cardiovasc. Surg. 2003, 126, 1483–1488. [Google Scholar] [CrossRef]
- Sharma, A.B.; Sun, J.; Howard, L.L.; Williams, A.G.; Mallet, R.T. Oxidative Stress Reversibly Inactivates Myocardial Enzymes during Cardiac Arrest. Am. J. Physiol. Heart Circ. Physiol. 2007, 292, H198–H206. [Google Scholar] [CrossRef]
- Moe, G.; Konig, A.; Liu, P.; Jugdutt, B.I. Selective Type 1 Angiotensin II Receptor Blockade Attenuates Oxidative Stress and Regulates Angiotensin II Receptors in the Canine Failing Heart. Mol. Cell Biochem. 2008, 317, 97–104. [Google Scholar] [CrossRef]
- Moe, G.W.; Marin-Garcia, J.; Konig, A.; Goldenthal, M.; Lu, X.; Feng, Q. In Vivo TNF-Alpha Inhibition Ameliorates Cardiac Mitochondrial Dysfunction, Oxidative Stress, and Apoptosis in Experimental Heart Failure. Am. J. Physiol. Heart Circ. Physiol. 2004, 287, H1813–H1820. [Google Scholar] [CrossRef] [PubMed]
- Chueainta, P.; Punyapornwithaya, V.; Tangjitjaroen, W.; Pongkan, W.; Boonyapakorn, C. Acupuncture Improves Heart Rate Variability, Oxidative Stress Level, Exercise Tolerance, and Quality of Life in Tracheal Collapse Dogs. Vet. Sci. 2022, 9, 88. [Google Scholar] [CrossRef] [PubMed]
- Erjavec, V.; Vovk, T.; Svete, A.N. Evaluation of Oxidative Stress Parameters in Dogs with Brachycephalic Obstructive Airway Syndrome Before and after Surgery. J. Vet. Res. 2021, 65, 201–208. [Google Scholar] [CrossRef]
- Eze, U.U.; Eke, I.G.; Anakwue, R.C.; Oguejiofor, C.F.; Onyejekwe, O.B.; Udeani, I.J.; Onunze, C.J.; Obed, U.J.; Eze, A.A.; Anaga, A.O.; et al. Effects of Controlled Generator Fume Emissions on the Levels of Troponin I, C-Reactive Protein and Oxidative Stress Markers in Dogs: Exploring Air Pollution-Induced Cardiovascular Disease in a Low-Resource Country. Cardiovasc. Toxicol. 2021, 21, 1019–1032. [Google Scholar] [CrossRef]
- Lu, J.; Liu, K.; Qi, M.; Geng, H.; Hao, J.; Wang, R.; Zhao, X.; Liu, Y.; Liu, J. Effects of Cr(VI) Exposure on Electrocardiogram, Myocardial Enzyme Parameters, Inflammatory Factors, Oxidative Kinase, and ATPase of the Heart in Chinese Rural Dogs. Environ. Sci. Pollut. Res. Int. 2019, 26, 30444–30451. [Google Scholar] [CrossRef]
- Mektrirat, R.; Rueangsri, T.; Keeratichandacha, W.; Soonsawat, S.; Boonyapakorn, C.; Pongkan, W. Polyunsaturated Fatty Acid EAB-277® Supplementation Improved Heart Rate Variability and Clinical Signs in Tracheal Collapse Dogs. Front. Vet. Sci. 2022, 9, 880952. [Google Scholar] [CrossRef]
- Khademi, S.; Frye, M.A.; Jeckel, K.M.; Schroeder, T.; Monnet, E.; Irwin, D.C.; Cole, P.A.; Bell, C.; Miller, B.F.; Hamilton, K.L. Hypoxia Mediated Pulmonary Edema: Potential Influence of Oxidative Stress, Sympathetic Activation and Cerebral Blood Flow. BMC Physiol. 2015, 15, 4. [Google Scholar] [CrossRef] [PubMed]
- Finotello, R.; Pasquini, A.; Meucci, V.; Lippi, I.; Rota, A.; Guidi, G.; Marchetti, V. Redox Status Evaluation in Dogs Affected by Mast Cell Tumour. Vet. Comp. Oncol. 2014, 12, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Jayasri, K.; Padmaja, K.; Saibaba, M. Altered Oxidative Stress and Carbohydrate Metabolism in Canine Mammary Tumors. Vet. World 2016, 9, 1489–1492. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.P.; Portela, R.W.; Machado, M.C.; Canuto, G.A.; Costa-Neto, J.M.; Carvalho, V.D.; Sá, H.C.; Damasceno, K.A.; Souza, V.R.; Coelho, C.S.; et al. Ozone Therapy in the Integrated Treatment of Female Dogs with Mammary Cancer: Oxidative Profile and Quality of Life. Antioxidants 2024, 13, 673. [Google Scholar] [CrossRef]
- Karayannopoulou, M.; Fytianou, A.; Assaloumidis, N.; Psalla, D.; Constantinidis, T.C.; Kaldrymidou, E.; Koutinas, A.F. Markers of Lipid Peroxidation and α-Tocopherol Levels in the Blood and Neoplastic Tissue of Dogs with Malignant Mammary Gland Tumors. Vet. Clin. Pathol. 2013, 42, 323–328. [Google Scholar] [CrossRef]
- Klaunig, J.E.; Kamendulis, L.M.; Hocevar, B.A. Oxidative Stress and Oxidative Damage in Carcinogenesis. Toxicol. Pathol. 2010, 38, 96–109. [Google Scholar] [CrossRef]
- Karakurt, E.; KURU, M.; Dağ, S.; Beytut, E.; ORAL, H.; Nuhoğlu, H.; Yıldız, A. Presence and Importance of Oxidative Stress Parameters in Malignant Mammary Gland Tumors in Dogs. Kafkas Univ. Vet. Fak. Derg. 2021, 27, 517–523. [Google Scholar] [CrossRef]
- Kumaraguruparan, R.; Balachandran, C.; Manohar, B.M.; Nagini, S. Altered Oxidant-Antioxidant Profile in Canine Mammary Tumours. Vet. Res. Commun. 2005, 29, 287–296. [Google Scholar] [CrossRef]
- Machado, V.S.; Crivellenti, L.Z.; Bottari, N.B.; Tonin, A.A.; Pelinson, L.P.; Borin-Crivellenti, S.; Santana, A.E.; Torbitz, V.D.; Moresco, R.N.; Duarte, T.; et al. Oxidative Stress and Inflammatory Response Biomarkers in Dogs with Mammary Carcinoma. Pathol. Res. Pr. 2015, 211, 677–681. [Google Scholar] [CrossRef]
- Macotpet, A.; Suksawat, F.; Sukon, P.; Pimpakdee, K.; Pattarapanwichien, E.; Tangrassameeprasert, R.; Boonsiri, P. Oxidative Stress in Cancer-Bearing Dogs Assessed by Measuring Serum Malondialdehyde. BMC Vet. Res. 2013, 9, 101. [Google Scholar] [CrossRef]
- Schroers, M.; Walter, B.; Fischer, S.; Cremer, J.; Bauer, E.-M.; Zablotzki, Y.; Majzoub-Altweck, M.; Meyer-Lindenberg, A. Studies on the Association of Malondialdehyde as a Biomarker for Oxidative Stress and Degree of Malignancy in Dogs with Mammary Adenocarcinomas. Vet. Med. Sci. 2024, 10, e1496. [Google Scholar] [CrossRef] [PubMed]
- Szczubiał, M.; Kankofer, M.; Łopuszyński, W.; Dabrowski, R.; Lipko, J. Oxidative Stress Parameters in Bitches with Mammary Gland Tumours. J. Vet. Med. A Physiol. Pathol. Clin. Med. 2004, 51, 336–340. [Google Scholar] [CrossRef]
- Bottari, N.B.; Munhoz, T.D.; Torbitz, V.D.; Tonin, A.A.; Anai, L.A.; Semolin, L.M.S.; Jark, P.C.; Bollick, Y.S.; Moresco, R.N.; França, R.T.; et al. Oxidative Stress in Dogs with Multicentric Lymphoma: Effect of Chemotherapy on Oxidative and Antioxidant Biomarkers. Redox Rep. 2015, 20, 267–274. [Google Scholar] [CrossRef]
- Henklewska, M.; Pawlak, A.; Li, R.-F.; Yi, J.; Zbyryt, I.; Obmińska-Mrukowicz, B. Benzyl Isothiocyanate, a Vegetable-Derived Compound, Induces Apoptosis via ROS Accumulation and DNA Damage in Canine Lymphoma and Leukemia Cells. Int. J. Mol. Sci. 2021, 22, 11772. [Google Scholar] [CrossRef] [PubMed]
- Pasquini, A.; Gavazza, A.; Biagi, G.; Lubas, G. Oxidative Stress in Lymphoma: Similarities and Differences between Dog and Human. Comp. Clin. Pathol. 2015, 24, 69–73. [Google Scholar] [CrossRef]
- Vajdovich, P.; Kriska, T.; Mézes, M.; Szabó, P.R.; Balogh, N.; Bánfi, A.; Arany-Tóth, A.; Gaál, T.; Jakus, J. Redox Status of Dogs with Non-Hodgkin Lymphomas. An ESR Study. Cancer Lett. 2005, 224, 339–346. [Google Scholar] [CrossRef]
- Winter, J.L.; Barber, L.G.; Freeman, L.; Griessmayr, P.C.; Milbury, P.E.; Blumberg, J.B. Antioxidant Status and Biomarkers of Oxidative Stress in Dogs with Lymphoma. J. Vet. Intern. Med. 2009, 23, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Loftus, J.P.; Cavatorta, D.; Bushey, J.J.; Levine, C.B.; Sevier, C.S.; Wakshlag, J.J. The 5-Lipoxygenase Inhibitor Tepoxalin Induces Oxidative Damage and Altered PTEN Status Prior to Apoptosis in Canine Osteosarcoma Cell Lines. Vet. Comp. Oncol. 2016, 14, e17-30. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Park, S.; Bazer, F.W.; Lim, W.; Song, G. Myricetin Treatment Induces Apoptosis in Canine Osteosarcoma Cells by Inducing DNA Fragmentation, Disrupting Redox Homeostasis, and Mediating Loss of Mitochondrial Membrane Potential. J. Cell Physiol. 2018, 233, 7457–7466. [Google Scholar] [CrossRef]
- Woolcock, A.D.; Cheney, A.; Deshuillers, P.; Knapp, D.; Moore, G.E. Assessment of Urinary 15-F2-Isoprostanes in Dogs with Urothelial Carcinoma of the Urinary Bladder and Other Lower Urinary Tract Diseases. J. Vet. Intern. Med. 2020, 34, 2454–2459. [Google Scholar] [CrossRef]
- Candellone, A.; Girolami, F.; Badino, P.; Jarriyawattanachaikul, W.; Odore, R. Changes in the Oxidative Stress Status of Dogs Affected by Acute Enteropathies. Vet. Sci. 2022, 9, 276. [Google Scholar] [CrossRef] [PubMed]
- Cristóbal, J.I.; Duque, F.J.; Usón-Casaús, J.; Martínez, M.S.; Míguez, M.P.; Pérez-Merino, E.M. Oxidative Stress in Dogs with Chronic Inflammatory Enteropathy Treated with Allogeneic Mesenchymal Stem Cells. Vet. Res. Commun. 2024, 48, 901–910. [Google Scholar] [CrossRef] [PubMed]
- Minamoto, Y.; Otoni, C.C.; Steelman, S.M.; Büyükleblebici, O.; Steiner, J.M.; Jergens, A.E.; Suchodolski, J.S. Alteration of the Fecal Microbiota and Serum Metabolite Profiles in Dogs with Idiopathic Inflammatory Bowel Disease. Gut Microbes 2015, 6, 33–47. [Google Scholar] [CrossRef] [PubMed]
- Rubio, C.P.; Martínez-Subiela, S.; Hernández-Ruiz, J.; Tvarijonaviciute, A.; Cerón, J.J.; Allenspach, K. Serum Biomarkers of Oxidative Stress in Dogs with Idiopathic Inflammatory Bowel Disease. Vet. J. 2017, 221, 56–61. [Google Scholar] [CrossRef]
- Rubio, C.P.; Hernández-Ruiz, J.; Martinez-Subiela, S.; Tvarijonaviciute, A.; Arnao, M.B.; Ceron, J.J. Validation of Three Automated Assays for Total Antioxidant Capacity Determination in Canine Serum Samples. J. Vet. Diagn. Investig. 2016, 28, 693–698. [Google Scholar] [CrossRef]
- Rubio, C.P.; Tvarijonaviciute, A.; Martinez-Subiela, S.; Hernández-Ruiz, J.; Cerón, J.J. Validation of an Automated Assay for the Measurement of Cupric Reducing Antioxidant Capacity in Serum of Dogs. BMC Vet. Res. 2016, 12, 137. [Google Scholar] [CrossRef]
- Cridge, H.; Lim, S.Y.; Algül, H.; Steiner, J.M. New Insights into the Etiology, Risk Factors, and Pathogenesis of Pancreatitis in Dogs: Potential Impacts on Clinical Practice. J. Vet. Intern. Med. 2022, 36, 847–864. [Google Scholar] [CrossRef]
- Tusa, N.V.; Abuelo, A.; Levy, N.A.; Gandy, J.C.; Langlois, D.K.; Cridge, H. Peripheral Biomarkers of Oxidative Stress in Dogs with Acute Pancreatitis. J. Vet. Intern. Med. 2022, 36, 1958–1965. [Google Scholar] [CrossRef] [PubMed]
- Center, S.A.; Warner, K.L.; Erb, H.N. Liver Glutathione Concentrations in Dogs and Cats with Naturally Occurring Liver Disease. Am. J. Vet. Res. 2002, 63, 1187–1197. [Google Scholar] [CrossRef]
- Webb, C.; Twedt, D. Oxidative Stress and Liver Disease. Vet. Clin. N. Am. Small Anim. Pr. 2008, 38, 125–135. [Google Scholar] [CrossRef]
- Spee, B.; Arends, B.; van den Ingh, T.S.G.A.M.; Penning, L.C.; Rothuizen, J. Copper Metabolism and Oxidative Stress in Chronic Inflammatory and Cholestatic Liver Diseases in Dogs. J. Vet. Intern. Med. 2006, 20, 1085–1092. [Google Scholar] [CrossRef] [PubMed]
- Martello, E.; Perondi, F.; Bisanzio, D.; Lippi, I.; Meineri, G.; Gabriele, V. Antioxidant Effect of a Dietary Supplement Containing Fermentative S-Acetyl-Glutathione and Silybin in Dogs with Liver Disease. Vet. Sci. 2023, 10, 131. [Google Scholar] [CrossRef]
- Barry-Heffernan, C.; Ekena, J.; Dowling, S.; Pinkerton, M.E.; Viviano, K. Biomarkers of Oxidative Stress as an Assessment of the Redox Status of the Liver in Dogs. J. Vet. Intern. Med. 2019, 33, 611–617. [Google Scholar] [CrossRef]
- Dirksen, K.; Spee, B.; Penning, L.C.; van den Ingh, T.S.G.A.M.; Burgener, I.A.; Watson, A.L.; Groot Koerkamp, M.; Rothuizen, J.; van Steenbeek, F.G.; Fieten, H. Gene Expression Patterns in the Progression of Canine Copper-Associated Chronic Hepatitis. PLoS ONE 2017, 12, e0176826. [Google Scholar] [CrossRef]
- Giannetto, C.; Arfuso, F.; Giudice, E.; Rizzo, M.; Piccione, G.; Mhalhel, K.; Levanti, M. Antioxidant and Hepatoprotective Effect of a Nutritional Supplement with Silymarin Phytosome, Choline Chloride, l-Cystine, Artichoke, and Vitamin E in Dogs. Antioxidants 2022, 11, 2339. [Google Scholar] [CrossRef]
- Hishiyama, N.; Kayanuma, H.; Matsui, T.; Yano, H.; Suganuma, T.; Funaba, M.; Fujise, H. Plasma Concentration of Vitamin C in Dogs with a Portosystemic Shunt. Can. J. Vet. Res. 2006, 70, 305–307. [Google Scholar]
- Huang, J.; Bai, Y.; Xie, W.; Wang, R.; Qiu, W.; Zhou, S.; Tang, Z.; Liao, J.; Su, R. Lyciumbarbarum Polysaccharides Ameliorate Canine Acute Liver Injury by Reducing Oxidative Stress, Protecting Mitochondrial Function, and Regulating Metabolic Pathways. J. Zhejiang Univ. Sci. B 2023, 24, 157–171. [Google Scholar] [CrossRef] [PubMed]
- Kil, D.Y.; Vester Boler, B.M.; Apanavicius, C.J.; Schook, L.B.; Swanson, K.S. Age and Diet Affect Gene Expression Profiles in Canine Liver Tissue. PLoS ONE 2010, 5, e13319. [Google Scholar] [CrossRef] [PubMed]
- Phillips, R.K.; Steiner, J.M.; Suchodolski, J.S.; Lidbury, J.A. Urinary 15-F2t-Isoprostane Concentrations in Dogs with Liver Disease. Vet. Sci. 2023, 10, 82. [Google Scholar] [CrossRef]
- Vince, A.R.; Hayes, M.A.; Jefferson, B.J.; Stalker, M.J. Hepatic Injury Correlates with Apoptosis, Regeneration, and Nitric Oxide Synthase Expression in Canine Chronic Liver Disease. Vet. Pathol. 2014, 51, 932–945. [Google Scholar] [CrossRef]
- Vincent, A.M.; Sordillo, L.M.; Smedley, R.C.; Gandy, J.C.; Brown, J.L.; Langlois, D.K. Peripheral Markers of Oxidative Stress in Labrador Retrievers with Copper-Associated Hepatitis. J. Small Anim. Pr. 2021, 62, 866–873. [Google Scholar] [CrossRef]
- Yamkate, P.; Lidbury, J.A.; Steiner, J.M.; Suchodolski, J.S.; Giaretta, P.R. Immunohistochemical Expression of Oxidative Stress and Apoptosis Markers in Archived Liver Specimens from Dogs with Chronic Hepatitis. J. Comp. Pathol. 2022, 193, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Li, Y.; Mai, Q.; Li, Y.; Lin, Y.; Weng, X.; Ai, Z.; Li, M.; Shang, P.; Iqbal, M.; et al. Hepatotoxicity and the Role of the Gut-Liver Axis in Dogs after Oral Administration of Zinc Oxide Nanoparticles. Metallomics 2022, 14, mfac066. [Google Scholar] [CrossRef]
- Arostegui, L.G.G.; Prieto, A.M.; Marín, L.P.; López, G.G.; Tvarijonaviciute, A.; Madrigal, J.J.C.; Rubio, C.P. Changes in Biomarkers of Redox Status in Serum and Saliva of Dogs with Hypothyroidism. BMC Vet. Res. 2023, 19, 33. [Google Scholar] [CrossRef] [PubMed]
- González-Arostegui, L.G.; Muñoz-Prieto, A.; García-López, G.; Cerón, J.J.; Tvarijonaviciute, A.; Rubio, C.P. Changes in Biomarkers of the Redox Status in Whole Blood and Red Blood Cell Lysates in Canine Hypothyroidism. Vet. Res. Commun. 2024, 48, 2185–2192. [Google Scholar] [CrossRef] [PubMed]
- Ryad, N.M.; Ramadan, E.S.; Salem, N.Y.; Saleh, I.A.E.-S. Oxidative Biomarkers and Lipid Alterations in Euthyroid and Hypothyroid Dogs. Comp. Clin. Pathol. 2021, 30, 571–576. [Google Scholar] [CrossRef]
- Kim, H.; Yonezawa, T.; Maeda, S.; Tamahara, S.; Matsuki, N. Increases in Serum Carbonylated Protein Levels of Dogs with Hypercortisolism. Endocr. J. 2022, 69, 1387–1394. [Google Scholar] [CrossRef]
- Soares, F.A.C.; Filho, N.A.K.; Beretta, B.F.S.; Linden, T.S.; Pöppl, A.G.; González, F.H.D. Thiobarbituric Acid Reactive Substances in Dogs with Spontaneous Hypercortisolism. Domest. Anim. Endocrinol. 2021, 77, 106634. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Suzuki, S.; Soeta, S.; Kaneda, T.; Hara, A.Y. Mechanism of Long-Term High-Dose Prednisolone Administration Producing Myocardial Fibrosis in Beagle Dogs. Open Vet. J. 2023, 13, 1708–1717. [Google Scholar] [CrossRef]
- Chansaisakorn, W.; Sriphavatsarakorn, P.; Sopakdittapong, P.; Trisiriroj, M.; Pondeenana, S.; Buranakarl, C. Oxidative Stress and Intraerythrocytic Concentrations of Sodium and Potassium in Diabetic Dogs. Vet. Res. Commun. 2009, 33, 67–75. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, S.; Wang, Y.; Zhang, R.; Opoku, Y.K.; Xie, Y.; Li, D.; Ren, G. Fibroblast Growth Factor 21: A Novel Long-Acting Hypoglycemic Drug for Canine Diabetes. Naunyn Schmiedebergs Arch. Pharmacol. 2021, 394, 1031–1043. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wu, H.; Huo, H.; Ma, F.; Zhao, M.; Han, Q.; Hu, L.; Li, Y.; Zhang, H.; Pan, J.; et al. N-Acetylcysteine Combined with Insulin Alleviates the Oxidative Damage of Cerebrum via Regulating Redox Homeostasis in Type 1 Diabetic Mellitus Canine. Life Sci. 2022, 308, 120958. [Google Scholar] [CrossRef] [PubMed]
- Suemanotham, N.; Phochantachinda, S.; Chatchaisak, D.; Sakcamduang, W.; Chansawhang, A.; Pitchakarn, P.; Chantong, B. Antidiabetic Effects of Andrographis Paniculata Supplementation on Biochemical Parameters, Inflammatory Responses, and Oxidative Stress in Canine Diabetes. Front. Pharmacol. 2023, 14, 1077228. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, C.Z.; Michelotto, P.V.; Capriglione, L.G.A.; Roncoski, A.T.; Nishiyama, A. Weight Loss Modifies Lipid Peroxidation and Symmetric Dimethylarginine Levels in Obese Dogs. Can. J. Vet. Res. 2023, 87, 29–34. [Google Scholar]
- Grant, R.W.; Vester Boler, B.M.; Ridge, T.K.; Graves, T.K.; Swanson, K.S. Adipose Tissue Transcriptome Changes during Obesity Development in Female Dogs. Physiol. Genom. 2011, 43, 295–307. [Google Scholar] [CrossRef]
- Lucena, S.; Varela Coelho, A.; Anjo, S.I.; Manadas, B.; Mrljak, V.; Capela E Silva, F.; Lamy, E.; Tvarijonaviciute, A. Comparative Proteomic Analysis of Saliva from Dogs with and without Obesity-Related Metabolic Dysfuntion. J. Proteom. 2019, 201, 65–72. [Google Scholar] [CrossRef]
- Van de Velde, H.; Janssens, G.P.J.; Stuyven, E.; Cox, E.; Buyse, J.; Hesta, M. Short-Term Increase of Body Weight Triggers Immunological Variables in Dogs. Vet. Immunol. Immunopathol. 2012, 145, 431–437. [Google Scholar] [CrossRef]
- Vecchiato, C.G.; Golinelli, S.; Pinna, C.; Pilla, R.; Suchodolski, J.S.; Tvarijonaviciute, A.; Rubio, C.P.; Dorato, E.; Delsante, C.; Stefanelli, C.; et al. Fecal Microbiota and Inflammatory and Antioxidant Status of Obese and Lean Dogs, and the Effect of Caloric Restriction. Front. Microbiol. 2022, 13, 1050474. [Google Scholar] [CrossRef]
- Li, G.; Kawasumi, K.; Okada, Y.; Ishikawa, S.; Yamamoto, I.; Arai, T.; Mori, N. Comparison of Plasma Lipoprotein Profiles and Malondialdehyde between Hyperlipidemia Dogs with/without Treatment. BMC Vet. Res. 2014, 10, 67. [Google Scholar] [CrossRef]
- Mancini, A.; Di Segni, C.; Raimondo, S.; Olivieri, G.; Silvestrini, A.; Meucci, E.; Currò, D. Thyroid Hormones, Oxidative Stress, and Inflammation. Mediat. Inflamm. 2016, 2016, 6757154. [Google Scholar] [CrossRef]
- Perez-Montero, B.; Fermin-Rodriguez, M.L.; Miro, G.; de Juan, L.; Cruz-Lopez, F. Hemolysis, Icterus and Lipemia Interfere with the Determination of Two Oxidative Stress Biomarkers in Canine Serum. BMC Vet. Res. 2023, 19, 172. [Google Scholar] [CrossRef] [PubMed]
- Fibach, E.; Rachmilewitz, E. The Role of Oxidative Stress in Hemolytic Anemia. Curr. Mol. Med. 2008, 8, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Kogika, M.M.; Lustoza, M.D.; Hagiwara, M.K.; Caragelasco, D.S.; Martorelli, C.R.; Mori, C.S. Evaluation of Oxidative Stress in the Anemia of Dogs with Chronic Kidney Disease. Vet. Clin. Pathol. 2015, 44, 70–78. [Google Scholar] [CrossRef]
- Woolcock, A.D.; Serpa, P.B.S.; Santos, A.P.; Christian, J.A.; Moore, G.E. Reactive Oxygen Species, Glutathione, and Vitamin E Concentrations in Dogs with Hemolytic or Nonhemolytic Anemia. J. Vet. Intern. Med. 2020, 34, 2357–2364. [Google Scholar] [CrossRef] [PubMed]
- Kendall, A.; Woolcock, A.; Brooks, A.; Moore, G.E. Glutathione Peroxidase Activity, Plasma Total Antioxidant Capacity, and Urinary F2- Isoprostanes as Markers of Oxidative Stress in Anemic Dogs. J. Vet. Intern. Med. 2017, 31, 1700–1707. [Google Scholar] [CrossRef]
- Pesillo, S.A.; Freeman, L.M.; Rush, J.E. Assessment of Lipid Peroxidation and Serum Vitamin E Concentration in Dogs with Immune-Mediated Hemolytic Anemia. Am. J. Vet. Res. 2004, 65, 1621–1624. [Google Scholar] [CrossRef]
- Tan, E.; Bienzle, D.; Shewen, P.; Kruth, S.; Wood, D. Potentially Antigenic RBC Membrane Proteins in Dogs with Primary Immune-Mediated Hemolytic Anemia. Vet. Clin. Pathol. 2012, 41, 45–55. [Google Scholar] [CrossRef]
- Bujok, J.; Wajman, E.; Trochanowska-Pauk, N.; Walski, T. Evaluation of Selected Hematological, Biochemical and Oxidative Stress Parameters in Stored Canine CPDA-1 Whole Blood. BMC Vet. Res. 2022, 18, 255. [Google Scholar] [CrossRef]
- Zhong, L.; Deng, J.; Gu, C.; Shen, L.; Ren, Z.; Ma, X.; Yan, Q.; Deng, J.; Zuo, Z.; Wang, Y.; et al. Protective Effect of MitoQ on Oxidative Stress-Mediated Senescence of Canine Bone Marrow Mesenchymal Stem Cells via Activation of the Nrf2/ARE Pathway. Vitr. Cell Dev. Biol. Anim. 2021, 57, 685–694. [Google Scholar] [CrossRef]
- Paltrinieri, S. Oxidative Stress and Canine Leishmaniasis: More than a Simple Consequence of Host-Parasite Interaction. Vet. J. 2013, 198, 547–548. [Google Scholar] [CrossRef]
- Almeida, B.F.M.; Narciso, L.G.; Bosco, A.M.; Pereira, P.P.; Braga, E.T.; Avanço, S.V.; Marcondes, M.; Ciarlini, P.C. Neutrophil Dysfunction Varies with the Stage of Canine Visceral Leishmaniosis. Vet. Parasitol. 2013, 196, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Almeida, B.F.M.; Narciso, L.G.; Melo, L.M.; Preve, P.P.; Bosco, A.M.; Lima, V.M.F.; Ciarlini, P.C. Leishmaniasis Causes Oxidative Stress and Alteration of Oxidative Metabolism and Viability of Neutrophils in Dogs. Vet. J. 2013, 198, 599–605. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, B.F.; Silva, K.L.; Chiku, V.M.; Leal, A.A.; Venturin, G.L.; Narciso, L.G.; Fink, M.F.; de Rezende Eugênio, F.; Dos Santos, P.S.; Ciarlini, P.C.; et al. The Effects of Increased Heme Oxygenase-1 on the Lymphoproliferative Response in Dogs with Visceral Leishmaniasis. Immunobiology 2017, 222, 693–703. [Google Scholar] [CrossRef] [PubMed]
- Bildik, A.; Kargin, F.; Seyrek, K.; Pasa, S.; Ozensoy, S. Oxidative Stress and Non-Enzymatic Antioxidative Status in Dogs with Visceral Leishmaniasis. Res. Vet. Sci. 2004, 77, 63–66. [Google Scholar] [CrossRef]
- de Sousa Gonçalves, R.; de Pinho, F.A.; Dinis-Oliveira, R.J.; Mendes, M.O.; de Andrade, T.S.; da Silva Solcà, M.; Larangeira, D.F.; Silvestre, R.; Barrouin-Melo, S.M. Nutritional Adjuvants with Antioxidant Properties in the Treatment of Canine Leishmaniasis. Vet. Parasitol. 2021, 298, 109526. [Google Scholar] [CrossRef]
- Heidarpour, M.; Soltani, S.; Mohri, M.; Khoshnegah, J. Canine Visceral Leishmaniasis: Relationships between Oxidative Stress, Liver and Kidney Variables, Trace Elements, and Clinical Status. Parasitol. Res. 2012, 111, 1491–1496. [Google Scholar] [CrossRef]
- Morabito, R.; Remigante, A.; Cavallaro, M.; Taormina, A.; La Spada, G.; Marino, A. Anion Exchange through Band 3 Protein in Canine Leishmaniasis at Different Stages of Disease. Pflug. Arch. 2017, 469, 713–724. [Google Scholar] [CrossRef]
- Quintavalla, F.; Basini, G.; Bussolati, S.; Carrozzo, G.G.; Inglese, A.; Ramoni, R. Redox Status in Canine Leishmaniasis. Animals 2021, 11, 119. [Google Scholar] [CrossRef]
- Rubio, C.P.; Martinez-Subiela, S.; Tvarijonaviciute, A.; Hernández-Ruiz, J.; Pardo-Marin, L.; Segarra, S.; Ceron, J.J. Changes in Serum Biomarkers of Oxidative Stress after Treatment for Canine Leishmaniosis in Sick Dogs. Comp. Immunol. Microbiol. Infect. Dis. 2016, 49, 51–57. [Google Scholar] [CrossRef]
- Solcà, M.S.; Andrade, B.B.; Abbehusen, M.M.C.; Teixeira, C.R.; Khouri, R.; Valenzuela, J.G.; Kamhawi, S.; Bozza, P.T.; Fraga, D.B.M.; Borges, V.M.; et al. Circulating Biomarkers of Immune Activation, Oxidative Stress and Inflammation Characterize Severe Canine Visceral Leishmaniasis. Sci. Rep. 2016, 6, 32619. [Google Scholar] [CrossRef]
- Torrecilha, R.B.P.; Utsunomiya, Y.T.; Bosco, A.M.; Almeida, B.F.; Pereira, P.P.; Narciso, L.G.; Pereira, D.C.M.; Baptistiolli, L.; Calvo-Bado, L.; Courtenay, O.; et al. Correlations between Peripheral Parasite Load and Common Clinical and Laboratory Alterations in Dogs with Visceral Leishmaniasis. Prev. Vet. Med. 2016, 132, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Paltrinieri, S.; Ibba, F.; Barbè, F.; Rossi, G. Influence of Domperidone Supplementation on Short-Term Changes in C-Reactive Protein and Paraoxonase-1 in Dogs with Leishmaniasis Undergoing Meglumine Antimoniate and Allopurinol Therapy. Vet. Clin. Pathol. 2020, 49, 618–623. [Google Scholar] [CrossRef]
- Bottari, N.B.; Crivellenti, L.Z.; Borin-Crivellenti, S.; Oliveira, J.R.; Coelho, S.B.; Contin, C.M.; Tatsch, E.; Moresco, R.N.; Santana, A.E.; Tonin, A.A.; et al. Iron Metabolism and Oxidative Profile of Dogs Naturally Infected by Ehrlichia Canis: Acute and Subclinical Disease. Microb. Pathog. 2016, 92, 26–29. [Google Scholar] [CrossRef] [PubMed]
- Chethan, G.E.; Garkhal, J.; De, U.K. Disturbance of Thyroid Function in Canine Ehrlichiosis and Babesiosis Associated with Oxidative Stress. Comp. Clin. Pathol. 2016, 25, 987–992. [Google Scholar] [CrossRef]
- Çiftci, G.; Pekmezci, D.; Güzel, M.; Çenesiz, S.; Ural, K.; Aysul, N.; Kazak, F. Determination of Serum Oxidative Stress, Antioxidant Capacity and Protein Profiles in Dogs Naturally Infected with Ehrlichia Canis. Acta Parasitol. 2021, 66, 1341–1348. [Google Scholar] [CrossRef]
- Da Silva, A.S.; Munhoz, T.D.; Faria, J.L.M.; Vargas-Hérnandez, G.; Machado, R.Z.; Almeida, T.C.; Moresco, R.N.; Stefani, L.M.; Tinucci-Costa, M. Increase Nitric Oxide and Oxidative Stress in Dogs Experimentally Infected by Ehrlichia Canis: Effect on the Pathogenesis of the Disease. Vet. Microbiol. 2013, 164, 366–369. [Google Scholar] [CrossRef]
- Kumar, A.; Varshney, J.P.; Patra, R.C. A Comparative Study on Oxidative Stress in Dogs Infected with Ehrlichia Canis with or without Concurrent Infection with Babesia Gibsoni. Vet. Res. Commun. 2006, 30, 917–920. [Google Scholar] [CrossRef] [PubMed]
- Pedreañez, A.; Mosquera-Sulbaran, J.; Muñoz, N. Increased Plasma Levels of Nitric Oxide and Malondialdehyde in Dogs Infected by Ehrlichia Canis: Effect of Doxycycline Treatment. Rev. Vet. Clin. 2021, 56, 185–190. [Google Scholar] [CrossRef]
- Pugliese, M.; Biondi, V.; Merola, G.; Landi, A.; Passantino, A. Oxidative Stress Evaluation in Dogs Affected with Canine Monocytic Ehrlichiosis. Antioxidants 2022, 11, 328. [Google Scholar] [CrossRef]
- Rubio, C.P.; Yilmaz, Z.; Martínez-Subiela, S.; Kocaturk, M.; Hernández-Ruiz, J.; Yalcin, E.; Tvarijonaviciute, A.; Escribano, D.; Ceron, J.J. Serum Antioxidant Capacity and Oxidative Damage in Clinical and Subclinical Canine Ehrlichiosis. Res. Vet. Sci. 2017, 115, 301–306. [Google Scholar] [CrossRef]
- Rudoler, N.; Harrus, S.; Martinez-Subiela, S.; Tvarijonaviciute, A.; van Straten, M.; Cerón, J.J.; Baneth, G. Comparison of the Acute Phase Protein and Antioxidant Responses in Dogs Vaccinated against Canine Monocytic Ehrlichiosis and Naive-Challenged Dogs. Parasit. Vectors 2015, 8, 175. [Google Scholar] [CrossRef] [PubMed]
- Ciftci, G.; Ural, K.; Aysul, N.; Cenesiz, S.; Guzel, M.; Pekmezci, D.; Sogut, M.Ü. Investigation of the 8-Hydroxy-2′-Deoxyguanosine, Total Antioxidant and Nitric Oxide Levels of Serum in Dogs Infected with Babesia Vogeli. Vet. Parasitol. 2014, 204, 388–391. [Google Scholar] [CrossRef] [PubMed]
- Crnogaj, M.; Petlevski, R.; Mrljak, V.; Kis, I.; Torti, M.; Kucer, N.; Matijatko, V.; Sacer, I.; Stokovic, I. Malondialdehyde Levels in Serum of Dogs Infected with Babesia Canis. Vet. Med. 2010, 55, 163–171. [Google Scholar] [CrossRef]
- Crnogaj, M.; Cerón, J.J.; Šmit, I.; Kiš, I.; Gotić, J.; Brkljačić, M.; Matijatko, V.; Rubio, C.P.; Kučer, N.; Mrljak, V. Relation of Antioxidant Status at Admission and Disease Severity and Outcome in Dogs Naturally Infected with Babesia Canis Canis. BMC Vet. Res. 2017, 13, 114. [Google Scholar] [CrossRef] [PubMed]
- Gonmei, C.; Sarma, K.; Roychoudhury, P.; Ali, M.A.; Singh, D.; Prasad, H.; Ahmed, F.A.; Lalmuanpuii, R.; Shah, N.; Singh, N.S.; et al. Molecular Diagnosis and Clinico-Hemato-Biochemical Alterations and Oxidant-Antioxidant Biomarkers in Babesia-Infected Dogs of Mizoram, India. J. Vector Borne Dis. 2020, 57, 226–233. [Google Scholar] [CrossRef]
- Murase, T.; Ueda, T.; Yamato, O.; Tajima, M.; Maede, Y. Oxidative Damage and Enhanced Erythrophagocytosis in Canine Erythrocytes Infected with Babesia Gibsoni. J. Vet. Med. Sci. 1996, 58, 259–261. [Google Scholar] [CrossRef]
- Teodorowski, O.; Winiarczyk, S.; Tarhan, D.; Dokuzeylül, B.; Ercan, A.M.; Or, M.E.; Staniec, M.; Adaszek, Ł. Antioxidant Status, and Blood Zinc and Copper Concentrations in Dogs with Uncomplicated Babesiosis Due to Babesia Canis Infections. J. Vet. Res. 2021, 65, 169–174. [Google Scholar] [CrossRef]
- Carretón, E.; Cerón, J.J.; Martínez-Subiela, S.; Tvarijonaviciute, A.; Caro-Vadillo, A.; Montoya-Alonso, J.A. Acute Phase Proteins and Markers of Oxidative Stress to Assess the Severity of the Pulmonary Hypertension in Heartworm-Infected Dogs. Parasit. Vectors 2017, 10, 477. [Google Scholar] [CrossRef]
- Rajković, M.; Glavinić, U.; Bogunović, D.; Vejnović, B.; Davitkov, D.; Đelić, N.; Stanimirović, Z. “Slow Kill” Treatment Reduces DNA Damage in Leukocytes of Dogs Naturally Infected with Dirofilaria Immitis. Vet. Parasitol. 2023, 322, 110008. [Google Scholar] [CrossRef]
- Rath, P.K.; Panda, S.; Mishra, B.; Patra, R.; Nath, I. Thoracic Radiography and Oxidative Stress Indices in Heartworm Affected Dogs. Vet. World 2014, 7, 689–692. [Google Scholar] [CrossRef]
- Kiral, F.; Karagenc, T.; Pasa, S.; Yenisey, C.; Seyrek, K. Dogs with Hepatozoon Canis Respond to the Oxidative Stress by Increased Production of Glutathione and Nitric Oxide. Vet. Parasitol. 2005, 131, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Sarma, K.; Eregowda, C.G.; Roychoudhury, P.; Borthakur, S.K.; Jawalagatti, V.; Prasad, H.; Behera, S.K.; Thakur, N.; Bora, N.; Das, D. A 5-Year Prospective Study on Incidence and Clinico-Pathological Changes Associated with Naturally Occurring Trypanosomosis in Dogs of Mizoram, India. Acta Parasitol. 2022, 67, 61–71. [Google Scholar] [CrossRef]
- Chethan, G.E.; De, U.K.; Singh, M.K.; Chander, V.; Raja, R.; Paul, B.R.; Choudhary, O.P.; Thakur, N.; Sarma, K.; Prasad, H. Antioxidant Supplementation during Treatment of Outpatient Dogs with Parvovirus Enteritis Ameliorates Oxidative Stress and Attenuates Intestinal Injury: A Randomized Controlled Trial. Vet. Anim. Sci. 2023, 21, 100300. [Google Scholar] [CrossRef]
- Gaykwad, C.; Garkhal, J.; Chethan, G.E.; Nandi, S.; De, U.K. Amelioration of Oxidative Stress Using N-Acetylcysteine in Canine Parvoviral Enteritis. J. Vet. Pharmacol. Ther. 2018, 41, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Kocaturk, M.; Tvarijonaviciute, A.; Martinez-Subiela, S.; Tecles, F.; Eralp, O.; Yilmaz, Z.; Ceron, J.J. Inflammatory and Oxidative Biomarkers of Disease Severity in Dogs with Parvoviral Enteritis. J. Small Anim. Pract. 2015, 56, 119–124. [Google Scholar] [CrossRef]
- Panda, D.; Patra, R.C.; Nandi, S.; Swarup, D. Oxidative Stress Indices in Gastroenteritis in Dogs with Canine Parvoviral Infection. Res. Vet. Sci. 2009, 86, 36–42. [Google Scholar] [CrossRef]
- Pugliese, M.; Napoli, E.; Monti, S.; Biondi, V.; Zema, E.; Passantino, A. Oxidative Stress and High-Mobility Group Box 1 Assay in Dogs with Gastrointestinal Parasites. Antioxidants 2022, 11, 1679. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, E.M.S.; Tvarijonaviciute, A.; Martinez-Subiela, S.; Cerón, J.J.; Eckersall, P.D. Changes in Biochemical Analytes in Female Dogs with Subclinical Ancylostoma Spp. Infection. BMC Vet. Res. 2016, 12, 203. [Google Scholar] [CrossRef] [PubMed]
- Beigh, S.A.; Soodan, J.S.; Singh, R.; Khan, A.M. Trace Minerals Status and Antioxidative Enzyme Activity in Dogs with Generalized Demodecosis. Vet. Parasitol. 2013, 198, 180–186. [Google Scholar] [CrossRef]
- Dimri, U.; Ranjan, R.; Kumar, N.; Sharma, M.C.; Swarup, D.; Sharma, B.; Kataria, M. Changes in Oxidative Stress Indices, Zinc and Copper Concentrations in Blood in Canine Demodicosis. Vet. Parasitol. 2008, 154, 98–102. [Google Scholar] [CrossRef]
- Martínez-Subiela, S.; Bernal, L.J.; Tvarijonaviciute, A.; Garcia-Martinez, J.D.; Tecles, F.; Cerón, J.J. Canine Demodicosis: The Relationship between Response to Treatment of Generalised Disease and Markers for Inflammation and Oxidative Status. Vet. Dermatol. 2014, 25, 72-e24. [Google Scholar] [CrossRef] [PubMed]
- Salem, N.Y.; Abdel-Saeed, H.; Farag, H.S.; Ghandour, R.A. Canine Demodicosis: Hematological and Biochemical Alterations. Vet. World 2020, 13, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Dimri, U. The Immuno-Pathological Conversions of Canine Demodicosis. Vet. Parasitol. 2014, 203, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Behera, S.K.; Dimri, U.; Singh, S.K.; Mohanta, R.K. The Curative and Antioxidative Efficiency of Ivermectin and Ivermectin + Vitamin E-Selenium Treatment on Canine Sarcoptes Scabiei Infestation. Vet. Res. Commun. 2011, 35, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Beigh, S.A.; Soodan, J.S.; Bhat, A.M. Sarcoptic Mange in Dogs: Its Effect on Liver, Oxidative Stress, Trace Minerals and Vitamins. Vet. Parasitol. 2016, 227, 30–34. [Google Scholar] [CrossRef]
- Camkerten, I.; Sahin, T.; Borazan, G.; Gokcen, A.; Erel, O.; Das, A. Evaluation of Blood Oxidant/Antioxidant Balance in Dogs with Sarcoptic Mange. Vet. Parasitol. 2009, 161, 106–109. [Google Scholar] [CrossRef]
- Singh, S.K.; Dimri, U.; Sharma, M.C.; Swarup, D.; Sharma, B. Determination of Oxidative Status and Apoptosis in Peripheral Blood of Dogs with Sarcoptic Mange. Vet. Parasitol. 2011, 178, 330–338. [Google Scholar] [CrossRef]
- Beigh, S.A.; Soodan, J.S.; Singh, R.; Khan, A.M.; Dar, M.A. Evaluation of Trace Elements, Oxidant/Antioxidant Status, Vitamin C and β-Carotene in Dogs with Dermatophytosis. Mycoses 2014, 57, 358–365. [Google Scholar] [CrossRef]
- Marquis, A.; Packer, R.A.; Borgens, R.B.; Duerstock, B.S. Increase in Oxidative Stress Biomarkers in Dogs with Ascending-Descending Myelomalacia Following Spinal Cord Injury. J. Neurol. Sci. 2015, 353, 63–69. [Google Scholar] [CrossRef]
- Teleanu, D.M.; Niculescu, A.-G.; Lungu, I.I.; Radu, C.I.; Vladâcenco, O.; Roza, E.; Costăchescu, B.; Grumezescu, A.M.; Teleanu, R.I. An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 5938. [Google Scholar] [CrossRef]
- Radaković, M.; Andrić, J.F.; Spariosu, K.; Vejnović, B.; Filipović, M.K.; Andrić, N. Serum Oxidant-Antioxidant Status and Butyrylcholinesterase Activity in Dogs with Idiopathic Epilepsy—A Pilot Study. Res. Vet. Sci. 2023, 165, 105076. [Google Scholar] [CrossRef] [PubMed]
- Peek, S.I.; Twele, F.; Meller, S.; Packer, R.M.A.; Volk, H.A. Epilepsy Is More than a Simple Seizure Disorder: Causal Relationships between Epilepsy and Its Comorbidities. Vet. J. 2024, 303, 106061. [Google Scholar] [CrossRef] [PubMed]
- Coates, J.R.; March, P.A.; Oglesbee, M.; Ruaux, C.G.; Olby, N.J.; Berghaus, R.D.; O’Brien, D.P.; Keating, J.H.; Johnson, G.S.; Williams, D.A. Clinical Characterization of a Familial Degenerative Myelopathy in Pembroke Welsh Corgi Dogs. J. Vet. Intern. Med. 2007, 21, 1323–1331. [Google Scholar] [CrossRef] [PubMed]
- Green, S.L.; Bouley, D.M.; Pinter, M.J.; Cork, L.C.; Vatassery, G.T. Canine Motor Neuron Disease: Clinicopathologic Features and Selected Indicators of Oxidative Stress. J. Vet. Intern. Med. 2001, 15, 112–119. [Google Scholar] [CrossRef]
- Ogawa, M.; Uchida, K.; Park, E.-S.; Kamishina, H.; Sasaki, J.; Chang, H.-S.; Yamato, O.; Nakayama, H. Immunohistochemical Observation of Canine Degenerative Myelopathy in Two Pembroke Welsh Corgi Dogs. J. Vet. Med. Sci. 2011, 73, 1275–1279. [Google Scholar] [CrossRef]
- Brown, S.A. Oxidative Stress and Chronic Kidney Disease. Vet. Clin. N. Am. Small Anim. Pract. 2008, 38, 157–166. [Google Scholar] [CrossRef]
- Irazabal, M.V.; Torres, V.E. Reactive Oxygen Species and Redox Signaling in Chronic Kidney Disease. Cells 2020, 9, 1342. [Google Scholar] [CrossRef]
- Halfen, D.P.; Caragelasco, D.S.; Nogueira, J.P.; Jeremias, J.T.; Pedrinelli, V.; Oba, P.M.; Ruberti, B.; Pontieri, C.F.; Kogika, M.M.; Brunetto, M.A. Evaluation of Electrolyte Concentration and Pro-Inflammatory and Oxidative Status in Dogs with Advanced Chronic Kidney Disease under Dietary Treatment. Toxins 2019, 12, 3. [Google Scholar] [CrossRef]
- Martello, E.; Perondi, F.; Bruni, N.; Bisanzio, D.; Meineri, G.; Lippi, I. Chronic Kidney Disease and Dietary Supplementation: Effects on Inflammation and Oxidative Stress. Vet. Sci. 2021, 8, 277. [Google Scholar] [CrossRef]
- Bosco, A.M.; Almeida, B.F.M.; Pereira, P.P.; Dos Santos, D.B.; Neto, Á.J.S.; Ferreira, W.L.; Ciarlini, P.C. The Uremic Toxin Methylguanidine Increases the Oxidative Metabolism and Accelerates the Apoptosis of Canine Neutrophils. Vet. Immunol. Immunopathol. 2017, 185, 14–19. [Google Scholar] [CrossRef]
- Buranakarl, C.; Trisiriroj, M.; Pondeenana, S.; Tungjitpeanpong, T.; Jarutakanon, P.; Penchome, R. Relationships between Oxidative Stress Markers and Red Blood Cell Characteristics in Renal Azotemic Dogs. Res. Vet. Sci. 2009, 86, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Deuel, J.W.; Schaer, C.A.; Boretti, F.S.; Opitz, L.; Garcia-Rubio, I.; Baek, J.H.; Spahn, D.R.; Buehler, P.W.; Schaer, D.J. Hemoglobinuria-Related Acute Kidney Injury Is Driven by Intrarenal Oxidative Reactions Triggering a Heme Toxicity Response. Cell Death Dis. 2016, 7, e2064. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xie, L.; Zhai, H.; Wang, D.; Li, X.; Wang, Y.; Song, M.; Xu, C. Exploration of the Protective Mechanisms of Icariin against Cisplatin-Induced Renal Cell Damage in Canines. Front. Vet. Sci. 2024, 11, 1331409. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.C.R.A.; de Almeida, B.F.M.; Soeiro, C.S.; Ferreira, W.L.; de Lima, V.M.F.; Ciarlini, P.C. Oxidative Stress, Superoxide Production, and Apoptosis of Neutrophils in Dogs with Chronic Kidney Disease. Can. J. Vet. Res. 2013, 77, 136–141. [Google Scholar] [PubMed]
- Chen, H.; Segev, G. Evaluation of Oxidative Stress in Dogs and Cats with Chronic Kidney Disease. J. Vet. Intern. Med. 2024, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Briganti, S.; Picardo, M. Antioxidant Activity, Lipid Peroxidation and Skin Diseases. What’s New. J. Eur. Acad. Dermatol. Venereol. 2003, 17, 663–669. [Google Scholar] [CrossRef]
- Plevnik Kapun, A.; Salobir, J.; Levart, A.; Tavčar Kalcher, G.; Nemec Svete, A.; Kotnik, T. Vitamin E Supplementation in Canine Atopic Dermatitis: Improvement of Clinical Signs and Effects on Oxidative Stress Markers. Vet. Rec. 2014, 175, 560. [Google Scholar] [CrossRef]
- Almela, R.M.; Rubio, C.P.; Cerón, J.J.; Ansón, A.; Tichy, A.; Mayer, U. Selected Serum Oxidative Stress Biomarkers in Dogs with Non-Food-Induced and Food-Induced Atopic Dermatitis. Vet. Dermatol. 2018, 29, 229-e82. [Google Scholar] [CrossRef]
- Plevnik Kapun, A.; Salobir, J.; Levart, A.; Kotnik, T.; Svete, A.N. Oxidative Stress Markers in Canine Atopic Dermatitis. Res. Vet. Sci. 2012, 92, 469–470. [Google Scholar] [CrossRef]
- Plevnik Kapun, A.; Salobir, J.; Levart, A.; Tavčar Kalcher, G.; Nemec Svete, A.; Kotnik, T. Plasma and Skin Vitamin E Concentrations in Canine Atopic Dermatitis. Vet. Q. 2013, 33, 2–6. [Google Scholar] [CrossRef]
- Witzel-Rollins, A.; Murphy, M.; Becvarova, I.; Werre, S.R.; Cadiergues, M.-C.; Meyer, H. Non-Controlled, Open-Label Clinical Trial to Assess the Effectiveness of a Dietetic Food on Pruritus and Dermatologic Scoring in Atopic Dogs. BMC Vet. Res. 2019, 15, 220. [Google Scholar] [CrossRef] [PubMed]
- Romanucci, M.; Bongiovanni, L.; Russo, A.; Capuccini, S.; Mechelli, L.; Ordeix, L.; Della Salda, L. Oxidative Stress in the Pathogenesis of Canine Zinc-Responsive Dermatosis. Vet. Dermatol. 2011, 22, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Zapata, G.L.; Guajardo, M.H.; Terrasa, A.M. The in Vitro Protective Effect of Alpha-Tocopherol on Oxidative Injury in the Dog Retina. Vet. J. 2008, 177, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Barden, C.A.; Chandler, H.L.; Lu, P.; Bomser, J.A.; Colitz, C.M.H. Effect of Grape Polyphenols on Oxidative Stress in Canine Lens Epithelial Cells. Am. J. Vet. Res. 2008, 69, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Barros, P.S.M.; Padovani, C.F.; Silva, V.V.; Queiroz, L.; Barros, S.B.M. Antioxidant Status of Dog Aqueous Humor after Extracapsular Lens Extraction. Braz. J. Med. Biol. Res. 2003, 36, 1491–1494. [Google Scholar] [CrossRef]
- Barros, P.S.M.; Safatle, A.M.V.; Queiroz, L.; Silva, V.V.; Barros, S.B.M. Blood and Aqueous Humour Antioxidants in Cataractous Poodles. Can. J. Ophthalmol. 2004, 39, 19–24. [Google Scholar] [CrossRef]
- De Biaggi, C.P.; Barros, P.S.M.; Silva, V.V.; Brooks, D.E.; Barros, S.B.M. Ascorbic Acid Levels of Aqueous Humor of Dogs after Experimental Phacoemulsification. Vet. Ophthalmol. 2006, 9, 299–302. [Google Scholar] [CrossRef]
- Madany, J. Serum Malondialdehyde Level and Activity of Total Antioxidant Status of Dogs with Age-Related Cataract. Pol. J. Vet. Sci. 2016, 19, 429–431. [Google Scholar] [CrossRef]
- Park, S.; Kang, S.; Yoo, S.; Park, Y.; Seo, K. Effect of Oral Antioxidants on the Progression of Canine Senile Cataracts: A Retrospective Study. J. Vet. Sci. 2022, 23, e43. [Google Scholar] [CrossRef]
- Williams, D.L. Oxidation, Antioxidants and Cataract Formation: A Literature Review. Vet. Ophthalmol. 2006, 9, 292–298. [Google Scholar] [CrossRef]
- Boillot, T.; Rosolen, S.G.; Dulaurent, T.; Goulle, F.; Thomas, P.; Isard, P.-F.; Azoulay, T.; Lafarge-Beurlet, S.; Woods, M.; Lavillegrand, S.; et al. Determination of Morphological, Biometric and Biochemical Susceptibilities in Healthy Eurasier Dogs with Suspected Inherited Glaucoma. PLoS ONE 2014, 9, e111873. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Gionfriddo, J.R.; Tai, P.-Y.; Novakowski, A.N.; Alyahya, K.; Madl, J.E. Oxidative Stress Increases in Retinas of Dogs in Acute Glaucoma but Not in Chronic Glaucoma. Vet. Ophthalmol. 2015, 18, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Graham, K.L.; McCowan, C.; White, A. Genetic and Biochemical Biomarkers in Canine Glaucoma. Vet. Pathol. 2017, 54, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Pizzirani, S. Definition, Classification, and Pathophysiology of Canine Glaucoma. Vet. Clin. N. Am. Small Anim. Pract. 2015, 45, 1127–1157. [Google Scholar] [CrossRef] [PubMed]
- Ajadi, A.; Sanni, J.; Sobayo, E.; Ijaopo, O. Evaluation of Plasma Trace Elements and Oxidant/Antioxidant Status in Boerboel Dogs with Hip Dysplasia. Bulg. J. Vet. Med. 2020, 23, 237–247. [Google Scholar] [CrossRef]
- Barrouin-Melo, S.M.; Anturaniemi, J.; Sankari, S.; Griinari, M.; Atroshi, F.; Ounjaijean, S.; Hielm-Björkman, A.K. Evaluating Oxidative Stress, Serological- and Haematological Status of Dogs Suffering from Osteoarthritis, after Supplementing Their Diet with Fish or Corn Oil. Lipids Health Dis. 2016, 15, 139. [Google Scholar] [CrossRef]
- Dycus, D.L.; Au, A.Y.; Grzanna, M.W.; Wardlaw, J.L.; Frondoza, C.G. Modulation of Inflammation and Oxidative Stress in Canine Chondrocytes. Am. J. Vet. Res. 2013, 74, 983–989. [Google Scholar] [CrossRef]
- Goranov, N.V. Serum Markers of Lipid Peroxidation, Antioxidant Enzymatic Defense, and Collagen Degradation in an Experimental (Pond-Nuki) Canine Model of Osteoarthritis. Vet. Clin. Pathol. 2007, 36, 192–195. [Google Scholar] [CrossRef]
- Musco, N.; Vassalotti, G.; Mastellone, V.; Cortese, L.; Della Rocca, G.; Molinari, M.L.; Calabrò, S.; Tudisco, R.; Cutrignelli, M.I.; Lombardi, P. Effects of a Nutritional Supplement in Dogs Affected by Osteoarthritis. Vet. Med. Sci. 2019, 5, 325–335. [Google Scholar] [CrossRef]
- Gabriele, V.; Bisanzio, D.; Riva, A.; Meineri, G.; Adami, R.; Martello, E. Long-Term Effects of a Diet Supplement Containing Cannabis Sativa Oil and Boswellia Serrata in Dogs with Osteoarthritis Following Physiotherapy Treatments: A Randomised, Placebo-Controlled and Double-Blind Clinical Trial. Nat. Prod. Res. 2023, 37, 1782–1786. [Google Scholar] [CrossRef]
- Polat, E.; Han, M.C.; Kaya, E.; Yilmaz, S.; Kayapinar, S.D.; Coskun, S.; Yildirim, A.; Can, U.K. The Effect of Hip Dysplasia on Some Biochemical Parameters, Oxidative Stress Factors and Hematocrit Levels in Dogs. Pol. J. Vet. Sci. 2021, 24, 473–478. [Google Scholar] [CrossRef]
- Kumar, A.; Prasad, J.K.; Verma, S.; Gattani, A.; Singh, G.D.; Singh, V.K. Evaluation of Uterine Antioxidants in Bitches Suffering from Cystic Endometrial Hyperplasia-Pyometra Complex. Pol. J. Vet. Sci. 2024, 27, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Kurt, S.; Eski, F.; Mis, L. Investigation of the Usability of Kisspeptin and Oxidative Stress Parameters in the Early Diagnosis of Asymptomatic Cystic Endometrial Hyperplasia in Dogs. Reprod. Domest. Anim. 2021, 56, 1529–1535. [Google Scholar] [CrossRef] [PubMed]
- Szczubiał, M.; Dąbrowski, R.; Bochniarz, M.; Brodzki, P. Uterine Non-Enzymatic Antioxidant Defence Mechanisms (Glutathione, Vitamin C, Copper and Zinc) in Diagnosis of Canine Pyometra. Pol. J. Vet. Sci. 2019, 22, 549–555. [Google Scholar] [CrossRef]
- Domosławska-Wyderska, A.; Zduńczyk, S.; Rafalska, A. Potential Role of Oxidative Stress in Pathogenesis of Benign Prostatic Hyperplasia in Male Dogs. Reprod. Domest. Anim. 2024, 59, e14580. [Google Scholar] [CrossRef]
- Domoslawska, A.; Zduńczyk, S.; Kankofer, M.; Bielecka, A. Oxidative Stress Biomarkers in Dogs with Benign Prostatic Hyperplasia. Ir. Vet. J. 2022, 75, 21. [Google Scholar] [CrossRef] [PubMed]
- Peștean, C.P.; Pocquet, H.; Dumitraș, D.A.; Morohoschi, A.G.; Ștefănuț, L.C.; Andrei, S. Correlation between Oxidative Stress Markers and Periodontal Disease in Dogs. Vet. Sci. 2024, 11, 99. [Google Scholar] [CrossRef]
- Schroers, M.; Reiser, K.; Alexander, T.; Zablotski, Y.; Meyer-Lindenberg, A. Saliva Malondialdehyde Concentration of Dogs With and Without Periodontal Disease. J. Vet. Dent. 2024, 1–7, Online ahead of print. [Google Scholar] [CrossRef]
- Vajdovich, P. Free Radicals and Antioxidants in Inflammatory Processes and Ischemia-Reperfusion Injury. Vet. Clin. N. Am. Small Anim. Pr. 2008, 38, 31–123. [Google Scholar] [CrossRef]
- Hagen, D.M.; Ekena, J.L.; Geesaman, B.M.; Viviano, K.R. Antioxidant Supplementation during Illness in Dogs: Effect on Oxidative Stress and Outcome, an Exploratory Study. J. Small Anim. Pr. 2019, 60, 543–550. [Google Scholar] [CrossRef]
- Viviano, K.R.; VanderWielen, B. Effect of N-Acetylcysteine Supplementation on Intracellular Glutathione, Urine Isoprostanes, Clinical Score, and Survival in Hospitalized Ill Dogs. J. Vet. Intern. Med. 2013, 27, 250–258. [Google Scholar] [CrossRef] [PubMed]
Class | Sub-Class | Examples * |
---|---|---|
Reactive species | ROS | O2•−, OH•, H2O2, RO•, ROO•, O3, d-ROMs |
RNS | NO•, NO2•, ONOO− | |
Oxidation biomarkers | Lipids | MDA, 4-HNE, IsoP, ACR |
Nucleic acids | 8-OHdG, 8-oxo-Gua | |
Proteins | AOPP, PC | |
Antioxidant biomarkers | Non-enzymatic | Vitamins (A, C, E), metals (Se, Zn), GSH, GSH:GSSG; thiol groups, uric acid |
Enzymatic | GPX, SOD, CAT, GR | |
Antioxidant capacity indexes | TAS (ABTS), TAC, CUPRAC, FRAP, TRAP, ORAC, BAP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blanca, P.-M.; María Luisa, F.-R.; Guadalupe, M.; Fátima, C.-L. Oxidative Stress in Canine Diseases: A Comprehensive Review. Antioxidants 2024, 13, 1396. https://doi.org/10.3390/antiox13111396
Blanca P-M, María Luisa F-R, Guadalupe M, Fátima C-L. Oxidative Stress in Canine Diseases: A Comprehensive Review. Antioxidants. 2024; 13(11):1396. https://doi.org/10.3390/antiox13111396
Chicago/Turabian StyleBlanca, Perez-Montero, Fermín-Rodriguez María Luisa, Miró Guadalupe, and Cruz-Lopez Fátima. 2024. "Oxidative Stress in Canine Diseases: A Comprehensive Review" Antioxidants 13, no. 11: 1396. https://doi.org/10.3390/antiox13111396
APA StyleBlanca, P.-M., María Luisa, F.-R., Guadalupe, M., & Fátima, C.-L. (2024). Oxidative Stress in Canine Diseases: A Comprehensive Review. Antioxidants, 13(11), 1396. https://doi.org/10.3390/antiox13111396