The Use of Antioxidants for Cardiovascular Protection in Fetal Growth Restriction: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Selection Criteria
2.3. Data Extraction
2.4. Risk of Bias
3. Results
3.1. Characteristics of Included Studies
3.2. Therapeutic Interventions, Doses and Regimens
3.3. Overall Potential for Cardiovascular Protection
3.4. Cardiovascular Function
3.4.1. Umbilical Artery Pulsatility Index
3.4.2. Cardiac Function
3.4.3. Blood Pressure
3.4.4. Endothelium-Independent Vascular Dilation
3.4.5. Endothelium-Dependent Vascular Dilatation
3.4.6. Vascular Contraction
3.5. Cardiovascular Morphology
3.6. Protein and Molecular Analyses in Cardiovascular Tissue
4. Discussion
4.1. Antioxidant Treatment Potential
4.2. Inducing FGR
4.2.1. Heterogeneity in FGR
4.2.2. Heterogeneity of Cardiovascular Outcomes
4.3. Timing of Intervention
4.4. Study Bias and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, A.C.; Kozuki, N.; Cousens, S.; Stevens, G.A.; Blencowe, H.; Silveira, M.F.; Sania, A.; Rosen, H.E.; Schmiegelow, C.; Adair, L.S.; et al. Estimates of burden and consequences of infants born small for gestational age in low and middle income countries with INTERGROWTH-21st standard: Analysis of CHERG datasets. BMJ 2017, 358, j3677. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, A. The IUGR Newborn. Semin. Perinatol. 2008, 32, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Cohen, E.; Baerts, W.; Van Bel, F. Brain-Sparing in Intrauterine Growth Restriction: Considerations for the Neonatologist. Neonatology 2015, 108, 269–276. [Google Scholar] [CrossRef]
- Barker, D.J.; Osmond, C.; Golding, J.; Kuh, D.; Wadsworth, M.E. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ 1989, 298, 564–567. [Google Scholar] [CrossRef]
- Sehgal, A.; Allison, B.J.; Gwini, S.M.; Menahem, S.; Miller, S.L.; Polglase, G.R. Vascular aging and cardiac maladaptation in growth-restricted preterm infants. J. Perinatol. 2018, 38, 92–97. [Google Scholar] [CrossRef]
- Sehgal, A.; Gwini, S.M.; Menahem, S.; Allison, B.J.; Miller, S.L.; Polglase, G.R. Preterm growth restriction and bronchopulmonary dysplasia: The vascular hypothesis and related physiology. J. Physiol. 2019, 597, 1209–1220. [Google Scholar] [CrossRef]
- Tolsa, C.B.; Zimine, S.; Warfield, S.K.; Freschi, M.; Rossignol, A.S.; Lazeyras, F.; Hanquinet, S.; Pfizenmaier, M.; Hüppi, P.S. Early Alteration of Structural and Functional Brain Development in Premature Infants Born with Intrauterine Growth Restriction. Pediatr. Res. 2004, 56, 132–138. [Google Scholar] [CrossRef]
- Eixarch, E.; Meler, E.; Iraola, A.; Illa, M.; Crispi, F.; Hernandez-Andrade, E.; Gratacos, E.; Figueras, F. Neurodevelopmental outcome in 2-year-old infants who were small-for-gestational age term fetuses with cerebral blood flow redistribution. Ultrasound Obstet. Gynecol. 2008, 32, 894–899. [Google Scholar] [CrossRef]
- De Boo, H.A.; Harding, J.E. The developmental origins of adult disease (Barker) hypothesis. Aust. N. Z. J. Obstet. Gynaecol. 2006, 46, 4–14. [Google Scholar] [CrossRef]
- Ashina, M.; Kido, T.; Kyono, Y.; Yoshida, A.; Suga, S.; Nakasone, R.; Abe, S.; Tanimura, K.; Nozu, K.; Fujioka, K. Correlation between Severity of Fetal Growth Restriction and Oxidative Stress in Severe Small-for-Gestational-Age Infants. Int. J. Environ. Res. Public Health 2021, 18, 10726. [Google Scholar] [CrossRef]
- Biri, A.; Bozkurt, N.; Turp, A.; Kavutcu, M.; Himmetoglu, Ö.; Durak, İ. Role of Oxidative Stress in Intrauterine Growth Restriction. Gynecol. Obstet. Investig. 2007, 64, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rodríguez, P.; López De Pablo, A.L.; García-Prieto, C.F.; Somoza, B.; Quintana-Villamandos, B.; Gómez De Diego, J.J.; Gutierrez-Arzapalo, P.Y.; Ramiro-Cortijo, D.; González, M.C.; Arribas, S.M. Long term effects of fetal undernutrition on rat heart. Role of hypertension and oxidative stress. PLoS ONE 2017, 12, e0171544. [Google Scholar] [CrossRef] [PubMed]
- Sirker, A.; Zhang, M.; Murdoch, C.; Shah, A.M. Involvement of NADPH Oxidases in Cardiac Remodelling and Heart Failure. Am. J. Nephrol. 2007, 27, 649–660. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Gao, Q.; Tu, Q.; Zhong, Y.; Zhu, D.; Mao, C.; Xu, Z. Prenatal hypoxia enhanced angiotensin II-mediated vasoconstriction via increased oxidative signaling in fetal rats. Reprod. Toxicol. 2016, 60, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Scandalios, J.G. Oxidative stress: Molecular perception and transduction of signals triggering antioxidant gene defenses. Braz. J. Med. Biol. Res. 2005, 38, 995–1014. [Google Scholar] [CrossRef]
- Hussain, T.; Murtaza, G.; Metwally, E.; Kalhoro, D.H.; Kalhoro, M.S.; Rahu, B.A.; Sahito, R.G.A.; Yin, Y.; Yang, H.; Chughtai, M.I.; et al. The Role of Oxidative Stress and Antioxidant Balance in Pregnancy. Mediat. Inflamm. 2021, 2021, 9962860. [Google Scholar] [CrossRef]
- Miller, S.L.; Wallace, E.M.; Walker, D.W. Antioxidant Therapies: A Potential Role in Perinatal Medicine. Neuroendocrinology 2012, 96, 13–23. [Google Scholar] [CrossRef]
- Kawakami, M.; Okabe, E. Superoxide anion radical-triggered Ca2+ release from cardiac sarcoplasmic reticulum through ryanodine receptor Ca2+ channel. Mol. Pharmacol. 1998, 53, 497–503. [Google Scholar] [CrossRef]
- Polglase, G.R.; Allison, B.J.; Coia, E.; Li, A.; Jenkin, G.; Malhotra, A.; Sehgal, A.; Kluckow, M.; Gill, A.W.; Hooper, S.B.; et al. Altered cardiovascular function at birth in growth-restricted preterm lambs. Pediatr. Res. 2016, 80, 538–546. [Google Scholar] [CrossRef]
- Nanetti, L.; Giannubilo, S.; Raffaelli, F.; Curzi, C.; Vignini, A.; Moroni, C.; Tanase, L.; Carboni, E.; Turi, A.; Mazzanti, L.; et al. Nitric oxide and peroxynitrite platelet levels in women with small-for-gestational-age fetuses. BJOG Int. J. Obstet. Gynaecol. 2008, 115, 14–21. [Google Scholar] [CrossRef]
- Paz, A.A.; Arenas, G.A.; Castillo-Galán, S.; Peñaloza, E.; Cáceres-Rojas, G.; Suazo, J.; Herrera, E.A.; Krause, B.J. Premature Vascular Aging in Guinea Pigs Affected by Fetal Growth Restriction. Int. J. Mol. Sci. 2019, 20, 3474. [Google Scholar] [CrossRef] [PubMed]
- Yzydorczyk, C.; Armengaud, J.B.; Peyter, A.C.; Chehade, H.; Cachat, F.; Juvet, C.; Siddeek, B.; Simoncini, S.; Sabatier, F.; Dignat-George, F.; et al. Endothelial dysfunction in individuals born after fetal growth restriction: Cardiovascular and renal consequences and preventive approaches. J. Dev. Orig. Health Dis. 2017, 8, 448–464. [Google Scholar] [CrossRef] [PubMed]
- Laurindo, F.R.M.; Liberman, M.; Fernandes, D.C.; Leite, P.F. Chapter 8—Endothelium-Dependent Vasodilation: Nitric Oxide and Other Mediators. In Endothelium and Cardiovascular Diseases; Da Luz, P.L., Libby, P., Chagas, A.C.P., Laurindo, F.R.M., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 97–113. [Google Scholar]
- Roy, R.; Wilcox, J.; Webb, A.J.; O’Gallagher, K. Dysfunctional and Dysregulated Nitric Oxide Synthases in Cardiovascular Disease: Mechanisms and Therapeutic Potential. Int. J. Mol. Sci. 2023, 24, 15200. [Google Scholar] [CrossRef] [PubMed]
- Kulandavelu, S.; Whiteley, K.J.; Bainbridge, S.A.; Qu, D.; Adamson, S.L. Endothelial NO Synthase Augments Fetoplacental Blood Flow, Placental Vascularization, and Fetal Growth in Mice. Hypertension 2013, 61, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Tare, M.; Parkington, H.C.; Wallace, E.M.; Sutherland, A.E.; Lim, R.; Yawno, T.; Coleman, H.A.; Jenkin, G.; Miller, S.L. Maternal melatonin administration mitigates coronary stiffness and endothelial dysfunction, and improves heart resilience to insult in growth restricted lambs. J. Physiol. 2014, 592, 2695–2709. [Google Scholar] [CrossRef]
- Itani, N.; Skeffington, K.L.; Beck, C.; Giussani, D.A. Sildenafil therapy for fetal cardiovascular dysfunction during hypoxic development: Studies in the chick embryo. J. Physiol. 2017, 595, 1563–1573. [Google Scholar] [CrossRef]
- Krause, B.; Carrasco-Wong, I.; Caniuguir, A.; Carvajal, J.; Faras, M.; Casanello, P. Endothelial eNOS/arginase imbalance contributes to vascular dysfunction in IUGR umbilical and placental vessels. Placenta 2013, 34, 20–28. [Google Scholar] [CrossRef]
- Singh, S.; Singh, A.; Sharma, D.; Singh, A.; Narula, M.K.; Bhattacharjee, J. Effect of l-Arginine on Nitric Oxide Levels in Intrauterine Growth Restriction and its Correlation with Fetal Outcome. Indian J. Clin. Biochem. 2015, 30, 298–304. [Google Scholar] [CrossRef]
- Hata, T.; Hashimoto, M.; Manabe, A.; Aoki, S.; Iida, K.; Masumura, S.; Miyazaki, K. Maternal and fetal nitric oxide synthesis is decreased in pregnancies with small for gestational age infants. Hum. Reprod. 1998, 13, 1070–1073. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Hooijmans, C.R.; Rovers, M.M.; De Vries, R.B.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 2014, 14, 43. [Google Scholar] [CrossRef] [PubMed]
- Al-Hasan, Y.M.; Evans, L.C.; Pinkas, G.A.; Dabkowski, E.R.; Stanley, W.C.; Thompson, L.P. Chronic hypoxia impairs cytochrome oxidase activity via oxidative stress in selected fetal Guinea pig organs. Reprod. Sci. 2013, 20, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Aljunaidy, M.M.; Morton, J.S.; Kirschenman, R.; Phillips, T.; Case, C.P.; Cooke, C.-L.M.; Davidge, S.T. Maternal treatment with a placental-targeted antioxidant (MitoQ) impacts offspring cardiovascular function in a rat model of prenatal hypoxia. Pharmacol. Res. 2018, 134, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Allison, B.J.; Kaandorp, J.J.; Kane, A.D.; Camm, E.J.; Lusby, C.; Cross, C.M.; Nevin-Dolan, R.; Thakor, A.S.; Derks, J.B.; Tarry-Adkins, J.L.; et al. Divergence of mechanistic pathways mediating cardiovascular aging and developmental programming of cardiovascular disease. FASEB J. 2016, 30, 1968–1975. [Google Scholar] [CrossRef] [PubMed]
- Asadi, N.; Roozmeh, S.; Vafaei, H.; Asmarian, N.; Jamshidzadeh, A.; Bazrafshan, K.; Kasraeian, M.; Faraji, A.; Shiravani, Z.; Mokhtar Pour, A.; et al. Effectiveness of pentoxifylline in severe early-onset fetal growth restriction: A randomized double-blinded clinical trial. Taiwan. J. Obstet. Gynecol. 2022, 61, 612–619. [Google Scholar] [CrossRef]
- Botting, K.J.; Skeffington, K.L.; Niu, Y.; Allison, B.J.; Brain, K.L.; Itani, N.; Beck, C.; Logan, A.; Murray, A.J.; Murphy, M.P.; et al. Translatable mitochondria-targeted protection against programmed cardiovascular dysfunction. Sci. Adv. 2020, 6, eabb1929. [Google Scholar] [CrossRef]
- Brain, K.L.; Allison, B.J.; Niu, Y.; Cross, C.M.; Itani, N.; Kane, A.D.; Herrera, E.A.; Skeffington, K.L.; Botting, K.J.; Giussani, D.A. Intervention against hypertension in the next generation programmed by developmental hypoxia. PLoS Biol. 2019, 17, e2006552. [Google Scholar] [CrossRef]
- Camm, E.J.; Cross, C.M.; Kane, A.D.; Tarry-Adkins, J.L.; Ozanne, S.E.; Giussani, D.A. Maternal antioxidant treatment protects adult offspring against memory loss and hippocampal atrophy in a rodent model of developmental hypoxia. FASEB J. 2021, 35, 5. [Google Scholar] [CrossRef]
- Candia, A.A.; Arias, P.V.; González-Candia, C.; Navarrete, A.; Ebensperger, G.; Reyes, R.V.; Llanos, A.J.; González-Candia, A.; Herrera, E.A. Melatonin treatment during chronic hypoxic gestation improves neonatal cerebrovascular function. Vasc. Pharmacol. 2022, 144, 106971. [Google Scholar] [CrossRef]
- Castillo-Melendez, M.; Yawno, T.; Sutherland, A.; Jenkin, G.; Wallace, E.M.; Miller, S.L. Effects of Antenatal Melatonin Treatment on the Cerebral Vasculature in an Ovine Model of Fetal Growth Restriction. Dev. Neurosci. 2017, 39, 323–337. [Google Scholar] [CrossRef]
- Chai, N.; Zhang, H.; Li, L.; Yu, X.; Liu, Y.; Lin, Y.; Wang, L.; Yan, J.; Nikolaevna, S.E.; Zhao, Y. Spermidine Prevents Heart Injury in Neonatal Rats Exposed to Intrauterine Hypoxia by Inhibiting Oxidative Stress and Mitochondrial Fragmentation. Oxidative Med. Cell. Longev. 2019, 2019, 1–14. [Google Scholar]
- Chai, N.; Zheng, H.; Zhang, H.; Li, L.; Yu, X.; Wang, L.; Bi, X.; Yang, L.; Niu, T.; Liu, X.; et al. Spermidine Alleviates Intrauterine Hypoxia-Induced Offspring Newborn Myocardial Mitochondrial Damage in Rats by Inhibiting Oxidative Stress and Regulating Mitochondrial Quality Control. Iran. J. Pharm. Res. 2023, 21, e133776. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, P.; Holody, C.D.; Kirschenman, R.; Graton, M.E.; Spaans, F.; Phillips, T.J.; Case, C.P.; Bourque, S.L.; Lemieux, H.; Davidge, S.T. Sex-Specific Effects of Prenatal Hypoxia and a Placental Antioxidant Treatment on Cardiac Mitochondrial Function in the Young Adult Offspring. Int. J. Mol. Sci. 2023, 24, 13624. [Google Scholar] [CrossRef]
- Finn-Sell, S.L.; Cottrell, E.C.; Greenwood, S.L.; Dilworth, M.R.; Cowley, E.J.; Sibley, C.P.; Wareing, M. Pomegranate Juice Supplementation Alters Utero-Placental Vascular Function and Fetal Growth in the eNOS−/− Mouse Model of Fetal Growth Restriction. Front. Physiol. 2018, 9, 1145. [Google Scholar] [CrossRef]
- Giussani, D.A.; Camm, E.J.; Niu, Y.; Richter, H.G.; Blanco, C.E.; Gottschalk, R.; Blake, E.Z.; Horder, K.A.; Thakor, A.S.; Hansell, J.A.; et al. Developmental Programming of Cardiovascular Dysfunction by Prenatal Hypoxia and Oxidative Stress. PLoS ONE 2012, 7, e31017. [Google Scholar] [CrossRef]
- Gonzalez-Candia, A.; Veliz, M.; Carrasco-Pozo, C.; Castillo, R.L.; Cardenas, J.C.; Ebensperger, G.; Reyes, R.V.; Llanos, A.J.; Herrera, E.A. Antenatal melatonin modulates an enhanced antioxidant/pro-oxidant ratio in pulmonary hypertensive newborn sheep. Redox Biol. 2019, 22, 101128. [Google Scholar] [CrossRef]
- Graton, M.E.; Spaans, F.; He, R.; Chatterjee, P.; Kirschenman, R.; Quon, A.; Phillips, T.J.; Case, C.P.; Davidge, S.T. Sex-specific differences in the mechanisms for enhanced thromboxane A2-mediated vasoconstriction in adult offspring exposed to prenatal hypoxia. Biol. Sex Differ. 2024, 15, 52. [Google Scholar] [CrossRef]
- Hansell, J.A.; Richter, H.G.; Camm, E.J.; Herrera, E.A.; Blanco, C.E.; Villamor, E.; Patey, O.V.; Lock, M.C.; Trafford, A.W.; Galli, G.L.J.; et al. Maternal melatonin: Effective intervention against developmental programming of cardiovascular dysfunction in adult offspring of complicated pregnancy. J. Pineal Res. 2022, 72, e12766. [Google Scholar] [CrossRef]
- Hashimoto, K.; Pinkas, G.; Evans, L.; Liu, H.; Al-Hasan, Y.; Thompson, L.P. Protective Effect of N-acetylcysteine on Liver Damage During Chronic Intrauterine Hypoxia in Fetal Guinea Pig. Reprod. Sci. 2012, 19, 1001–1009. [Google Scholar] [CrossRef]
- Heras-Molina, A.; Pesantez-Pacheco, J.L.; Astiz, S.; Garcia-Contreras, C.; Vazquez-Gomez, M.; Encinas, T.; Óvilo, C.; Isabel, B.; Gonzalez-Bulnes, A. Maternal Supplementation with Polyphenols and Omega-3 Fatty Acids during Pregnancy: Effects on Growth, Metabolism, and Body Composition of the Offspring. Animals 2020, 10, 1946. [Google Scholar] [CrossRef]
- Heras-Molina, A.; Pesantez-Pacheco, J.L.; Garcia-Contreras, C.; Vazquez-Gomez, M.; Lopez, A.; Benitez, R.; Nunez, Y.; Astiz, S.; Ovilo, C.; Isabel, B.; et al. Maternal Supplementation with Polyphenols and Omega-3 Fatty Acids during Pregnancy: Prenatal Effects on Growth and Metabolism. Animals 2021, 11, 1699. [Google Scholar] [CrossRef] [PubMed]
- Herrera, E.A.; Cifuentes-Zuniga, F.; Figueroa, E.; Villanueva, C.; Hernandez, C.; Alegria, R.; Arroyo-Jousse, V.; Penaloza, E.; Farias, M.; Uauy, R.; et al. N-Acetylcysteine, a glutathione precursor, reverts vascular dysfunction and endothelial epigenetic programming in intrauterine growth restricted guinea pigs. J. Physiol. 2017, 595, 1077–1092. [Google Scholar] [CrossRef] [PubMed]
- Hula, N.; Kirschenman, R.; Quon, A.; Spaans, F.; Phillips, T.J.; Case, C.P.; Cooke, C.-L.M.; Davidge, S.T. Placenta-targeted treatment with nMitoQ prevents an endothelin receptor-A pathway cardiac phenotype observed in adult male offspring exposed to hypoxia in utero. Am. J. Physiol. Heart Circ. Physiol. 2023, 325, H136–H141. [Google Scholar] [CrossRef] [PubMed]
- Hula, N.; Spaans, F.; Vu, J.; Quon, A.; Kirschenman, R.; Cooke, C.-L.M.; Phillips, T.J.; Case, C.P.; Davidge, S.T. Placental treatment improves cardiac tolerance to ischemia/reperfusion insult in adult male and female offspring exposed to prenatal hypoxia. Pharmacol. Res. 2021, 165, 105461. [Google Scholar] [CrossRef]
- Inocencio, I.M.; Polglase, G.R.; Miller, S.L.; Sehgal, A.; Sutherland, A.; Mihelakis, J.; Li, A.; Allison, B.J. Effects of Maternal Sildenafil Treatment on Vascular Function in Growth-Restricted Fetal Sheep. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 731–740. [Google Scholar] [CrossRef]
- Inocencio, I.M.; Polglase, G.R.; Nitsos, I.; Miller, S.L.; Allison, B.J. Maternal sildenafil impairs the cardiovascular adaptations to chronic hypoxaemia in fetal sheep. J. Physiol. 2020, 598, 4405–4419. [Google Scholar] [CrossRef]
- Itani, N.; Skeffington, K.L.; Beck, C.; Niu, Y.; Giussani, D.A. Melatonin rescues cardiovascular dysfunction during hypoxic development in the chick embryo. J. Pineal Res. 2016, 60, 16–26. [Google Scholar] [CrossRef]
- Kane, A.D.; Herrera, E.A.; Camm, E.J.; Giussani, D.A. Vitamin C Prevents Intrauterine Programming of in vivo Cardiovascular Dysfunction in the Rat. Circ. J. 2013, 77, 2604–2611. [Google Scholar] [CrossRef]
- Krause, B.J.; Peñaloza, E.; Candia, A.; Cañas, D.; Hernández, C.; Arenas, G.A.; Peralta-Scholz, M.J.; Valenzuela, R.; García-Herrera, C.; Herrera, E.A. Adult vascular dysfunction in foetal growth-restricted guinea-pigs is associated with a neonate-adult switching in Nos3 DNA methylation. Acta Physiol. 2019, 227, e13328. [Google Scholar] [CrossRef]
- Lemley, C.O.; Meyer, A.M.; Camacho, L.E.; Neville, T.L.; Newman, D.J.; Caton, J.S.; Vonnahme, K.A. Melatonin supplementation alters uteroplacental hemodynamics and fetal development in an ovine model of intrauterine growth restriction. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2011, 302, R454–R467. [Google Scholar] [CrossRef]
- Mattern, J.; Gemmell, A.; Allen, P.E.; Mathers, K.E.; Regnault, T.R.; Stansfield, B.K. Oral pyrroloquinoline quinone (PQQ) during pregnancy increases cardiomyocyte endowment in spontaneous IUGR guinea pigs. J. Dev. Orig. Health Dis. 2023, 14, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Navarová, J.; Ujházy, E.; Dubovický, M.; Mach, M. Effect of melatonin on biochemical variables induced by phenytoin in organs of mothers, foetuses and offsprings of rats. Cent. Eur. J. Public Health 2004, 12, S67–S69. [Google Scholar] [PubMed]
- Ornoy, A.; Tsadok, M.A.; Yaffe, P.; Zangen, S.W. The Cohen diabetic rat as a model for fetal growth restriction: Vitamins C and E reduce fetal oxidative stress but do not restore normal growth. Reprod. Toxicol. 2009, 28, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Parraguez, V.H.; Sales, F.; Peralta, O.; Reyes, M.D.L.; Gonzalez-Bulnes, A. Oxidative Stress and Fetal Growth Restriction Set Up Earlier in Undernourished Sheep Twin Pregnancies: Prevention with Antioxidant and Nutritional Supplementation. Antioxidants 2022, 11, 1287. [Google Scholar] [CrossRef]
- Poudel, R.; Stanley, J.L.; Rueda-Clausen, C.F.; Andersson, I.J.; Sibley, C.P.; Davidge, S.T.; Baker, P.N. Effects of resveratrol in pregnancy using murine models with reduced blood supply to the uterus. PLoS ONE 2013, 8, e64401. [Google Scholar] [CrossRef]
- Renshall, L.J.; Morgan, H.L.; Moens, H.; Cansfield, D.; Finn-Sell, S.L.; Tropea, T.; Cottrell, E.C.; Greenwood, S.; Sibley, C.P.; Wareing, M.; et al. Melatonin Increases Fetal Weight in Wild-Type Mice but Not in Mouse Models of Fetal Growth Restriction. Front. Physiol. 2018, 9, 1141. [Google Scholar] [CrossRef]
- Spiroski, A.M.; Niu, Y.; Nicholas, L.M.; Austin-Williams, S.; Camm, E.J.; Sutherland, M.R.; Ashmore, T.J.; Skeffington, K.L.; Logan, A.; Ozanne, S.E.; et al. Mitochondria antioxidant protection against cardiovascular dysfunction programmed by early-onset gestational hypoxia. FASEB J. 2021, 35, e21446. [Google Scholar] [CrossRef]
- Vazquez-Gomez, M.; Garcia-Contreras, C.; Torres-Rovira, L.; Pesantez, J.L.; Gonzalez-Añover, P.; Gomez-Fidalgo, E.; Sanchez-Sanchez, R.; Ovilo, C.; Isabel, B.; Astiz, S.; et al. Polyphenols and IUGR pregnancies: Maternal hydroxytyrosol supplementation improves prenatal and early-postnatal growth and metabolism of the offspring. PLoS ONE 2017, 12, e0177593. [Google Scholar] [CrossRef]
- Gordijn, S.J.; Beune, I.M.; Thilaganathan, B.; Papageorghiou, A.; Baschat, A.A.; Baker, P.N.; Silver, R.M.; Wynia, K.; Ganzevoort, W. Consensus definition of fetal growth restriction: A Delphi procedure. Ultrasound Obstet. Gynecol. 2016, 48, 333–339. [Google Scholar] [CrossRef]
- Alves de Alencar Rocha, A.K.; Allison, B.J.; Yawno, T.; Polglase, G.R.; Sutherland, A.E.; Malhotra, A.; Jenkin, G.; Castillo-Melendez, M.; Miller, S.L. Early- versus Late-Onset Fetal Growth Restriction Differentially Affects the Development of the Fetal Sheep Brain. Dev. Neurosci. 2017, 39, 141–155. [Google Scholar] [CrossRef]
- Gonzaléz-Candia, A.; Arias, P.V.; Aguilar, S.A.; Figueroa, E.G.; Reyes, R.V.; Ebensperger, G.; Llanos, A.J.; Herrera, E.A. Melatonin Reduces Oxidative Stress in the Right Ventricle of Newborn Sheep Gestated under Chronic Hypoxia. Antioxidants 2021, 10, 1658. [Google Scholar] [CrossRef] [PubMed]
- Consolim-Colombo, F.M.; Bortolotto, L.A. Endothelium and Arterial Hypertension. In Endothelium and Cardiovascular Diseases; Da Luz, P.L., Libby, P., Chagas, A.C.P., Laurindo, F.R.M., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 429–437. [Google Scholar]
- Crispi, F.; Figueras, F.; Cruz-Lemini, M.; Bartrons, J.; Bijnens, B.; Gratacos, E. programming in children born small for gestational age and relationship with prenatal signs of severity. Am. J. Obstet. Gynecol. 2012, 207, e121. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Lemini, M.; Crispi, F.; Valenzuela-Alcaraz, B.; Figueras, F.; Gómez, O.; Sitges, M.; Bijnens, B.; Gratacós, E. A fetal cardiovascular score to predict infant hypertension and arterial remodeling in intrauterine growth restriction. Am. J. Obstet. Gynecol. 2014, 210, e551–e552. [Google Scholar] [CrossRef] [PubMed]
- Rock, C.R.; White, T.A.; Piscopo, B.R.; Sutherland, A.E.; Pham, Y.; Camm, E.J.; Sehgal, A.; Polglase, G.R.; Miller, S.L.; Allison, B.J. Cardiovascular decline in offspring during the perinatal period in an ovine model of fetal growth restriction. Am. J. Physiol.-Heart Circ. Physiol. 2023, 325, H1266–H1278. [Google Scholar] [CrossRef]
- Sehgal, A.; Allison, B.J.; Gwini, S.M.; Miller, S.L.; Polglase, G.R. Cardiac Morphology and Function in Preterm Growth Restricted Infants: Relevance for Clinical Sequelae. J. Pediatr. 2017, 188, 128–134.e122. [Google Scholar] [CrossRef]
- Allison, B.J.; Brain, K.L.; Niu, Y.; Kane, A.D.; Herrera, E.A.; Thakor, A.S.; Botting, K.J.; Cross, C.M.; Itani, N.; Shaw, C.J.; et al. Altered Cardiovascular Defense to Hypotensive Stress in the Chronically Hypoxic Fetus. Hypertension 2020, 76, 1195–1207. [Google Scholar] [CrossRef]
- Lakshman, R.; Spiroski, A.-M.; McIver, L.B.; Murphy, M.P.; Giussani, D.A. Noninvasive Biomarkers for Cardiovascular Dysfunction Programmed in Male Offspring of Adverse Pregnancy. Hypertension 2021, 78, 1818–1828. [Google Scholar] [CrossRef]
- Verma, S.; Buchanan, M.R.; Anderson, T.J. Endothelial Function Testing as a Biomarker of Vascular Disease. Circulation 2003, 108, 2054–2059. [Google Scholar] [CrossRef]
- Giussani, D.A. The fetal brain sparing response to hypoxia: Physiological mechanisms. J. Physiol. 2016, 594, 1215–1230. [Google Scholar] [CrossRef]
- Allison, B.J.; Brain, K.L.; Niu, Y.; Kane, A.D.; Herrera, E.A.; Thakor, A.S.; Botting, K.J.; Cross, C.M.; Itani, N.; Skeffington, K.L.; et al. Fetal in vivo continuous cardiovascular function during chronic hypoxia. J. Physiol. 2016, 594, 1247–1264. [Google Scholar] [CrossRef]
- Förstermann, U. Nitric oxide and oxidative stress in vascular disease. Pflügers Arch.-Eur. J. Physiol. 2010, 459, 923–939. [Google Scholar] [CrossRef] [PubMed]
- Jackson, T.S.; Xu, A.; Vita, J.A.; Keaney, J.F., Jr. Ascorbate Prevents the Interaction of Superoxide and Nitric Oxide Only at Very High Physiological Concentrations. Circ. Res. 1998, 83, 916–922. [Google Scholar] [CrossRef] [PubMed]
- Menczel Schrire, Z.; Phillips, C.L.; Chapman, J.L.; Duffy, S.L.; Wong, G.; D’Rozario, A.L.; Comas, M.; Raisin, I.; Saini, B.; Gordon, C.J.; et al. Safety of higher doses of melatonin in adults: A systematic review and meta-analysis. J. Pineal Res. 2022, 72, e12782. [Google Scholar] [CrossRef] [PubMed]
- Bertucci, M.C.; Loose, J.M.; Wallace, E.M.; Jenkin, G.; Miller, S.L. Anti-inflammatory therapy in an ovine model of fetal hypoxia induced by single umbilical artery ligation. Reprod. Fertil. Dev. 2011, 23, 346–352. [Google Scholar] [CrossRef]
- Lugrin, J.; Rosenblatt-Velin, N.; Parapanov, R.; Liaudet, L. The role of oxidative stress during inflammatory processes. Biol. Chem. 2014, 395, 203–230. [Google Scholar] [CrossRef]
- Miller, S.L.; Huppi, P.S.; Mallard, C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. J Physiol. 2016, 594, 807–823. [Google Scholar] [CrossRef]
- Dall’Asta, A.; Melito, C.; Morganelli, G.; Lees, C.; Ghi, T. Determinants of placental insufficiency in fetal growth restriction. Ultrasound Obstet. Gynecol. 2023, 61, 152–157. [Google Scholar] [CrossRef]
- Morrison, J.L.; Botting, K.J.; Darby, J.R.T.; David, A.L.; Dyson, R.M.; Gatford, K.L.; Gray, C.; Herrera, E.A.; Hirst, J.J.; Kim, B.; et al. Guinea pig models for translation of the developmental origins of health and disease hypothesis into the clinic. J. Physiol. 2018, 596, 5535–5569. [Google Scholar] [CrossRef]
- Sovio, U.; White, I.R.; Dacey, A.; Pasupathy, D.; Smith, G.C.S. Screening for fetal growth restriction with universal third trimester ultrasonography in nulliparous women in the Pregnancy Outcome Prediction (POP) study: A prospective cohort study. Lancet 2015, 386, 2089–2097. [Google Scholar] [CrossRef]
- Hirst, J.A.; Howick, J.; Aronson, J.K.; Roberts, N.; Perera, R.; Koshiaris, C.; Heneghan, C. The Need for Randomization in Animal Trials: An Overview of Systematic Reviews. PLoS ONE 2014, 9, e98856. [Google Scholar] [CrossRef]
Study | Species and Strain | FGR Model, Age Induced | FGR Comparator | Intervention, Dose, Age Given | Intervention Comparator |
---|---|---|---|---|---|
Asadi 2022 [36] | Human | Pilot randomised controlled trial Diagnosis of severe early-onset FGR determined by Delphi consensus at ~28–31 weeks of gestation | Not included | Pentoxifylline 400 mg per oz. tablet twice daily From diagnosis of FGR until delivery | Severe early-onset FGR + placebo |
Al-Hasan 2013 [33] | Dunkin–Hartley guinea pigs | Hypoxia (10.5% O2) 0.74 GA (term = 65 d) | Normoxia (21% O2) | N-acetylcysteine ~580 mg/kg/day orally 0.80–0.95 GA | FGR + water |
Aljunaidy 2018 [34] | Sprague–Dawley rats | Hypoxia (11% O2) 0.68 GA (term = 22 d) | Normoxia (21% O2) | MitoQ loaded nanoparticles (nMitoQ) 125 µM i.v. bolus 0.68 GA | FGR + saline |
Allison 2016 [35] | Wistar rats | Hypoxia (13% O2) 0.29 GA (term = 21 d) | Normoxia | Allopurinol 30 mg/kg/day orally (jelly) 0.29 GA-birth | FGR |
Botting 2020 [37] Study 1 | Welsh mountain sheep | Hypoxia (10% O2) 0.72 GA (term = 145 d) | Normoxia | MitoQ 6 mg/kg/day i.v. bolus 0.72–0.95 GA | FGR + saline |
Botting 2020 [37] Study 2 | Bovans Brown chicken embryos | Hypoxia (14% O2) 0.05 GA (term = 21 d) | Normoxia (21% O2) | MitoQ 0.2 mg/kg/day via injection into chorioallantoic membrane 0.62–0.86 GA | FGR + water |
Brain 2019 [38] | Welsh mountain sheep | Hypoxia (10% O2) 0.72 GA (term = 145 d) | Normoxia | Vitamin C 1.14 mmol/kg/day i.v. bolus 0.72–0.95 GA | FGR + saline |
Camm 2021 [39] | Wistar rats | Hypoxia (13% O2) 0.29 GA (term = 21 d) | Normoxia | Vitamin C 0.5 mg/100 mL H2O orally 0.29–0.95 GA | FGR + water |
Candia 2022 [40] | Sheep | High-altitude pregnancy Conception (term = 150 d) | Not included | Melatonin 10 mg/day orally (ethanol vehicle) 0.67 GA-birth | FGR + ethanol vehicle |
Castillo-Melendez 2017 [41] | Border-Leicester cross merino sheep | Single umbilical artery ligation (SUAL) 0.71 GA (term = 147 d) | Sham surgery | Melatonin 6 mg/day i.v. 0.71 GA-birth | FGR + saline |
Chai 2019 [42] | Wistar rats | Hypoxia (10% O2) for 4 h daily 0.68 GA (term = 22 d) | Normoxia | Spermidine 5 mg/kg/day i.p. 0.68–0.95 GA | FGR + saline |
Chai 2023 [43] | Wistar rats | Hypoxia (10% O2) for 4 h daily 0.68 GA (term = 22 d) | Normoxia | Spermidine 5 mg/kg/day i.p. 0.68–0.95 GA | FGR + saline |
Chatterjee 2023 [44] | Sprague–Dawley rats | Hypoxia (11% O2) 0.68 GA (term = 22 d) | Normoxia | nMitoQ 125 µmol/mL i.v. bolus 0.68 GA | FGR + saline |
Finn-Sell 2018 [45] | Mice | Endothelial nitric oxide synthase knockout (eNOS−/−) Conception (term = 19.5 d) | C57/BL6J mice | Pomegranate juice 0.55 mg/kg/day orally 0.64–0.95 GA | FGR + water |
Giussani 2012 [46] | Wistar rats | Hypoxia (13% O2) 0.29 GA (term = 21 d) * | Normoxia | Vitamin C 0.5 mg/100 mL H2O orally 0.29–0.95 GA | FGR + water |
Gonzalez-Candia 2019 [47] | Sheep | High-altitude pregnancy Conception (term =150 d) | Not included | Melatonin 10 mg/day orally (ethanol vehicle) 0.67 GA-birth | FGR + ethanol vehicle |
Graton 2024 [48] | Sprague–Dawley rats | Hypoxia (11% O2) 0.68 GA (term = 22 d) | Normoxia (21% O2) | nMitoQ 125 µM bolus i.v. 0.68 GA | FGR + saline |
Hansell 2022 [49] | Wistar rats | Hypoxia (10% O2) 0.68 GA (term = 22 d) | Normoxia (21% O2) | Melatonin 5 mg/mL H2O orally 0.68–0.91 GA | FGR + water |
Hashimoto 2012 [50] | Dunkin–Hartley guinea pigs | Hypoxia (10.5% O2) 0.75 GA (term = 65 d) | Normoxia | N-acetylcysteine 500–600 mg/kg/day orally 0.82–0.97 GA | FGR + water |
Heras-Molina 2020 [51] | Purebred iberian pigs | Nutrient restriction (50% daily requirement) 0.31 GA (term = 112 d) * | Not included | Linseed oil and Hydroxytyrosol 4% of linseed oil and 1.5 mg hydroxytyrosol/kg/day 0.31 GA-birth | FGR |
Heras-Molina 2021 [52] | Purebred iberian pigs | Nutrient restriction (50% daily requirement) 0.31 GA (term = 112 d) | Not included | Linseed oil and Hydroxytyrosol 4% of linseed oil and 1.5 mg hydroxytyrosol/kg/day 0.31 GA-birth | FGR |
Herrera 2017 [53] | Pirbright White guinea pigs | Progressive uterine artery occlusion 0.52 GA (term = 67 d) | Sham surgery | N-Acetylcysteine 500 mg/kg/day orally 0.51–0.91 GA | FGR + water |
Hula 2021 [55] | Sprague–Dawley rats | Hypoxia (11% O2) 0.68 GA (term = 22 d) * | Normoxia (21% O2) | nMitoQ 125 µM i.v. bolus 0.68 GA | FGR + saline |
Hula 2023 [54] | Sprague–Dawley rats | Hypoxia (11% O2) 0.68 GA (term = 22 d) | Normoxia (21% O2) | nMitoQ 125 µM i.v. bolus 0.68 GA | FGR + saline |
Inocencio 2019 [56] | Border-Leicester sheep | SUAL 0.60 GA (term = 148 d) | Sham surgery | Sildenafil 36 mg/day i.v. 0.62–0.85 GA | FGR + saline |
Inocencio 2020 [57] | Border-Leiester sheep | SUAL 0.71 GA (term = 148 d) | Sham surgery | Sildenafil 36 mg/day i.v. 0.73–0.84 GA | FGR + saline |
Itani 2016 [58] | Bovans Brown chicken embryos | Hypoxia (14% O2) 0.05 GA (term = 21 d) | Normoxia (21% O2) | Melatonin 1 mg/kg/day via injection into the air cell 0.62–0.86 GA | FGR + water |
Itani 2017 [27] | Bovans Brown chicken embryos | Hypoxia (14% O2) 0.05 GA (term = 21 d) | Normoxia (21% O2) | Sildenafil 4 mg/kg/day via injection into the air cell 0.62–0.86 GA | FGR + water |
Kane 2013 [59] | Wistar rats | Hypoxia (13% O2) 0.27 GA (term = 22 d) | Normoxia (21% O2) | Vitamin C 5 mg/mL H2O orally 0.27–0.91 GA | FGR + water |
Krause 2019 [60] | Pirbright White guinea pigs | Progressive uterine artery occlusion 0.52 GA (term = 67 d) | Sham surgery | N-Acetylcysteine 500 mg/kg/day orally 0.51–0.91 GA | FGR + water |
Lemley 2012 [61] | Western white-face sheep | Nutrient restriction (60% daily requirement) 50 d GA term unknown | Adequate nutrition (100% daily requirement) | Melatonin 5 mg/day orally 50–130 d GA | FGR + standard pellets |
Mattern 2023 [62] | Dunkin–Hartley guinea pigs | Spontaneous FGR (body weight < 85 g and brain–liver ratio > 0.65) (term = 69 d) | All other foetuses (body weight > 85 g and brain–liver ratio < 0.65) | Pyrroloquinoline Quinone 0.18 mg/day/kg orally 0.51–0.94 GA | FGR + placebo |
Navarova 2004 [63] | Wistar/DV rats | Phenytoin injections 0.33–0.86 GA (term = 21 d) * | pH-matched water injections during pregnancy | Melatonin 40 µg/mL orally 0–0.90 GA | FGR + water |
Ornoy 2009 [64] | Rats | Cohen diabetic sensitive rat model Conception (term = 21 d) | Cohen diabetic sensitive rat model with regular diet | Vitamins C and E 30–40 mg/kg body weight/day orally 0–1.0 GA | FGR + high-sucrose low-copper diet |
Parraguez 2022 [65] | Corriedale sheep | Patagonian pasture 0.20 GA (term = 149 d) | Not included | Herbal vitamin C and E supplements 580 mg/kg orally 0.23–0.67 GA | FGR |
Poudel 2013 [66] Study 1 | Mice | eNOS−/− Conception (term = 19.5 d) * | C57Bl/6J | Resveratrol 4 g/kg orally 0.03–0.95 GA | FGR + standard food |
Poudel 2013 [66] Study 2 | Mice | Catechol-O-methyl transferase knockout (COMT−/−) Conception (term = 19.5 d) * | C57Bl/6J | Resveratrol 4 g/kg orally 0.03–0.95 GA | FGR + standard food |
Renshall 2018 [67] Study 1 | Mice | eNOS−/− Conception (term = 19.5 d) | C57Bl/6J | Melatonin 5 µg/mL orally 0.64–0.95 GA | FGR + water |
Renshall 2018 [67] Study 2 | Mice | Placental specific insulin-like growth factor 2 knockout (P0+/−) Conception (term = 19.5 d) | P0+/+ | Melatonin 5 µg/mL orally 0.64–0.95 GA | FGR + water |
Spiroski 2021 [68] | Wister rats | Hypoxia (13% O2) 0.27 GA (term = 22 d) | Normoxia (21% O2) | MitoQ 500 µM/day orally 0.27–0.91 GA | FGR + water |
Tare 2014 [26] Study 1 | Sheep | SUAL 0.71 GA (term = 147 d) | Sham surgery | Melatonin 48 mg/day i.v. 0.75–0.80 GA | FGR + saline |
Tare 2014 [26] Study 2 | Sheep | SUAL 0.71 GA (term = 147 d) | Sham surgery | Melatonin 6 mg/day i.v. 0.71 GA-birth | FGR + saline |
Vazquez-Gomez 2017 [69] | Purebred Iberian pigs | Nutrient restriction (50% daily requirement) 0.31 GA (term = 112 d) * | Not included | Hydroxytyrosol 1.5 mg/kg orally 0.31 GA-birth | FGR |
Study | Intervention | Age at Time of Assessment | Outcome Assessed | Effect of FGR | Effect of Intervention | Cardioprotective Potential |
---|---|---|---|---|---|---|
Asadi 2022 [36] | Pentoxifylline | Before delivery (~32 weeks) | umbilical artery pulsatility index | N/A | ↔ | No cardiovascular protection |
middle cerebral artery pulsatility index | ↔ | |||||
Candia 2022 [40] | Melatonin | 4- to 12-day-old | In vivo cardiovascular function: | N/A | Antioxidant only | |
mean systemic BP at 7 and 8 days | ↓ | |||||
carotid blood flow at 9–11 days | ↑ | |||||
carotid vascular resistance at 7–11 days | ↓ | |||||
HR from 4–12 days | ↔ | |||||
Ex vivo assessment of the middle cerebral artery in 12-day-old: | ||||||
vasoconstriction to potassium and U46619 | ↑ | |||||
sensitivity to potassium and U46619 | ↔ | |||||
vasoconstriction to 5Ht | ↔ | |||||
sensitivity to 5Ht | ↓ | |||||
vasodilation and sensitivity to MCh | ↑ | |||||
NO-independent vasodilation | ↑ | |||||
NO-dependent vasodilation | ↔ | |||||
vasodilation to SNP | ↔ | |||||
sensitivity to SNP | ↑ | |||||
vasodilation to melatonin | ↑ | |||||
sensitivity to melatonin | ↔ | |||||
Histological analysis of the middle cerebral artery in 12-day-old: | ||||||
3-nitrotyrosine | ↔ | |||||
internal diameter, external diameter, media vascular area/vascular area, luminal area/wall area | ↔ | |||||
Castillo-Melendez 2017 [41] | Melatonin | 1-day-old | Histological analysis of cerebral vasculature in white matter: | Strong cardiovascular protection | ||
number of laminin-positive blood vessels | ↓ | ↔ | ||||
vascular endothelial growth factor | ↓ | ↔ | ||||
proliferating blood vessels | ↓ | ↔ | ||||
glucose transporter 1 | ↓ | ↑ | ||||
proportion of caspase-3-positive blood vessels | ↑ | ↓ | ||||
pericyte coverage | ↓ | ↑ | ||||
astrocyte endfeet coverage | ↓ | ↑ | ||||
albumin extravasation | ↑ | ↓ | ||||
microbleeds | ↑ | ↓ | ||||
Gonzalez-Candia 2019 [47] | Melatonin | 3-day-old 7-day-old 12-day-old | In vivo cardiovascular function: | N/A | No cardiovascular protection | |
mean pulmonary arterial pressure | ↔ | |||||
cardiac output | ↔ | |||||
pulmonary artery vascular resistance | ↔ | |||||
Hansell 2022 [49] | Melatonin | 0.91GA 4-month-old | Fetal cardiovascular morphology: | Strong cardiovascular protection | ||
heart weight and heart:body weight | ↔ | ↔ | ||||
aortic wall area, lumen area, total area, wall thickness | ↔ | ↔ | ||||
left ventricular wall area, lumen area and wall thickness | ↔ | ↔ | ||||
aortic wall:lumen area | ↑ | ↓ | ||||
Protein analysis of fetal heart: | ||||||
Heat-shock protein 27, heat-shock protein 70 and 4-HNE | ↔ | ↔ | ||||
eNOS | ↓ | ↑ | ||||
Cardiovascular morphology in 4-month-old: | ||||||
relative heart weight and relative left ventricle and septum weight | ↑ | ↔ | ||||
aortic wall area, lumen area, total area, wall thickness | ↔ | ↔ | ||||
left ventricular wall area, lumen area, total area and wall thickness | ↔ | ↔ | ||||
left ventricular wall:lumen area | ↓ | ↑ | ||||
Ex vivo analysis of mesenteric artery function in 4-month-old: | ||||||
sensitivity to PE | ↑ | ↓ | ||||
vasoconstriction to PE | ↔ | ↔ | ||||
sensitivity to U46619 | ↑ | ↓ | ||||
vasoconstriction to U46619 | ↔ | ↔ | ||||
Protein analysis of 4-month-old heart: | ||||||
Heat-shock protein 27, heat-shock protein 70 and 4-HNE | ↔ | ↔ | ||||
eNOS | ↑ | ↔ | ||||
Itani 2016 [58] | Melatonin | 0.90 GA | Cardiovascular morphology: | Strong cardiovascular protection | ||
heart weight | ↓ | ↔ | ||||
left ventricular wall volume and wall:lumen ratio | ↓ | ↔ | ||||
left ventricular lumen volume | ↑ | ↔ | ||||
right ventricular wall volume, lumen volume and wall:lumen ratio | ↔ | ↔ | ||||
total aorta area | ↔ | ↔ | ||||
aorta wall area | ↔ | ↑ | ||||
aorta lumen area | ↔ | ↓ | ||||
aorta wall:lumen area ratio | ↓ | ↔ | ||||
Ex vivo analysis of cardiac function: | ||||||
left ventricular developed pressure | ↓ | ↑ | ||||
maximum rate of contraction and relaxation | ↓ | ↔ | ||||
Left-ventricular-end diastolic pressure | ↑ | ↔ | ||||
chronotropic sympathetic dominance | ↑ | ↓ | ||||
inotropic sympathetic dominance | ↑ | ↓ | ||||
Ex vivo analysis of femoral artery function: | ||||||
vasodilation and sensitivity to SNP | ↔ | ↔ | ||||
sensitivity to ACh | ↓ | ↑ | ||||
contribution of NO-independent mechanisms to vasodilation | ↓ | ↑ | ||||
vasoconstriction to potassium | ↑ | ↔ | ||||
vasoconstriction to PE | ↔ | ↔ | ||||
Protein analysis of fetal heart: | ||||||
3-nitrotyrosine and 4-HNE | ↑ | ↓ | ||||
superoxide dismutase and catalase | ↓ | ↔ | ||||
nitrate and nitrite concentration | ↓ | ↑ | ||||
glutathione peroxidase | ↔ | ↑ | ||||
vascular endothelial growth factor | ↑ | ↓ | ||||
Lemley 2011 [61] | Melatonin | 130 days GA | heart weight | ↔ | ↔ | Mild cardiovascular protection |
In vivo cardiovascular function: | ||||||
HR | ↓ | ↔ | ||||
umbilical artery blood flow | ↔ | ↑ | ||||
Histological analysis of cardiomyocytes: | ||||||
right or left ventricle thickness | ↔ | ↔ | ||||
left ventricle mononucleated cardiomyocyte area | ↑ | ↓ | ||||
right ventricle mononucleated cardiomyocyte area | ↔ | ↔ | ||||
right ventricle binucleated area | ↑ | ↔ | ||||
% cardiomyocyte binucleation in ventricles | ↔ | ↔ | ||||
Navarova 2004 [63] | Melatonin | 1-day-old | Protein analysis of heart: | No cardiovascular protection | ||
N-acetyl-ß-D-glucosaminidase | ↔ | ↔ | ||||
glutathione | ↔ | ↔ | ||||
Renshall 2018 [67] Study 1 (eNOS−/−) | Melatonin | 0.95 GA | umbilical artery diameter | ↔ | ↔ | No cardiovascular protection |
Ex vivo analysis of umbilical artery function: | ||||||
vasoconstriction to U46619 | ↔ | ↔ | ||||
vasodilation to SNP | ↑ | ↔ | ||||
Renshall 2018 [67] Study 2 (P0+/−) | Melatonin | 0.95 GA | umbilical artery diameter | ↔ | ↔ | Antioxidant only |
Ex vivo analysis of umbilical artery function: | ||||||
vasoconstriction to U46619 | ↔ | ↔ | ||||
vasodilation to SNP | ↔ | ↑ | ||||
Tare 2014 [26] Study 1 | Melatonin | 0.76 GA | heart:body weight | ↔ | ↔ | Strong cardiovascular protection |
Ex vivo analysis of cardiac function: | ||||||
HR | ↔ | ↓ | ||||
coronary blood flow | ↔ | ↑ | ||||
left ventricular developed pressure, max rate of contraction and relaxation | ↑ | ↔ | ||||
right ventricular developed pressure, max rate of contraction and relaxation | ↔ | ↑ | ||||
isoprenaline response | ↔ | ↔ | ||||
ischaemia-reperfusion-induced infarct area | ↑ | ↓ | ||||
Tare 2014 [26] Study 2 | Melatonin | 1-day-old | Ex vivo analysis of coronary artery function: | Strong cardiovascular protection | ||
wall stiffness | ↑ | ↓ | ||||
vasoconstriction to U46619 | ↑ | ↓ | ||||
vasodilation to SNP | ↔ | ↔ | ||||
sensitivity bradykinin | ↓ | ↑ | ||||
NO bioavailability | ↓ | ↑ | ||||
Molecular analysis of coronary artery: | ||||||
eNOS and cyclooxygenase-2 | ↑ | ↓ | ||||
cyclooxygenase-1, tropoelastin and collagen 1 | ↔ | ↔ | ||||
collagen 2 | ↑ | ↔ | ||||
collagen 3 | ↔ | ↓ | ||||
Aljunaidy 2018 [34] | nMitoQ | 7-month-old 13-month-old | BP at 7/13-months | ↔ | ↔ | Strong cardiovascular protection |
Echocardiography in 7-month-old males: | ||||||
HR | ↔ | ↔ | ||||
intraventricular septum in systole and diastole | ↔ | ↔ | ||||
left ventricular internal diameter in systole and diastole | ↔ | ↔ | ||||
left ventricular posterior wall in systole and diastole | ↔ | ↔ | ||||
ejection fraction, fractional shortening, cardiac output | ↔ | ↔ | ||||
left ventricular volume in systole and diastole | ↔ | ↔ | ||||
mitral valve A wave velocity | ↓ | ↔ | ||||
mitral valve deceleration time, E wave velocity and Tei index | ↔ | ↔ | ||||
mitral valve E/A index | ↑ | ↔ | ||||
pulmonary valve peak velocity | ↓ | ↑ | ||||
Ex vivo analysis of mesenteric artery function in 7-month-old males: | ||||||
sensitivity to PE | ↔ | ↓ | ||||
contribution of NO to PE-induced vasoconstriction | ↓ | ↑ | ||||
sensitivity to MCh | ↔ | ↔ | ||||
Echocardiography in 13-month-old males: | ||||||
HR | ↔ | ↔ | ||||
intraventricular septum in systole | ↔ | ↔ | ||||
intraventricular septum in diastole | ↓ | ↔ | ||||
left ventricular internal diameter in systole and diastole | ↔ | ↔ | ||||
left ventricular posterior wall in systole | ↓ | ↔ | ||||
left ventricular posterior wall in diastole | ↔ | ↔ | ||||
ejection fraction, fractional shortening, cardiac output | ↔ | ↔ | ||||
left ventricular volume in systole and diastole | ↔ | ↔ | ||||
mitral valve A wave velocity, deceleration time, E wave velocity and Tei index | ↔ | ↔ | ||||
mitral valve E/A index | ↑ | ↓ | ||||
pulmonary valve peak velocity | ↔ | ↔ | ||||
Ex vivo analysis of mesenteric artery function in 13-month-old males: | ||||||
sensitivity to PE | ↑ | ↑ | ||||
contribution of NO to PE-induced vasoconstriction | ↔ | ↔ | ||||
sensitivity to MCh | ↔ | ↑ | ||||
Echocardiography in 7-month-old females: | ||||||
HR | ↔ | ↔ | ||||
intraventricular septum in systole and diastole | ↔ | ↔ | ||||
left ventricular internal diameter in systole and diastole | ↔ | ↔ | ||||
left ventricular posterior wall in systole and diastole | ↔ | ↔ | ||||
ejection fraction, fractional shortening, cardiac output | ↔ | ↔ | ||||
left ventricular volume in systole and diastole | ↔ | ↔ | ||||
mitral valve A wave velocity, deceleration time, E wave velocity and Tei index | ↔ | ↔ | ||||
mitral valve E/A index | ↑ | ↓ | ||||
pulmonary valve peak velocity | ↔ | ↔ | ||||
Ex vivo analysis of mesenteric artery function in 7-month-old females: | ||||||
sensitivity to PE | ↔ | ↔ | ||||
contribution of NO to PE-induced vasoconstriction | ↔ | ↔ | ||||
sensitivity to MCh | ↔ | ↔ | ||||
Echocardiography in 13-month-old females: | ||||||
HR | ↔ | ↔ | ||||
intraventricular septum in systole and diastole | ↔ | ↔ | ||||
left ventricular internal diameter in systole | ↑ | ↓ | ||||
left ventricular internal diameter in diastole | ↔ | ↔ | ||||
left ventricular posterior wall in systole and diastole | ↔ | ↔ | ||||
ejection fraction | ↓ | ↑ | ||||
fractional shortening | ↓ | ↑ | ||||
cardiac output | ↔ | ↔ | ||||
left ventricular volume in systole | ↑ | ↓ | ||||
left ventricular volume in diastole | ↔ | ↔ | ||||
mitral valve A wave velocity | ↓ | ↔ | ||||
mitral valve deceleration time, E/A index and Tei index | ↔ | ↔ | ||||
mitral valve E wave velocity | ↔ | ↑ | ||||
pulmonary valve peak velocity | ↔ | ↔ | ||||
Ex vivo analysis of mesenteric artery function in 13-month-old females: | ||||||
sensitivity to PE | ↔ | ↔ | ||||
contribution of NO to PE-induced vasoconstriction | ↔ | ↔ | ||||
sensitivity to MCh | ↓ | ↑ | ||||
Chatterjee 2023 [44] | nMitoQ | 4-month-old | Cardiac mitochondrial respiration in males: | No cardiovascular protection | ||
oxidative phosphorylation capacity for the N-, NS-, S-pathways and complex IV | ↔ | ↔ | ||||
oxidative phosphorylation coupling efficiency | ↔ | ↔ | ||||
cardiac mitochondrial content | ↔ | ↔ | ||||
Cardiac mitochondrial respiration in females: | ||||||
oxidative phosphorylation capacity for the N-pathway and complex IV | ↔ | ↔ | ||||
oxidative phosphorylation capacity for the NS- and S-pathways | ↓ | ↔ | ||||
oxidative phosphorylation coupling efficiency | ↔ | ↓ | ||||
cardiac mitochondrial content | ↔ | ↔ | ||||
Graton 2024 [48] | nMitoQ | 4-month-old | Ex vivo analysis of coronary artery function in females: | Strong cardiovascular protection | ||
vasoconstriction to U46619 | ↑ | ↓ | ||||
sensitivity to U46619 | ↑ | ↓ | ||||
Ex vivo analysis of coronary artery function in males: | ||||||
vasoconstriction to U46619 | ↔ | ↔ | ||||
sensitivity to U46619 | ↑ | ↓ | ||||
Ex vivo analysis of mesenteric artery function in females: | ||||||
vasoconstriction to U46619 | ↑ | ↓ | ||||
sensitivity to U46619 | ↔ | ↔ | ||||
Ex vivo analysis of mesenteric artery function in males: | ||||||
vasoconstriction to U46619 | ↔ | ↔ | ||||
sensitivity to U46619 | ↑ | ↓ | ||||
Histological analysis of the mesenteric artery in females: | ||||||
eNOS | ↔ | ↔ | ||||
superoxide | ↔ | ↔ | ||||
3-nitrotyrosine | ↓ | ↑ | ||||
thromboxane prostanoid receptors | ↔ | ↔ | ||||
Histological analysis of the mesenteric artery in males: | ||||||
eNOS | ↔ | ↔ | ||||
superoxide | ↔ | ↔ | ||||
3-nitrotyrosine | ↔ | ↔ | ||||
thromboxane prostanoid receptors | ↑ | ↔ | ||||
Hula 2021 [55] | nMitoQ | 4-month-old | heart weight and heart:body weight | ↔ | ↔ | Strong cardiovascular protection |
Ex vivo analysis of cardiac function of males: | ||||||
pre-ischemic cardiac power | ↔ | ↔ | ||||
post-ischemic cardiac power | ↓ | ↑ | ||||
% cardiac recovery of baseline | ↓ | ↑ | ||||
Protein analysis left ventricle of males: | ||||||
sarcoplasmic/endoplasmic reticulum Ca2+-ATPase | ↔ | ↔ | ||||
phospholamban | ↔ | ↑ | ||||
phosphorylated phospholamban | ↔ | ↔ | ||||
Ca2+/calmodulin kinase δ | ↔ | ↓ | ||||
phosphorylated Ca2+/calmodulin kinase δ | ↔ | ↔ | ||||
protein phosphatase 2Ce | ↔ | ↑ | ||||
protein kinase Cε | ↔ | ↔ | ||||
phosphorylated protein kinase Cε | ↓ | ↔ | ||||
Ex vivo analysis of cardiac function of females: | ||||||
pre-ischemic cardiac power | ↔ | ↔ | ||||
post-ischemic cardiac power | ↔ | ↔ | ||||
% cardiac recovery of baseline | ↓ | ↑ | ||||
Protein analysis left ventricle of females: | ||||||
sarcoplasmic/endoplasmic reticulum Ca2+-ATPase | ↑ | ↔ | ||||
phospholamban | ↔ | ↔ | ||||
phosphorylated phospholamban | ↔ | ↑ | ||||
Ca2+/calmodulin kinase δ | ↔ | ↔ | ||||
phosphorylated Ca2+/calmodulin kinase δ | ↔ | ↔ | ||||
protein phosphatase 2Ce | ↔ | ↔ | ||||
protein kinase Cε | ↔ | ↔ | ||||
phosphorylated protein kinase Cε | ↔ | ↑ | ||||
Hula 2023 [54] | nMitoQ | 4-month-old | Ex vivo analysis of cardiac function: | N/A | Antioxidant only | |
pre-ischemic cardiac power | ↔ | |||||
% cardiac recovery of baseline | ↔ | |||||
Protein analysis of left ventricle: | ||||||
endothelin A receptor | ↑ | |||||
endothelin B receptor (isoform A) | ↔ | |||||
endothelin B receptor (isoform C) | ↔ | |||||
protein kinase Cε | ↔ | |||||
phosphorylated protein kinase Cε | ↔ | |||||
protein kinase D | ↔ | |||||
Brain 2019 [38] | Vitamin C | 0.95 GA 9-month-old | fetal heart weight | ↔ | ↔ | Strong cardiovascular protection |
heart weight in 9-month-old | ↔ | ↔ | ||||
In vivo cardiovascular function in 9-month-old: | ||||||
HR | ↔ | ↔ | ||||
basal BP | ↑ | ↓ | ||||
basal femoral artery blood flow | ↑ | ↓ | ||||
basal vascular conductance | ↑ | ↓ | ||||
femoral artery vasoconstriction to PE | ↑ | ↓ | ||||
femoral artery vasoconstriction to Ang II | ↑ | ↓ | ||||
femoral artery vasodilation to SNP | ↑ | ↓ | ||||
NO bioavailability | ↔ | ↑ | ||||
Ex vivo analysis of femoral artery function in 9-month-old: | ||||||
vasodilation to MCh | ↔ | ↔ | ||||
sensitivity to MCh | ↓ | ↑ | ||||
Camm 2021 [39] | Vitamin C | 4-month-old | Histological analysis of cerebral vasculature in the hippocampus: | Strong cardiovascular protection | ||
% lectin-positive blood vessels in the CA1, CA2, CA3 and dentate gyrus | ↓ | ↑ | ||||
Giussani 2012 [46] | Vitamin C | 0.95 GA 4-month-old | Fetal cardiovascular morphology: | Strong cardiovascular protection | ||
absolute heart weight, relative heart weight, left ventricular area and right ventricular area | ↔ | ↔ | ||||
aorta wall:lumen area | ↑ | ↓ | ||||
Protein analysis of fetal heart: | ||||||
Heat-shock protein 70 | ↑ | ↓ | ||||
Histological analysis of the fetal aorta: | ||||||
3-nitrotyrosine | ↑ | ↓ | ||||
Cardiovascular morphology in 4-month-old: | ||||||
absolute heart weight, relative heart weight, left ventricular area and right ventricular area | ↔ | ↔ | ||||
aorta wall:lumen area | ↔ | ↔ | ||||
Ex vivo analysis of cardiac function in 4-month-old: | ||||||
HR, left ventricular developed pressure and left-ventricular-end diastolic pressure | ↔ | ↔ | ||||
maximum rate of contraction, HR-pressure product and HR response to isoprenaline | ↑ | ↓ | ||||
HR response to carbachol | ↓ | ↑ | ||||
Ex vivo analysis of femoral artery function in 4-month-old: | ||||||
vasodilation to SNP | ↓ | ↔ | ||||
vasodilation to MCh via NO-dependent mechanisms | ↓ | ↑ | ||||
Protein analysis of 4-month-old heart: | ||||||
heat-shock protein 70 | ↔ | ↔ | ||||
Kane 2013 [59] | Vitamin C | 4-month-old | In vivo cardiovascular function: | Strong cardiovascular protection | ||
HR and rate pressure product | ↔ | ↔ | ||||
mean arterial BP | ↔ | ↓ | ||||
systolic and diastolic arterial BP | ↔ | ↔ | ||||
mean femoral blood flow | ↔ | ↔ | ||||
HR variability in the time domain | ↑ | ↓ | ||||
sympathetic to parasympathetic dominance and baroreflex gain | ↑ | ↓ | ||||
Al-Hasan 2013 [33] | N-Acetylcysteine | 0.95 GA | heart:body weight | ↑ | ↔ | Strong cardiovascular protection |
Protein analysis of fetal heart: | ||||||
malondialdehyde | ↑ | ↓ | ||||
cytochrome oxidase subunit 4 | ↔ | ↑ | ||||
cytochrome oxidase activity | ↑ | ↓ | ||||
Hashimoto 2012 [50] | N-Acetylcysteine | 0.97 GA | heart weight | ↑ | ↔ | No cardiovascular protection |
Herrera 2017 [53] | N-Acetylcysteine | 0.91 GA | heart weight | ↓ | ↑ | Strong cardiovascular protection |
In vivo Doppler ultrasound of umbilical artery: | ||||||
pulsatility and resistance index | ↑ | ↓ | ||||
Ex vivo analysis of umbilical artery function: | ||||||
vasodilation to insulin | ↓ | ↑ | ||||
sensitivity to insulin | ↔ | ↔ | ||||
vasodilation to SNP | ↔ | ↑ | ||||
sensitivity to SNP | ↑ | ↓ | ||||
Ex vivo analysis of aorta function: | ||||||
vasodilation to ACh | ↓ | ↑ | ||||
sensitivity to ACh | ↔ | ↔ | ||||
vasodilation to SNP | ↔ | ↓ | ||||
sensitivity to SNP | ↔ | ↔ | ||||
Protein analysis of fetal aorta: | ||||||
3-nitrotyrosine | ↑ | ↓ | ||||
Krause [60] 2019 | N-Acetylcysteine | 0.91 GA 8-month-old | In vivo cardiovascular function: | Strong cardiovascular protection | ||
morning carotid vascular resistance | ↔ | ↔ | ||||
diurnal carotid vascular resistance variability | ↔ | ↔ | ||||
morning femoral vascular resistance | ↑ | ↓ | ||||
diurnal femoral vascular resistance variability | ↓ | ↑ | ||||
Ex vivo analysis of fetal carotid artery function: | ||||||
vasodilation to ACh | ↔ | ↔ | ||||
sensitivity to ACh | ↔ | ↔ | ||||
vasodilation to SNP | ↔ | ↔ | ||||
sensitivity to SNP | ↔ | ↔ | ||||
Ex vivo analysis of fetal femoral artery function: | ||||||
vasodilation to ACh | ↔ | ↔ | ||||
sensitivity to ACh | ↓ | ↔ | ||||
vasodilation to SNP | ↔ | ↓ | ||||
sensitivity to SNP | ↓ | ↔ | ||||
Ex vivo analysis of carotid artery function in 8-month-old: | ||||||
vasodilation to ACh | ↓ | ↑ | ||||
sensitivity to ACh | ↔ | ↔ | ||||
vasodilation to SNP | ↓ | ↑ | ||||
sensitivity to SNP | ↔ | ↔ | ||||
stretch–strain relationship | ↔ | ↔ | ||||
initial and final slope | ↔ | ↔ | ||||
elbow/transition point | ↔ | ↔ | ||||
Cauchy stress at the transition point | ↔ | ↔ | ||||
Ex vivo analysis of femoral artery function in 8-month-old: | ||||||
vasodilation to ACh | ↓ | ↑ | ||||
sensitivity to ACh | ↔ | ↔ | ||||
vasodilation to SNP | ↓ | ↑ | ||||
sensitivity to SNP | ↓ | ↑ | ||||
stretch–strain relationship | ↔ | ↔ | ||||
initial and final slope | ↔ | ↔ | ||||
elbow/transition point | ↓ | ↑ | ||||
Cauchy stress at the transition point | ↔ | ↔ | ||||
Carotid artery morphology in 8-month-old: | ||||||
intima, media and adventitia area | ↔ | ↔ | ||||
opening angle | ↑ | ↓ | ||||
Femoral artery morphology in 8-month-old: | ||||||
intima area | ↔ | ↔ | ||||
media area | ↑ | ↓ | ||||
adventitia area | ↓ | ↑ | ||||
opening angle | ↔ | ↔ | ||||
Histological analysis of aorta in 8-month-old: | ||||||
eNOS | ↓ | ↑ | ||||
Inocencio 2019 [56] | Sildenafil | 0.85 GA | Ex vivo analysis of middle cerebral artery function: | Strong cardiovascular protection | ||
maximal contraction to K+ | ↔ | ↔ | ||||
overall vasodilation to SNP | ↔ | ↑ | ||||
maximal vasodilation to SNP | ↔ | ↔ | ||||
sensitivity to SNP | ↔ | ↑ | ||||
overall vasodilation to ACh | ↔ | ↓ | ||||
maximal vasodilation to ACh | ↔ | ↓ | ||||
sensitivity to ACh | ↔ | ↔ | ||||
Ex vivo analysis of femoral artery function: | ||||||
maximal contraction to K+ | ↓ | ↔ | ||||
overall vasodilation to SNP | ↑ | ↓ | ||||
maximal vasodilation to SNP | ↔ | ↓ | ||||
sensitivity to SNP | ↔ | ↑ | ||||
overall vasodilation to ACh | ↔ | ↓ | ||||
maximal vasodilation to ACh | ↔ | ↓ | ||||
sensitivity to ACh | ↔ | ↔ | ||||
Inocencio 2020 [57] | Sildenafil | 0.73–0.84 GA | In vivo cardiovascular function: | Strong cardiovascular protection | ||
heart rate | ↔ | ↓ | ||||
mean and systolic blood pressure | ↑ | ↓ | ||||
diastolic blood pressure | ↔ | ↔ | ||||
carotid blood flow | ↓ | ↔ | ||||
femoral blood flow | ↓ | ↑ | ||||
Itani 2017 [27] | Sildenafil | 0.90 GA | heart weight | ↓ | ↔ | Strong cardiovascular protection |
Ex vivo analysis of femoral artery function: | ||||||
vasodilation to SNP | ↔ | ↔ | ||||
sensitivity to ACh | ↓ | ↑ | ||||
vasodilation to ACh | ↓ | ↑ | ||||
contribution of NO-independent mechanisms to vasodilation | ↓ | ↑ | ||||
vasoconstriction to potassium | ↑ | ↔ | ||||
vasoconstriction to PE | ↔ | ↔ | ||||
Protein analysis of fetal heart: | ||||||
3-nitrotyrosine | ↑ | ↔ | ||||
4-HNE | ↑ | ↓ | ||||
superoxide dismutase and catalase | ↓ | ↔ | ||||
glutathione peroxidase | ↔ | ↑ | ||||
nitrate and nitrite concentration | ↓ | ↑ | ||||
phosphodiesterase type 5 | ↑ | ↓ | ||||
Botting 2020 [37] Study 1 | MitoQ | 0.95 GA 9-month-old | fetal heart weight | ↓ | ↔ | Strong cardiovascular protection |
fetal heart:body weight | ↔ | ↔ | ||||
heart weight in 9-month-old | ↔ | ↔ | ||||
heart:body weight in 9-month-old | ↔ | ↓ | ||||
Ex vivo analysis of fetal femoral artery function: | ||||||
sensitivity to SNP | ↓ | ↑ | ||||
In vivo cardiovascular function: | ||||||
mean and diastolic blood pressure | ↑ | ↓ | ||||
NO bioavailability | ↔ | ↑ | ||||
Ex vivo analysis of femoral artery function in 9-month-old: | ||||||
vasodilation to SNP | ↓ | ↑ | ||||
Botting 2020 [37] Study 2 | MitoQ | 0.90 GA | Cardiac morphology | Strong cardiovascular protection | ||
left ventricular lumen volume:wall volume ratio | ↑ | ↓ | ||||
Ex vivo analysis of cardiac function: | ||||||
left ventricular developed pressure | ↓ | ↑ | ||||
Ex vivo analysis of femoral artery function: | ||||||
sensitivity to ACh | ↓ | ↑ | ||||
Cardiac mitochondrial function: | ||||||
respiratory control ratio | ↓ | ↑ | ||||
Protein analysis of fetal heart: | ||||||
MitoP:MitoB ratio | ↑ | ↓ | ||||
Spiroski 2021 [68] | MitoQ | 0.91 GA 4-month-old | Molecular analysis of fetal heart: | Mild cardiovascular protection | ||
nuclear factor erythroid 2-like 2 | ↑ | ↓ | ||||
glutathione peroxidase 1, catalase and superoxide dismutase | ↔ | ↔ | ||||
ryanodine receptor 2 and sarcoplasmic/endoplasmic reticulum Ca2+ transporting ATPase 2A | ↑ | ↔ | ||||
phospholamban and cyclic adenosine monophosphate-dependent protein kinase | ↔ | ↔ | ||||
In vivo cardiovascular function in 4-month-old: | ||||||
mean, systolic and diastolic BP, HR and rate pressure product | ↔ | ↔ | ||||
femoral blood flow amplitude | ↑ | ↓ | ||||
mean BP response to PE | ↑ | ↔ | ||||
systolic BP response to PE | ↑ | ↓ | ||||
diastolic BP response to PE | ↔ | ↔ | ||||
femoral blood flow amplitude response to PE | ↓ | ↑ | ||||
reactive hyperemic response to PE in the femoral artery | ↑ | ↓ | ||||
Ex vivo analysis of cardiac function at 4-month-old: | ||||||
contractility index | ↑ | ↓ | ||||
inotropic sympathetic dominance and left-ventricular-end diastolic pressure | ↑ | ↔ | ||||
left ventricular developed pressure, maximum rate of contraction and relaxation | ↔ | ↔ | ||||
Molecular analysis of 4-month-old heart: | ||||||
nuclear factor erythroid 2-like 2 | ↑ | ↔ | ||||
glutathione peroxidase 1 | ↑ | ↔ | ||||
catalase | ↑ | ↓ | ||||
superoxide dismutase | ↔ | ↔ | ||||
ryanodine receptor 2 | ↑ | ↔ | ||||
sarcoplasmic/endoplasmic reticulum Ca2+ transporting ATPase 2A and cyclic adenosine monophosphate-dependent protein kinase | ↔ | ↔ | ||||
phospholamban | ↑ | ↔ | ||||
Chai 2019 [42] | Spermidine | 7-day-old | heart weight | ↓ | ↑ | Strong cardiovascular protection |
heart:body weight | ↑ | ↓ | ||||
Cardiac mitochondrial function: | ||||||
Pyruvate-induced state 3 and 4 mitochondrial oxygen consumption | ↓ | ↑ | ||||
mitochondrial respiratory control rate | ↓ | ↑ | ||||
Cardiac mitochondrial morphology: | ||||||
Mito area and area of cell occupied by mitochondria | ↑ | ↓ | ||||
Molecular analysis of myocardium: | ||||||
MFN2 and PGC-1⍺ | ↓ | ↑ | ||||
FIS and DRP1 | ↑ | ↓ | ||||
Protein analysis of myocardium: | ||||||
superoxide dismutase | ↓ | ↑ | ||||
BAX/BCL2 | ↑ | ↓ | ||||
MFN2 and PGC-1⍺ | ↓ | ↑ | ||||
FIS1 and DRP1 | ↑ | ↓ | ||||
Histological analysis of heart: | ||||||
% binucleated cardiomyocytes | ↑ | ↓ | ||||
% mini-chromosome maintenance protein-positive cells | ↓ | ↑ | ||||
% apoptotic cells | ↑ | ↓ | ||||
cardiac fibrosis | ↑ | ↓ | ||||
Chai 2023 [43] | Spermidine | 1-day-old | heart weight | ↓ | ↑ | Strong cardiovascular protection |
heart:body weight | ↑ | ↓ | ||||
Histological analysis of heart: | ||||||
% binucleated cardiomyocytes | ↑ | ↓ | ||||
% proliferating cardiomyocytes | ↓ | ↑ | ||||
% apoptotic cells | ↑ | ↓ | ||||
cardiac fibrosis | ↑ | ↓ | ||||
Protein analysis of myocardium: | ||||||
superoxide dismutase and catalase | ↓ | ↑ | ||||
BAX/BCL2 | ↑ | ↓ | ||||
MFN2, SIRT-1, PGC-1⍺, NRF-2 and TFAM | ↓ | ↑ | ||||
DRP1 | ↑ | ↓ | ||||
Cardiac mitochondrial function: | ||||||
pyruvate-induced state 3 and 4 mitochondrial oxygen consumption | ↓ | ↑ | ||||
mitochondrial respiratory control rate and adenosine triphosphate content | ↓ | ↑ | ||||
Cardiac mitochondrial morphology: | ||||||
mito area and area of cell occupied by mitochondria | ↑ | ↓ | ||||
mitophagosome counts | ↓ | ↑ | ||||
mitochondrial fragmentation index | ↑ | ↓ | ||||
Ornoy 2009 [64] | Vitamin C and E | 1.0 GA | heart weight | ↓ | ↔ | No cardiovascular protection |
heart:body weight | ↔ | ↔ | ||||
Parraguez 2022 [65] | Herbal vitamin C and E supplements | 0.67 GA | heart weight | N/A | ↓ | Antioxidant only |
Heras-Molina 2020 [51] | Linseed oil and Hydroxytyrosol | 60-day-old 180-day-old | heart weight | N/A | ↔ | No cardiovascular protection |
Heras-Molina 2021 [52] | Linseed oil and Hydroxytyrosol | 0.89 GA | heart weight | N/A | ↓ | Antioxidant only |
Poudel 2013 [66] Study 1 (eNOS−/−) | Resveratrol | 0.90 GA | In vivo ultrasound biomicroscopy of umbilical artery: | No cardiovascular protection | ||
velocity time interval, velocity and mean gradient | ↔ | ↔ | ||||
Poudel 2013 [66] Study 2 (COMT−/−) | Resveratrol | 0.90 GA | In vivo ultrasound biomicroscopy of umbilical artery: | No cardiovascular protection | ||
velocity time interval, velocity and mean gradient | ↔ | ↔ | ||||
Allison 2016 [35] | Allopurinol | 4-month-old 15-month-old | Ex vivo analysis of femoral artery function: | Strong cardiovascular protection | ||
vasodilation to MCh in 4-month-old | ↓ | ↔ | ||||
vasodilation to MCh in 15-month-old | ↓ | ↑ | ||||
Molecular analysis of descending aorta: | ||||||
short telomeres | ↔ | ↓ | ||||
long telomeres | ↔ | ↑ | ||||
Mattern 2023 [62] | Pyrroloquinoline | 0.94 GA | heart:body weight | ↔ | ↔ | Mild cardiovascular protection |
Histological analysis of cardiomyocytes: | ||||||
right and left ventricle cardiomyocyte number | ↓ | ↔ | ||||
right and left ventricle mononucleated cardiomyocyte number | ↓ | ↔ | ||||
left and right ventricle proliferating cardiomyocytes | ↑ | ↔ | ||||
left and right ventricle apoptotic cardiomyocytes | ↑ | ↓ | ||||
left and right ventricle collagen deposition | ↑ | ↓ | ||||
Finn-Sell 2018 [45] | Pomegranate juice | 0.95 GA | umbilical artery diameter | ↓ | ↔ | No cardiovascular protection |
Ex vivo analysis of umbilical artery function: | ||||||
vasoconstriction to potassium | ↔ | ↔ | ||||
vasoconstriction to U46619 | ↔ | ↑ | ||||
vasoconstriction to ACh | ↔ | ↑ | ||||
vasodilation to SNP | ↔ | ↑ | ||||
Vazquez-Gomez 2017 [69] | Hydroxytyrosol | 25-day-old | heart weight:total viscerae weight | N/A | ↔ | No cardiovascular protection |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rock, C.R.; Miller, S.L.; Allison, B.J. The Use of Antioxidants for Cardiovascular Protection in Fetal Growth Restriction: A Systematic Review. Antioxidants 2024, 13, 1400. https://doi.org/10.3390/antiox13111400
Rock CR, Miller SL, Allison BJ. The Use of Antioxidants for Cardiovascular Protection in Fetal Growth Restriction: A Systematic Review. Antioxidants. 2024; 13(11):1400. https://doi.org/10.3390/antiox13111400
Chicago/Turabian StyleRock, Charmaine R., Suzanne L. Miller, and Beth J. Allison. 2024. "The Use of Antioxidants for Cardiovascular Protection in Fetal Growth Restriction: A Systematic Review" Antioxidants 13, no. 11: 1400. https://doi.org/10.3390/antiox13111400
APA StyleRock, C. R., Miller, S. L., & Allison, B. J. (2024). The Use of Antioxidants for Cardiovascular Protection in Fetal Growth Restriction: A Systematic Review. Antioxidants, 13(11), 1400. https://doi.org/10.3390/antiox13111400