A Sustainable Extraction Approach of Phytochemicals from Date (Phoenix dactylifera L.) Fruit Cultivars Using Ultrasound-Assisted Deep Eutectic Solvent: A Comprehensive Study on Bioactivity and Phenolic Variability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material
2.3. NADES Preparation
2.4. Extraction Procedure
2.5. Bioactive Compounds Analysis of Date Fruit NADES Extracts
2.5.1. Determination of Total Phenolic (TPC) and Flavonoid Contents (TFC)
2.5.2. Determination of Proanthocyanidin (PA) and Total Triterpenoid Contents (TTC)
2.5.3. Phenolic Profile of Date Fruit NADES Extracts
2.6. Antioxidant Capacity
2.6.1. Ferric Reducing Antioxidant Potential (FRAP)
2.6.2. DPPH• and ABTS•+ Radicals Scavenging Assays
2.6.3. Nitric Oxide Radical Scavenging Assay
2.6.4. Phosphomolybdenum Method (PhM)
2.6.5. Linoleic Acid Lipid Peroxidation Inhibition Activity (LALP)
2.7. Enzyme Inhibition Assay
2.7.1. Acetylcholinesterase Inhibition Activity
2.7.2. α-Amylase Inhibition Activity
2.8. Statistical Analysis
3. Results and Discussion
3.1. Contents of Bioactive Compounds in NADES Date Extracts
3.2. Antioxidant Capacity of NADES Date Extracts
3.3. Enzyme Inhibition Assay of NADES Date Extracts
3.4. Principal Compound Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- AlFaris, N.A.; AlTamimi, J.Z.; AlGhamdi, F.A.; Albaridi, N.A.; Alzaheb, R.A.; Aljabryn, D.H.; Aljahani, A.H.; AlMousa, L.A. Total Phenolic Content in Ripe Date Fruits (Phoenix dactylifera L.): A Systematic Review and Meta-Analysis. Saudi J. Biol. Sci. 2021, 28, 3566–3577. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.I.; Farooq, M.; Syed, Q.A. Nutritional and Biological Characteristics of the Date Palm Fruit (Phoenix dactylifera L.)—A Review. Food Biosci. 2020, 34, 100509. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/faostat/fr/#data/QCL (accessed on 20 September 2023).
- Khatib, M.; Al-Tamimi, A.; Cecchi, L.; Adessi, A.; Innocenti, M.; Balli, D.; Mulinacci, N. Phenolic Compounds and Polysaccharides in the Date Fruit (Phoenix dactylifera L.): Comparative Study on Five Widely Consumed Arabian Varieties. Food Chem. 2022, 395, 133591. [Google Scholar] [CrossRef] [PubMed]
- Sagi-Dain, L.; Sagi, S. The Effect of Late Pregnancy Date Fruit Consumption on Delivery Progress—A Meta-Analysis. Explore 2021, 17, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Younas, A.; Naqvi, S.A.; Khan, M.R.; Shabbir, M.A.; Jatoi, M.A.; Anwar, F.; Inam-Ur-Raheem, M.; Saari, N.; Aadil, R.M. Functional Food and Nutra-Pharmaceutical Perspectives of Date (Phoenix dactylifera L.) Fruit. J. Food Biochem. 2020, 44, e13332. [Google Scholar] [CrossRef]
- Al-Mssallem, M.Q.; Alqurashi, R.M.; Al-Khayri, J.M. Bioactive Compounds of Date Palm (Phoenix dactylifera L.). In Bioactive Compounds in Underutilized Fruits and Nuts; Springer: Cham, Switzerland, 2020; pp. 91–105. [Google Scholar] [CrossRef]
- Echegaray, N.; Pateiro, M.; Gullón, B.; Amarowicz, R.; Misihairabgwi, J.M.; Lorenzo, J.M. Phoenix dactylifera Products in Human Health—A Review. Trends Food Sci. Technol. 2020, 105, 238–250. [Google Scholar] [CrossRef]
- Elmi, A.; Zargaran, A.; Mirghafourvand, M.; Fazljou, S.M.B.; Navid, R.B. Clinical Effects of Date Palm (Phoenix dactylifera L.): A Systematic Review on Clinical Trials. Complement. Ther. Med. 2020, 51, 102429. [Google Scholar] [CrossRef]
- Ibrahim, S.A.; Ayad, A.A.; Williams, L.L.; Ayivi, R.D.; Gyawali, R.; Krastanov, A.; Aljaloud, S.O. Date Fruit: A Review of the Chemical and Nutritional Compounds, Functional Effects and Food Application in Nutrition Bars for Athletes. Int. J. Food Sci. Technol. 2021, 56, 1503–1513. [Google Scholar] [CrossRef]
- Maqsood, S.; Adiamo, O.; Ahmad, M.; Mudgil, P. Bioactive Compounds from Date Fruit and Seed as Potential Nutraceutical and Functional Food Ingredients. Food Chem. 2020, 308, 125522. [Google Scholar] [CrossRef]
- Clarke, C.J.; Tu, W.C.; Levers, O.; Bröhl, A.; Hallett, J.P. Green and Sustainable Solvents in Chemical Processes. Chem. Rev. 2018, 118, 747–800. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Ravi, H.K.; Khadhraoui, B.; Hilali, S.; Perino, S.; Tixier, A.S.F. Review of Alternative Solvents for Green Extraction of Food and Natural Products: Panorama, Principles, Applications and Prospects. Molecules 2019, 24, 3007. [Google Scholar] [CrossRef]
- Benkerrou, F.; Louaileche, H.; Bey, M.B. Optimized Ultrasonic-Assisted Extraction of Total Phenolics and Antioxidant Activity of Date (Phoenix dactylifera L.) Using Response Surface Methodology. Ann. Univ. Dunarea Jos Galati Fascicle VI Food Technol. 2018, 42, 9–22. [Google Scholar]
- Tassoult, M.; Kati, D.E.; Fernández-Prior, M.Á.; Bermúdez-Oria, A.; Fernandez-Bolanos, J.; Rodríguez-Gutiérrez, G. Antioxidant Capacity and Phenolic and Sugar Profiles of Date Fruits Extracts from Six Different Algerian Cultivars as Influenced by Ripening Stages and Extraction Systems. Foods 2021, 10, 503. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, Y.; Wang, X.; Liu, W. Application of Deep Eutectic Solvents in Food Analysis: A Review. Molecules 2019, 24, 4594. [Google Scholar] [CrossRef] [PubMed]
- Skarpalezos, D.; Detsi, A. Deep Eutectic Solvents as Extraction Media for Valuable Flavonoids from Natural Sources. Appl. Sci. 2019, 9, 4169. [Google Scholar] [CrossRef]
- Hashemi, B.; Shiri, F.; Švec, F.; Nováková, L. Green Solvents and Approaches Recently Applied for Extraction of Natural Bioactive Compounds. Trends Anal. Chem. 2022, 157, 116732. [Google Scholar] [CrossRef]
- Mohd Fuad, F.; Mohd Nadzir, M.; Harun@Kamaruddin, A. Hydrophilic Natural Deep Eutectic Solvent: A Review on Physicochemical Properties and Extractability of Bioactive Compounds. J. Mol. Liq. 2021, 339, 116923. [Google Scholar] [CrossRef]
- Mišan, A.; Nađpal, J.; Stupar, A.; Pojić, M.; Mandić, A.; Verpoorte, R.; Choi, Y.H. The Perspectives of Natural Deep Eutectic Solvents in Agri-Food Sector. Crit. Rev. Food Sci. Nutr. 2020, 60, 2564–2592. [Google Scholar] [CrossRef] [PubMed]
- Kaoui, S.; Chebli, B.; Zaidouni, S.; Basaid, K.; Mir, Y. Deep Eutectic Solvents as Sustainable Extraction Media for Plants and Food Samples: A Review. Sustain. Chem. Pharm. 2023, 31, 100937. [Google Scholar] [CrossRef]
- Pradhan, S.; Sahoo, N.K.; Satapathy, S.; Mishra, S. A Report on Green Extraction Procedures for Separation of Flavonoids and Its Bio Activities. J. Herb. Med. 2023, 41, 100716. [Google Scholar] [CrossRef]
- Meenu, M.; Bansal, V.; Rana, S.; Sharma, N.; Kumar, V.; Arora, V.; Garg, M. Deep Eutectic Solvents (DESs) and Natural Deep Eutectic Solvents (NADESs): Designer Solvents for Green Extraction of Anthocyanin. Sustain. Chem. Pharm. 2023, 34, 101168. [Google Scholar] [CrossRef]
- Del-Castillo-Llamosas, A.; Rodríguez-Rebelo, F.; Rodríguez-Martínez, B.; Mallo-Fraga, A.; Del-Río, P.G.; Gullón, B. Valorization of Avocado Seed Wastes for Antioxidant Phenolics and Carbohydrates Recovery Using Deep Eutectic Solvents (DES). Antioxidants 2023, 12, 1156. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Wu, Y.; Wang, M.; Row, K.H.; Qiu, H.; Zhou, J.L. Emerging Application of Extraction Phase of Ionic and Non-Ionic Deep Eutectic Solvents toward Natural Herbal Medicine. TrAC—Trends Anal. Chem. 2023, 165, 117137. [Google Scholar] [CrossRef]
- Gullón, P.; Gullón, B.; Romaní, A.; Rocchetti, G.; Lorenzo, J.M. Smart Advanced Solvents for Bioactive Compounds Recovery from Agri-Food by-Products: A Review. Trends Food Sci. Technol. 2020, 101, 182–197. [Google Scholar] [CrossRef]
- Várfalvyová, A.; Kalyniukova, A.; Tomášková, I.; Pešková, V.; Pastierovič, F.; Jirošová, A.; Resnerová, K.; Popelková, D.; Andruch, V. Sugar-Based Natural Deep Eutectic Solvent Ultrasound-Assisted Extraction for the Determination of Polyphenolic Compounds from Various Botanical Sources. Microchem. J. 2023, 194, 109249. [Google Scholar] [CrossRef]
- Djaoudene, O.; Louaileche, H. Optimization of a Green Ultrasound-Assisted Extraction of Phenolics and In Vitro Antioxidant Potential of Date Fruit (Phoenix dactylifera L.). Ann. Univ. Dunarea Jos Galati Fascicle VI Food Technol. 2018, 42, 109–122. [Google Scholar]
- Al-Farsi, M.; Alasalvar, C.; Morris, A.; Baron, M.; Shahidi, F. Comparison of Antioxidant Activity, Anthocyanins, Carotenoids, and Phenolics of Three Native Fresh and Sun-Dried Date (Phoenix dactylifera L.) Varieties Grown in Oman. J. Agric. Food Chem. 2005, 53, 7592–7599. [Google Scholar] [CrossRef]
- Quettier-Deleu, C.; Gressier, B.; Vasseur, J.; Dine, T.; Brunet, C.; Luyckx, M.; Cazin, M. Phenolic Compounds and Antioxidant Activities of Buckwheat (Fagopyrum Esculentum Moench) Hulls and Flour. J. Ethnopharmacol. 2000, 72, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Škerget, M.; Kotnik, P.; Hadolin, M.; Hraš, A.R.; Simonič, M.; Knez, Ž. Phenols, Proanthocyanidins, Flavones and Flavonols in Some Plant Materials and Their Antioxidant Activities. Food Chem. 2005, 89, 191–198. [Google Scholar] [CrossRef]
- Cao, J.; Wu, G.; Wang, L.; Cao, F.; Jiang, Y.; Zhao, L. Oriented Deep Eutectic Solvents as Efficient Approach for Selective Extraction of Bioactive Saponins from Husks of Xanthoceras sorbifolia Bunge. Antioxidants 2022, 11, 736. [Google Scholar] [CrossRef]
- Djaoudene, O.; López, V.; Cásedas, G.; Les, F.; Schisano, C.; Bachir Bey, M.; Tenore, G.C. Phoenix dactylifera L. Seeds: A by-Product as a Source of Bioactive Compounds with Antioxidant and Enzyme Inhibitory Properties. Food Funct. 2019, 10, 4953–4965. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. Ferric Reducing Antioxidant Power Assay: Direct Measure of Total Antioxidant Activity of Biological Fluids and Modified Version for Simultaneous Measurement of Total Antioxidant Power and Ascorbic Acid Concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggenete, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Sreejayan; Rao, M.N.A. Nitric Oxide Scavenging by Curcuminoids. J. Pharm. Pharmacol. 1997, 49, 105–107. [Google Scholar] [CrossRef] [PubMed]
- Ramalakshmi, K.; Rahath Kubra, I.; Jagan Mohan Rao, L. Antioxidant Potential of Low-Grade Coffee Beans. Food Res. Int. 2008, 41, 96–103. [Google Scholar] [CrossRef]
- Gu, H.F.; Li, C.M.; Xu, Y.J.; Hu, W.F.; Chen, M.H.; Wan, Q.H. Structural Features and Antioxidant Activity of Tannin from Persimmon Pulp. Food Res. Int. 2008, 41, 208–217. [Google Scholar] [CrossRef]
- Ferreira, A.; Proença, C.; Serralheiro, M.L.M.; Araújo, M.E.M. The In Vitro Screening for Acetylcholinesterase Inhibition and Antioxidant Activity of Medicinal Plants from Portugal. J. Ethnopharmacol. 2006, 108, 31–37. [Google Scholar] [CrossRef]
- Ali, H.; Houghton, P.J.; Soumyanath, A. α-Amylase Inhibitory Activity of Some Malaysian Plants Used to Treat Diabetes; with Particular Reference to Phyllanthus amarus. J. Ethnopharmacol. 2006, 107, 449–455. [Google Scholar] [CrossRef]
- Koutsoukos, S.; Tsiaka, T.; Tzani, A.; Zoumpoulakis, P.; Detsi, A. Choline Chloride and Tartaric Acid, a Natural Deep Eutectic Solvent for the Efficient Extraction of Phenolic and Carotenoid Compounds. J. Clean. Prod. 2019, 241, 118384. [Google Scholar] [CrossRef]
- Guo, N.; Jiang, Y.W.; Wang, L.T.; Niu, L.J.; Liu, Z.M.; Fu, Y.J. Natural Deep Eutectic Solvents Couple with Integrative Extraction Technique as an Effective Approach for Mulberry Anthocyanin Extraction. Food Chem. 2019, 296, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Bajkacz, S.; Adamek, J. Development of a Method Based on Natural Deep Eutectic Solvents for Extraction of Flavonoids from Food Samples. Food Anal. Methods 2018, 11, 1330–1344. [Google Scholar] [CrossRef]
- Bajkacz, S.; Adamek, J. Evaluation of New Natural Deep Eutectic Solvents for the Extraction of Isoflavones from Soy Products. Talanta 2017, 168, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Kanberoglu, G.S.; Yilmaz, E.; Soylak, M. Application of Deep Eutectic Solvent in Ultrasound-Assisted Emulsification Microextraction of Quercetin from Some Fruits and Vegetables. J. Mol. Liq. 2019, 279, 571–577. [Google Scholar] [CrossRef]
- Paradiso, V.M.; Clemente, A.; Summo, C.; Pasqualone, A.; Caponio, F. Towards Green Analysis of Virgin Olive Oil Phenolic Compounds: Extraction by a Natural Deep Eutectic Solvent and Direct Spectrophotometric Detection. Food Chem. 2016, 212, 43–47. [Google Scholar] [CrossRef]
- Ivanović, M.; Alañón, M.E.; Arráez-Román, D.; Segura-Carretero, A. Enhanced and Green Extraction of Bioactive Compounds from Lippia citriodora by Tailor-Made Natural Deep Eutectic Solvents. Food Res. Int. 2018, 111, 67–76. [Google Scholar] [CrossRef]
- Mansinhos, I.; Gonçalves, S.; Rodríguez-Solana, R.; Ordóñez-Díaz, J.L.; Moreno-Rojas, J.M.; Romano, A. Ultrasonic-Assisted Extraction and Natural Deep Eutectic Solvents Combination: A Green Strategy to Improve the Recovery of Phenolic Compounds from Lavandula pedunculata Subsp. lusitanica (Chaytor) Franco. Antioxidants 2021, 10, 582. [Google Scholar] [CrossRef]
- Neto, R.T.; Santos, S.A.O.; Oliveira, J.; Silvestre, A.J.D. Impact of Eutectic Solvents Utilization in the Microwave Assisted Extraction of Proanthocyanidins from Grape Pomace. Molecules 2022, 27, 246. [Google Scholar] [CrossRef]
- Airouyuwa, J.O.; Mostafa, H.; Riaz, A.; Maqsood, S. Utilization of Natural Deep Eutectic Solvents and Ultrasound-Assisted Extraction as Green Extraction Technique for the Recovery of Bioactive Compounds from Date Palm (Phoenix dactylifera L.) Seeds: An Investigation into Optimization of Process Parameters. Ultrason. Sonochem. 2022, 91, 106233. [Google Scholar] [CrossRef]
- Kehili, M.; Isci, A.; Thieme, N.; Kaltschmitt, M.; Zetzl, C.; Smirnova, I. Microwave-Assisted Deep Eutectic Solvent Extraction of Phenolics from Defatted Date Seeds and Its Effect on Solubilization of Carbohydrates. Biomass Convers. Biorefinery 2022, 1–12. [Google Scholar] [CrossRef]
- Pan, C.; Zhao, L.; Zhao, D. Microwave-Assisted Green Extraction of Antioxidant Components from Osmanthus fragrans (Lour) Flower Using Natural Deep Eutectic Solvents. J. Appl. Res. Med. Aromat. Plants 2021, 20, 100285. [Google Scholar] [CrossRef]
- He, X.; Yang, J.; Huang, Y.; Zhang, Y.; Wan, H.; Li, C. Green and Efficient Ultrasonic-Assisted Extraction of Bioactive Components from Salvia miltiorrhiza by Natural Deep Eutectic Solvents. Molecules 2020, 25, 140. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, J.B.; Goltz, C.; Batistão Cavalheiro, F.; Theodoro Toci, A.; Igarashi-Mafra, L.; Mafra, M.R. Deep Eutectic Solvents Applied in the Extraction and Stabilization of Rosemary (Rosmarinus officinalis L.) Phenolic Compounds. Ind. Crops Prod. 2020, 144, 112049. [Google Scholar] [CrossRef]
- Airouyuwa, J.O.; Mostafa, H.; Ranasinghe, M.; Maqsood, S. Influence of Physicochemical Properties of Carboxylic Acid-Based Natural Deep Eutectic Solvents (CA-NADES) on Extraction and Stability of Bioactive Compounds from Date (Phoenix dactylifera L.) Seeds: An Innovative and Sustainable Extraction Technique. J. Mol. Liq. 2023, 388, 122767. [Google Scholar] [CrossRef]
- da Silva, D.T.; Rodrigues, R.F.; Machado, N.M.; Maurer, L.H.; Ferreira, L.F.; Somacal, S.; da Veiga, M.L.; de Ugalde Marques da Rocha, M.I.; Vizzotto, M.; Rodrigues, E.; et al. Natural Deep Eutectic Solvent (NADES)-Based Blueberry Extracts Protect against Ethanol-Induced Gastric Ulcer in Rats. Food Res. Int. 2020, 138, 109718. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.; Karanth, S.; Liu, J. Pharmacology and Toxicology of Cholinesterase Inhibitors: Uses and Misuses of a Common Mechanism of Action. Environ. Toxicol. Pharmacol. 2005, 19, 433–446. [Google Scholar] [CrossRef] [PubMed]
- Tundis, R.; Loizzo, M.R.; Menichini, F. Natural Products as α-Amylase and α-Glucosidase Inhibitors and Their Hypoglycaemic Potential in the Treatment of Diabetes: An Update. Mini Rev. Med. Chem. 2010, 10, 315–331. [Google Scholar] [CrossRef]
- Oktaviyanti, N.D.; Kartini; Mun’im, A. Application and Optimization of Ultrasound-Assisted Deep Eutectic Solvent for the Extraction of New Skin-Lightening Cosmetic Materials from Ixora javanica Flower. Heliyon 2019, 5, e02950. [Google Scholar] [CrossRef]
- Zengin, G.; Cádiz-Gurrea, M.D.L.L.; Fernández-Ochoa, Á.; Leyva-Jiménez, F.J.; Carretero, A.S.; Momotko, M.; Yildiztugay, E.; Karatas, R.; Jugreet, S.; Mahomoodally, M.F.; et al. Selectivity Tuning by Natural Deep Eutectic Solvents (NADESs) for Extraction of Bioactive Compounds from Cytinus Hypocistis—Studies of Antioxidative, Enzyme-Inhibitive Properties and LC-MS Profiles. Molecules 2022, 27, 5788. [Google Scholar] [CrossRef]
- Fu, X.; Belwal, T.; He, Y.; Xu, Y.; Li, L.; Luo, Z. UPLC-Triple-TOF/MS Characterization of Phenolic Constituents and the Influence of Natural Deep Eutectic Solvents on Extraction of Carya cathayensis Sarg. Peels: Composition, Extraction Mechanism and In Vitro Biological Activities. Food Chem. 2022, 370, 131042. [Google Scholar] [CrossRef]
- Popović, B.M.; Agić, D.; Pavlović, R.Ž.; Jurić, T.; Mladenov, V. α-Glucosidase Inhibitory Activities of Natural Deep Eutectic Systems and Their Components: Ascorbate Is a Powerful Inhibitor of α-Glucosidase. J. Mol. Liq. 2023, 383, 122086. [Google Scholar] [CrossRef]
- Ali, M.Y.; Jannat, S.; Edraki, N.; Das, S.; Chang, W.K.; Kim, H.C.; Park, S.K.; Chang, M.S. Flavanone Glycosides Inhibit β-Site Amyloid Precursor Protein Cleaving Enzyme 1 and Cholinesterase and Reduce Aβ Aggregation in the Amyloidogenic Pathway. Chem. Biol. Interact. 2019, 309, 108707. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, A. Mechanisms of Antidiabetic Effects of Flavonoid Rutin. Biomed. Pharmacother. 2017, 96, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Pollini, L.; Riccio, A.; Juan, C.; Tringaniello, C.; Ianni, F.; Blasi, F.; Mañes, J.; Macchiarulo, A.; Cossignani, L. Phenolic Acids from Lycium barbarum Leaves: In Vitro and in Silico Studies of the Inhibitory Activity against Porcine Pancreatic α-Amylase. Processes 2020, 8, 1388. [Google Scholar] [CrossRef]
- Oboh, G.; Ademosun, A.O.; Ayeni, P.O.; Omojokun, O.S.; Bello, F. Comparative Effect of Quercetin and Rutin on α-Amylase, α-Glucosidase, and Some pro-Oxidant-Induced Lipid Peroxidation in Rat Pancreas. Comp. Clin. Pathol. 2015, 24, 1103–1110. [Google Scholar] [CrossRef]
Date Cultivar | TPC | TFC | PA | TTC |
---|---|---|---|---|
(mg GAE/100 g) | (mg QE/100g ) | (mg CE/100 g) | (mg OAE/100 g) | |
OUR | 1288.7 ± 57.5 a | 53.8 ± 7.9 a | 179.5 ± 16.1 a | 12.88 ± 0.19 a |
TAZ | 570.8 ± 20.7 cd | 40.3 ± 5.9 bc | 38.8 ± 2.2 | 9.72 ± 0.32 b |
TAR | 502.3 ± 37.3 de | 44.8 ± 7.6 b | 51.1 ± 6.4 cd | 7.95 ± 0.36 c |
TAG | 468.3 ± 59.7 e | 35.7 ± 3.4 cd | 38.0 ± 3.0 d | 6.52 ± 0.44 d |
OUC | 444.0 ± 71.0 e | 28.0 ± 2.0 de | 4.3 ± 2.0 d | 5.52 ± 0.62 e |
OUK | 663.8 ± 61.6 b | 39.3 ± 4.4 bc | 65.0 ± 8.2 c | 5.49 ± 0.82 e |
DEL | 445.6± 53.2 e | 24.3 ± 1.0 e | 3.11 ± 0.12 d | 5.28 ± 0.15 e |
TWT | 642.7± 33.1 bc | 34.5 + 6±4.0 cd | 153.3 ± 21.0 b | 5.99 ± 0.23 de |
Date Cultivar | Phenolic Composition (mg/100 g DM) | |||||
---|---|---|---|---|---|---|
Ferulic Acid | Vanillic Acid | Gallic Acid | Isoquercetin | Rutin | Total | |
OUR | 3.534 ± 0.027 f | 4.378 ± 0.100 a | 2.160 ± 0.064 e | 0.020 ± 0.004 d | 5.503 ± 0.030 a | 15.817 ± 0.281 c |
TAZ | 5.749 ± 0.306 c | 1.738 ± 0.173 c | 25.274 ± 3.401 a | 0.010 ± 0.002 e | 1.087 ± 0.032 c | 33.936 ± 3.932 a |
TAR | 4.597 ± 0.055 d | 1.817 ± 0.074 c | 10.363 ± 0.436 cd | 0.020 ± 0.001 d | 0.884 ± 0.069 d | 17.692 ± 0.644 c |
TAG | 1.093 ± 0.122 g | 0.541 ± 0.013 e | 2.091 ± 0.033 e | 0.240 ± 0.003 a | 0.569 ± 0.010 e | 4.296 ± 0.178 d |
OUC | 10.175 ± 0.085 a | 1.113 ± 0.033 d | 8.609 ± 0.112 d | nd | 1.378 ± 0.049 b | 21.289 ± 0.289 b |
OUK | 5.852 ± 0.252 c | 1.797 ± 0.076 c | 13.363 ± 0.886 b | 0.030 ± 0.005 c | 1.406 ± 0.054 b | 22.435 ± 1.268 b |
DEL | 4.012 ± 0.063 e | 3.322 ± 0.070 b | 8.601 ± 0.470 d | 0.090 ± 0.011 b | 0.82 ± 0.018 d | 16.771 ± 0.631 c |
TWT | 9.205 ± 0.127 b | 1.104 ± 0.042 d | 11.072 ± 0.328 c | 0.030 ± 0.002 c | 0.83 ± 0.048 d | 22.239 ± 0.555 b |
Calibration Curves of Phenolic Compounds | ||||||
Equation | Y = 5E + 07x − 10,514 | Y = 6E + 06x − 1281.4 | Y = 6E + 08x − 10,578 | Y = 2E + 08x + 351.27 | Y = 3E + 07x − 63.393 | |
LOD | 0.0028 | 0.00885 | 0.001818 | 0.000858 | 0.002898 | |
LOQ | 0.009334 | 0.0295 | 0.006061 | 0.002861 | 0.009659 | |
Linearity range (µg/mL) | 0.25–12.5 | 1–50 | 1–50 | 0.25–12.5 | 0.25–12.5 |
Date Cultivar | FRAP | DPPH• Scavenging Activity | ABTS•+ Scavenging Activity | Phosphomolybdenum | NO• Inhibition | LALP Inhibition |
---|---|---|---|---|---|---|
(mg AAE/100 g DM) | (mg AAE/100 g DM) | (mg TE/100 g DM) | (mg GAE/100 g DM) | (%) | (%) | |
OUR | 704.2 ± 19.2 a | 594.8 ± 37.4 a | 838.7 ± 34.0 a | 766.4 ± 33.7 e | 34.9 ± 2.7 e | 28.1 ± .1.0 abc |
TAZ | 136.6 ± 8.2 b | 27.9 ± 8.6 e | 214.1 ± 19.3 b | 806.4 ± 52.2 e | 45.9 ± 1.6 d | 28.8 ± 2.0 cd |
TAR | 137.4 ± 5.3 b | 59.6 ± 13.0 cd | 257.5 ± 13.3 bc | 765.0 ± 22.6 e | 49.3 ± 1.2 c | 24.3 ± 1.7 cd |
TAG | 102.0 ± 7.9 c | 67.4 ± 10.7 c | 242.5 ± 17.5 bc | 775.2 ± 31.1 e | 48.7 ± 1.3 cd | 24.6 ± 3.3 cd |
OUC | 107.5 ± 18.2 c | 46.0 ± 17.2 d | 183.9 ± 15.7 cd | 865.0 ± 32.6 d | 49.5 ± 2.7 c | 30.5 ± 1.7 ab |
OUK | 119.2 ± 10.6 b | 52.7 ± 20.8 cd | 281.1 ± 30.5 bc | 1229.0 ± 45.6 a | 69.1 ± 1.4 a | 32.7 ± 6.1 a |
DEL | 60.1 ± 23.1 d | 14.0 ± 7.5 e | 125.4 ± 20.5 d | 907.3 ± 26.2 c | 51.1 ± 2.2 c | 27.4 ± 5.1 bc |
TWT | 109.2 ± 4.0 c | 80.0 ± 22.7 b | 249.2 ± 21.1 b | 1019.3 ± 40.2 b | 63.5 ± 4.9 b | 22.2 ± 3.3 d |
Date Cultivar | AChE Inhibition (%) | α-Amylase Inhibition (%) |
---|---|---|
OUR | 37.10 ± 0.97 a | 45.24 ± 0.36 a |
TAZ | 34.28 ± 1.51 b | 33.25 ± 1.27 c |
TAR | 29.44 ± 1.08 de | 30.37 ± 1.82 d |
TAG | 18.41 ± 0.7 f | 24.81 ± 0.94 e |
OUC | 31.48 ± 0.84 c | 40.61 ± 0.99 b |
OUK | 30.38 ± 1.06 cd | 21.70 ± 1.06 f |
DEL | 33.51 ± 1.89 b | 28.37 ± 1.21 d |
TWT | 28.19 ± 0.59 e | 25.83 ± 2.57 e |
Galantamine (25 µg/mL) | 76.69 ± 0.61 | - |
Acarbose (300 µg/mL) | - | 79.60 ± 1.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djaoudene, O.; Bachir-Bey, M.; Schisano, C.; Djebari, S.; Tenore, G.C.; Romano, A. A Sustainable Extraction Approach of Phytochemicals from Date (Phoenix dactylifera L.) Fruit Cultivars Using Ultrasound-Assisted Deep Eutectic Solvent: A Comprehensive Study on Bioactivity and Phenolic Variability. Antioxidants 2024, 13, 181. https://doi.org/10.3390/antiox13020181
Djaoudene O, Bachir-Bey M, Schisano C, Djebari S, Tenore GC, Romano A. A Sustainable Extraction Approach of Phytochemicals from Date (Phoenix dactylifera L.) Fruit Cultivars Using Ultrasound-Assisted Deep Eutectic Solvent: A Comprehensive Study on Bioactivity and Phenolic Variability. Antioxidants. 2024; 13(2):181. https://doi.org/10.3390/antiox13020181
Chicago/Turabian StyleDjaoudene, Ouarda, Mostapha Bachir-Bey, Connie Schisano, Sabrina Djebari, Gian Carlo Tenore, and Anabela Romano. 2024. "A Sustainable Extraction Approach of Phytochemicals from Date (Phoenix dactylifera L.) Fruit Cultivars Using Ultrasound-Assisted Deep Eutectic Solvent: A Comprehensive Study on Bioactivity and Phenolic Variability" Antioxidants 13, no. 2: 181. https://doi.org/10.3390/antiox13020181
APA StyleDjaoudene, O., Bachir-Bey, M., Schisano, C., Djebari, S., Tenore, G. C., & Romano, A. (2024). A Sustainable Extraction Approach of Phytochemicals from Date (Phoenix dactylifera L.) Fruit Cultivars Using Ultrasound-Assisted Deep Eutectic Solvent: A Comprehensive Study on Bioactivity and Phenolic Variability. Antioxidants, 13(2), 181. https://doi.org/10.3390/antiox13020181