Lanthanide-Doped ZnO Nanoparticles: Unraveling Their Role in Cytotoxicity, Antioxidant Capacity, and Nanotoxicology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nanomaterials Synthesis
2.2. Characterization of Nanomaterials
2.3. Antioxidant Activity
2.4. Analysis of Cytotoxicity
2.4.1. Cell Lines Culture
2.4.2. MTT Assay
2.4.3. ROS Generation Assay
2.5. Toxicity Evaluation In Vivo
2.6. Statistical Analysis
2.7. Machine Learning Modeling
3. Results and Discussion
3.1. Characterization of Nanomaterials
3.2. Antioxidant Activity
3.3. Cytotoxic Activity and ROS Assay
3.4. Toxicity Evaluation In Vivo
3.5. Machine Learning Modeling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RE | Rare earth |
NPs | Nanoparticles |
Zn2+ | Zinc |
La2O3 | Lanthanum oxide |
XRD | X-ray diffraction |
ATR-FTIR | Attenuated total reflectance Fourier-transform infrared |
FE-SEM | Field emission scanning electron microscopy |
SBET | Specific surface area |
UV–Vis | Ultraviolet–visible |
PTFE | Polytetrafluoroethylene |
DLS | Dynamic light scattering |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
IC50 | Half-maximal inhibitory concentration |
LC50 | Half-maximal lethal concentration |
ATCC | American Type Culture Collection |
DMEM | Dulbecco’s Modified Eagle’s Medium |
FBS | Fetal bovine serum |
PBS | Phosphate-buffered saline |
MTT | Methyl-4,3-thiazolyltetrazolium |
ELISA | Enzyme-linked immunosorbent assay |
ROS | Reactive oxygen species |
HGF-1 | Human gingival fibroblasts |
HUVECs | Human umbilical vein endothelial cells |
BHK | Baby hamster kidney |
Gs | Grain size |
TC | Texture coefficient |
EG | Band gap |
Defects | Structural defects from EDS |
DLS | Average particle size from DLS measurement |
AA | Antioxidant activity |
OHE | One-hot encoding |
LR | Linear regression |
RF | Random forest |
ETs | Extremely random trees |
DTs | Decision trees |
MLP | Multi-layer perceptron |
KNNs | K-nearest neighbors |
GB or GBR | Gradient boosting |
SVR | Support vector regressor |
R2, R2 | Correlation coefficient or determination coefficient. |
MAE | Mean absolute error |
MSE | Mean squared error |
RMSE | Root mean squared error (standard error) |
References
- Liu, Z.-Q. Why Natural Antioxidants Are Readily Recognized by Biological Systems? 3D Architecture Plays a Role! Food Chem. 2022, 380, 132143. [Google Scholar] [CrossRef] [PubMed]
- Kruk, J.; Aboul-Enein, B.H.; Duchnik, E.; Marchlewicz, M. Antioxidative Properties of Phenolic Compounds and Their Effect on Oxidative Stress Induced by Severe Physical Exercise. J. Physiol. Sci. 2022, 72, 19. [Google Scholar] [CrossRef]
- Santana, A.A.; Zanin, R.C.; de Oliveira, R.A.; Kurozawa, L.E.; Park, K.J. Critical Storage Conditions of Pequi Pulp Microparticles and Kinetics of Degradation of Nutritional Properties. J. Food Process Eng. 2023, 46, e14337. [Google Scholar] [CrossRef]
- Sadeghian, S.F.; Majdinasab, M.; Nejadmansouri, M.; Hosseini, S.M.H. Effects of Natural Antioxidants and High-Energy Fabrication Methods on Physical Properties and Oxidative Stability of Flaxseed Oil-in-Water Nanoemulsions. Ultrason. Sonochem. 2023, 92, 106277. [Google Scholar] [CrossRef] [PubMed]
- Naznin, A.; Dhar, P.K.; Dutta, S.K.; Chakrabarty, S.; Karmakar, U.K.; Kundu, P.; Hossain, M.S.; Barai, H.R.; Haque, M.R. Synthesis of Magnetic Iron Oxide-Incorporated Cellulose Composite Particles: An Investigation on Antioxidant Properties and Drug Delivery Applications. Pharmaceutics 2023, 15, 732. [Google Scholar] [CrossRef]
- He, R.; Li, L.; Zhang, T.; Ding, X.; Xing, Y.; Zhu, S.; Gu, Z.; Hu, H. Recent Advances of Nanotechnology Application in Autoimmune Diseases—A Bibliometric Analysis. Nano Today 2023, 48, 101694. [Google Scholar] [CrossRef]
- Omran, B.; Baek, K.H. Nanoantioxidants: Pioneer Types, Advantages, Limitations, and Future Insights. Molecules 2021, 26, 7031. [Google Scholar] [CrossRef]
- Jiang, Y.; Kang, Y.; Liu, J.; Yin, S.; Huang, Z.; Shao, L. Nanomaterials Alleviating Redox Stress in Neurological Diseases: Mechanisms and Applications. J. Nanobiotechnol. 2022, 20, 265. [Google Scholar] [CrossRef]
- Siddeeg, A.; AlKehayez, N.M.; Abu-Hiamed, H.A.; Al-Sanea, E.A.; AL-Farga, A.M. Mode of Action and Determination of Antioxidant Activity in the Dietary Sources: An Overview. Saudi J. Biol. Sci. 2021, 28, 1633–1644. [Google Scholar] [CrossRef] [PubMed]
- Scurti, S.; Caretti, D.; Mollica, F.; Di Antonio, E.; Amorati, R. Chain-Breaking Antioxidant and Peroxyl Radical Trapping Activity of Phenol-Coated Magnetic Iron Oxide Nanoparticles. Antioxidants 2022, 11, 1163. [Google Scholar] [CrossRef]
- Shah, S.T.; Chowdhury, Z.Z.; Simarani, K.; Basirun, W.J.; Badruddin, I.A.; Hussien, M.; Alrobei, H.; Kamangar, S. Nanoantioxidants: The Fourth Generation of Antioxidants—Recent Research Roadmap and Future Perspectives. Coatings 2022, 12, 1568. [Google Scholar] [CrossRef]
- Fan, Q.; Cui, X.; Guo, H.; Xu, Y.; Zhang, G.; Peng, B. Application of Rare Earth-Doped Nanoparticles in Biological Imaging and Tumor Treatment. J. Biomater. Appl. 2020, 35, 237–263. [Google Scholar] [CrossRef]
- Keerthana, S.; Kumar, A. Potential Risks and Benefits of Zinc Oxide Nanoparticles: A Systematic Review. Crit. Rev. Toxicol. 2020, 50, 47–71. [Google Scholar] [CrossRef]
- Picasso, C.; Salinas, Y.; Brüggemann, O.; Scharber, M.C.; Sariciftci, N.S.; Cardozo, O.D.F.; Rodrigues, E.S.; Silva, M.S.; Stingl, A.; Farias, P.M.A. Lanthanide (Eu, Tb, La)-Doped ZnO Nanoparticles Synthesized Using Whey as an Eco-Friendly Chelating Agent. Nanomaterials 2022, 12, 2265. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Yi, Z.; Liu, X. Surface Engineering of Lanthanide Nanoparticles for Oncotherapy. Acc. Chem. Res. 2023, 56, 425–439. [Google Scholar] [CrossRef]
- Wei, H.-L.; Zheng, W.; Zhang, X.; Suo, H.; Chen, B.; Wang, Y.; Wang, F. Tuning Near-Infrared-to-Ultraviolet Upconversion in Lanthanide-Doped Nanoparticles for Biomedical Applications. Adv. Opt. Mater. 2023, 11, 2201716. [Google Scholar] [CrossRef]
- Mohamed, H.E.A.; Khalil, A.T.; Hkiri, K.; Ayaz, M.; Usman, A.; Sadiq, A.; Ullah, F.; Khan, M.A.; Islam, A.; Ovais, M.; et al. Structural, Vibrational, Optical, and Anticancer Properties of Hyphaene Thebaica-Reduced Nano-Lanthanum Oxide (La2O3). Appl. Organomet. Chem. 2023, 18, 480–481. [Google Scholar] [CrossRef]
- Muthulakshmi, V.; Balaji, M.; Sundrarajan, M. Biomedical Applications of Ionic Liquid Mediated Samarium Oxide Nanoparticles by Andrographis Paniculata Leaves Extract. Mater. Chem. Phys. 2020, 242, 122483. [Google Scholar] [CrossRef]
- Wang, A.Y.-T.; Murdock, R.J.; Kauwe, S.K.; Oliynyk, A.O.; Gurlo, A.; Brgoch, J.; Persson, K.A.; Sparks, T.D. Machine Learning for Materials Scientists: An Introductory Guide toward Best Practices. Chem. Mater. 2020, 32, 4954–4965. [Google Scholar] [CrossRef]
- Zhong, X.; Gallagher, B.; Liu, S.; Kailkhura, B.; Hiszpanski, A.; Han, T.Y.-J. Explainable Machine Learning in Materials Science. NPJ Comput. Mater. 2022, 8, 204. [Google Scholar] [CrossRef]
- Perfecto-Avalos, Y.; Navarro-López, D.E.; Martínez-Beltrán, S.; Rojas-Torres, D.E.; Suárez Ávila, K.D.; Robles, T.I.; Zavala, A.; de Luna, M.A.; Sanchez-Martinez, A.; Ceballos-Sanchez, O.; et al. Data-Driven Machine Learning to Predict Antibacterial Activity of Cerium-Doped Nanoparticles. ACS Appl. Nano Mater. 2023, 6, 20719–20730. [Google Scholar] [CrossRef]
- Sánchez-López, A.L.; Perfecto-Avalos, Y.; Sanchez-Martinez, A.; Ceballos-Sanchez, O.; Sepulveda-Villegas, M.; Rincón-Enríquez, G.; Rodríguez-González, V.; Garcia-Varela, R.; Lozano, L.M.; Eloyr Navarro-López, D.; et al. Influence of Erbium Doping on Zinc Oxide Nanoparticles: Structural, Optical and Antimicrobial Activity. Appl. Surf. Sci. 2022, 575, 151764. [Google Scholar] [CrossRef]
- Roy, R.; Dutta, A. Structural, Optical, Electrical, and Dielectric Relaxation Properties of Rare Earth Containing Sodium Bismuth Titanate Na0.5Bi0.5TiO3 Perovskite: Effect of Ionic Radius. J. Rare Earths 2024, 42, 383–391. [Google Scholar] [CrossRef]
- Mediouni, N.; Dappozze, F.; Khrouz, L.; Parola, S.; Amara, A.B.H.; Ben, R.H.; Jaffrezic-Renault, N.; Namour, P.; Guillard, C. Correlation between Photocatalytic Properties of ZnO and Generation of Hydrogen Peroxide—Impact of Composite ZnO/TiO2 Rutile and Anatase. Catalysts 2022, 12, 1445. [Google Scholar] [CrossRef]
- Li, Y.; Liao, C.; Tjong, S.C. Recent Advances in Zinc Oxide Nanostructures with Antimicrobial Activities. Int. J. Mol. Sci. 2020, 21, 8836. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Mohanta, J.; Dey, B. Sucrose-Triggered, Self-Sustained Combustive Synthesis of Magnetic Nickel Oxide Nanoparticles and Efficient Removal of Malachite Green from Water. ACS Omega 2020, 5, 16510–16520. [Google Scholar] [CrossRef]
- Navarro-López, D.E.; Garcia-Varela, R.; Ceballos-Sanchez, O.; Sanchez-Martinez, A.; Sanchez-Ante, G.; Corona-Romero, K.; Buentello-Montoya, D.A.; Elías-Zuñiga, A.; López-Mena, E.R. Effective Antimicrobial Activity of ZnO and Yb-Doped ZnO Nanoparticles against Staphylococcus Aureus and Escherichia Coli. Mater. Sci. Eng. C 2021, 123, 112004–112015. [Google Scholar] [CrossRef]
- Brezhneva, N.; Dezhkunov, N.V.; Ulasevich, S.A.; Skorb, E. V Characterization of Transient Cavitation Activity during Sonochemical Modification of Magnesium Particles. Ultrason. Sonochem. 2021, 70, 105315. [Google Scholar] [CrossRef]
- Hoo, D.Y.; Low, Z.L.; Low, D.Y.S.; Tang, S.Y.; Manickam, S.; Tan, K.W.; Ban, Z.H. Ultrasonic Cavitation: An Effective Cleaner and Greener Intensification Technology in the Extraction and Surface Modification of Nanocellulose. Ultrason. Sonochem. 2022, 90, 106176. [Google Scholar] [CrossRef]
- Mahdavi, K.; Zinatloo-Ajabshir, S.; Yousif, Q.A.; Salavati-Niasari, M. Enhanced Photocatalytic Degradation of Toxic Contaminants Using Dy2O3-SiO2 Ceramic Nanostructured Materials Fabricated by a New, Simple and Rapid Sonochemical Approach. Ultrason. Sonochem. 2022, 82, 105892. [Google Scholar] [CrossRef]
- Jafarova, V.N.; Orudzhev, G.S. Structural and Electronic Properties of ZnO: A First-Principles Density-Functional Theory Study within LDA(GGA) and LDA(GGA)+U Methods. Solid. State Commun. 2021, 325, 114166. [Google Scholar] [CrossRef]
- Mortensen, S.S.; Marciniak Nielsen, M.A.; Nawrocki, P.; Sørensen, T.J. Electronic Energy Levels and Optical Transitions in Samarium(III) Solvates. J. Phys. Chem. A 2022, 126, 8596–8605. [Google Scholar] [CrossRef]
- Mohammad, S.; Sepasgozar, E.; Mohseni, S.; Feizyzadeh, B.; Morsali, A. Green Synthesis of Zinc Oxide and Copper Oxide Nanoparticles Using Achillea Nobilis Extract and Evaluating Their Antioxidant and Antibacterial Properties. Bull. Mater. Sci. 2021, 44, 129. [Google Scholar] [CrossRef]
- Eskikaya, O.; Ozdemir, S.; Tollu, G.; Dizge, N.; Ramaraj, R.; Manivannan, A.; Balakrishnan, D. Synthesis of Two Different Zinc Oxide Nanoflowers and Comparison of Antioxidant and Photocatalytic Activity. Chemosphere 2022, 306, 135389. [Google Scholar] [CrossRef]
- Sajjad, A.; Bhatti, S.H.; Ali, Z.; Jaffari, G.H.; Khan, N.A.; Rizvi, Z.F.; Zia, M. Photoinduced Fabrication of Zinc Oxide Nanoparticles: Transformation of Morphological and Biological Response on Light Irradiance. ACS Omega 2021, 6, 11783–11793. [Google Scholar] [CrossRef]
- Shalaby, E.A.; Shanab, S.M.M.; El-Raheem, W.M.A.; Hanafy, E.A. Biological Activities and Antioxidant Potential of Different Biosynthesized Nanoparticles of Moringa Oleifera. Sci. Rep. 2022, 12, 18400. [Google Scholar] [CrossRef]
- Sa, N.; Tejaswani, P.; Pradhan, S.P.; Alkhayer, K.A.; Behera, A.; Sahu, P.K. Antidiabetic and Antioxidant Effect of Magnetic and Noble Metal Nanoparticles of Clitoria Ternatea. J. Drug Deliv. Sci. Technol. 2023, 84, 104521. [Google Scholar] [CrossRef]
- Haghighi, A.K.; Rezayian, M.; Niknam, V.; Ganjali, M.R.; Mirmasoumi, M. Cerium and Samarium Blocked Antioxidant Enzymes in Wheat Plants. Sci. Rep. 2023, 13, 8252. [Google Scholar] [CrossRef] [PubMed]
- Kouhbanani, M.A.J.; Sadeghipour, Y.; Sarani, M.; Sefidgar, E.; Ilkhani, S.; Amani, A.M.; Beheshtkhoo, N. The Inhibitory Role of Synthesized Nickel Oxide Nanoparticles against Hep-G2, MCF-7, and HT-29 Cell Lines: The Inhibitory Role of NiO NPs against Hep-G2, MCF-7, and HT-29 Cell Lines. Green. Chem. Lett. Rev. 2021, 14, 443–453. [Google Scholar] [CrossRef]
- Łukasiewicz, S.; Czeczelewski, M.; Forma, A.; Baj, J.; Sitarz, R.; Stanisławek, A. Breast Cancer—Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies—An Updated Review. Cancers 2021, 13, 4287. [Google Scholar] [CrossRef] [PubMed]
- Haji Mehdi Nouri, Z.; Tafvizi, F.; Amini, K.; Khandandezfully, N.; Kheirkhah, B. Enhanced Induction of Apoptosis and Cell Cycle Arrest in MCF-7 Breast Cancer and HT-29 Colon Cancer Cell Lines via Low-Dose Biosynthesis of Selenium Nanoparticles Utilizing Lactobacillus Casei. Biol. Trace Elem. Res. 2023, 202, 1288–1304. [Google Scholar] [CrossRef]
- Siegel, R.L.; Wagle, N.S.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal Cancer Statistics, 2023. CA Cancer J. Clin. 2023, 73, 233–254. [Google Scholar] [CrossRef]
- Mejía-Méndez, J.L.; Bach, H.; Lorenzo-Leal, A.C.; Navarro-López, D.E.; López-Mena, E.R.; Hernández, L.R.; Sánchez-Arreola, E. Biological Activities and Chemical Profiles of Kalanchoe Fedtschenkoi Extracts. Plants 2023, 12, 1943. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.C.; Huang, C.M.; Yu, X.W.; Chen, Y.Y. Effect of Nano Zinc Oxide on Proliferation and Toxicity of Human Gingival Cells. Hum. Exp. Toxicol. 2022, 41, 9603271221080236. [Google Scholar] [CrossRef] [PubMed]
- Wiesmann, N.; Mendler, S.; Buhr, C.R.; Ritz, U.; Kämmerer, P.W.; Brieger, J. Zinc Oxide Nanoparticles Exhibit Favorable Properties to Promote Tissue Integration of Biomaterials. Biomedicines 2021, 9, 1462. [Google Scholar] [CrossRef]
- El-Meliegy, E.; Farag, M.M.; El-Kady, A.M.; Mohamed, M.S.; Abdelhakim, H.K.; Moaness, M. Evaluation of Solubility and Cytotoxicity of Lanthanum-Doped Phosphate Glasses Nanoparticles for Drug Delivery Applications. J. Non Cryst. Solids 2017, 475, 59–70. [Google Scholar] [CrossRef]
- Nica, I.C.; Popa, M.; Marutescu, L.; Dinischiotu, A.; Iconaru, S.L.; Ciobanu, S.C.; Predoi, D. Biocompatibility and Antibiofilm Properties of Samarium Doped Hydroxyapatite Coatings: An in Vitro Study. Coatings 2021, 11, 1185. [Google Scholar] [CrossRef]
- Alshammari, M.H.; Alshammari, A.O.; Elabassy, M.T.; Zreiq, R.; Albati, F.M.; El-Morsy, M.A.; Menazea, A.A. Surface Morphology and Cell Viability of Samarium (III) Oxide/Chromium (III) Oxide/Graphene Oxide/Polycaprolactone Targeting Wound Dressing. J. Rare Earths, 2023; in press. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, S.; Liu, M.; Zhong, T.; Li, H.; Wang, J.; Zhao, H.; Tian, Y.; Wang, H.; Wang, J.; et al. Antitumor Activity of the Zinc Oxide Nanoparticles Coated with Low-Molecular-Weight Heparin and Doxorubicin Complex In Vitro and In Vivo. Mol. Pharm. 2022, 19, 4179–4190. [Google Scholar] [CrossRef]
- Mir, A.H.; Qamar, A.; Qadir, I.; Naqvi, A.H.; Begum, R. Accumulation and Trafficking of Zinc Oxide Nanoparticles in an Invertebrate Model, Bombyx Mori, with Insights on Their Effects on Immuno-Competent Cells. Sci. Rep. 2020, 10, 1617. [Google Scholar] [CrossRef]
- Anjum, S.; Hashim, M.; Malik, S.A.; Khan, M.; Lorenzo, J.M.; Abbasi, B.H.; Hano, C. Recent Advances in Zinc Oxide Nanoparticles (Zno Nps) for Cancer Diagnosis, Target Drug Delivery, and Treatment. Cancers 2021, 13, 4570. [Google Scholar] [CrossRef] [PubMed]
- Anand, A.S.; Jain, K.; Chauhan, A.; Prasad, D.N.; Kohli, E. Zinc Oxide Nanoparticles Trigger Dysfunction of Mitochondrial Respiratory Complexes and Repair Dynamics in Human Alveolar Cells. Toxicol. Ind. Health 2023, 39, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Lu, V.M.; Jue, T.R.; McDonald, K.L. Cytotoxic Lanthanum Oxide Nanoparticles Sensitize Glioblastoma Cells to Radiation Therapy and Temozolomide: An in Vitro Rationale for Translational Studies. Sci. Rep. 2020, 10, 18156. [Google Scholar] [CrossRef] [PubMed]
- Nabeel, A.I. Samarium Enriches Antitumor Activity of ZnO Nanoparticles via Downregulation of CXCR4 Receptor and Cytochrome P450. Tumor Biol. 2020, 42, 1010428320909999. [Google Scholar] [CrossRef] [PubMed]
- Sies, H.; Belousov, V.V.; Chandel, N.S.; Davies, M.J.; Jones, D.P.; Mann, G.E.; Murphy, M.P.; Yamamoto, M.; Winterbourn, C. Defining Roles of Specific Reactive Oxygen Species (ROS) in Cell Biology and Physiology. Nat. Rev. Mol. Cell Biol. 2022, 23, 499–515. [Google Scholar] [CrossRef] [PubMed]
- Zaric, B.L.; Macvanin, M.T.; Isenovic, E.R. Free Radicals: Relationship to Human Diseases and Potential Therapeutic Applications. Int. J. Biochem. Cell Biol. 2023, 154, 106346. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.A.; Rogoff, H.A. Implications of Reactive Oxygen Species on Cancer Formation and Its Treatment. Semin. Oncol. 2021, 48, 238–245. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Wang, M.; Xu, T.; Zhang, M.; Dai, H.; Wang, C.; Ding, D.; Zhong, Z. Reactive Oxygen Species-Powered Cancer Immunotherapy: Current Status and Challenges. J. Control. Release 2023, 356, 623–648. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, S.; Gu, Z.; Chen, C.; Zhao, Y. Toxicity of Manufactured Nanomaterials. Particuology 2022, 69, 31–48. [Google Scholar] [CrossRef]
- Lawal, O.A.; Ogunwande, I.A. Essential Oils from the Medicinal Plants of Africa. In 5—Essential Oils from the Medicinal Plants of Africa; Pharmacology and Chemistry: Amsterdam, The Netherlands, 2013; pp. 203–224. [Google Scholar] [CrossRef]
- Danabas, D.; Ates, M.; Ertit Tastan, B.; Cicek Cimen, I.C.; Unal, I.; Aksu, O.; Kutlu, B. Effects of Zn and ZnO Nanoparticles on Artemia Salina and Daphnia Magna Organisms: Toxicity, Accumulation and Elimination. Sci. Total Environ. 2020, 711, 134869. [Google Scholar] [CrossRef]
- Saleemi, M.A.; Alallam, B.; Yong, Y.K.; Lim, V. Synthesis of Zinc Oxide Nanoparticles with Bioflavonoid Rutin: Characterisation, Antioxidant and Antimicrobial Activities and In Vivo Cytotoxic Effects on Artemia Nauplii. Antioxidants 2022, 11, 1853. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, K.; Mushtaq, S.; Akhtar, S.; Yaseen, K.; Amin, F.; Ali, Z. Effect of Lanthanum Substitution on Shape and Cytotoxicity of Zinc Oxide (LaxZn1−XO) Nano-Colloids. Mater. Res. Express 2019, 6, 055012. [Google Scholar] [CrossRef]
Material | a (Å) | c (Å) | Cell Volume (Å)3 | Distortion |
---|---|---|---|---|
Z | 3.243 (1) | 5.199 (1) | 4.735 (4) | 1.019 |
ZL | 3.240 (1) | 5.200 (1) | 4.726 (4) | 1.017 |
ZLS | 3.256 (1) | 5.223 (1) | 4.795 (4) | 1.018 |
ZS | 3.243 (1) | 5.205 (1) | 4.739 (4) | 1.017 |
Material | MCF-7 | HT29 |
---|---|---|
Z | 161.418 ± 17.660 | 249.985 ± 93.527 |
ZL | 181.885 ± 9.455 | 504.917 ± 161.917 |
ZLS | 174.982 ± 13.250 | 390.440 ± 116.376 |
ZS | 200.835 ± 57.778 | 260.919 ± 24.677 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mejía-Méndez, J.L.; Navarro-López, D.E.; Sanchez-Martinez, A.; Ceballos-Sanchez, O.; Garcia-Amezquita, L.E.; Tiwari, N.; Juarez-Moreno, K.; Sanchez-Ante, G.; López-Mena, E.R. Lanthanide-Doped ZnO Nanoparticles: Unraveling Their Role in Cytotoxicity, Antioxidant Capacity, and Nanotoxicology. Antioxidants 2024, 13, 213. https://doi.org/10.3390/antiox13020213
Mejía-Méndez JL, Navarro-López DE, Sanchez-Martinez A, Ceballos-Sanchez O, Garcia-Amezquita LE, Tiwari N, Juarez-Moreno K, Sanchez-Ante G, López-Mena ER. Lanthanide-Doped ZnO Nanoparticles: Unraveling Their Role in Cytotoxicity, Antioxidant Capacity, and Nanotoxicology. Antioxidants. 2024; 13(2):213. https://doi.org/10.3390/antiox13020213
Chicago/Turabian StyleMejía-Méndez, Jorge L., Diego E. Navarro-López, Araceli Sanchez-Martinez, Oscar Ceballos-Sanchez, Luis Eduardo Garcia-Amezquita, Naveen Tiwari, Karla Juarez-Moreno, Gildardo Sanchez-Ante, and Edgar R. López-Mena. 2024. "Lanthanide-Doped ZnO Nanoparticles: Unraveling Their Role in Cytotoxicity, Antioxidant Capacity, and Nanotoxicology" Antioxidants 13, no. 2: 213. https://doi.org/10.3390/antiox13020213
APA StyleMejía-Méndez, J. L., Navarro-López, D. E., Sanchez-Martinez, A., Ceballos-Sanchez, O., Garcia-Amezquita, L. E., Tiwari, N., Juarez-Moreno, K., Sanchez-Ante, G., & López-Mena, E. R. (2024). Lanthanide-Doped ZnO Nanoparticles: Unraveling Their Role in Cytotoxicity, Antioxidant Capacity, and Nanotoxicology. Antioxidants, 13(2), 213. https://doi.org/10.3390/antiox13020213