Impacts of Supplementation with Silymarin on Cardiovascular Risk Factors: A Systematic Review and Dose–Response Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Data Extraction
2.4. Quality Assessment
2.5. Statistical Analysis
2.6. GARDE Assessment
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Meta-Analysis
3.3.1. Impact of Silymarin Supplementation on Anthropometric Parameters
BMI
Body Weight
3.3.2. Impact of Silymarin Supplementation on Glycemic Parameters
FBG
Fasting Insulin
HbA1c
3.3.3. Impact of Silymarin Supplementation on Lipid Profile
TG
TC
LDL
HDL
3.3.4. Impact of Silymarin Supplementation on Serum CRP
3.3.5. Impact of Silymarin Supplementation on Blood Pressure
SBP and DPB
3.4. Publication Bias
3.5. Sensitivity Analysis
3.6. GRADE Assessment
3.7. Linear and Non-Linear Dose–Response Associations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kelli, H.M.; Kassas, I.; Lattouf, O.M. Cardio metabolic syndrome: A global epidemic. J. Diabetes Metab. 2015, 6, 2–14. [Google Scholar] [CrossRef]
- Boren, J.; Chapman, M.J.; Krauss, R.M.; Packard, C.J.; Bentzon, J.F.; Binder, C.J.; Daemen, M.J.; Demer, L.L.; Hegele, R.A.; Nicholls, S.J. Low-density lipoproteins cause atherosclerotic cardiovascular disease: Pathophysiological, genetic, and therapeutic insights: A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2020, 41, 2313–2330. [Google Scholar] [CrossRef] [PubMed]
- McCracken, E.; Monaghan, M.; Sreenivasan, S. Pathophysiology of the metabolic syndrome. Clin. Dermatol. 2018, 36, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.M.; Shalaby, M.A.; El-Shiekh, R.A.; El-Banna, H.A.; Emam, S.R.; Bakr, A.F. Metabolic syndrome: Risk factors, diagnosis, pathogenesis, and management with natural approaches. Food Chem. Adv. 2023, 3, 100335. [Google Scholar] [CrossRef]
- Yanovski, S.Z.; Yanovski, J.A. Long-term drug treatment for obesity: A systematic and clinical review. JAMA 2014, 311, 74–86. [Google Scholar] [CrossRef]
- Baumgartner, S.; Bruckert, E.; Gallo, A.; Plat, J. The position of functional foods and supplements with a serum LDL-C lowering effect in the spectrum ranging from universal to care-related CVD risk management. Atherosclerosis 2020, 311, 116–123. [Google Scholar] [CrossRef]
- Kadoglou, N.P.; Christodoulou, E.; Kostomitsopoulos, N.; Valsami, G. The cardiovascular-protective properties of saffron and its potential pharmaceutical applications: A critical appraisal of the literature. Phytother. Res. 2021, 35, 6735–6753. [Google Scholar] [CrossRef]
- Vahabzadeh, M.; Amiri, N.; Karimi, G. Effects of silymarin on metabolic syndrome: A review. J. Sci. Food Agric. 2018, 98, 4816–4823. [Google Scholar] [CrossRef]
- Tajmohammadi, A.; Razavi, B.M.; Hosseinzadeh, H. Silybum marianum (milk thistle) and its main constituent, silymarin, as a potential therapeutic plant in metabolic syndrome: A review. Phytother. Res. 2018, 32, 1933–1949. [Google Scholar] [CrossRef]
- Radjabian, T.; Fallah, H.H. Anti-hyperlipidemic and anti-atherosclerotic activities of silymarins from cultivated and wild plants of Silybum marianum L. with different content of flavonolignans. Iran. J. Pharmacol. Ther. 2010, 9, 63–67. [Google Scholar]
- Kadoglou, N.P.; Panayiotou, C.; Vardas, M.; Balaskas, N.; Kostomitsopoulos, N.G.; Tsaroucha, A.K.; Valsami, G. A comprehensive review of the cardiovascular protective properties of Silibinin/Silymarin: A new kid on the block. Pharmaceuticals 2022, 15, 538. [Google Scholar] [CrossRef] [PubMed]
- Gillessen, A.; Schmidt, H.H.J. Silymarin as Supportive Treatment in Liver Diseases: A Narrative Review. Adv. Ther. 2020, 37, 1279–1301. [Google Scholar] [CrossRef] [PubMed]
- Marceddu, R.; Dinolfo, L.; Carrubba, A.; Sarno, M.; Di Miceli, G. Milk thistle (Silybum Marianum L.) as a novel multipurpose crop for agriculture in marginal environments: A review. Agronomy 2022, 12, 729. [Google Scholar] [CrossRef]
- Delmas, D. Silymarin and derivatives: From biosynthesis to health benefits. Molecules 2020, 25, 2415. [Google Scholar] [CrossRef] [PubMed]
- Jaggi, A.S.; Singh, N. Silymarin and its role in chronic diseases. Drug Discov. Mother Nat. 2016, 25–44. [Google Scholar]
- Saller, R.; Brignoli, R.; Melzer, J.; Meier, R. An updated systematic review with meta-analysis for the clinical evidence of silymarin. Complement. Med. Res. 2008, 15, 9–20. [Google Scholar] [CrossRef]
- Polyak, S.J.; Morishima, C.; Lohmann, V.; Pal, S.; Lee, D.Y.; Liu, Y.; Graf, T.N.; Oberlies, N.H. Identification of hepatoprotective flavonolignans from silymarin. Proc. Natl. Acad. Sci. USA 2010, 107, 5995–5999. [Google Scholar] [CrossRef]
- Ralli, T.; Kalaiselvan, V.; Tiwari, R.; Shukla, S.; Kholi, K. Clinical and Regulatory Status of Silymarin. Appl. Drug Res. Clin. Trials Regul. Aff. 2021, 8, 104–111. [Google Scholar] [CrossRef]
- Camini, F.C.; Costa, D.C. Silymarin: Not just another antioxidant. J. Basic Clin. Physiol. Pharmacol. 2020, 31, 20190206. [Google Scholar] [CrossRef]
- Gu, M.; Zhao, P.; Huang, J.; Zhao, Y.; Wang, Y.; Li, Y.; Li, Y.; Fan, S.; Ma, Y.-M.; Tong, Q. Silymarin ameliorates metabolic dysfunction associated with diet-induced obesity via activation of farnesyl X receptor. Front. Pharmacol. 2016, 7, 345. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S. Phytotherapeutic properties of milk thistle seeds: An overview. J. Adv. Pharm. Educ. Res. 2011, 1, 69–79. [Google Scholar]
- Taleb, A.; Ahmad, K.A.; Ihsan, A.U.; Qu, J.; Lin, N.; Hezam, K.; Koju, N.; Hui, L.; Qilong, D. Antioxidant effects and mechanism of silymarin in oxidative stress induced cardiovascular diseases. Biomed. Pharmacother. 2018, 102, 689–698. [Google Scholar] [CrossRef]
- Morvaridzadeh, M.; Estêvão, M.D.; Morvaridi, M.; Belančić, A.; Mohammadi, S.; Hassani, M.; Heshmati, J.; Ziaei, S. The effect of Conjugated Linoleic Acid intake on oxidative stress parameters and antioxidant enzymes: A systematic review and meta-analysis of randomized clinical trials. Prostaglandins Other Lipid Mediat. 2022, 163, 106666. [Google Scholar] [CrossRef]
- Voroneanu, L.; Nistor, I.; Dumea, R.; Apetrii, M.; Covic, A. Silymarin in type 2 diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials. J. Diabetes Res. 2016, 2016, 5147468. [Google Scholar] [CrossRef]
- Koltai, T.; Fliegel, L. Role of silymarin in cancer treatment: Facts, hypotheses, and questions. J. Evid.-Based Integr. Med. 2022, 27, 2515690X211068826. [Google Scholar] [CrossRef]
- Xiao, F.; Gao, F.; Zhou, S.; Wang, L. The therapeutic effects of silymarin for patients with glucose/lipid metabolic dysfunction: A meta-analysis. Medicine 2020, 99, e22249. [Google Scholar] [CrossRef] [PubMed]
- Fallah, M.; Davoodvandi, A.; Nikmanzar, S.; Aghili, S.; Mirazimi, S.M.A.; Aschner, M.; Rashidian, A.; Hamblin, M.R.; Chamanara, M.; Naghsh, N. Silymarin (milk thistle extract) as a therapeutic agent in gastrointestinal cancer. Biomed. Pharmacother. 2021, 142, 112024. [Google Scholar] [CrossRef] [PubMed]
- Surai, P. Silymarin as a natural antioxidant: An overview of the current evidence and perspectives. Antioxidants 2015, 4, 204–247. [Google Scholar] [CrossRef]
- Jin, Y.; Zhao, X.; Zhang, H.; Li, Q.; Lu, G.; Zhao, X. Modulatory effect of silymarin on pulmonary vascular dysfunction through HIF-1α-iNOS following rat lung ischemia-reperfusion injury. Exp. Ther. Med. 2016, 12, 1135–1140. [Google Scholar] [CrossRef] [PubMed]
- Demirci, B.; Dost, T.; Gokalp, F.; Birincioglu, M. Silymarin improves vascular function of aged ovariectomized rats. Phytother. Res. 2014, 28, 868–872. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-H.; Lin, H.; Wang, Q.; Hou, J.-W.; Mao, Z.-J.; Li, Y.-G. Protective role of silibinin against myocardial ischemia/reperfusion injury-induced cardiac dysfunction. Int. J. Biol. Sci. 2020, 16, 1972. [Google Scholar] [CrossRef]
- Rao, P.R.; Viswanath, R.K. Cardioprotective activity of silymarin in ischemia-reperfusion-induced myocardial infarction in albino rats. Exp. Clin. Cardiol. 2007, 12, 179. [Google Scholar]
- Poruba, M.; Matuskova, Z.; Kazdová, L.; Oliyarnyk, O.; Malínská, H.; di Angelo, I.T.; Vecera, R. Positive effects of different drug forms of silybin in the treatment of metabolic syndrome. Physiol. Res. 2015, 64, S507. [Google Scholar] [CrossRef] [PubMed]
- Poruba, M.; Kazdová, L.; Oliyarnyk, O.; Malinská, H.; Matusková, Z.; di Angelo, I.T.; Skop, V.; Vecera, R. Improvement bioavailability of silymarin ameliorates severe dyslipidemia associated with metabolic syndrome. Xenobiotica 2015, 45, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.H.; Alex, R.; Bellner, L.; Raffaele, M.; Licari, M.; Vanella, L.; Stec, D.E.; Abraham, N.G. Milk thistle seed cold press oil attenuates markers of the metabolic syndrome in a mouse model of dietary-induced obesity. J. Food Biochem. 2020, 44, e13522. [Google Scholar] [CrossRef] [PubMed]
- Piazzini, V.; Micheli, L.; Luceri, C.; D’Ambrosio, M.; Cinci, L.; Ghelardini, C.; Bilia, A.R.; Mannelli, L.D.C.; Bergonzi, M.C. Nanostructured lipid carriers for oral delivery of silymarin: Improving its absorption and in vivo efficacy in type 2 diabetes and metabolic syndrome model. Int. J. Pharm. 2019, 572, 118838. [Google Scholar] [CrossRef]
- Prakash, P.; Singh, V.; Jain, M.; Rana, M.; Khanna, V.; Barthwal, M.K.; Dikshit, M. Silymarin ameliorates fructose induced insulin resistance syndrome by reducing de novo hepatic lipogenesis in the rat. Eur. J. Pharmacol. 2014, 727, 15–28. [Google Scholar] [CrossRef]
- Mohammadi, S.; Ashtary-Larky, D.; Asbaghi, O.; Farrokhi, V.; Jadidi, Y.; Mofidi, F.; Mohammadian, M.; Afrisham, R. Effects of silymarin supplementation on liver and kidney functions: A systematic review and dose–response meta-analysis. Phytother. Res. 2024, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Marková, I.; Malinska, H.; Hüttl, M.; Miklánková, D.; Oliyarnyk, O.; Poruba, M.; Racova, Z.; Kazdova, L.; Večeřa, R. The combination of atorvastatin with silymarin enhances hypolipidemic, antioxidant and anti-inflammatory effects in a rat model of metabolic syndrome. Physiol. Res. 2021, 70, 33. [Google Scholar] [CrossRef]
- Hadi, A.; Pourmasoumi, M.; Mohammadi, H.; Symonds, M.; Miraghajani, M. The effects of silymarin supplementation on metabolic status and oxidative stress in patients with type 2 diabetes mellitus: A systematic review and meta-analysis of clinical trials. Complement. Ther. Med. 2018, 41, 311–319. [Google Scholar] [CrossRef]
- Soleymani, S.; Ayati, M.H.; Mansourzadeh, M.J.; Namazi, N.; Zargaran, A. The effects of Silymarin on the features of cardiometabolic syndrome in adults: A systematic review and meta-analysis. Phytother. Res. 2022, 36, 842–856. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef]
- Sterne, J.A.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.; Rothstein, H.R. Introduction to Meta-Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials. 1986, 7, 177–188. [Google Scholar] [CrossRef]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.; Rothstein, H.R. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res. Synth. Methods 2010, 1, 97–111. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Begg, C.B.; Berlin, J.A. Publication bias: A problem in interpreting medical data. J. R. Stat. Soc. Ser. A 1988, 151, 419–445. [Google Scholar] [CrossRef]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, M.N. Interpreting and Visualizing Regression Models Using Stata; Stata Press: College Station, TX, USA, 2012; Volume 558. [Google Scholar]
- Guyatt, G.H.; Oxman, A.D.; Vist, G.E.; Kunz, R.; Falck-Ytter, Y.; Alonso-Coello, P.; Schünemann, H.J. GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008, 336, 924–926. [Google Scholar] [CrossRef] [PubMed]
- Velussi, M.; Cernigoi, A.; Viezzoli, L.; Dapas, F.; Caffau, C.; Zilli, M. Silymarin reduces hyperinsulinemia, malondialdehyde levels, and daily insulin need in cirrhotic diabetic patients. Curr. Ther. Res. 1993, 53, 533–545. [Google Scholar] [CrossRef]
- Velussi, M.; Cernigoi, A.M.; Dapas, F.; Caffau, C.; Zilli, M. Long-term (23 months) treatment with an anti-oxidant drug (silymarin) is effective on hyperinsulinemia, exogenous insulin need and malondialdehyde levels in cirrhotic diabetic patients. J. Hepatol. 1997, 26, 871–879. [Google Scholar] [CrossRef]
- Simanek, V.; Skottova, N.; Bartek, J.; Psotova, J.; Kosina, P.; Balejová, L.; Ulrichova, J. Extract from Silybum marianum as a nutraceutical: A double-blind placebo-controlled study in healthy young men. Czech J. Food Sci. 2001, 19, 105–110. [Google Scholar] [CrossRef]
- Huseini, H.F.; Larijani, B.; Fakhrzadeh, H.; Akhondzadeh, S.; Rajabipour, B.; Toliat, T.; Heshmat, R. The clinical trial of silybum marianum seed extract (silymarin) on type ii diabetic patients with hyperlipidemia. J. Diabetes Metab. Disord. 2004, 3, 78. [Google Scholar]
- Huseini, H.F.; Larijani, B.; Heshmat, R.; Fakhrzadeh, H.; Radjabipour, B.; Toliat, T.; Raza, M. The efficacy of Silybum marianum (L.) Gaertn.(silymarin) in the treatment of type II diabetes: A randomized, double-blind, placebo-controlled, clinical trial. Phytother. Res. 2006, 20, 1036–1039. [Google Scholar] [CrossRef]
- Hussain, S.A.-R. Silymarin as an adjunct to glibenclamide therapy improves long-term and postprandial glycemic control and body mass index in type 2 diabetes. J. Med. Food 2007, 10, 543–547. [Google Scholar] [CrossRef]
- Valentová, K.; Stejskal, D.; Bartek, J.; Dvořáčková, S.; Křen, V.; Ulrichová, J.; Šimánek, V. Maca (Lepidium meyenii) and yacon (Smallanthus sonchifolius) in combination with silymarin as food supplements: In vivo safety assessment. Food Chem. Toxicol. 2008, 46, 1006–1013. [Google Scholar] [CrossRef] [PubMed]
- Ramezani, M.; Azarabadi, M.; Abdi, H.; Baher, G.; Huseini, M. The effects of Silybum marianum (L.) Gaertn. seed extract on glycemic control in type II diabetic patient’s candidate for insulin therapy visiting endocrinology clinic in baqiyatallah hospital in the years of 2006. J. Med. Plants 2008, 7, 79–84. [Google Scholar]
- Hajagha, M.A.; Ziaei, A.; Rafiei, R. The efficacy of silymarin in decreasing transaminase activities in non-alcoholic fatty liver disease: A randomized controlled clinical trial. Hepat. Mon. 2008, 8, 191–195. [Google Scholar]
- Gharagozloo, M.; Moayedi, B.; Zakerinia, M.; Hamidi, M.; Karimi, M.; Maracy, M.; Amirghofran, Z. Combined therapy of silymarin and desferrioxamine in patients with β-thalassemia major: A randomized double-blind clinical trial. Fundam. Clin. Pharmacol. 2009, 23, 359–365. [Google Scholar] [CrossRef]
- Hashemi, S.J.; Hajiani, E.; Heydari, S.E. A placebo-controlled trial of silymarin in patients with nonalcoholic fatty liver disease. Hepat. Mon. 2009, 9, 265–270. [Google Scholar]
- Numan, A.T.; Hadi, N.A.; Mohammed, N.S.; Hussain, S.A. Use of silymarine as adjuvant in type 1 diabetes mellitus patients poorly controlled with insulin. J. Fac. Med. Baghdad 2010, 52, 75–79. [Google Scholar] [CrossRef]
- Rezvanian, H.; Kachuei, A.; Mirzapour, A. The Effect of Milk Thistle Extract in the Treatment of Diabetic Nephropathy. J. Isfahan Med. Sch. 2011, 28, 1997–2010. [Google Scholar]
- Fallahzadeh, M.K.; Dormanesh, B.; Sagheb, M.M.; Roozbeh, J.; Vessal, G.; Pakfetrat, M.; Daneshbod, Y.; Kamali-Sarvestani, E.; Lankarani, K.B. Effect of addition of silymarin to renin-angiotensin system inhibitors on proteinuria in type 2 diabetic patients with overt nephropathy: A randomized, double-blind, placebo-controlled trial. Am. J. Kidney Dis. 2012, 60, 896–903. [Google Scholar] [CrossRef]
- Alkuraishy, H.M.; Alwindy, S. Beneficial effects of silymarin on lipid profile in hyperlipidemic patients: Placebo controlled clinical trail. WebmedCentral Pharmacol. 2012, 3, WMC002966. [Google Scholar]
- Mohammadi, S.; Afkhami Ardacani, M.; Salami, M.; Bolurani, S. Effects of silymarin on insulin resistance and blood lipid profile in first-degree relatives of type 2 diabetic patients. J. Med. Plants 2013, 12, 170–176. [Google Scholar]
- Taghvaei, T.; Bahar, A.; Hosseini, V.; Maleki, I.; Kasrai, M. Efficacy of silymarin on treatment of nonalcoholic steatohepatitis. J. Maz. Univ. Med. Sci. 2013, 23, 164–171. [Google Scholar]
- Masoodi, M.; Rezadoost, A.; Panahian, M.; Vojdanian, M. Effects of silymarin on reducing liver aminotransferases in patients with nonalcoholic fatty liver diseases. Govaresh 2013, 18, 181–185. [Google Scholar]
- Ebrahimpour Koujan, S.; Gargari, B.P.; Mobasseri, M.; Valizadeh, H.; Asghari-Jafarabadi, M. Effects of Silybum marianum (L.) Gaertn. (silymarin) extract supplementation on antioxidant status and hs-CRP in patients with type 2 diabetes mellitus: A randomized, triple-blind, placebo-controlled clinical trial. Phytomedicine 2015, 22, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Elgarf, A.T.; Mahdy, M.M.; Sabri, N.A. Effect of silymarin supplementation on glycemic control, lipid profile and insulin resistance in patients with type 2 diabetes mellitus. Int. J. Adv. Res. 2015, 3, 812–821. [Google Scholar]
- Shirali, S.; Barari, A.R.; Hosseini, S.A. The Effects of Endurance Training and Administration of Silymarin Supplementation on Oxidative Enzyme of SOD and Heat Shock Proteins 70 in Plasma of Unathletes Men Students. Jundishapur Sci. Med. J. 2016, 14, 703–712. [Google Scholar]
- Shirali, S.; Mashhadi, N.S.; Ashtary-Larky, D.; Safania, T.; Barari, A. Effects of silymarin supplementation on leptin, adiponectin and paraoxanase levels and body composition during exercise: A randomized double-blind placebo controlled clinical trial. Jundishapur J. Nat. Pharm. Prod. 2016, 11, e30044. [Google Scholar] [CrossRef]
- Kheong, C.W.; Mustapha, N.R.N.; Mahadeva, S. A randomized trial of silymarin for the treatment of nonalcoholic steatohepatitis. Clin. Gastroenterol. Hepatol. 2017, 15, 1940–1949.e8. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimpour-Koujan, S.; Gargari, B.P.; Mobasseri, M.; Valizadeh, H.; Asghari-Jafarabadi, M. Lower glycemic indices and lipid profile among type 2 diabetes mellitus patients who received novel dose of Silybum marianum (L.) Gaertn.(silymarin) extract supplement: A Triple-blinded randomized controlled clinical trial. Phytomedicine 2018, 44, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Anushiravani, A.; Haddadi, N.; Pourfarmanbar, M.; Mohammadkarimi, V. Treatment options for nonalcoholic fatty liver disease: A double-blinded randomized placebo-controlled trial. Eur. J. Gastroenterol. Hepatol. 2019, 31, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Ghalandari, K.; Shabani, M.; Khajehlandi, A.; Mohammadi, A. Effect of aerobic training with silymarin consumption on glycemic indices and liver enzymes in men with type 2 diabetes. Arch. Physiol. Biochem. 2023, 129, 76–81. [Google Scholar] [CrossRef]
- Vidimce, J.; Pennell, E.N.; Foo, M.; Shiels, R.G.; Shibeeb, S.; Watson, M.; Bulmer, A.C. Effect of Silymarin Treatment on Circulating Bilirubin and Cardiovascular Disease Risk Factors in Healthy Men: A Single-Blind, Randomized Crossover Trial. Clin. Pharmacol. Drug Dev. 2021, 10, 1156–1165. [Google Scholar] [CrossRef]
- Shadmehri, S.; Aghaei, F.; Mirfallah Lialestani, S.N. The Effect of Silymarin and Pilates Training on Anthropometric Indices, Blood sugar and Some Liver Enzymes in Diabetic Women with Obesity. Sport Physiol. Manag. Investig. 2022, 14, 113–125. [Google Scholar]
- Memon, A.; Siddiqui, S.S.; Ata, M.A.; Shaikh, K.R.; Soomro, U.A.; Shaikh, S. Silymarin improves glycemic control through reduction of insulin resistance in newly diagnosed patients of type 2 diabetes mellitus. Prof. Med. J. 2022, 29, 362–366. [Google Scholar]
- Aryan, H.; Farahani, R.H.; Chamanara, M.; Elyasi, S.; Jaafari, M.R.; Haddad, M.; Sani, A.T.; Ardalan, M.A.; Mosaed, R. Evaluation of the efficacy of oral nano-silymarin formulation in hospitalized patients with COVID-19: A double-blind placebo-controlled clinical trial. Phytother. Res. 2022, 36, 3924–3931. [Google Scholar] [CrossRef] [PubMed]
- Mirhashemi, S.H.; Hakakzadeh, A.; Yeganeh, F.E.; Oshidari, B.; Rezaee, S.P. Effect of 8 Weeks milk thistle powder (silymarin extract) supplementation on fatty liver disease in patients candidates for bariatric surgery. Metab. Open 2022, 14, 100190. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Salman, M.; Ali, I.; Fatima, N.; Mastoor, M.; Sayed, T.M. Analyze the Efficacy of Silymarin in Treating Newly Diagnosed Cases of Type 2 Diabetes Mellitus by Contrasting its Effects on Glycemic Control and Insulin Resistance. Pak. J. Med. Health Sci. 2022, 16, 365. [Google Scholar] [CrossRef]
- Di Pierro, F.; Putignano, P.; Villanova, N.; Montesi, L.; Moscatiello, S.; Marchesini, G. Preliminary study about the possible glycemic clinical advantage in using a fixed combination of Berberis aristata and Silybum marianum standardized extracts versus only Berberis aristata in patients with type 2 diabetes. Clin. Pharmacol. Adv. Appl. 2013, 5, 167–174. [Google Scholar] [CrossRef]
- Mohammadi, H.; Hadi, A.; Arab, A.; Moradi, S.; Rouhani, M.H. Effects of silymarin supplementation on blood lipids: A systematic review and meta-analysis of clinical trials. Phytother. Res. 2019, 33, 871–880. [Google Scholar] [CrossRef]
- Stolf, A.M.; Cardoso, C.C.; Acco, A. Effects of silymarin on diabetes mellitus complications: A review. Phytother. Res. 2017, 31, 366–374. [Google Scholar] [CrossRef]
- Alabdan, M.A.J.B.B. Silymarin ameliorates metabolic risk factors and protects against cardiac apoptosis in streptozotocin-induced diabetic rats. Biomed. Biotechnol. 2015, 3, 20–27. [Google Scholar]
- Soto, C.; Mena, R.; Luna, J.; Cerbon, M.; Larrieta, E.; Vital, P.; Uria, E.; Sanchez, M.; Recoba, R.; Barron, H.; et al. Silymarin induces recovery of pancreatic function after alloxan damage in rats. Life Sci. 2004, 75, 2167–2180. [Google Scholar] [CrossRef] [PubMed]
- Karimi, R.; Bakhshi, A.; Dayati, P.; Abazari, O.; Shahidi, M.; Savaee, M.; Kafi, E.; Rahmanian, M.; Naghib, S.M. Silymarin reduces retinal microvascular damage in streptozotocin-induced diabetic rats. Sci. Rep. 2022, 12, 15872. [Google Scholar] [CrossRef] [PubMed]
- Soto, C.P.; Perez, B.L.; Favari, L.P.; Reyes, J.L. Prevention of alloxan-induced diabetes mellitus in the rat by silymarin. Comp. Biochem. Physiol. Part C Pharmacol. Toxicol. Endocrinol. 1998, 119, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Amniattalab, A.; Malekinejad, H.; Rezabakhsh, A.; Rokhsartalab-Azar, S.; Alizade-Fanalou, S. Silymarin: A novel natural agent to restore defective pancreatic β cells in streptozotocin (STZ)-induced diabetic rats. Iran. J. Pharm. Res. IJPR 2016, 15, 493. [Google Scholar] [PubMed]
- Wu, C.-H.; Huang, S.-M.; Yen, G.-C. Silymarin: A novel antioxidant with antiglycation and antiinflammatory properties in vitro and in vivo. Antioxid. Redox Signal. 2011, 14, 353–366. [Google Scholar] [CrossRef] [PubMed]
- Woo, J.S.; Kim, T.-S.; Park, J.-H.; Chi, S.-C. Formulation and biopharmaceutical evaluation of silymarin using SMEDDS. Arch. Pharmacal Res. 2007, 30, 82–89. [Google Scholar] [CrossRef]
- Soto, C.; Raya, L.; Juárez, J.; Pérez, J.; González, I. Effect of Silymarin in Pdx-1 expression and the proliferation of pancreatic β-cells in a pancreatectomy model. Phytomedicine 2014, 21, 233–239. [Google Scholar] [CrossRef]
- Soleimani, V.; Delghandi, P.S.; Moallem, S.A.; Karimi, G. Safety and toxicity of silymarin, the major constituent of milk thistle extract: An updated review. Phytother. Res. 2019, 33, 1627–1638. [Google Scholar] [CrossRef] [PubMed]
- Orolin, J.; Večeřa, R.; Jung, D.; Meyer, U.; Škottová, N.; Anzenbacher, P. Hypolipidemic effects of silymarin are not mediated by the peroxisome proliferator-activated receptor alpha. Xenobiotica 2007, 37, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Škottová, N.; Kazdová, L.; Oliyarnyk, O.; Večeřa, R.; Sobolová, L.; Ulrichová, J. Phenolics-rich extracts from Silybum marianum and Prunella vulgaris reduce a high-sucrose diet induced oxidative stress in hereditary hypertriglyceridemic rats. Pharmacol. Res. 2004, 50, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Ji, Q. Treatment strategy for type 2 diabetes with obesity: Focus on glucagon-like peptide-1 receptor agonists. Clin. Ther. 2017, 39, 1244–1264. [Google Scholar] [CrossRef] [PubMed]
- Federico, A.; Dallio, M.; Loguercio, C. Silymarin/silybin and chronic liver disease: A marriage of many years. Molecules 2017, 22, 191. [Google Scholar] [CrossRef] [PubMed]
- Mahdavi, A.; Bagherniya, M.; Fakheran, O.; Reiner, Ž.; Xu, S.; Sahebkar, A. Medicinal plants and bioactive natural compounds as inhibitors of HMG-CoA reductase: A literature review. BioFactors 2020, 46, 906–926. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, F.D.; Whelton, P.K. High blood pressure and cardiovascular disease. Hypertension 2020, 75, 285–292. [Google Scholar] [CrossRef]
- Keevil, J.G.; Osman, H.E.; Reed, J.D.; Folts, J.D. Grape juice, but not orange juice or grapefruit juice, inhibits human platelet aggregation. J. Nutr. 2000, 130, 53–56. [Google Scholar] [CrossRef]
- Nosratabadi, S.; Ashtary-Larky, D.; Hosseini, F.; Namkhah, Z.; Mohammadi, S.; Salamat, S.; Nadery, M.; Yarmand, S.; Zamani, M.; Wong, A. The effects of vitamin C supplementation on glycemic control in patients with type 2 diabetes: A systematic review and meta-analysis. Diabetes Metab. Syndr. Clin. Res. Rev. 2023, 17, 102824. [Google Scholar] [CrossRef] [PubMed]
- Williamson, E.M.; Liu, X.; Izzo, A.A. Trends in use, pharmacology, and clinical applications of emerging herbal nutraceuticals. Br. J. Pharmacol. 2020, 177, 1227–1240. [Google Scholar] [CrossRef]
- Izzo, A.A.; Hoon-Kim, S.; Radhakrishnan, R.; Williamson, E.M. A critical approach to evaluating clinical efficacy, adverse events and drug interactions of herbal remedies. Phytother. Res. 2016, 30, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Andrew, R.; Izzo, A.A. Principles of pharmacological research of nutraceuticals. Br. J. Pharmacol. 2017, 174, 1177. [Google Scholar] [CrossRef] [PubMed]
Author, Year | Country | Study Design | Participants | Sex | Sample Size | Trial Duration (Week) | Mean Age | Mean BMI | SIL Dose (mg/d) | CG | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IG | CG | IG | CG | IG | CG | ||||||||
Velussi et al., 1993 [52] | Italy | Parallel, R, CO | Cirrhotic diabetic patients | ♂/♀ | 30 | 30 | 24 | 63 ± 21.9 | 62 ± 16.4 | 25.1 ± 1.1 | 24.9 ± 6.02 | 600 | Non-placebo |
Velussi et al., 1997 [53] | Italy | Parallel, R, CO | Cirrhotic diabetic patients | ♂/♀ | 30 | 30 | 48 | 63 ± 4 | 62 ± 3 | 25.1 ± 1.1 | 24.9 ± 0.7 | 600 | Non-placebo |
Simanek et al., 2001 [54] | Czech Republic | Parallel, R, DB, PC | Healthy young men | ♂ | 17 | 12 | 9 | 20.6 ± 0.8 | 20.7 ± 0.6 | 22.6 ± 0.9 | 21.6 ± 0.7 | 858 | Placebo |
Fallah Huseini et al., 2004 [55] | Iran | Parallel, R, DB, PC | Patients with T2DM and hyperlipidemia | ♂/♀ | 29 | 25 | 16 | 51.2 ± 7.2 | 53.8 ± 6.7 | NR | NR | 600 | Placebo |
Fallah Huseini et al., 2006 [56] | Iran | Parallel, R, DB, PC | Patients with T2DM | ♂/♀ | 25 | 26 | 16 | 53.0 ± 6.6 | 54.1 ± 6.0 | NR | NR | 600 | Placebo |
Hussain et al., 2007 [57] | Iraq | Parallel, R, DB, PC | Patients with T2DM | ♂/♀ | 18 | 20 | 17 | 49.2 ± 4.8 | 31.6 ± 0.4 | 30.9 ± 0.3 | 200 | Placebo | |
Valentova et al., 2008 (A) [58] | Czech Republic | Parallel, R, DB, PC | Patients with MetS | ♂/♀ | 14 | 34 | 12 | 5.4 ± 6.9 | 50.9 ± 12.8 | 31.1 ± 4.4 | 28.6 ± 4.7 | 800 | Placebo |
Valentova et al., 2008 (B) [58] | Czech Republic | Parallel, R, DB, PC | Patients with MetS | ♂/♀ | 19 | 19 | 12 | 51.4 ± 8.0 | 46.6 ± 8.7 | 27.8 ± 5.2 | 27.6 ± 3.7 | 200 | Meca |
Ramezani et al., 2008 [59] | Iran | Parallel, R, DB, PC | Patients with T2DM | ♂/♀ | 30 | 30 | 8 | 54.6 ± 2.1 | 52.1 ± 3.4 | NR | NR | 600 | Placebo |
Hajaghamohammadi et al., 2008 [60] | Iran | Parallel, R, DB, PC | Patients with NAFLD | ♂/♀ | 25 | 25 | 8 | 40.3 | 39.9 | 30 | 29.1 | 140 | Placebo |
Gharagozloo et al., 2009 [61] | Iran | Parallel, R, DB, PC | Patients with β-thalassemia major | ♂/♀ | 29 | 30 | 12 | 20.2 ± 6.2 | 17.9 ± 3.7 | 17.2 ± 1.9 | 17.9 ± 1.8 | 420 | Placebo |
Hashemi et al., 2009 [62] | Iran | Parallel, R, DB, PC | Patients with NASH | ♂/♀ | 50 | 50 | 24 | 39.2 ± 11.1 | 39.0 ± 10.7 | 26.75 | 27.8 | 280 | Placebo |
Numan et al., 2010 [63] | Iraq | Parallel, R, DB, PC | Patients with T1D | ♂/♀ | 30 | 30 | 8 | 44.3 ± 16.4 | NR | NR | 400 | Placebo | |
Rezvanian et al., 2011 [64] | Iran | Parallel, R, DB, PC | Patients with T2DM nephropathy | ♂/♀ | 29 | 23 | 12 | 55.9 ± 6.5 | 57.7 ± 7.7 | NR | NR | 420 | Placebo |
Fallahzadeh et al., 2012 [65] | Iran | Parallel, R, DB, PC | Patients with T2DM | ♂/♀ | 30 | 30 | 12 | 55.9 ± 8.3 | 57.6 ±7.5 | 28.6 ± 6 | 29.2 ± 4.8 | 420 | Placebo |
Alkuraishy et al., 2012 [66] | Iraq | Parallel, R, PC | Patients with hyperlipidemia | ♂/♀ | 10 | 10 | 2 | 36–64 | NR | NR | 600 | Placebo | |
Mohammadi et al., 2013 [67] | Iran | Parallel, R, DB, PC | Patients with T2DM | ♂/♀ | 30 | 30 | 12 | 50.1 ± 13.1 | 45.4 ± 11.9 | 28.4 ± 3.3 | 29.19 ± 3.6 | 280 | Placebo |
Di Pierro et al., 2013 [84] | Italy | Parallel, R, SB, PC | Patients with T2DM | ♂/♀ | 30 | 27 | 16 | 67.8 ± 10.8 | 66.3 ± 9.8 | 29.9 ± 7.2 | 30.5 ± 6.8 | 210 | Berberis aristata |
Taghvaei et al., 2013 [68] | Iran | Parallel, R, DB, PC | Patients with NASH | ♂/♀ | 21 | 20 | 24 | 42.9 ± 11.42 | 40.35 ± 12.51 | NR | NR | 280 | Placebo |
Masoodi et al., 2013 [69] | Iran | Parallel, R, DB, PC | Patients with NAFLD | ♂/♀ | 50 | 50 | 12 | 48.4 ± 6.7 | 48.32 ± 5.4 | 29.04 ± 3.6 | 29.1 ± 3.3 | 280 | Placebo |
Ebrahimpourkoujan et al., 2015 [70] | Iran | Parallel, R, TB, PC | Patients with T2DM | ♂/♀ | 20 | 20 | 6 | 43.5 ± 5.7 | 46.1 ± 4.3 | 30.7 ± 2.4 | 30.0 ± 4.4 | 420 | Placebo |
Elgarf et al., 2015 [71] | Egypt | Parallel, R, SB, PC | Patients with T2DM | ♂/♀ | 40 | 20 | 12 | 51.5 ± 5.5 | 51 ± 6 | 34.2 ± 3.6 | 34.7 ± 5.2 | 420 | Placebo |
Shirali et al., 2016 (A) [72] | Iran | Parallel, R, CO | Non-athletic male | ♂ | 8 | 8 | 6 | 20.3 ± 2.6 | 20.5 ± 2.2 | 23.4 ± 4.1 | 24.2 ± 2.3 | 500 | Endurance training |
Shirali et al., 2016 (B) [72] | Iran | Parallel, R, CO | Non-athletic male | ♂ | 8 | 8 | 6 | 20.6 ± 2.8 | 20.1 ± 2.1 | 23.6 ± 2.6 | 2.63 ± 3.1 | 500 | Non-placebo |
Shirali et al., 2016 (A) [73] | Iran | Parallel, R, DB, PC | Untrained men | ♂ | 9 | 9 | 4 | 22.8 ± 1.4 | 22.5 ± 1.5 | 22.7 ± 2.3 | 23.5 ± 3.5 | 140 | Placebo + Endurance training |
Shirali et al., 2016 (B) [73] | Iran | Parallel, R, DB, PC | Untrained men | ♂ | 9 | 9 | 4 | 22.9 ± 1.2 | 22.7 ± 1.5 | 23.8 ± 3.6 | 23.6 ± 3.5 | 140 | Placebo + Strength training |
Kheong et al., 2017 [74] | Malaysia | Parallel, R, DB, PC | Patients with NASH | ♂/♀ | 49 | 50 | 48 | 49.6 ± 12.7 | 50.1 ± 10.2 | 30.0 ± 4.0 | 31.0 ± 4.6 | 2100 | Placebo |
Ebrahimpour-koujan et al., 2018 [75] | Iran | Parallel, R, TB, PC | Patients with T2DM | ♂/♀ | 20 | 20 | 6 | 43.5 ± 5.7 | 46.1 ± 4.3 | 30.7 ± 2.4 | 30.0 ± 4.4 | 420 | Placebo |
Anushiravani et al., 2019 [76] | Iran | Parallel, R, DB, PC | Patients with NAFLD | ♂/♀ | 30 | 30 | 12 | NR | NR | 25.1 ± 3.7 | 26.1 ± 3.1 | 140 | Placebo |
Ghalandari et al., 2020 (A) [77] | Iran | Parallel, R, CO | Patients with T2DM | ♂ | 15 | 15 | 8 | 47.00 ± 1.7 | 46.59 ± 1.8 | NR | NR | 280 | Aerobic training |
Ghalandari et al., 2020 (B) [77] | Iran | Parallel, R, PC | Patients with T2DM | ♂ | 15 | 15 | 8 | 46.08 ± 1.8 | 46.58 ± 1.5 | NR | NR | 280 | Placebo |
Vidimce et al., 2021 [78] | Australia | Crossover, R, SB, PC | Healthy men | ♂ | 17 | 17 | 2 | 31.8 ± 10.7 | 24.7 ± 3.29 | 420 | Placebo | ||
Shadmehri et al., 2021 (A) [79] | Iran | Parallel, R, CO | Women with T2DM and obesity | ♀ | 15 | 15 | 12 | 58.8 ± 3.04 | 32.1 ± 4.8 | 30.0 ± 8.6 | 420 | Pilates training | |
Shadmehri et al., 2021 (B) [79] | Iran | Parallel, R, PC | Women with T2DM and obesity | ♀ | 15 | 15 | 12 | 58.8 ± 3.04 | 32.2 ± 9.06 | 32.1 ± 2.6 | 420 | Placebo | |
Memon et al., 2021 [80] | Pakistan | Parallel, PC | Patients with T2DM | ♂/♀ | 100 | 100 | 12 | 49.9 ± 14.5 | 50.3 ± 13.3 | NR | NR | 200 | OHA |
Aryan et al., 2022 [81] | Iran | Parallel, R, DB, PC | Patients with COVID-19 | ♂/♀ | 25 | 25 | 2 | 48.76 ± 2.2 | 49.32 ± 2.2 | NR | NR | 210 | Placebo |
Mirhashemi et al., 2022 [82] | Iran | Parallel, R, DB, PC | Patients with NAFLD | ♂/♀ | 27 | 25 | 8 | 37.8 ± 9.9 | 38.0 ± 10.0 | 47.2 ± 6.9 | 48.2 ± 6.9 | 560 | Placebo |
Khan et al., 2022 [83] | Pakistan | Parallel, R, PC | Patients with T2DM | ♂/♀ | 30 | 30 | 13 | 50.5 | 51 | 34.2 | 33.7 | 200 | Placebo |
Effect Size, n | WMD (95% CI) | P—within Subgroups | Heterogeneity | |||
---|---|---|---|---|---|---|
P—Heterogeneity | I2 | P between Subgroups | ||||
Impacts of SIL on body weight (kg) | ||||||
Overall effect | 9 | −0.69 (−1.69, 0.31) | 0.178 | 0.986 | 0.0% | |
Baseline BMI (kg/m2) | ||||||
Normal (18.5–24.9 | 4 | −0.72 (−2.87, 1.43) | 0.512 | 0.799 | 0.0% | 0.909 |
Overweight (25–29.9) | 1 | 0.76 (−5.51, 7.03) | 0.812 | - | - | |
Obese (≥30) | 1 | −0.60 (−2.91, 1.71) | 0.611 | - | - | |
Trial duration (week) | ||||||
≥12 | 3 | −0.79 (−2.77, 1.19) | 0.435 | 0.675 | 0.0% | 0.908 |
˂12 | 6 | −0.65 (−1.81, 0.50) | 0.270 | 0.961 | 0.0% | |
Intervention dose (mg/day) | ||||||
≥400 | 3 | −0.84 (−2.65, 0.97) | 0.365 | 0.650 | 0.0% | 0.846 |
˂400 | 6 | −0.62 (−1.82, 0.58) | 0.310 | 0.969 | 0.0% | |
Health status | ||||||
Unhealthy | 5 | −0.68 (−1.81, 1.43) | 0.239 | 0.938 | 0.0% | 0.975 |
Healthy | 4 | −0.72 (−2.87, 1.43) | 0.512 | 0.799 | 0.0% | |
Impacts of SIL on BMI (kg/m2) | ||||||
Overall effect | 15 | −0.36 (−1.28, 0.57) | 0.447 | <0.001 | 90.6% | |
Baseline BMI (kg/m2) | ||||||
Normal (18.5–24.9 | 4 | −0.04 (−0.88, 0.79) | 0.912 | 0.955 | 0.0% | 0.052 |
Overweight (25–29.9) | 5 | 0.16 (−0.30, 0.63) | 0.485 | 0.655 | 0.0% | |
Obese (≥30) | 6 | −1.27 (−2.33, −0.21) | 0.019 | 0.004 | 70.9% | |
Trial duration (week) | ||||||
≥12 | 9 | −0.29 (−1.59, 0.99) | 0.650 | <0.001 | 93.3% | 0.803 |
˂12 | 6 | −0.48 (−1.11, 0.14) | 0.133 | 0.742 | 0.0% | |
Intervention dose (mg/day) | ||||||
≥400 | 6 | −0.58 (−1.43, 0.26) | 0.180 | 0.930 | 0.0% | 0.689 |
˂400 | 9 | −0.28 (−1.47, 0.90) | 0.639 | <0.001 | 94.1% | |
Health status | ||||||
Unhealthy | 11 | −0.45 (−1.53, 0.63) | 0.413 | <0.001 | 92.0% | 0.562 |
Healthy | 4 | −0.04 (−0.88, 0.79) | 0.912 | 0.955 | 0.0% | |
Impacts of SIL on serum FBG (mg/dL) | ||||||
Overall effect | 24 | −21.68 (−31.37, −11.99) | <0.001 | <0.001 | 99.5% | |
Baseline serum FBG (mg/dL) | ||||||
<126 | 8 | 0.16 (−3.28, 3.62) | 0.923 | 0.005 | 65.8% | <0.001 |
≥126 | 16 | −33.81 (−44.56, −23.05) | <0.001 | <0.001 | 98.7% | |
Baseline BMI (kg/m2) | ||||||
Normal (18.5–24.9 | 2 | 0.11 (−0.28, 0.50) | 0.579 | 0.356 | 0.0% | 0.004 |
Overweight (25–29.9) | 8 | −3.02 (−12.07, 6.02) | 0.513 | <0.001 | 89.6% | |
Obese (≥30) | 5 | −36.81 (−58.82, −14.80) | 0.001 | <0.001 | 98.5% | |
Trial duration (week) | ||||||
≥12 | 18 | −20.61 (−32.23, −8.99) | 0.001 | <0.001 | 98.8% | 0.905 |
˂12 | 6 | −19.65 (−30.28, −9.02) | <0.001 | <0.001 | 97.9% | |
Intervention dose (mg/day) | ||||||
≥400 | 14 | −25.52 (−39.31, −11.73) | <0.001 | <0.001 | 98.7% | 0.404 |
˂400 | 10 | −17.27 (−30.87, −3.67) | 0.013 | <0.001 | 99.2% | |
Health status | ||||||
Unhealthy | 23 | −22.62 (−32.10, −13.14) | <0.001 | <0.001 | 98.7% | <0.001 |
Healthy | 1 | 0.10 (−0.28, 0.49) | 0.591 | - | - | |
Impacts of SIL on serum fasting insulin (mU/mL) | ||||||
Overall effect | 9 | −3.76 (−4.80, −2.72) | <0.001 | <0.001 | 98.6% | |
Baseline BMI (kg/m2) | ||||||
Overweight (25–29.9) | 3 | −8.53 (−14.08, −2.98) | 0.003 | <0.001 | 94.3% | 0.655 |
Obese (≥30) | 2 | −7.03 (−10.53, −3.53) | <0.001 | 0.026 | 79.7% | |
Trial duration (week) | ||||||
≥12 | 6 | −5.14 (−6.71, −3.56) | <0.001 | <0.001 | 99.1% | <0.001 |
˂12 | 3 | −1.08 (−1.92, −0.23) | 0.012 | <0.001 | 88.0% | |
Intervention dose (mg/day) | ||||||
≥400 | 5 | −7.06 (−13.27, −0.84) | 0.026 | <0.001 | 99.3% | 0.049 |
˂400 | 4 | −0.78 (−1.29, −0.27) | 0.003 | <0.001 | 87.1% | |
Impacts of SIL on HbA1c (%) | ||||||
Overall effect | 14 | −0.85 (−1.27, −0.43) | <0.001 | <0.001 | 98.4% | |
Baseline BMI (kg/m2) | ||||||
Overweight (25–29.9) | 5 | −0.31 (−0.67, 0.04) | 0.083 | <0.001 | 95.7% | 0.151 |
Obese (≥30) | 3 | −1.06 (−2.02, −0.11) | 0.028 | <0.001 | 97.5% | |
Trial duration (week) | ||||||
≥12 | 12 | −0.68 (−1.11, −0.24) | 0.002 | <0.001 | 98.6% | <0.001 |
˂12 | 2 | −1.95 (−2.33, −1.57) | <0.001 | 0.423 | 0.0% | |
Intervention dose (mg/day) | ||||||
≥400 | 9 | −0.97 (−1.43, −0.51) | <0.001 | <0.001 | 95.5% | 0.396 |
˂400 | 5 | −0.59 (−1.33, 0.14) | 0.117 | <0.001 | 99.1% | |
Impacts of SIL on serum TG (mg/dL) | ||||||
Overall effect | 18 | −26.22 (−40.32, −12.12) | <0.001 | <0.001 | 97.1% | |
Baseline serum TG (mg/dL) | ||||||
<150 | 3 | 10.31 (−13.13, 33.76) | 0.389 | <0.001 | 95.5% | 0.005 |
≥150 | 15 | −35.30 (−56.99, −13.61) | 0.001 | <0.001 | 96.5% | |
Baseline BMI (kg/m2) | ||||||
Normal (18.5–24.9) | 1 | −4.37 (−4.71, −4.04) | <0.001 | - | - | 0.049 |
Overweight (25–29.9) | 7 | 0.91 (−14.32, 16.16) | 0.906 | <0.001 | 84.0% | |
Obese (≥30) | 4 | −66.20 (−117.63, −14.76) | 0.012 | <0.001 | 96.6% | |
Trial duration (week) | ||||||
≥12 | 12 | −32.85 (−58.38, −7.32) | 0.012 | <0.001 | 97.7% | 0.243 |
˂12 | 6 | −13.37 (−33.80, 7.06) | 0.200 | <0.001 | 87.8% | |
Intervention dose (mg/day) | ||||||
≥400 | 13 | −33.97 (−50.93, −17.02) | <0.001 | <0.001 | 98.0% | 0.009 |
˂400 | 5 | −6.06 (−18.12, 5.99) | 0.324 | 0.427 | 0.0% | |
Health status | ||||||
Unhealthy | 16 | −31.05 (−52.44, −9.67) | 0.004 | <0.001 | 97.1% | 0.017 |
Healthy | 2 | −1.27 (−12.92, 10.37) | 0.831 | 0.186 | 42.9% | |
Impacts of SIL on serum TC (mg/dL) | ||||||
Overall effect | 19 | −13.97 (−23.09, −4.85) | 0.003 | <0.001 | 98.3% | |
Baseline serum TC (mg/dL) | ||||||
<200 | 11 | −8.58 (−16.97, −0.19) | 0.045 | <0.001 | 97.0% | 0.145 |
>200 | 8 | −21.02 (−35.51, −6.54) | 0.004 | <0.001 | 89.5% | |
Baseline BMI (kg/m2) | ||||||
Normal (18.5–24.9 | 1 | −0.16 (−0.54, 0.22) | 0.410 | - | - | 0.142 |
Overweight (25–29.9) | 8 | 1.77 (−10.63, 14.17) | 0.780 | <0.001 | 95.3% | |
Obese (≥30) | 4 | −28.27 (−56.51, −0.03) | 0.050 | <0.001 | 93.9% | |
Trial duration (week) | ||||||
≥12 | 13 | −11.39 (−27.15, 4.36) | 0.157 | <0.001 | 98.6% | 0.462 |
˂12 | 6 | −20.48 (−38.85, −2.10) | 0.029 | <0.001 | 91.7% | |
Intervention dose (mg/day) | ||||||
≥400 | 14 | −18.79 (−29.88, −7.71) | 0.001 | <0.001 | 98.7% | 0.004 |
˂400 | 5 | −0.65 (−6.26, 4.96) | 0.820 | 0.625 | 0.0% | |
Health status | ||||||
Unhealthy | 17 | −15.95 (−29.73, −2.17) | 0.023 | <0.001 | 98.2% | 0.025 |
Healthy | 2 | −0.16 (−0.54, 0.22) | 0.408 | 0.926 | 0.0% | |
Impacts of SIL on serum LDL (mg/dL) | ||||||
Overall effect | 17 | −17.13 (−25.63, −8.63) | <0.001 | <0.001 | 97.9% | |
Baseline serum LDL (mg/dL) | ||||||
<100 | 9 | −5.28 (−9.93, −0.62) | 0.026 | <0.001 | 82.5% | 0.001 |
≥100 | 8 | −29.60 (−42.79, −16.41) | <0.001 | <0.001 | 91.6% | |
Baseline BMI (kg/m2) | ||||||
Normal (18.5–24.9 | 1 | −0.13 (−0.41, 0.15) | 0.371 | - | - | 0.014 |
Overweight (25–29.9) | 6 | −6.02 (−10.93, −1.10) | 0.016 | 0.064 | 52.0% | |
Obese (≥30) | 4 | −25.73 (−54.46, 2.99) | 0.079 | <0.001 | 95.6% | |
Trial duration (week) | ||||||
≥12 | 11 | −15.16 (−25.11, −5.21) | 0.003 | <0.001 | 95.8% | 0.578 |
˂12 | 6 | −21.43 (−41.16, −1.70) | 0.033 | <0.001 | 94.3% | |
Intervention dose (mg/day) | ||||||
≥400 | 12 | −22.39 (−33.31, −11.46) | <0.001 | <0.001 | 98.5% | 0.004 |
˂400 | 5 | −4.48 (−10.18, 1.21) | 0.123 | 0.175 | 36.9% | |
Health status | ||||||
Unhealthy | 15 | −19.27 (−28.19, −10.36) | <0.001 | <0.001 | 95.0% | <0.001 |
Healthy | 2 | −0.13 (−0.41, 0.15) | 0.367 | 0.712 | 0.0% | |
Impacts of SIL on serum HDL (mg/dL) | ||||||
Overall effect | 17 | 2.26 (−0.54, 5.06) | 0.114 | <0.001 | 97.7% | |
Baseline serum HDL (mg/dL) | ||||||
<50 | 9 | 5.85 (2.74, 8.96) | <0.001 | <0.001 | 95.1% | <0.001 |
≥50 | 8 | −3.64 (−6.14, −1.14) | 0.004 | <0.001 | 78.1% | |
Baseline BMI (kg/m2) | ||||||
Normal (18.5–24.9 | 1 | −4.83 (−4.97, −4.70) | <0.001 | - | - | <0.001 |
Overweight (25–29.9) | 6 | 0.66 (−0.71, 2.04) | 0.343 | 0.068 | 51.2% | |
Obese (≥30) | 4 | 5.30 (−1.19, 11.79) | 0.110 | <0.001 | 95.0% | |
Trial duration (week) | ||||||
≥12 | 11 | 0.92 (−2.09, 3.93) | 0.549 | <0.001 | 94.5% | 0.402 |
˂12 | 6 | 4.65 (−3.55, 12.86) | 0.266 | <0.001 | 98.2% | |
Intervention dose (mg/day) | ||||||
≥400 | 12 | 3.11 (−0.43, 6.66) | 0.086 | <0.001 | 98.1% | 0.368 |
˂400 | 5 | 1.37 (0.05, 2.69) | 0.042 | 0.339 | 11.7% | |
Health status | ||||||
Unhealthy | 15 | 2.85 (−0.19, 5.91) | 0.067 | <0.001 | 95.3% | 0.238 |
Healthy | 2 | −1.66 (−8.52, 5.20) | 0.635 | 0.001 | 90.2% | |
Impacts of SIL on serum CRP (mg/L) | ||||||
Overall effect | 5 | −1.10 (−3.13, 0.93) | 0.289 | <0.001 | 93.6% | |
Baseline serum CRP (mg/L) | ||||||
<3 | 2 | −0.22 (−2.66, 2.21) | 0.855 | <0.001 | 94.4% | 0.075 |
>3 | 3 | −2.49 (−2.99, −1.98) | <0.001 | 0.865 | 0.0% | |
Baseline BMI (kg/m2) | ||||||
Overweight (25–29.9) | 1 | −3.45 (−13.76, 6.86) | 0.512 | - | - | 0794 |
Obese (≥30) | 2 | −2.06 (−3.04, −1.09) | <0.001 | 0.058 | 72.3% | |
Trial duration (week) | ||||||
≥12 | 2 | −2.50 (−3.00, −1.99) | <0.001 | 0.857 | 0.0% | 0.060 |
˂12 | 3 | −0.34 (−2.53, 1.85) | 0.760 | <0.001 | 89.0% | |
Intervention dose (mg/day) | ||||||
≥400 | 3 | −1.00 (−3.23, 1.22) | 0.379 | <0.001 | 96.8% | 0.818 |
˂400 | 2 | −1.61 (−6.29, 3.07) | 0.500 | 0.695 | 0.0% | |
Health status | ||||||
Unhealthy | 4 | −2.13 (−2.79, −1.47) | <0.001 | 0.280 | 21.7% | <0.001 |
Healthy | 1 | 1.00 (0.29, 1.70) | 0.005 | - | - | |
Impacts of SIL on level of SBP (mmHg) | ||||||
Overall effect | 3 | −1.23 (−2.70, 0.23) | 0.099 | 0.816 | 0.0% | |
Impacts of SIL on level of DBP (mmHg) | ||||||
Overall effect | 3 | −1.25 (−2.25, −0.26) | 0.013 | 0.358 | 2.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammadi, S.; Asbaghi, O.; Afrisham, R.; Farrokhi, V.; Jadidi, Y.; Mofidi, F.; Ashtary-Larky, D. Impacts of Supplementation with Silymarin on Cardiovascular Risk Factors: A Systematic Review and Dose–Response Meta-Analysis. Antioxidants 2024, 13, 390. https://doi.org/10.3390/antiox13040390
Mohammadi S, Asbaghi O, Afrisham R, Farrokhi V, Jadidi Y, Mofidi F, Ashtary-Larky D. Impacts of Supplementation with Silymarin on Cardiovascular Risk Factors: A Systematic Review and Dose–Response Meta-Analysis. Antioxidants. 2024; 13(4):390. https://doi.org/10.3390/antiox13040390
Chicago/Turabian StyleMohammadi, Shooka, Omid Asbaghi, Reza Afrisham, Vida Farrokhi, Yasaman Jadidi, Fatemeh Mofidi, and Damoon Ashtary-Larky. 2024. "Impacts of Supplementation with Silymarin on Cardiovascular Risk Factors: A Systematic Review and Dose–Response Meta-Analysis" Antioxidants 13, no. 4: 390. https://doi.org/10.3390/antiox13040390
APA StyleMohammadi, S., Asbaghi, O., Afrisham, R., Farrokhi, V., Jadidi, Y., Mofidi, F., & Ashtary-Larky, D. (2024). Impacts of Supplementation with Silymarin on Cardiovascular Risk Factors: A Systematic Review and Dose–Response Meta-Analysis. Antioxidants, 13(4), 390. https://doi.org/10.3390/antiox13040390