Supplementing Boar Diet with Nicotinamide Mononucleotide Improves Sperm Quality Probably through the Activation of the SIRT3 Signaling Pathway
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Ethics Statement
2.2. Animals and Experimental Design
2.3. Data Collection and Sampling
2.4. Sperm Motility
2.5. Serum Analysis
2.6. Semen Analysis
2.7. ATP Levels
2.8. In Vitro H2O2 Model Construction
2.9. ROS Staining of Live Cells
2.10. Sperm Mitochondrial Extraction
2.11. Sperm Apoptosis Assay
2.12. Western Blotting
2.13. Immunofluorescence
2.14. Statistical Analysis
3. Results
3.1. Dietary NMN Supplementation Improved Boar Sperm Quality and Sexual Desire
3.2. Dietary NMN Supplementation Increased Testosterone Levels and Antioxidant Capacity in Boar Serum
3.3. Dietary NMN Supplementation Enhanced Antioxidation and Inhibited Apoptosis in Boar Sperm
3.4. NMN Protected Sperm from H2O2-Induced Oxidative Stress and Apoptosis
3.5. NMN Exerted Antioxidant and Antiapoptotic Effect through SIRT3 Deacetylation
3.6. SIRT3-Specific Inhibitor 3-TYP Attenuated Antioxidation and Antiapoptotic Effect of NMN in Sperm
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Broekhuijse, M.; Feitsma, H.; Gadella, B. Artificial insemination in pigs: Predicting male fertility. Vet. Q. 2012, 32, 151–157. [Google Scholar] [CrossRef]
- Bortolozzo, F.; Menegat, M.; Mellagi, A.; Bernardi, M.; Wentz, I. New artificial insemination technologies for swine. Reprod. Domest. Anim. 2015, 50 (Suppl. S2), 80–84. [Google Scholar] [CrossRef]
- Smital, J. Effects influencing boar semen. Anim. Reprod. Sci. 2009, 110, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Lopez Rodriguez, A.; Van Soom, A.; Arsenakis, I.; Maes, D. Boar management and semen handling factors affect the quality of boar extended semen. Porc. Health Manag. 2017, 3, 15. [Google Scholar] [CrossRef] [PubMed]
- Safranski, T. Genetic selection of boars. Theriogenology 2008, 70, 1310–1316. [Google Scholar] [CrossRef]
- Henneberg, S.; Kleve-Feld, M.; Schröter, F.; Jung, M.; Schulze, M. Lifetime and removal reasons for Pietrain boars in European AI centers: A retrospective analysis. J. Anim. Sci. 2023, 101, skac408. [Google Scholar] [CrossRef]
- Evans, E.; Scholten, J.; Mzyk, A.; Reyes-San-Martin, C.; Llumbet, A.; Hamoh, T.; Arts, E.; Schirhagl, R.; Cantineau, A. Male subfertility and oxidative stress. Redox Biol. 2021, 46, 102071. [Google Scholar] [CrossRef] [PubMed]
- Kou, Z.Y.; Wang, C.; Gao, L.; Chu, G.; Yang, G.; Pang, W. Icariin improves pig sperm quality through antioxidant and antibacterial effects during liquid storage at 17 °C. Livest. Sci. 2022, 256, 104827. [Google Scholar] [CrossRef]
- Shaoyong, W.; Li, Q.; Ren, Z.; Xiao, J.; Diao, Z.; Yang, G.; Pang, W. Effects of kojic acid on boar sperm quality and anti-bacterial activity during liquid preservation at 17 °C. Theriogenology 2019, 140, 124–135. [Google Scholar] [CrossRef]
- Ren, Z.; Shaoyong, W.; Li, Q.; Ma, L.; Xiao, J.; Jiao, J.; Yang, G.; Pang, W. Effects of isatis root polysaccharide on boar sperm quality during liquid storage and in vitro fertilization. Anim. Reprod. Sci. 2019, 210, 106178. [Google Scholar] [CrossRef]
- Chianese, R.; Pierantoni, R. Mitochondrial reactive oxygen species (ROS) production alters sperm quality. Antioxidants 2021, 10, 92. [Google Scholar] [CrossRef] [PubMed]
- Candas, D.; Li, J. MnSOD in oxidative stress response-potential regulation via mitochondrial protein influx. Antioxid. Redox Signal. 2014, 20, 1599–1617. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xiang, H.; Liu, J.; Chen, Y.; He, R.; Liu, B. Mitochondrial sirtuin 3: New emerging biological function and therapeutic target. Theranostics 2020, 10, 8315–8342. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Q.; Li, R.; Li, Z.; Jiang, Q.; Yan, F.; Ye, J. The role of sirtuins in the regulatin of oxidative stress during the progress and therapy of type 2 diabetes mellitus. Life Sci. 2023, 333, 122187. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, J.; Baur, J.; Imai, S. NAD intermediates: The biology and therapeutic potential of NMN and NR. Cell Metab. 2018, 27, 513–528. [Google Scholar] [CrossRef] [PubMed]
- Nadeeshani, H.; Li, J.; Ying, T.; Zhang, B.; Lu, J. Nicotinamide mononucleotide (NMN) as an anti-aging health product–promises and safety concerns. J. Adv. Res. 2021, 37, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Zhou, X.; Xu, K.; Liu, S.; Zhu, X.; Yang, J. The safety and antiaging effects of nicotinamide mononucleotide in human clinical trials: An update. Adv. Nutr. 2023, 14, 1416–1435. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Chen, W.; Hou, P.; Liu, Z.; Zuo, M.; Liu, S.; Feng, C.; Han, Y.; Li, P.; Shi, Y.; et al. NAD metabolism-based immunoregulation and therapeutic potential. Cell Biosci. 2023, 13, 81. [Google Scholar] [CrossRef]
- Peek, C.; Affinati, A.; Ramsey, K.; Kuo, H.; Yu, W.; Sena, L.; Ilkayeva, O.; Marcheva, B.; Kobayashi, Y.; Omura, C.; et al. Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science 2013, 342, 1243417. [Google Scholar] [CrossRef]
- Guan, Y.; Wang, S.; Huang, X.; Xie, Q.; Xu, Y.; Shang, D.; Hao, C. Nicotinamide Mononucleotide, an NAD+ precursor, rescues age-associated susceptibility to AKI in a sirtuin 1-dependent manner. J. Am. Soc. Nephrol. 2017, 28, 2337–2352. [Google Scholar] [CrossRef]
- North, B.; Rosenberg, M.; Jeganathan, K.; Hafner, A.; Michan, S.; Dai, J.; Baker, D.; Cen, Y.; Wu, L.; Sauve, A.A.; et al. SIRT2 induces the checkpoint kinase BubR1 to increase lifespan. EMBO J. 2014, 33, 1438–1453. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Cui, Z.; Gao, Q.; Rui, R.; Xiong, B. Nicotinamide mononucleotide supplementation reverses the declining quality of maternally aged oocytes. Cell Rep. 2020, 32, 107987. [Google Scholar] [CrossRef] [PubMed]
- Bertoldo, M.; Listijono, D.; Ho, W.; Riepsamen, A.; Goss, D.; Richani, D.; Jin, X.; Mahbub, S.; Campbell, J.; Habibalahi, A.; et al. NAD repletion rescues female fertility during reproductive aging. Cell Rep. 2020, 30, 1670–1681. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, Y.; Wei, J.; Guo, F.; Li, L.; Han, Z.; Wang, Z.; Zhu, H.; Zhang, X.; Li, Z.; et al. Administration of nicotinamide mononucleotide improves oocyte quality of obese mice. Cell Prolif. 2022, 55, e13303. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Wang, D.; Zhang, C.; Jiao, Y.; Pu, Y.; Cheng, R.; Li, C.; Chen, Y. Nicotinamide mononucleotide restores oxidative stress-related apoptosis of oocyte exposed to benzyl butyl phthalate in mice. Cell Prolif. 2023, 56, e13419. [Google Scholar] [CrossRef]
- Ma, Y.; Yi, M.; Wang, W.; Liu, X.; Wang, Q.; Liu, C.; Chen, Y.; Deng, H. Oxidative degradation of dihydrofolate reductase increases CD38-mediated ferroptosis susceptibility. Cell Death Dis. 2022, 13, 944. [Google Scholar] [CrossRef]
- Nong, W.; Wei, G.; Wang, J.; Lei, X.; Wang, J.; Wei, Y.; Dong, M.; He, L. Nicotinamide mononucleotide improves spermatogenic disorders in aluminum-exposed rats by modulating the glycolytic pathway. Biol. Trace. Elem. Res. 2023. published online. [Google Scholar]
- Miao, Y.; Li, X.; Shi, X.; Gao, Q.; Chen, J.; Wang, R.; Fan, Y.; Xiong, B. Nicotinamide mononucleotide restores the meiotic competency of porcine oocytes exposed to ethylene glycol butyl ether. Front. Cell Dev. Biol. 2021, 9, 628580. [Google Scholar] [CrossRef]
- Li, L.; Han, Q.; Chen, Y.; Zhang, M.; Wang, L.; An, X.; Zhang, S.; Zhai, Y.; Dai, X.; Tang, B.; et al. β-nicotinamide mononucleotide rescues the quality of aged oocyte and improves subsequent embryo development in pigs. PLoS ONE 2023, 18, e0291640. [Google Scholar] [CrossRef]
- Fukamizu, Y.; Uchida, Y.; Shigekawa, A.; Sato, T.; Kosaka, H.; Sakurai, T. Safety evaluation of beta-nicotinamide mononucleotide oral administration in healthy adult men and women. Sci. Rep. 2022, 12, 14442. [Google Scholar] [CrossRef]
- Liao, B.; Zhao, Y.; Wang, D.; Zhang, X.; Hao, X.; Hu, M. Nicotinamide mononucleotide supplementation enhances aerobic capacity in amateur runners: A randomized, double-blind study. J. Int. Soc. Sports Nutr. 2021, 18, 54. [Google Scholar] [CrossRef]
- Li, R.; Zhu, Z.; Zheng, Y.; Lv, Y.; Tian, X.; Wu, D.; Wang, Y.; Zeng, W. Metformin improves boar sperm quality via 5’-AMP-activated protein kinase-mediated energy metabolism in vitro. Zool. Res. 2020, 41, 527–538. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, W.; Zhu, J.; Wang, S.; Ju, H.; Chen, S.; Basioura, A.; Ferreira-Dias, G.; Liu, Z. Temperature elevation during semen delivery deteriorates boar sperm quality by promoting apoptosis. Animals 2023, 13, 3203. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Zhang, P.; Guo, J.; Zhu, Z.; Li, X.; Xu, D.; Zeng, W. Melatonin protects mouse spermatogonial stem cells against hexavalent chromium-induced apoptosis and epigenetic histone modification. Toxicol. Appl. Pharmacol. 2018, 340, 30–38. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, L.; Han, H.; Xiong, B.; Zhong, R.; Jiang, Y.; Liu, L.; Sun, H.; Tan, J.; Cheng, X.; et al. Taxifolin increased semen quality of duroc boars by improving gut microbes and blood metabolites. Front. Microbiol. 2022, 13, 1020628. [Google Scholar] [CrossRef]
- Ma, D.; Hu, L.; Wang, J.; Luo, M.; Liang, A.; Lei, X.; Liao, B.; Li, M.; Xie, M.; Li, H.; et al. Nicotinamide mononucleotide improves spermatogenic function in streptozotocin-induced diabetic mice via modulating the glycolysis pathway. Acta Biochim. Biophys. Sin. 2022, 54, 1314–1324. [Google Scholar] [CrossRef] [PubMed]
- Barati, E.; Nikzad, H.; Karimian, M. Oxidative stress and male infertility: Current knowledge of pathophysiology and role of antioxidant therapy in disease management. Cell Mol. Life Sci. 2020, 77, 93–113. [Google Scholar] [CrossRef] [PubMed]
- Mancini, A.; Oliva, A.; Vergani, E.; Festa, R.; Silvestrini, A. The dual role of qxidants in male (in)fertility: Every ROSe has a thorn. Int. J. Mol. Sci. 2023, 24, 4994. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Qin, Y.; Huo, F.; Jian, Z.; Li, X.; Geng, J.; Li, Y.; Wu, J. NMN recruits GSH to enhance GPX4-mediated ferroptosis defense in UV irradiation induced skin injury. Biochim. Biophys. Acta Mol. Basis Dis. 2022, 1868, 166287. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Tang, L.; Luo, F.; Zhang, Y.; Chen, L.; Ding, H.; Meng, Z. Nicotinamide mononucleotide ameliorates DNFB-induced atopic dermatitis-like symptoms in mice by blocking activation of ROS-mediated JAK2/STAT5 signaling pathway. Int. Immunopharmacol. 2022, 109, 108812. [Google Scholar] [CrossRef]
- Du Plessis, S.; Agarwal, A.; Mohanty, G.; van der Linde, M. Oxidative phosphorylation versus glycolysis: What fuel do spermatozoa use? Asian J. Androl. 2015, 17, 230–235. [Google Scholar] [CrossRef]
- Mendelsohn, A.; Larrick, J. Partial reversal of skeletal muscle aging by restoration of normal NAD+ levels. Rejuvenation Res. 2014, 17, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Huang, Y.; Xu, C.; An, P.; Luo, Y.; Jiao, L.; Luo, J.; Li, Y. Mitochondrial dysfunction and therapeutic perspectives in cardiovascular diseases. Int. J. Mol. Sci. 2022, 23, 16053. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Liu, B.; Yu, D.; Zuo, Y.; Cai, R.; Yang, J.; Cheng, J. SIRT3 deacetylase activity confers chemoresistance in AML via regulation of mitochondrial oxidative phosphorylation. Br. J. Haematol. 2019, 187, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Nikiforov, A.; Kulikova, V.; Ziegler, M. The human NAD metabolome: Functions, metabolism and compartmentalization. Crit. Rev. Biochem. Mol. Biol. 2015, 50, 284–297. [Google Scholar] [CrossRef] [PubMed]
- Asadi, A.; Ghahremani, R.; Abdolmaleki, A.; Rajaei, F. Role of sperm apoptosis and oxidative stress in male infertility: A narrative review. Int. J. Reprod. Biomed. 2021, 19, 493–504. [Google Scholar] [CrossRef] [PubMed]
- Shahat, A.; Rizzoto, G.; Kastelic, J. Amelioration of heat stress-induced damage to testes and sperm quality. Theriogenology 2020, 158, 84–96. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wu, R.; Zhao, Y.; Xu, C.; Zhang, W.; Ge, W.; Liu, J.; Sun, Z.; Zou, S.; Shen, W. Ochratoxin A exposure decreased sperm motility via the AMPK and PTEN signaling pathways. Toxicol. Appl. Pharmacol. 2018, 340, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Montes-Garrido, R.; Riesco, M.; Anel-Lopez, L.; Neila-Montero, M.; Palacin-Martinez, C.; Boixo, J.; de Paz, P.; Ortega-Ferrusola, C.; Hassan, M.; Anel, L.; et al. Application of ultrasound technique to evaluate the testicular function and its correlation to the sperm quality after different collection frequency in rams. Front. Vet. Sci. 2022, 9, 1035036. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, Q.; Zhu, C.; Sun, X.; Sun, C.; Yu, C.; Li, P.; Deng, X.; Wang, J. β-Nicotinamide mononucleotide activates NAD+/SIRT1 pathway and attenuates inflammatory and oxidative responses in the hippocampus regions of septic mice. Redox Biol. 2023, 63, 102745. [Google Scholar] [CrossRef]
- Zhao, C.; Li, W.; Duan, H.; Li, Z.; Jia, Y.; Zhang, S.; Wang, X.; Zhou, Q.; Shi, W. NAD precursors protect corneal endothelial cells from UVB-induced apoptosis. Am. J. Physiol. Cell Physiol. 2020, 318, C796–C805. [Google Scholar] [CrossRef]
- Kalpage, H.; Bazylianska, V.; Recanati, M.; Fite, A.; Liu, J.; Wan, J.; Mantena, N.; Malek, M.H.; Podgorski, I.; Heath, E.I.; et al. Tissue-specific regulation of cytochrome c by post-translational modifications: Respiration, the mitochondrial membrane potential, ROS, and apoptosis. FASEB J. 2019, 33, 1540–1553. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Huang, Q.; Zhao, D.; Lian, F.; Li, X.; Qi, W. The impact of oxidative stress-induced mitochondrial dysfunction on diabetic microvascular complications. Front. Endocrinol. 2023, 14, 1112363. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Ding, L.; Ye, Y.; Wang, K.; Yu, W.; Yan, B.; Liu, Z.; Wang, J. Protective effect of quercetin on cadmium-induced renal apoptosis through cyt-c/caspase-9/caspase-3 signaling pathway. Front. Pharmacol. 2022, 13, 990993. [Google Scholar] [CrossRef] [PubMed]
- Corona, G.; Maggi, M. The role of testosterone in male sexual function. Rev. Endocr. Metab. Disord. 2022, 23, 1159–1172. [Google Scholar] [CrossRef] [PubMed]
- Dupree, J.M. Andrology: Testosterone therapy and sexual health in hypogonadal men. Nat. Rev. Urol. 2016, 13, 244–245. [Google Scholar] [CrossRef]
- Li, D.; Zhang, W.; Tian, X.; He, Y.; Xiao, Z.; Zhao, X.; Fan, L.; Du, R.; Yang, G.; Yu, T. Hydroxytyrosol effectively improves the quality of pig sperm at 17 °C. Theriogenology 2022, 177, 172–182. [Google Scholar] [CrossRef]
Antibody | Dilution | Cat. No. | Company |
---|---|---|---|
SIRT3 | 1:1000 | AY4134 | Abways (Shanghai, China) |
SOD2 | 1:2000 | 66474-1-lg | Preintech (Wuhan, China) |
SOD2 (acetyl K68) | 1:1000 | CY10546 | Abways |
CAT | 1:1000 | 21260-1-AP | Proteintech |
SOD1 | 1:2000 | 10269-1-AP | Proteintech |
GPX5 | 1:600 | 18731-1-AP | Proteintech |
ATP5A | 1:1000 | CY6775 | Abways |
UQCRC2 | 1:1000 | CY7110 | Abways |
MTCO2 | 1:1000 | CY5717 | Abways |
SDHB | 1:1000 | CY6860 | Abways |
NDUFB8 | 1:1000 | CY8290 | Abways |
Cleaved Caspase-9 | 1:1000 | CY5682 | Abways |
Cleaved Caspase-3 | 1:1000 | AY0458 | Abcam |
BCL-2 | 1:1000 | CY5032 | Abways |
BAX | 1:1000 | AB3280 | Abways |
Cty c | 1:1000 | CY5628 | Abways |
OPA1 | 1:1000 | CY7035 | Abways |
Acetylated-Lysine | 1:1000 | #DF7729 | Afinity (Cincinnati, OH, USA) |
VDAC1 | 1:1000 | VY5416 | Abways |
α-TUBULIN | 1:1000 | AB0049 | Abways |
Item | 0 mg/kg/d | 8 mg/kg/d | 16 mg/kg/d | 32 mg/kg/d |
---|---|---|---|---|
VAP (μm/s) | 52.33 ± 3.43 a | 67.85 ± 1.36 b | 68.22 ± 1.52 b | 64.73 ± 2.52 b |
VSL (μm/s) | 32.38 ± 1.91 | 38.84 ± 3.18 | 33.38 ± 1.38 | 31.54 ± 1.24 |
VCL (μm/s) | 105.18 ± 8.46 a | 139.80 ± 4.46 b | 144.15 ± 5.82 b | 144.04 ± 7.53 b |
STR (μm/s) | 61.90 ±1.21 a | 58.62 ± 4.04 a | 49.89 ± 2.49 b | 51.35 ± 1.76 b |
LIN (μm/s) | 32.72 ± 1.37 a | 30.44 ± 2.92 a | 25.72 ± 1.86 b | 24.71 ± 0.92 a |
ALH (μm/s) | 5.81 ± 0.31 a | 7.79 ± 0.37 b | 7.63 ± 0.30 b | 8.29 ± 0.43 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Chai, J.; Cao, C.; Wang, X.; Pang, W. Supplementing Boar Diet with Nicotinamide Mononucleotide Improves Sperm Quality Probably through the Activation of the SIRT3 Signaling Pathway. Antioxidants 2024, 13, 507. https://doi.org/10.3390/antiox13050507
Zhang H, Chai J, Cao C, Wang X, Pang W. Supplementing Boar Diet with Nicotinamide Mononucleotide Improves Sperm Quality Probably through the Activation of the SIRT3 Signaling Pathway. Antioxidants. 2024; 13(5):507. https://doi.org/10.3390/antiox13050507
Chicago/Turabian StyleZhang, Haize, Jiawen Chai, Chaoyue Cao, Xiaolin Wang, and Weijun Pang. 2024. "Supplementing Boar Diet with Nicotinamide Mononucleotide Improves Sperm Quality Probably through the Activation of the SIRT3 Signaling Pathway" Antioxidants 13, no. 5: 507. https://doi.org/10.3390/antiox13050507
APA StyleZhang, H., Chai, J., Cao, C., Wang, X., & Pang, W. (2024). Supplementing Boar Diet with Nicotinamide Mononucleotide Improves Sperm Quality Probably through the Activation of the SIRT3 Signaling Pathway. Antioxidants, 13(5), 507. https://doi.org/10.3390/antiox13050507