Astaxanthin Added during Post-Warm Recovery Mitigated Oxidative Stress in Bovine Vitrified Oocytes and Improved Quality of Resulting Blastocysts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Oocyte Collection and In Vitro Maturation
2.2. Oocyte Vitrification and Warming
2.3. Detection of ROS Formation in Oocytes
2.4. Detection of Lipid Peroxidation in Oocytes
2.5. Analysis of Mitochondrial and Lysosomal Activity in Oocytes
2.6. In Vitro Fertilization (IVF) and Embryo Culture
2.7. Fluorescent Staining of Blastocysts
2.8. RNA Isolation and RT-qPCR
2.9. Statistical Analysis
3. Results
3.1. Effect of AX Addition on Oocytes Post-Warming
3.1.1. Mitochondrial and Lysosomal Status in Oocytes
3.1.2. ROS Production and Lipid Peroxidation in Vitrified/Warmed Oocytes
3.2. Effect of Vitrification and AX on Embryo Development and Blastocyst Quality
3.3. Effect of Vitrification and AX on the mRNA Expression of Chosen Genes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ren, L.; Fu, B.; Ma, H.; Liu, D. Effects of mechanical delipation in porcine oocytes on mitochondrial distribution, ROS activity and viability after vitrification. Cryo Lett. 2015, 36, 30–36. [Google Scholar]
- Kafi, M.; Ashrafi, M.; Azari, M.; Jandarroodi, B.; Abouhamzeh, B.; Asl, A.R. Niacin improves maturation and cry-tolerance of bovine in vitro matured oocytes: An experimental study. Int. J. Reprod. Biomed. 2019, 17, 621–628. [Google Scholar] [PubMed]
- Oikonomou, Z.; Chatzimeletiou, K.; Sioga, A.; Oikonomou, L.; Tarlatzis, B.C.; Kolibianakis, E. Effects of vitrification on blastomere viability and cytoskeletal integrity in mouse embryos. Zygote 2017, 25, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Iussig, B.; Maggiulli, R.; Fabozzi, G.; Bertelle, S.; Vaiarelli, A.; Cimadomo, D.; Ubaldi, F.M.; Rienzi, L. A brief history of oocyte cryopreservation: Arguments and facts. Acta Obstet. Gynecol. Scand. 2019, 98, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Poljsak, B.; Šuput, D.; Milisav, I. Achieving the Balance between ROS and Antioxidants: When to Use the Synthetic Antioxidants. Oxid. Med. Cell. Longev. 2013, 2013, 956792. [Google Scholar] [CrossRef] [PubMed]
- Kala, M.; Shaikh, M.V.; Nivsarkar, M. Equilibrium between anti-oxidants and reactive oxygen species: A requisite for oocyte development and maturation. Reprod. Med. Biol. 2016, 16, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Lü, J.M.; Lin, P.H.; Yao, Q.; Chen, C. Chemical and molecular mechanism of antioxidants: Experimental approaches and model systems. J. Cell. Mol. Med. 2010, 14, 840–860. [Google Scholar] [CrossRef] [PubMed]
- Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free Radicals, Antioxidants in Disease and Health. Int. J. Biomed. Sci. 2008, 4, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Ofosu, J.; Zhang, Y.; Liu, Y.; Sun, X.; Quan, G.; Rodriguez, M.A.; Zhou, G. Editorial: Cryopreservation of mammalian gametes and embryos: Implications of oxidative and nitrosative stress and potential role of antioxidants. Front. Vet. Sci. 2023, 10, 1174756. [Google Scholar] [CrossRef]
- Zarbakhsh, S. Effect of antioxidants on preimplantation embryo development in vitro: A review. Zygote 2021, 29, 179–193. [Google Scholar] [CrossRef]
- Phongnimitr, T.; Liang, Y.; Srirattana, K.; Panyawai, K.; Sripunya, N.; Treetampinich, C.; Parnpai, R. Effect of L-carnitine on maturation, cryo-tolerance and embryo developmental competence of bovine oocytes. Anim. Sci. J. 2013, 84, 719–725. [Google Scholar] [CrossRef] [PubMed]
- Trapphoff, T.; Heiligentag, M.; Simon, J.; Staubach, N.; Seidel, T.; Otte, K. Improved cryotolerance and developmental potential of in vitro and in vivo matured mouse oocytes by supplementing with a glutathione donor prior to vitrification. Mol. Hum. Reprod. 2016, 22, 867–881. [Google Scholar]
- Sonowal, J.; Barua, P.M.; Borah, P.; Borgohain, I.; Gogoi, C.; Deuri, N.; Das, A.; Borgohain, I.; Pathak, B. Effect of α-tocopherol and l-ascorbic acid on in vitro maturation of vitrified bovine oocytes. Int. J. Chem. Stud. 2017, 5, 1359–1362. [Google Scholar]
- García-Martínez, T.; Vendrell-Flotats, M.; Martínez-Rodero, I.; Ordóñez-León, E.A.; Álvarez-Rodríguez, M.; López-Béjar, M.; Yeste, M.; Mogas, T. Glutathione Ethyl Ester Protects In Vitro-Maturing Bovine Oocytes against Oxidative Stress Induced by Subsequent Vitrification/Warming. Int. J. Mol. Sci. 2020, 21, 7547. [Google Scholar] [CrossRef]
- Higuera-Ciapara, I.; Félix-Valenzuela, L.; Goycoolea, F.M. Astaxanthin: A Review of its Chemistry and Applications. Crit. Rev. Food Sci. Nutr. 2006, 46, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Ispada, J.; Rodriguez, T.A.; Risolia, P.H.B.; Lima, R.S.; Goncalves, D.R.; Rettori, D.; Nichi, M.; Feitosa, W.B.; Paula-Lopes, F.F. Astaxanthin counteracts the effects of heat shock on the maturation of bovine oocytes. Reprod. Fertil. Dev. 2018, 38, 1169–1179. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.; Kasai, T.; Sato, A.; Ishiwata, S.; Yatsu, S.; Matsumoto, H.; Shitara, J.; Murata, A.; Shimizu, M.; Suda, S.; et al. Effect of 3-Month Astaxanthin Supplementation on Cardiac Function in Heart Failure Patiens with Left Vantricular Systolic Dysfunction—A Pilot Study. Nutrients 2020, 12, 1896. [Google Scholar] [CrossRef]
- Chang, M.X.; Xiong, F. Astaxanthin and its Effects in Inflammatory Responses and Inflammation-Associated Diseases: Recent Advances and Future Directions. Molecules 2020, 25, 5342. [Google Scholar] [CrossRef] [PubMed]
- Faraone, I.; Sinisgalli, C.; Ostuni, A.; Armentano, M.F.; Carmosino, M.; Milella, L.; Russo, D.; Labanca, F.; Khan, H. Astaxanthin anticancer effects are mediated through multiple molecular mechanisms: A systematic review. Pharmacol. Res. 2020, 155, 104689. [Google Scholar] [CrossRef]
- Kim, H.Y.; Kim, Y.M.; Hong, S. Astaxanthin suppresses the metastasis of colon cancer by inhibiting the MYC-mediated downregulation of microRNA-29a-3p and microRNA-200a. Sci. Rep. 2019, 9, 9457. [Google Scholar] [CrossRef]
- Wang, Z.; Cai, C.F.; Cao, X.M.; Zhu, J.M.; He, J.; Wu, P.; Ye, Y.T. Supplementation of dietary astaxanthin alleviated oxidative damage induced by chronic high pH stress, and enhanced carapace astaxanthin concentration on Chinese mitten crab Eriocheir sinensis. Aquaculture 2018, 438, 230–237. [Google Scholar] [CrossRef]
- Liu, F.; Shi, H.Z.; Guo, Q.S.; Yu, Y.B.; Wang, A.M.; Lv, F.; Shen, W.B. Effects of astaxanthin and emodin on the growth, stress resistance and disease resistance of yellow catfish (Pelteobagrus fulvidraco). Fish. Shellfish. Immunol. 2016, 51, 125–135. [Google Scholar] [CrossRef]
- Li, M.Y.; Guo, W.Q.; Guo, G.L.; Zhu, X.M.; Niu, X.T.; Shan, X.F.; Tian, J.X.; Wang, G.Q.; Zhang, D.M. Effects of dietary astaxanthin on lipopolysaccharide-induced oxidative stress, immune responses and glucocorticoid receptor (GR)-related gene expression in Channa argus. Aquaculture 2020, 517, 734816. [Google Scholar] [CrossRef]
- Maoka, T. Carotenoids in Marine Animals. Mar. Drugs 2011, 9, 278–293. [Google Scholar] [CrossRef]
- Palma, J.; Andrade, J.P.; Bureau, D.P. The impact of dietary supplementation with astaxanthin on egg quality and growth of long snout seahorse (Hippocampus guttulatus) juveniles. Aquac. Nutr. 2016, 23, 304–312. [Google Scholar] [CrossRef]
- Jia, B.Y.; Xiang, D.C.; Shao, Q.Y.; Zhang, B.; Liu, S.N.; Hong, Q.H. Inhibitory effects of astaxanthin on postovulatory porcine oocyte aging in vitro. Sci. Rep. 2020, 10, 20217. [Google Scholar] [CrossRef]
- Xiang, D.C.; Jia, B.Y.; Fu, X.W.; Guo, J.X.; Hong, Q.H.; Quan, G.B.; Wu, G.Q. Role of astaxanthin as an efficient antioxidant on the in vitro maturation and vitrification of porcine oocytes. Theriogenology 2021, 167, 13–23. [Google Scholar] [CrossRef]
- Bi, F.; Xiang, H.; Li, J.; Sun, J.; Wang, N.; Gao, W.; Sun, M.; Huan, Y. Astaxanthin enhances the development of bovine cloned embryos by inhibiting apoptosis and improving DNA methylation reprogramming of pluripotency genes. Theriogenology 2023, 209, 193–201. [Google Scholar] [CrossRef]
- Lee, E.; Kim, D. Effects of Astaxanthin on Miniature Pig Sperm Cryopreservation. Biomed. Res. Int. 2018, 2018, 6784591. [Google Scholar] [CrossRef]
- Olexiková, L.; Dujíčková, L.; Kubovičová, E.; Pivko, J.; Chrenek, P.; Makarevich, A.V. Development and ultrastructure of bovine matured oocytes vitrified using electron microscopy grids. Theriogenology 2020, 158, 258–266. [Google Scholar]
- Olexiková, L.; Dujíčková, L.; Makarevich, A.V.; Bezdíček, J.; Sekaninová, J.; Nesvadbová, A.; Chrenek, P. Glutathione during Post-Thaw Recovery Culture Can Mitigate Deleterious Impact of Vitrification on Bovine Oocytes. Antioxidants 2023, 12, 35. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.M.; Du, W.H.; Wang, D.; Hao, H.S.; Liu, Y.; Qin, T.; Zhu, H.B. Recovery of mitochondrial function and endogenous antioxidant systems in vitrified bovine oocytes during extended in vitro culture. Mol. Reprod. Dev. 2011, 78, 942–950. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Castillo, E.; Diaz, F.A.; Talbot, S.A.; Bondioli, K.R. Recovery of spindle morphology and mitochondrial function through extended culture after vitrification-warming of bovine oocytes. Theriogenology 2022, 189, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Succu, S.; Gadau, S.D.; Serra, E.; Zinellu, A.; Carru, C.; Porcu, C.; Naitana, S.; Berlinguer, F.; Leoni, G.G. A recovery time after warming restores mitochondrial function and improves developmental competence of vitrified ovine oocytes. Theriogenology 2018, 110, 18–26. [Google Scholar] [CrossRef]
- Abdel-Ghani, M.A.; Yanagawa, Y.; Balboula, A.Z.; Sakaguchi, K.; Kanno, C.; Katagiri, S.; Takahashi, M.; Nagano, M. Astaxanthin improves the development competence of in vitro-grown oocytes and modified the steroidogenesis of granulosa cells derived from bovine early antral follicles. Reprod. Fertil. Dev. 2019, 31, 272–281. [Google Scholar] [CrossRef]
- Soto-Heras, S.; Paramio, M.T. Impact of oxidative stress on oocytes competence for in vitro embryo production programs. Res. Vet. Sci. 2020, 132, 342–350. [Google Scholar] [CrossRef]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxid. Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef]
- Li, Y.; Dong, Z.; Liu, S.; Gao, F.; Zhang, J.; Peng, Z.; Wang, L.; Pan, X. Astaxanthin improves the development of the follicles and oocytes through alleviating oxidative stress induced by BPA in cultured follicles. Sci. Rep. 2022, 12, 7853. [Google Scholar] [CrossRef] [PubMed]
- Shen, K.; Pender, C.L.; Bar-Ziv, R.; Zhang, H.; Wickham, K.; Willey, E.; Durieux, J.; Ahmad, Q.; Dilin, A. Mitochondrial as Cellular and Organismal Signaling Hubs. Annu. Rev. Cell. Dev. 2021, 38, 179–218. [Google Scholar] [CrossRef]
- Iwata, H. Resveratrol enhanced mitochondrial recovery from cryopreservation-induced damages in oocytes and embryos. Reprod. Med. Biol. 2021, 20, 419–426. [Google Scholar] [CrossRef]
- Hwang, I.S.; Hara, H.; Chung, H.J.; Hirabayashi, M.; Hochi, S. Rescue of vitrified-warmed bovine oocytes with tho-associated coiled-coil kinase inhibitor. Biol. Reprod. 2013, 78, 1–6. [Google Scholar]
- Xiang, D.; Jia, B.; Zhang, B.; Liang, J.; Hong, Q.; Wei, H.; Wu, G. Astaxanthin Supplementation Improves the Subsequent Developmental Competence of Vitrified Porcine Zygotes. Frontiers 2022, 9, 871289. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wu, H.; Zhuo, W.W.; Mao, Q.F.; Lan, H.; Zhang, Y.; Hua, S. Astaxanthin Normalizes Epigenetic Modifications of Bovine Somatic Cell Cloned Embryos and Decreases the Generation of Lipid Peroxidation. Reprod. Domest. Anim. 2015, 50, 793–799. [Google Scholar] [CrossRef]
- Yang, C.S.; Ho, C.T.; Zhang, J.; Wan, X.; Zhang, K.; Lim, J. Antioxidants: Differing Meanings in Food Science and Health Science. J. Agric. Food Chem. 2018, 66, 3063–3068. [Google Scholar] [CrossRef]
- Kuroki, T.; Ikeda, S.; Okada, T.; Maoka, T.; Kitamura, A.; Sugimoto, M.; Kume, S. Astaxanthin ameliorates heat stress-induced impairment of blastocyst development In Vitro: –Astaxanthin colocalization with and action on mitochondria–. J Assist Reprod Genet 2013, 30, 623–631. [Google Scholar] [CrossRef]
- De Gheselle, S.; De Sutter, P.; Tilleman, K. In-vitro development of embryos derived from vitrified-warmed oocytes is delayed compared with embryos derived from fresh oocytes: A time-lapse sibling oocyte study. Reprod. BioMedicine Online 2019, 40, 82–90. [Google Scholar] [CrossRef]
- Shin, M.R.; Choi, H.W.; Kim, M.K.; Lee, S.H.; Lee, H.S.; Lim, C.K. In vitro development and gene expression of frozen-thawed 8-cell stage mouse embryos following slow freezing and vitrification. Clin. Exp. Reprod. Med. 2011, 38, 203–209. [Google Scholar] [CrossRef]
- Huang, D.; Gou, G.; Yuan, P.; Ralston, A.; Sun, L.; Huss, M.; Mistri, T.; Pinello, L.; Ng, H.H.; Ji, J.; et al. The role of Cdx2 as a lineage specific transcriptional repressor for pluripotent network during the first developmental cell lineage segregation. Sci. Rep. 2017, 7, 17156. [Google Scholar] [CrossRef]
- Moussa, M.; Yang, C.Y.; Zheng, H.Y.; Li, M.Q.; Yu, N.Q.; Yan, S.F.; Huang, J.X.; Shang, J.H. Vitrification alters cell adhesion related genes in pre-implantation buffalo embryos: Protective role of β-mercaptoethanol. Theriogenology 2019, 125, 317–323. [Google Scholar] [CrossRef]
- Kibschull, M.; Colaco, K.; Matysiak-Zablocki, E.; Winterhager, E.; Lye, S.J. Connexin31.1 (Gjb5) deficiency blocks trophoblast stem cell differentiation and delays placental development. Stem Cells Dev. 2014, 23, 2649–2660. [Google Scholar] [CrossRef]
- Su, J.; Wang, Y.; Li, Y.; Li, R.; Li, Q.; Wu, Y.; Quan, F.; Liu, J.; Guo, Z.; Zhang, Y. Oxamflatin Significantly Improves Nuclear Reprogramming, Blastocyst Quality, and In Vitro Development of Bovine SCNT Embryos. PLoS ONE 2011, 6, e23805. [Google Scholar] [CrossRef]
- Mahdavinezhad, F.; Kazemi, P.; Fathalizadeh, P.; Sarmadi, F.; Sotoodeh, L.; Hashemi, E.; Hajarian, H.; Dashtizad, M. In vitro versus in vivo: Development-, Apoptosis, and Implantation-Related Gene Expression in Mouse Blastocyst. Iran. J. Biotechnol. 2019, 17, e2157. [Google Scholar] [CrossRef]
- Do, L.T.; Luu, V.V.; Morita, Y.; Taniguchi, M.; Nii, M.; Peter, A.T.; Otoi, T. Astaxanthin present in the maturation medium reduces negative effects of heat shock on the developmental competence of porcine oocytes. Reprod. Biol. 2015, 15, 86–93. [Google Scholar] [CrossRef]
- Ran, Q.; Liang, H.; Ikeno, Y.; Qi, W.; Prolla, T.A.; Roberts, L.J., 2nd; Wolf, N.; Van Remmen, H.; Richardson, A. Reduction in glutathione peroxidase 4 increases life span through increased sensitivity to apoptosis. J. Gerontol. A Biol. Sci. Med. Sci. 2007, 62, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Ufer, C.; Wang, C.C. The Roles of Glutathione Peroxidases during Embryo Development. Front. Mol. Neurosci. 2011, 4, 1–14. [Google Scholar] [CrossRef]
- Egerszegi, I.; Somfai, T.; Nakai, M.; Tanihara, F.; Noguchi, J.; Kaneko, H.; Nagai, T.; Rátky, J.; Kikuchi, K. Comparison of cytoskeletal integrity, fertilization and development competence of oocytes vitrified before or after in vitro maturation in a porcine model. Cryobiology 2013, 67, 287–292. [Google Scholar] [CrossRef]
- Dobrinsky, J.R.; Pursel, V.G.; Long, C.R.; Johnson, L.A. Birth of Piglets After Transfer of Embryos Cryopreserved by Cytoskeletal Stabilization and Vitrification. Biol. Reprod. 2000, 62, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.Y.; Schatten, H. Regulation of dynamic events by microfilaments during oocyte maturation and fertilization. Reproduction 2006, 131, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Dobrinsky, J.R. Cellular approach to cryopreservation of embryos. Theriogenology 1996, 45, 17–26. [Google Scholar] [CrossRef]
- Bogliolo, L.; Murrone, O.; Piccinini, M.; Ariu, F.; Ledda, S.; Tilocca, S.; Albertini, D.F. Evaluation of the impact of vitrification on the actin cytoskeleton of in vitro matured ovine oocytes by means of Raman microspectroscopy. J. Assist. Reprod. Gen. 2015, 32, 185–193. [Google Scholar] [CrossRef]
- Canesin, H.S.; Ortiz, I.; Rocha Filho, A.N.; Salgado, M.R.; Brom-de-Luna, J.G.; Hinrichs, K. Effect of warming method on embryo quality in a simplified equine embryo vitrification system. Theriogenology 2020, 151, 151–158. [Google Scholar] [CrossRef]
Gene | Primer Sequences | Product Size (bp) | Tac (°C) | GenBank Accession Number |
---|---|---|---|---|
BCL2 | F: CCT GTT TGA TTT CTC CTG R: ATA TTA TTT CTG CTG CTT CT | 157 | 53 | NM_001166486 |
BAX | F: TGA AGC GCA TCG GAG ATG AAT R: CCT TGA GCA CCA GTT TGC TG | 183 | 62 | NM_173894 |
CAS9 | F: GCT AAT AAG ACT CTC ATC AA R: AAT AAC TAA CCA CCA GAA G | 112 | 56 | NM_001205504 |
CAS3 | F: ACT GAT AAG AGC GTG AAC T R: CCA ACT GAC TGA CTG ACT | 100 | 56 | NM_001077840.1 |
CAT | F: TCG CTG GAT GGA AGA TTC R: CCC ACA GGA AAG TAG GAT T | 122 | 58 | NM_001035386 |
GPX4 | F: GGA GCC AGG GAG TAA TGC AG R: GAC CAT ACC GCT TCA CCA CA | 221 | 55 | NM_001346431 |
SOD2 | F: GTG ATC AAC TGG GAG AAT R: AAG CCA CAC TCA GAA ACA CT | 160 | 56 | NM_201527 |
CDX2 | F: TCA CTC ACT AAT GTT TAC R: AAT CTA GGA GAA TGT CAT | 110 | 45 | NM_001206299 |
GJB5 | F: ACG TGG TGG ACT GCT TCA TC R: GAG GAG ATC GCC CTG TTT GG | 221 | 55 | NM_001205907 |
H2AFZ | F: AGG ACG ACC AGT CAT GGA CGT GTG R: CCA CCA CCA GCA ATT GTA GCC TTG | 209 | 57 | NM_002106 |
Groups | Oocytes for IVF, n | Cleavage Rate, n (%) | Blastocyst Rate, n (%) | Total Cell Number, n | TUNEL- Index, % |
---|---|---|---|---|---|
CONT | 201 | 133 (66.17) a | 60 (29.85) a | 103.80 ± 2.81 a | 10.15 ± 0.65 a |
VIT | 258 | 150 (58.14) a,b | 37 (14.34) b | 94.03 ± 5.08 b | 12.16 ± 1.10 a |
VIT-AX | 226 | 124 (54.87) b | 39 (17.26) b | 105.28 ± 4.45 a | 11.95 ± 1.19 a |
Groups | Blastocysts, n | Bl with Intact Actin, n (%) | Bl with Damaged Actin, n (%) |
---|---|---|---|
CONT a | 41 | 29 (70.73) | 10 (29.27) |
VIT a | 24 | 17 (70.83) | 7 (29.17) |
VIT-AX a | 29 | 24 (82.76) | 5 (17.24) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dujíčková, L.; Olexiková, L.; Makarevich, A.V.; Bartková, A.R.; Němcová, L.; Chrenek, P.; Strejček, F. Astaxanthin Added during Post-Warm Recovery Mitigated Oxidative Stress in Bovine Vitrified Oocytes and Improved Quality of Resulting Blastocysts. Antioxidants 2024, 13, 556. https://doi.org/10.3390/antiox13050556
Dujíčková L, Olexiková L, Makarevich AV, Bartková AR, Němcová L, Chrenek P, Strejček F. Astaxanthin Added during Post-Warm Recovery Mitigated Oxidative Stress in Bovine Vitrified Oocytes and Improved Quality of Resulting Blastocysts. Antioxidants. 2024; 13(5):556. https://doi.org/10.3390/antiox13050556
Chicago/Turabian StyleDujíčková, Linda, Lucia Olexiková, Alexander V. Makarevich, Alexandra Rosenbaum Bartková, Lucie Němcová, Peter Chrenek, and František Strejček. 2024. "Astaxanthin Added during Post-Warm Recovery Mitigated Oxidative Stress in Bovine Vitrified Oocytes and Improved Quality of Resulting Blastocysts" Antioxidants 13, no. 5: 556. https://doi.org/10.3390/antiox13050556
APA StyleDujíčková, L., Olexiková, L., Makarevich, A. V., Bartková, A. R., Němcová, L., Chrenek, P., & Strejček, F. (2024). Astaxanthin Added during Post-Warm Recovery Mitigated Oxidative Stress in Bovine Vitrified Oocytes and Improved Quality of Resulting Blastocysts. Antioxidants, 13(5), 556. https://doi.org/10.3390/antiox13050556