The Effects of Resveratrol and Apigenin on Jejunal Oxidative Injury in Ducks and on Immortalized Duck Intestinal Epithelial Cells Exposed to H2O2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals and Management
2.2. Experimental Design and Sample Collection
2.3. Determination of Antioxidant Parameters in Serum, Jejunum, and IDECs
2.4. Jejunal Histomorphology and Measurement of Jejunal Parameters
2.5. Related Gene Expression Analysis
2.6. Cell Treatments
2.7. Determination of Cell Viability and Cellular ROS Levels
2.8. Flow Cytometric Analysis of the Cell Cycle and Apoptosis
2.9. Western Blot Analysis
2.10. Statistical Analysis
3. Results
3.1. Serum Antioxidative Capacity
3.2. The Redox Status of the Jejunum
3.3. Jejunal Histomorphology
3.4. The Detection of Genes in the NRF2 Signaling Pathway and Encoding Antioxidant Enzymes in the Jejunum
3.5. The Viability of IDECs
3.6. In Vitro Redox Markers
3.7. The Effect of Apigenin on the Cell Cycle and Apoptosis in IDECs
3.8. The Expression Levels of Antioxidant Proteins
3.9. The Expression Levels of Apoptosis-Related Proteins
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.; Chen, F.; Liang, Z.H.; Wu, Y.; Pi, J.S. Isolation, culture, and identification of duck intestinal epithelial cells and oxidative stress model constructed. Vitr. Cell Dev. Biol.-Anim. 2019, 55, 733–740. [Google Scholar] [CrossRef]
- Orrico, F.; Laurance, S.; Lopez, A.C.; Lefevre, S.D.; Thomson, L.; Moller, M.N.; Ostuni, M.A. Oxidative stress in healthy and pathological red blood cells. Biomolecules 2023, 13, 1262. [Google Scholar] [CrossRef]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar]
- Abbas, A.O.; Alaqil, A.A.; El-Beltagi, H.S.; Abd, E.H.; Kamel, N.N. Modulating laying hens productivity and immune performance in response to oxidative stress induced by E. Coli challenge using dietary propolis supplementation. Antioxidants 2020, 9, 893. [Google Scholar] [CrossRef]
- Shichiri, M.; Suzuki, H.; Isegawa, Y.; Tamai, H. Application of regulation of reactive oxygen species and lipid peroxidation to disease treatment. J. Clin. Biochem. Nutr. 2023, 72, 13–22. [Google Scholar] [CrossRef]
- Lin, Y.; Wei, Y.; Wei, Y.; Yu, H.; Zhang, W.; Li, C.; He, Y.; Yao, G.; Zhang, Y. Dexmedetomidine alleviates oxidative stress and mitochondrial dysfunction in diabetic peripheral neuropathy via the microrna-34a/sirt2/s1pr1 axis. Int. Immunopharmacol. 2023, 117, 109910. [Google Scholar] [CrossRef]
- Diaz, D.B.G.; Guizzardi, S.; Moine, L.; Tolosa, D.T.N. Oxidative stress, antioxidants and intestinal calcium absorption. World J. Gastroenterol. 2017, 23, 2841–2853. [Google Scholar] [CrossRef]
- Zhou, M.; Xu, W.; Wang, J.; Yan, J.; Shi, Y.; Zhang, C.; Ge, W.; Wu, J.; Du, P.; Chen, Y. Boosting mtor-dependent autophagy via upstream TLR4-MyD88-mapk signalling and downstream nf-kappab pathway quenches intestinal inflammation and oxidative stress injury. EBioMedicine 2018, 35, 345–360. [Google Scholar] [CrossRef]
- Qiao, L.; Dou, X.; Yan, S.; Zhang, B.; Xu, C. Biogenic selenium nanoparticles synthesized by Lactobacillus casei ATCC 393 alleviate diquat-induced intestinal barrier dysfunction in C57BL/6 mice through their antioxidant activity. Food Funct. 2020, 11, 3020–3031. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, S.; Wu, Y.; Liu, X.; Wang, J.; Han, D. Ellagic acid alleviates diquat-induced jejunum oxidative stress in C57BL/6 mice through activating Nrf2 mediated signaling pathway. Nutrients 2022, 14, 1103. [Google Scholar] [CrossRef]
- Zhou, N.; Tian, Y.; Liu, W.; Tu, B.; Gu, T.; Xu, W.; Zou, K.; Lu, L. Effects of quercetin and coated sodium butyrate dietary supplementation in diquat-challenged pullets. Anim. Biosci. 2022, 35, 1434–1443. [Google Scholar] [CrossRef]
- Zhou, N.; Tian, Y.; Liu, W.; Tu, B.; Xu, W.; Gu, T.; Zou, K.; Lu, L. Protective effects of resveratrol and apigenin dietary supplementation on serum antioxidative parameters and mrnas expression in the small intestines of diquat-challenged pullets. Front. Vet. Sci. 2022, 9, 850769. [Google Scholar] [CrossRef]
- Kuo, W.T.; Odenwald, M.A.; Turner, J.R.; Zuo, L. Tight junction proteins occludin and ZO-1 as regulators of epithelial proliferation and survival. Ann. N. Y. Acad. Sci. 2022, 1514, 21–33. [Google Scholar] [CrossRef]
- Kaspar, J.W.; Niture, S.K.; Jaiswal, A.K. Nrf2:INrf2 (keap1) signaling in oxidative stress. Free Radic. Biol. Med. 2009, 47, 1304–1309. [Google Scholar] [CrossRef]
- Guo, Q.; Li, F.; Duan, Y.; Wen, C.; Wang, W.; Zhang, L.; Huang, R.; Yin, Y. Oxidative stress, nutritional antioxidants and beyond. Sci. China Life Sci. 2020, 63, 866–874. [Google Scholar] [CrossRef]
- Lu, Y.; Shen, T.; Yang, H.; Gu, W. Ruthenium complexes induce HepG2 human hepatocellular carcinoma cell apoptosis and inhibit cell migration and invasion through regulation of the Nrf2 pathway. Int. J. Mol. Sci. 2016, 17, 775. [Google Scholar] [CrossRef]
- Chen, G.H.; Song, C.C.; Pantopoulos, K.; Wei, X.L.; Zheng, H.; Luo, Z. Mitochondrial oxidative stress mediated fe-induced ferroptosis via the Nrf2-are pathway. Free Radic. Biol. Med. 2022, 180, 95–107. [Google Scholar] [CrossRef]
- Circu, M.L.; Maloney, R.E.; Aw, T.Y. Diquat-induced cellular pyridine nucleotide redox changes and alteration of metabolic enzyme activities in colonic carcinoma cells. Chem. Biol. Interact. 2017, 264, 43–51. [Google Scholar] [CrossRef]
- Li, M.; Yuan, D.; Liu, Y.; Jin, H.; Tan, B. Dietary puerarin supplementation alleviates oxidative stress in the small intestines of diquat-challenged piglets. Animals 2020, 10, 631. [Google Scholar] [CrossRef]
- Liang, C.; Ren, Y.; Tian, G.; He, J.; Zheng, P.; Mao, X.; Yu, J.; Yu, B. Dietary glutathione supplementation attenuates oxidative stress and improves intestinal barrier in diquat-treated weaned piglets. Arch. Anim. Nutr. 2023, 77, 141–154. [Google Scholar] [CrossRef]
- Nong, K.; Liu, Y.; Fang, X.; Qin, X.; Liu, Z.; Zhang, H. Effects of the vitamin D3 on alleviating the oxidative stress induced by diquat in wenchang chickens. Animals 2023, 13, 711. [Google Scholar] [CrossRef]
- Li, X.; Zhu, J.; Lin, Q.; Yu, M.; Lu, J.; Feng, J.; Hu, C. Effects of curcumin on mitochondrial function, endoplasmic reticulum stress, and mitochondria-associated endoplasmic reticulum membranes in the jejunum of oxidative stress piglets. J. Agric. Food. Chem. 2022, 70, 8974–8985. [Google Scholar] [CrossRef]
- Yan, Y.; Teng, H.; Hang, Q.; Kondiparthi, L.; Lei, G.; Horbath, A.; Liu, X.; Mao, C.; Wu, S.; Zhuang, L.; et al. SLC7A11 expression level dictates differential responses to oxidative stress in cancer cells. Nat. Commun. 2023, 14, 3673. [Google Scholar] [CrossRef]
- Shen, S.; Zhang, C.; Meng, Y.; Cui, G.; Wang, Y.; Liu, X.; He, Q. Sensing of H2O2-induced oxidative stress by the upf factor complex is crucial for activation of catalase-3 expression in neurospora. PLoS Genet. 2023, 19, e1010985. [Google Scholar] [CrossRef]
- Yang, T.; Hu, S.L.; Li, L.; Wang, Y.; Jiang, T. Effects of infliximab on oxidative stress and inflammation of H9c2 cells induced by H2O2. Cell Mol. Biol. (Noisy-le-Grand) 2023, 69, 213–218. [Google Scholar] [CrossRef]
- Bitterman, J.L.; Chung, J.H. Metabolic effects of resveratrol: Addressing the controversies. Cell. Mol. Life Sci. 2015, 72, 1473–1488. [Google Scholar] [CrossRef]
- Wang, X.; Liu, M.; Zhu, M.J.; Shi, L.; Liu, L.; Zhao, Y.L.; Cheng, L.; Gu, Y.J.; Zhou, M.Y.; Chen, L.; et al. Resveratrol protects the integrity of alveolar epithelial barrier via SIRT1/PTEN/p-Akt pathway in methamphetamine-induced chronic lung injury. Cell Prolif. 2020, 53, e12773. [Google Scholar] [CrossRef]
- Fu, Q.; Tan, Z.; Shi, L.; Xun, W. Resveratrol attenuates diquat-induced oxidative stress by regulating gut microbiota and metabolome characteristics in piglets. Front. Microbiol. 2021, 12, 695155. [Google Scholar] [CrossRef]
- Xun, W.; Fu, Q.; Shi, L.; Cao, T.; Jiang, H.; Ma, Z. Resveratrol protects intestinal integrity, alleviates intestinal inflammation and oxidative stress by modulating AhR/Nrf2 pathways in weaned piglets challenged with diquat. Int. Immunopharmacol. 2021, 99, 107989. [Google Scholar] [CrossRef]
- Ding, X.; Cai, C.; Jia, R.; Bai, S.; Zeng, Q.; Mao, X.; Xu, S.; Zhang, K.; Wang, J. Dietary resveratrol improved production performance, egg quality, and intestinal health of laying hens under oxidative stress. Poult. Sci. 2022, 101, 101886. [Google Scholar] [CrossRef]
- Ershad, M.; Shigenaga, M.K.; Bandy, B. Differential protection by anthocyanin-rich bilberry extract and resveratrol against lipid micelle-induced oxidative stress and monolayer permeability in Caco-2 intestinal epithelial cells. Food Funct. 2021, 12, 2950–2961. [Google Scholar] [CrossRef]
- Tang, D.; Chen, K.; Huang, L.; Li, J. Pharmacokinetic properties and drug interactions of apigenin, a natural flavone. Expert Opin. Drug Metab. Toxicol. 2017, 13, 323–330. [Google Scholar] [CrossRef]
- Madunic, J.; Madunic, I.V.; Gajski, G.; Popic, J.; Garaj-Vrhovac, V. Apigenin: A dietary flavonoid with diverse anticancer properties. Cancer Lett. 2018, 413, 11–22. [Google Scholar] [CrossRef]
- Paredes-Gonzalez, X.; Fuentes, F.; Jeffery, S.; Saw, C.L.; Shu, L.; Su, Z.Y.; Kong, A.N. Induction of nrf2-mediated gene expression by dietary phytochemical flavones apigenin and luteolin. Biopharm. Drug. Dispos. 2015, 36, 440–451. [Google Scholar] [CrossRef]
- Rahimi, A.; Alimohammadi, M.; Faramarzi, F.; Alizadeh-Navaei, R.; Rafiei, A. The effects of apigenin administration on the inhibition of inflammatory responses and oxidative stress in the lung injury models: A systematic review and meta-analysis of preclinical evidence. Inflammopharmacology 2022, 30, 1259–1276. [Google Scholar] [CrossRef]
- He, S.; Li, S.; Arowolo, M.A.; Yu, Q.; Chen, F.; Hu, R.; He, J. Effect of resveratrol on growth performance, rectal temperature and serum parameters of yellow-feather broilers under heat stress. Anim. Sci. J. 2019, 90, 401–411. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Zhang, H.; Wang, T. Pterostilbene as a protective antioxidant attenuates diquat-induced liver injury and oxidative stress in 21-day-old broiler chickens. Poult. Sci. 2020, 99, 3158–3167. [Google Scholar] [CrossRef]
- Zhou, N.; Tian, Y.; Wu, H.; Cao, Y.; Li, R.; Zou, K.; Xu, W.; Lu, L. Protective effect of resveratrol on immortalized duck intestinal epithelial cells exposed to H2O2. Molecules 2022, 27, 3542. [Google Scholar] [CrossRef]
- Dashtbanei, S.; Keshtmand, Z. A mixture of multi-strain probiotics (lactobacillus rhamnosus, lactobacillus helveticus, and lactobacillus casei) had anti-inflammatory, anti-apoptotic, and anti-oxidative effects in oxidative injuries induced by cadmium in small intestine and lung. Probiot. Antimicrob. Proteins 2023, 15, 226–238. [Google Scholar] [CrossRef]
- Lewis, C.V.; Sellak, H.; Sawan, M.A.; Joseph, G.; Darby, T.M.; Vaninsberghe, D.; Naudin, C.R.; Archer, D.R.; Jones, R.M.; Taylor, W.R. Intestinal barrier dysfunction in murine sickle cell disease is associated with small intestine neutrophilic inflammation, oxidative stress, and dysbiosis. FASEB Bioadv. 2023, 5, 199–210. [Google Scholar] [CrossRef]
- Hao, L.; Cheng, Y.; Su, W.; Wang, C.; Lu, Z.; Jin, M.; Wang, F.; Wang, Y. Pediococcus pentosaceus zjuaf-4 relieves oxidative stress and restores the gut microbiota in diquat-induced intestinal injury. Appl. Microbiol. Biotechnol. 2021, 105, 1657–1668. [Google Scholar] [CrossRef]
- Jones, G.M.; Vale, J.A. Mechanisms of toxicity, clinical features, and management of diquat poisoning: A review. J. Toxicol. Clin. Toxicol. 2000, 38, 123–128. [Google Scholar] [CrossRef]
- Finkel, T.; Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408, 239–247. [Google Scholar] [CrossRef]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef]
- Halliwell, B. Reactive oxygen species (ros), oxygen radicals and antioxidants: Where are we now, where is the field going and where should we go? Biochem. Biophys. Res. Commun. 2022, 633, 17–19. [Google Scholar] [CrossRef]
- Xu, X.; Wei, Y.; Hua, H.; Jing, X.; Zhu, H.; Xiao, K.; Zhao, J.; Liu, Y. Polyphenols sourced from ilex latifolia thunb. Relieve intestinal injury via modulating ferroptosis in weanling piglets under oxidative stress. Antioxidants 2022, 11, 966. [Google Scholar] [CrossRef]
- Wu, F.; Yang, X.; Wang, F.; Liu, Y.; Han, S.; Liu, S.; Zhang, Z.; Chen, B. Dietary curcumin supplementation alleviates diquat-induced oxidative stress in the liver of broilers. Poult. Sci. 2023, 102, 103132. [Google Scholar] [CrossRef]
- Zha, P.; Wei, L.; Liu, W.; Chen, Y.; Zhou, Y. Effects of dietary supplementation with chlorogenic acid on growth performance, antioxidant capacity, and hepatic inflammation in broiler chickens subjected to diquat-induced oxidative stress. Poult. Sci. 2023, 102, 102479. [Google Scholar] [CrossRef]
- Poudel, S.; Izquierdo, M.; Cancela, M.L.; Gavaia, P.J. Reversal of doxorubicin-induced bone loss and mineralization by supplementation of resveratrol and mitotempo in the early development of sparus aurata. Nutrients 2022, 14, 1154. [Google Scholar] [CrossRef]
- Ding, K.N.; Lu, M.H.; Guo, Y.N.; Liang, S.S.; Mou, R.W.; He, Y.M.; Tang, L.P. Resveratrol relieves chronic heat stress-induced liver oxidative damage in broilers by activating the nrf2-keap1 signaling pathway. Ecotoxicol. Environ. Saf. 2023, 249, 114411. [Google Scholar] [CrossRef]
- Zhu, C.; Nie, X.; He, Z.; Xiong, T.; Li, Y.; Bai, Y.; Zhang, H. Research note: Dietary resveratrol supplementation improves the hepatic antioxidant capacity and attenuates lipopolysaccharide-induced inflammation in yellow-feathered broilers. Poult. Sci. 2023, 102, 102370. [Google Scholar] [CrossRef]
- Gao, Y.; Meng, Q.; Qin, J.; Zhao, Q.; Shi, B. Resveratrol alleviates oxidative stress induced by oxidized soybean oil and improves gut function via changing gut microbiota in weaned piglets. J. Anim. Sci. Biotechnol. 2023, 14, 54. [Google Scholar] [CrossRef]
- Qiao, Y.; Zhang, Z.; Zhai, Y.; Yan, X.; Zhou, W.; Liu, H.; Guan, L.; Peng, L. Apigenin alleviates obesity-associated metabolic syndrome by regulating the composition of the gut microbiome. Front. Microbiol. 2021, 12, 805827. [Google Scholar] [CrossRef]
- Wen, C.; Guo, Q.; Wang, W.; Duan, Y.; Zhang, L.; Li, J.; He, S.; Chen, W.; Li, F. Taurine alleviates intestinal injury by mediating tight junction barriers in diquat-challenged piglet models. Front. Physiol. 2020, 11, 449. [Google Scholar] [CrossRef]
- Hong, Q.; Li, X.; Lin, Q.; Shen, Z.; Feng, J.; Hu, C. Resveratrol improves intestinal morphology and anti-oxidation ability in deoxynivalenol-challenged piglets. Animals 2022, 12, 311. [Google Scholar] [CrossRef]
- Yang, F.; Shen, C. Sodium danshensu cream promotes the healing of pressure ulcers in mice through the Nrf2/HO-1 and nf-kappab pathways. Pharmaceuticals 2022, 15, 1548. [Google Scholar] [CrossRef]
- Zaghlool, S.S.; Abdelaal, N.; El-Shoura, E.; Mahmoud, N.I.; Ahmed, Y.M. Restoring glomerular filtration rate by sulforaphane modulates ERK1/2/JNK/P38MAPK, IRF3/iNOS, Nrf2/Ho-1 signaling pathways against folic acid-induced acute renal injury in rats. Int. Immunopharmacol. 2023, 123, 110777. [Google Scholar] [CrossRef]
- Yu, C.; Dong, H.; Wang, Q.; Bai, J.; Li, Y.N.; Zhao, J.J.; Li, J.Z. Danshensu attenuates cisplatin-induced nephrotoxicity through activation of nrf2 pathway and inhibition of nf-kappab. Biomed. Pharmacother. 2021, 142, 111995. [Google Scholar] [CrossRef]
- Bellezza, I.; Giambanco, I.; Minelli, A.; Donato, R. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim. Biophys. Acta-Mol. Cell Res. 2018, 1865, 721–733. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Y.; Liu, M.; Liu, X.; Jiao, Y.; Jin, S.; Shan, A.; Feng, X. Effects of dietary resveratrol supplementation on growth performance and anti-inflammatory ability in ducks (Anas platyrhynchos) through the Nrf2/HO-1 and TLR4/NF-κB signaling pathways. Animals 2021, 11, 3588. [Google Scholar] [CrossRef]
- Liu, D.; Peng, R.; Chen, Z.; Yu, H.; Wang, S.; Dong, S.; Li, W.; Shao, W.; Dai, J.; Li, F.; et al. The protective effects of apigenin against radiation-induced intestinal injury. Dose-Response 2022, 20, 1495863743. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Yu, H.; Li, M.; Hang, L.; Xu, X. Apigenin protects mouse retina against oxidative damage by regulating the nrf2 pathway and autophagy. Oxidative Med. Cell. Longev. 2020, 2020, 9420704. [Google Scholar] [CrossRef]
- Capaldo, C.T.; Powell, D.N.; Kalman, D. Layered defense: How mucus and tight junctions seal the intestinal barrier. J. Mol. Med. 2017, 95, 927–934. [Google Scholar] [CrossRef]
- Wang, S.; Bai, M.; Xu, K.; Shao, Y.; Yang, Z.; Xiong, X.; Huang, R.; Li, Y.; Liu, H. Effects of coated cysteamine on oxidative stress and inflammation in weaned pigs. Animals 2021, 11, 2217. [Google Scholar] [CrossRef]
- Sun, X.; Piao, L.; Jin, H.; Nogoy, K.; Zhang, J.; Sun, B.; Jin, Y.; Lee, D.H.; Choi, S.; Li, X. Dietary glucose oxidase and/or catalase supplementation alleviates intestinal oxidative stress induced by diquat in weaned piglets. Anim. Sci. J. 2021, 92, e13634. [Google Scholar] [CrossRef]
- Song, X.; Liu, L.; Peng, S.; Liu, T.; Chen, Y.; Jia, R.; Zou, Y.; Li, L.; Zhao, X.; Liang, X.; et al. Resveratrol regulates intestinal barrier function in cyclophosphamide-induced immunosuppressed mice. J. Sci. Food. Agric. 2022, 102, 1205–1215. [Google Scholar] [CrossRef]
- Fu, R.; Wang, L.; Meng, Y.; Xue, W.; Liang, J.; Peng, Z.; Meng, J.; Zhang, M. Apigenin remodels the gut microbiota to ameliorate ulcerative colitis. Front. Nutr. 2022, 9, 1062961. [Google Scholar] [CrossRef]
- Liu, G.; Liang, Y.; Xu, M.; Sun, M.; Sun, W.; Zhou, Y.; Huang, X.; Song, W.; Liang, Y.; Wang, Z. Protective mechanism of erigeron breviscapus injection on blood-brain barrier injury induced by cerebral ischemia in rats. Sci. Rep. 2021, 11, 18451. [Google Scholar] [CrossRef]
- Tang, Q.; Du, L.; Sun, Q. Impact of cholesterol metabolism on H2O2-induced oxidative stress injury in HepG2 cells treated with fatty acids. Altern. Ther. Health Med. 2024, 30, 396–402. [Google Scholar]
- Niu, X.; Di, W.; Zhang, Z.; Li, N.; Qiu, Z.; Shi, W.; Lei, W.; Tang, J.; Yang, Y.; Xu, B.; et al. Activation of itln-1 attenuates oxidative stress injury via activating SIRT1/PGC1-α signaling in neuroblastoma cells. J. Cell. Physiol. 2024, 239, 67–78. [Google Scholar] [CrossRef]
- Jittapalapong, S.; Poompoung, T.; Sutjarit, S. Apigenin induces oxidative stress in mouse Sertoli TM4 cells. Vet. World 2021, 14, 3132–3137. [Google Scholar] [CrossRef]
- Almeer, R.; Alyami, N.M. The protective effect of apigenin against inorganic arsenic salt-induced toxicity in PC12 cells. Environ. Sci. Pollut. Res. 2023, 30, 106625–106635. [Google Scholar] [CrossRef]
- Hnit, S.; Yao, M.; Xie, C.; Bi, L.; Wong, M.; Liu, T.; De Souza, P.; Li, Z.; Dong, Q. Apigenin impedes cell cycle progression at G2 phase in prostate cancer cells. Discov. Oncol. 2022, 13, 44. [Google Scholar] [CrossRef]
- Shendge, A.K.; Chaudhuri, D.; Basu, T.; Mandal, N. A natural flavonoid, apigenin isolated from clerodendrum viscosum leaves, induces G2/M phase cell cycle arrest and apoptosis in MCF-7 cells through the regulation of P53 and caspase-cascade pathway. Clin. Transl. Oncol. 2021, 23, 718–730. [Google Scholar] [CrossRef]
- Huang, S.; Yu, M.; Shi, N.; Zhou, Y.; Li, F.; Li, X.; Huang, X.; Jin, J. Apigenin and abivertinib, a novel btk inhibitor synergize to inhibit diffuse large b-cell lymphoma in vivo and vitro. J. Cancer 2020, 11, 2123–2132. [Google Scholar] [CrossRef]
- Chen, L.; Guo, Y.; Qu, S.; Li, K.; Yang, T.; Yang, Y.; Zheng, Z.; Liu, H.; Wang, X.; Deng, S.; et al. The protective effects of shengmai formula against myocardial injury induced by ultrafine particulate matter exposure and myocardial ischemia are mediated by the pi3k/akt/p38 mapk/nrf2 pathway. Front. Pharmacol. 2021, 12, 619311. [Google Scholar] [CrossRef]
- Zhan, X.; Li, J.; Zhou, T. Targeting Nrf2-mediated oxidative stress response signaling pathways as new therapeutic strategy for pituitary adenomas. Front. Pharmacol. 2021, 12, 565748. [Google Scholar] [CrossRef]
- Yang, J.; Pi, C.; Wang, G. Inhibition of pi3k/akt/mtor pathway by apigenin induces apoptosis and autophagy in hepatocellular carcinoma cells. Biomed. Pharmacother. 2018, 103, 699–707. [Google Scholar] [CrossRef]
- Li, T.; Zhang, L.; Jin, C.; Xiong, Y.; Cheng, Y.Y.; Chen, K. Pomegranate flower extract bidirectionally regulates the proliferation, differentiation and apoptosis of 3T3-L1 cells through regulation of ppargamma expression mediated by PI3K-Akt signaling pathway. Biomed. Pharmacother. 2020, 131, 110769. [Google Scholar] [CrossRef]
- Zhang, C.; Liao, Y.; Li, T.; Zhong, H.; Shan, L.; Yu, P.; Xia, C.; Xu, L. Apigenin promotes apoptosis of 4T1 cells through PI3K/AKT/Nrf2 pathway and improves tumor immune microenvironment in vivo. Toxicol. Res. 2024, 13, tfae11. [Google Scholar] [CrossRef]
- Kim, S.M.; Vetrivel, P.; Ha, S.E.; Kim, H.H.; Kim, J.A.; Kim, G.S. Apigetrin induces extrinsic apoptosis, autophagy and g2/m phase cell cycle arrest through pi3k/akt/mtor pathway in ags human gastric cancer cell. J. Nutr. Biochem. 2020, 83, 108427. [Google Scholar] [CrossRef] [PubMed]
- Ren, Q.; Zhang, G.; Yan, R.; Zhou, D.; Huang, L.; Zhang, Q.; Li, W.; Huang, G.; Li, Z.; Yan, J. Sam/sah mediates parental folate deficiency-induced neural cell apoptosis in neonatal rat offspring: The expression of Bcl-2, bax, and Caspase-3. Int. J. Mol. Sci. 2023, 24, 14508. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Zhu, H.; Huang, R.; Yan, B.; Xu, B.; Shi, Y.; Mao, J.; Liu, Z.; Wang, J. Roles of cyt-c/caspase-9/caspase-3/bax/bcl-2 pathway in cd-induced testicular injury in rats and the protective effect of quercetin. Toxicon 2024, 237, 107561. [Google Scholar] [CrossRef] [PubMed]
- Uremis, N.; Aslan, M.; Taslidere, E.; Gurel, E. Dexpanthenol exhibits antiapoptotic and anti-inflammatory effects against nicotine-induced liver damage by modulating Bax/Bcl-xL, Caspase-3/9, and Akt/NF-κB pathways. J. Biochem. Mol. Toxicol. 2024, 38, e23622. [Google Scholar] [CrossRef]
- Al-Amarat, W.; Abukhalil, M.H.; Alruhaimi, R.S.; Alqhtani, H.A.; Aldawood, N.; Alfwuaires, M.A.; Althunibat, O.Y.; Aladaileh, S.H.; Algefare, A.I.; Alanezi, A.A.; et al. Upregulation of Nrf2/HO-1 signaling and attenuation of oxidative stress, inflammation, and cell death mediate the protective effect of apigenin against cyclophosphamide hepatotoxicity. Metabolites 2022, 12, 648. [Google Scholar] [CrossRef]
Ingredients | Content (%) | Nutrient Levels | Content |
---|---|---|---|
Corn | 53.2 | Metabolic energy 2 (MJ/kg) | 12.20 |
Soybean meal | 26.8 | Crude protein, % | 17.85 |
Wheat bran | 10.6 | Lysine, % | 1.1 |
Soybean oil | 3.61 | Cysteine + methionine, % | 0.68 |
Limeston | 1.77 | Calcium, % | 3.50 |
NaCl | 0.3 | Available phosphorus, % | 0.37 |
DL-methionine | 0.22 | ||
CaHPO 3 | 1.5 | ||
Vitamin-mineral premix 1 | 2.00 | ||
Total | 100 |
Genes | Primer (from 5′ to 3′) | Product Size (bp) | Accession Number |
---|---|---|---|
NRF2 | F: GTTGAATCATCTGCCTGTGG | 153 | NM_001310777.1 |
R: TAAGCTAGGTGGTCGAGTGC | |||
NQO1 | F: AAGAACCCCGAGCACTTCGT | 142 | XM_027466610.1 |
R: CCTCTCCCATCTCCGTCTCGT | |||
GCLM | F: CAGTCATTATTGCCCCGCCTC | 131 | XM_027462629.1 |
R: CCATTCGTGTGCTTTGACGTT | |||
HO-1 | F: TTCCCAGAAACACGGCTCT | 145 | KU048806 |
R: TTCCCTCCAGTTTCTGCCGTA | |||
SOD-1 | F: CCTCGGCAACGTGACTGCTA | 159 | XM_027449207.2 |
R: ACTTGGCTATTCCGATGACACC | |||
GPX-1 | F: CAGTACATCATCTGGTCGCC | 185 | XM_027467953.2 |
R: CCTGGATCTTGATGGTTTCG | |||
CAT | F: CTTTACAATGCCATAGCCCAT | 168 | XM_027458335 |
R: CCTCCGCAAAGTAATTGACAGG | |||
ZO-1 | F: ACGCTGGTGAAATCAAGGAAGAA | 179 | XM_038184904 |
R: AGGGACATTCAACAGCGTGGC | |||
β-actin | F: ATGTCGCCCTGGATTTCG | 135 | EF667345.1 |
R: CACAGGACTCCATACCCAAGAAT |
Items | CON | DIQ | RES | API |
---|---|---|---|---|
Villus height (μm) | 578.33 a ± 29.13 | 362.71 c ± 19.94 | 563.33 a ± 19.19 | 469.71 b ± 30.19 |
Crypt depth (μm) | 173.17 a ± 5.29 | 92.07 c ± 8.72 | 151.67 a ± 10.08 | 143.43 b ± 5.39 |
Villus height/crypt depth | 3.35 ± 0.18 | 4.18 ± 0.53 | 3.83 ± 0.37 | 3.29 ± 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, N.; Cao, Y.; Luo, Y.; Wang, L.; Li, R.; Di, H.; Gu, T.; Cao, Y.; Zeng, T.; Zhu, J.; et al. The Effects of Resveratrol and Apigenin on Jejunal Oxidative Injury in Ducks and on Immortalized Duck Intestinal Epithelial Cells Exposed to H2O2. Antioxidants 2024, 13, 611. https://doi.org/10.3390/antiox13050611
Zhou N, Cao Y, Luo Y, Wang L, Li R, Di H, Gu T, Cao Y, Zeng T, Zhu J, et al. The Effects of Resveratrol and Apigenin on Jejunal Oxidative Injury in Ducks and on Immortalized Duck Intestinal Epithelial Cells Exposed to H2O2. Antioxidants. 2024; 13(5):611. https://doi.org/10.3390/antiox13050611
Chicago/Turabian StyleZhou, Ning, Yongqing Cao, Youwen Luo, Lihua Wang, Ruiqing Li, Heshuang Di, Tiantian Gu, Yun Cao, Tao Zeng, Jianping Zhu, and et al. 2024. "The Effects of Resveratrol and Apigenin on Jejunal Oxidative Injury in Ducks and on Immortalized Duck Intestinal Epithelial Cells Exposed to H2O2" Antioxidants 13, no. 5: 611. https://doi.org/10.3390/antiox13050611
APA StyleZhou, N., Cao, Y., Luo, Y., Wang, L., Li, R., Di, H., Gu, T., Cao, Y., Zeng, T., Zhu, J., Chen, L., An, D., Ma, Y., Xu, W., Tian, Y., & Lu, L. (2024). The Effects of Resveratrol and Apigenin on Jejunal Oxidative Injury in Ducks and on Immortalized Duck Intestinal Epithelial Cells Exposed to H2O2. Antioxidants, 13(5), 611. https://doi.org/10.3390/antiox13050611