Next Article in Journal
Supplementation with Combined Additive Improved the Production of Dairy Cows and Their Offspring with Maintenance of Antioxidative Stability
Previous Article in Journal
Deletion of Glyoxalase 1 Exacerbates Acetaminophen-Induced Hepatotoxicity in Mice
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

The Role of NRF2 in Trinucleotide Repeat Expansion Disorders

by
Kuo-Hsuan Chang
1,2 and
Chiung-Mei Chen
1,2,*
1
Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Kueishan, Taoyuan 333, Taiwan
2
College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
*
Author to whom correspondence should be addressed.
Antioxidants 2024, 13(6), 649; https://doi.org/10.3390/antiox13060649
Submission received: 10 April 2024 / Revised: 20 May 2024 / Accepted: 23 May 2024 / Published: 26 May 2024
(This article belongs to the Special Issue Role of NRF2 Pathway in Neurodegenerative Diseases)

Abstract

:
Trinucleotide repeat expansion disorders, a diverse group of neurodegenerative diseases, are caused by abnormal expansions within specific genes. These expansions trigger a cascade of cellular damage, including protein aggregation and abnormal RNA binding. A key contributor to this damage is oxidative stress, an imbalance of reactive oxygen species that harms cellular components. This review explores the interplay between oxidative stress and the NRF2 pathway in these disorders. NRF2 acts as the master regulator of the cellular antioxidant response, orchestrating the expression of enzymes that combat oxidative stress. Trinucleotide repeat expansion disorders often exhibit impaired NRF2 signaling, resulting in inadequate responses to excessive ROS production. NRF2 activation has been shown to upregulate antioxidative gene expression, effectively alleviating oxidative stress damage. NRF2 activators, such as omaveloxolone, vatiquinone, curcumin, sulforaphane, dimethyl fumarate, and resveratrol, demonstrate neuroprotective effects by reducing oxidative stress in experimental cell and animal models of these diseases. However, translating these findings into successful clinical applications requires further research. In this article, we review the literature supporting the role of NRF2 in the pathogenesis of these diseases and the potential therapeutics of NRF2 activators.

1. Introduction

Microsatellites are short, repetitive sequences of DNA found throughout the genomes of both prokaryotes and eukaryotes [1,2]. They consist of 1–6 base pairs, mostly repeated 20–100 times, and can be found in both protein-coding and non-coding regions [3]. These microsatellites play various roles in biological regulation, influencing processes like alternative splicing, transcription initiation and termination, and DNA packaging [4,5,6,7,8,9]. One of the most striking features of microsatellites is their high mutation rate, which occurs 100 to a million times more frequently than that in non-repetitive regions [10,11]. This instability causes high variability in the number of repeats across individuals. This characteristic, however, also contributes to the development of various neurological diseases, including trinucleotide repeat expansion disorders.
Trinucleotide repeat disorders are a group of neuropsychiatric diseases caused by abnormal expansions of specific three-nucleotide microsatellites (Table 1). An understanding of the disorders began with the identification of (CGG)n trinucleotide repeats within the 5′ untranslated region (UTR) of FMR1 gene in Fragile X syndrome [12,13,14,15] and (CAG)n trinucleotide repeats within the coding region of the androgen receptor (AR) gene in spinobulbar muscular atrophy [16]. Further research revealed that similar expansions in other genes, particularly those encoding proteins with polyglutamine tracts, contribute to various neurodegenerative diseases such as Huntington disease (HD) [17], dentatorubropallidoluysian atrophy (DRPLA), and spinocerebellar atrophy (SCA) 1, 2, 3, 6, 7 and 17 [18]. Furthermore, more neurological disorders were identified as being caused by untranslated trinucleotide repeats located at 5′UTR for SCA12 [19], in the intronic regions for Friedreich ataxia [20], and in potential antisense sequences for SCA8 [21]. These diseases exhibit “intergenerational anticipation”, where symptoms appear earlier in offspring due to the expansions growing larger with each generation [22,23]. The instability of trinucleotide repeats can also be increased by various environmental stressors, such as cold, heat, hypoxic, and oxidative stresses, and also because specific repair pathways are involved in their repair [24,25]. The pathogenic expansions can range from a few repeats to thousands, while the severity of the disease phenotype often correlates directly with the length of the repeat expansions, with longer expansions leading to more severe symptoms [22,23]. Patients can exhibit varying symptoms and co-morbidities, depending on the specific length of their expansions within the same disease-causing gene [26,27,28,29,30,31,32].
The pathogenesis of trinucleotide repeat expansion leads to structural alterations in DNA, triggering a cascade of molecular processes affecting DNA, RNA, and protein levels [33,34,35]. The expanded polyglutamine tracts in HD, SCA and DRPLA exert a toxic effect by causing aberrant nuclear and cytoplasmic protein aggregation and by trapping transcription factors, chaperons, and proteins belonging to the ubiquitin–proteasome system (UPS) [36,37,38]. RNA transcripts with expanded repeats can bind RNA-binding proteins, altering their activity and location [39,40,41,42]. Expanded repeats can be translated, either through traditional AUG initiation, near-start codons, or a unique process called repeat-associated non-AUG (RAN) translation to generate proteins containing a pathogenic stretch of repeated amino acids [43].
Oxidative stress, an imbalance between the production and elimination of reactive oxygen species (ROS) in cells, can damage lipids, proteins, and nucleic acids, leading to cell death [44,45]. Both external factors, like UV light, and internal factors, like mitochondrial activity, contribute to ROS production [46,47,48]. While these oxygen byproducts play a role in cellular signaling, their excessive accumulation requires an efficient antioxidant defense system [49,50,51,52]. This system includes enzymes like superoxide dismutases (SODs) and catalase (CAT), as well as scavenger molecules like glutathione (GSH) [53,54,55]. Notably, GSH is a crucial antioxidant, directly scavenging ROS and acting as a cofactor for other antioxidant enzymes and detoxification processes [56,57,58,59]. Its synthesis is a two-step process involving glutamate cysteine ligase (GCL) and glutathione synthetase (GSS) [60]. Under normal conditions, cells maintain a basal level of antioxidant machinery. However, upon encountering oxidative stress, cells activate the nuclear factor–erythroid factor 2 (NRF2) pathway to further boost the expression of antioxidant enzymes, GSH synthesis, and detoxification enzymes, ensuring a robust protective response [61,62,63,64]. Interestingly, oxidative stress has been linked to various neurodegenerative diseases, including those caused by trinucleotide repeat expansions [65,66]. This review summarizes the latest evidence connecting oxidative stress to these disorders, with a specific focus on the NRF2 signaling pathway, which plays a critical role in regulating the cellular antioxidant response and may offer insights into potential therapeutic strategies.

2. Structure and Regulation of NRF2

NRF2 is a complex protein of 605 amino acids with 7 conserved NRF2-ECH homology (NEH) domains [67]. Under physiological conditions, NRF2 has a short half-life of only 15–40 min and is primarily located in the cytoplasm [68]. This tight regulation is achieved through the interaction between the NEH2 domain of NRF2 and the double-glycine repeat (DGR) region of Kelch-like ECH-associated protein 1 (KEAP1) [69]. The bric-a-brac, tramtrack, broad-complex (BTB) domain in KEAP1 mediates homodimerization and forms a complex with Cullin 3 (CUL3), RING-box adaptor 1 (RBX1), and an E2 ubiquitin ligase [70]. This KEAP1–CUL3–RBX1 complex acts as the primary regulator of NRF2 degradation by tagging it with ubiquitin for proteasomal degradation [70] (Figure 1).
Exposure to ROS, electrophiles, or heavy metals can covalently modify specific cysteine residues on KEAP1 and disrupt its attachment to NRF2 [71,72]. This allows NRF2 to avoid proteasomal degradation and translocate into the nucleus [73]. In the nucleus, the NEH1 domain of NRF2 binds to small, musculoaponeurotic fibrosarcoma proteins (sMAF) and antioxidant response element (ARE) on DNA [74,75,76], and initiates the transcription of genes that produce various protective molecules involving ROS detoxification, nicotinamide adenine dinucleotide phosphate (NADPH) regeneration, GSH production and regeneration, heme and iron metabolism, thioredoxin (TXN) antioxidant system, and mitochondrial biogenesis (Figure 1) [76]. The functional analysis of ARE identified a core sequence, 5′-TGACNNNGC-3′, which is essential for mediating basal and/or inducible activity [77]. The NEH3-5 acts as transactivation domains to further booster the transcription of several protective genes [78,79]. On the other hand, the NEH6 acts as a negative regulator, promoting the ubiquitination and subsequent degradation of NRF2 [80]. The NEH7 domain interacts with retinoic X receptor alpha (RXRa), a nuclear receptor that suppresses the NRF2/ARE pathway and reduces ARE gene expression [81]. In the cytoplasm, free NRF2 can be phosphorylated by GSK3β, leading to its increased degradation through the proteasomal pathway (Figure 2) [63,68].
NRF2 is encoded by the nuclear factor (erythroid-derived 2)-like 2 gene (NFE2L2) gene on chromosome 2q31.2 [82]. Two ARE sequences within the NFE2L2 promoter enable NRF2 to bind and enhance its own expression [83]. The presence of a nuclear factor kappa-light-chain-enhancer of the activated B cells (NFκB)-binding region in the NFE2L2 promoter allows for the upregulation of NRF2 expression activated by NFκB during acute inflammation or tumorigenesis (Figure 2) [84]. The NFE2L2 promoter also contains multiple binding sites for the activating enhancer-binding protein 2 (AP2) transcription factor, which interacts with a range of proteins as co-activators or suppressors of NRF2 transcription [85]. Interestingly, the NFE2L2 promoter is rich in the CpG islands susceptible to methylation-induced silencing, highlighting the role of epigenetics in NFE2L2 regulation [86,87].
While the KEAP1–CUL3–RBX1 complex is a well-established regulator of NRF2 degradation, other E3 ubiquitin ligase complexes contribute to KEAP1-independent NRF2 degradation (Figure 2). The β-transducin repeat-containing protein (β-TrCP) binds to the NEH6 domain of NRF2, forming a ubiquitin ligase complex with S-phase kinase-associated protein-1 (SKP1), CUL1, and RBX1 for subsequent degradation of NRF2 [80]. WD-repeat protein 23 (WDR23) binds the NEH2 domain of NRF2 and interacts with the CUL4-damaged DNA-binding protein 1 (DDB1) ubiquitin ligase complex [80]. Another ubiquitin ligase, HMG-CoA reductase degradation 1 (HRD1), targets NRF2 for degradation by binding to its NEH4-5 domains, thereby attenuating NRF2 signaling [88]. NRF2 activity is also modulated by kinases that directly phosphorylate specific NRF2 domains. Protein kinase C (PKC) phosphorylates the NEH2 domain, preventing complex formation with KEAP1 and facilitating NRF2 translocation to the nucleus [89]. Casein kinase 2 (CK2) phosphorylates the NEH4-5 domains, leading to increased nuclear NRF2 levels [90]. The proto-oncogene tyrosine-protein kinase Fyn (FYN) phosphorylates the Y568 residue in the NEH1 domain, which triggers the export of NRF2 from the nucleus [91]. Glycogen synthase kinase 3 (GSK-3) phosphorylates the NEH6 domain to enhance the binding of β-TrCP to NRF2 to promote NRF2 degradation [92]. GSK-3also phosphorylates FYN, enabling its nuclear translocation, where it subsequently phosphorylates NRF2, leading to its nuclear export [91]. Interestingly, the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway promotes NRF2 activity by enhancing the inhibitory phosphorylation of GSK3 [92,93].
The expression of NRF2 is also controlled by microRNAs (Figure 2) [94,95,96,97]. For example, miR-144, miR-28, miR-142-5p, miR-153, and miR-237 directly target NFE2L2 and downregulate NRF2 expression in various cell types [98,99,100]. In neurons, miR-152-3p protects against oxygen and glucose deprivation/reperfusion injury by enhancing NRF2/ARE signaling through the direct inhibition of postsynaptic density protein 93 (PSD93), an activator of FYN that promotes NRF2 nuclear export [101]. This complex system delicately regulates the response of NRF2 and ensures an appropriate level of protection against oxidative stress.

3. NRF2/ARE Pathway

Genome-wide studies have identified a vast network of genes regulated by ARE, providing insight into the diverse functions of NRF2 [102,103,104]. The core function among these target genes is the enhancement of resistance to oxidative stress. Moreover, NRF2 has been implicated in the regulation of inflammation, autophagy and mitophagy, as well as mitochondrial biogenesis.

3.1. Oxidative Stress

NRF2 plays a crucial role in orchestrating a comprehensive cellular defense against oxidative stress, initiating the transcription of numerous genes containing AREs. AREs were first discovered as cis-regulatory elements for NADPH quinone dehydrogenase 1 (NQO1) and glutathione S-transferase (GST) genes [105]. Subsequent investigations broadened the spectrum of proteins encoded by the ARE gene battery, encompassing the genes involved in drug detoxification, antioxidant responses, NADPH regeneration, and metabolic regulation [106]. In vivo studies using NFE2L2 knockout mice demonstrate that NRF2 governs the expression of these antioxidant and cytoprotective genes [76,107]. NRF2 exerts control over key components of the GSH and TXN antioxidant systems, as well as enzymes implicated in NADPH regeneration, ROS detoxification, and heme metabolism, thereby playing a fundamental role in maintaining cellular redox homeostasis (Figure 1) [44]. Tight regulation of GSH levels by NRF2 involves direct control over the expression of glutathione reductase (GSR), and the two subunits constituting the glutamate–cysteine ligase complex: the catalytic subunit (GCLC) and the modifier subunit (GCLM) [108]. NRF2 also participates in GSH maintenance by regulating the transcription of various ROS-detoxifying enzymes such as CAT, glutathione peroxidase 2 (GPX2), glutathione S-transferase (GST), N-acetyltransferase (NAT) and SOD [107,109,110]. NRF2 also regulates the TXN-based antioxidant system by regulating the expression of TXN, thioredoxin reductase 1 (TXNRD1), and sulfiredoxin (SRXN1) [111]. NRF2 further supports NADPH production by positively regulating principal NADPH-generating enzymes, like glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (PGD) and isocitrate dehydrogenase 1 (IDH1), in primary cortical astrocytes, lung cancer cells, and mouse small intestine and liver [107,112,113,114]. Another critical cytoprotective enzyme regulated by NRF2 is heme oxygenase (HO1), responsible for heme molecule breakdown [115]. NRF2 upregulates the expression of HO1, and ferritin light and heavy chains (FTL and FTH) to prevent hydroxyl radical formation by sequestering iron ions, thus inhibiting the Fenton reaction [116,117].

3.2. Mitochondrial Function and Biogenesis

Beyond its crucial role in ATP production, mitochondria are susceptible to damage and ROS generation. NRF2 emerges as a key factor in maintaining mitochondrial function. NRF2 and phosphoglycerate mutase 5 (PGAM5) are required for mitochondrial retrograde trafficking. At the basal level, NRF2 is associated with KEAP1 and PGAM5 to form PGAM5-KEAP1-NRF2 complex, and either of them will be dissociated from KEAP1 in response to oxidative stress [118]. NRF2 influences mitochondrial function directly by regulating the expression of critical enzymes for electron transport chain, and contributes to mitochondrial biogenesis by regulating sirtulin 1 (SIRT1), peroxisome proliferator-activated receptor-γ (PPARG), mitochondrial transcription factor A (TFAM), nuclear respiratory factor 1 (NRF1), and peroxisome proliferator-activated receptor γ coactivator 1α (PPARGC1A) [119,120,121,122,123]. NRF2-deficient neural cells are susceptible to chemically induced mitochondrial damage, while NRF2 overexpression protects cells against these injuries [124,125].

3.3. Inflammation

Microglia and astrocytes activate ARE genes to reduce oxidative stress and inflammation [126,127]. NRF2 activation by oxidative stress can block the NFκB pathway through the induction of antioxidant genes, subsequently reducing proinflammatory cytokine production [123,128]. However, the anti-inflammatory effect of NRF2 goes beyond simply reducing oxidative stress. NRF2 can directly regulate the expression of anti-inflammatory mediators like interleukin 17D (IL17D) and cluster of differentiation 36 (CD36), further solidifying its role in this process [107,129,130]. Moreover, NRF2 has been shown to suppress proinflammatory cytokines like tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) [131,132].
One important mechanism underlying this interplay is the counterbalance between the NRF2 and NFκB pathways. P65, a protein regulating both pathways, plays a key role. Upon inflammatory pathway activation, GSK-3 phosphorylates P65, leading to the degradation of the inhibitory protein inhibitor of NFκB α (IkBα) [133]. This enables the P65 to translocate to the nucleus and initiate NFκB transcription [133]. Notably, P65 also binds to KEAP1 in the nucleus to facilitate NRF2 dissociation from the ARE region, promoting its export and degradation [134]. Moreover, P65 inhibits NRF2 activity by competitive association with cAMP response element-binding protein (CREB)-binding protein (CBP) [135], which is required for the transactivation of NRF2 [79]. On the other hand, HO1, the downstream protein of NRF2, inhibits the translocation of P65 [123]. Therefore, this regulatory loop is crucial for controlling the inflammatory response.

3.4. Autophagy and Mitophagy

Macroautophagy, a conserved process essential for cellular survival, degrades long-lived proteins, removes damaged organelles, and clears protein aggregates [136]. Excessive ROS stimulate autophagy and increase autophagosome formation [137,138,139]. A fascinating link between autophagy and NRF2 is P62, a protein that serves both as an autophagy substrate and a cargo receptor [140,141,142]. P62 interacts with KEAP1 at NRF2-binding site, leading to subsequent NRF2 release and its nuclear translocation (Figure 1) [142]. Furthermore, oxidative stress also upregulates P62 expression through NRF2 and ARE, creating a positive feedback loop [62].

3.5. Endoplasmic Reticulum Stress and Unfolded Protein Response

The accumulation of misfolded proteins, such as polyglutamine aggregation, within the endoplasmic reticulum (ER) triggers ER stress and activates the unfolded protein response (UPR) [143]. The UPR employs conserved signaling pathways to restore cellular homeostasis. In cases of persistent ER stress, UPR triggers apoptosis to prevent further damage. Protein kinase RNA-like endoplasmic reticulum kinase (PERK), a key UPR signaling molecule, phosphorylates eukaryotic initiation factor 2α (EIF2α), leading to reduced protein synthesis and promoting cell survival during ER stress [143]. ROS within the ER tightly regulate the UPR response. Notably, ER-resident peroxidases 4, GSH peroxidase 7 (GPX7) and 8 (GPx8) facilitate H2O2 detoxification by catalyzing electron transfer from protein disulfide isomerase-like oxidoreductases [144,145,146]. PERK-mediated phosphorylation of NRF2 and promote the expression of ARE genes that increase GSH levels, reduce ER-associated ROS, activate transcriptional networks for mitochondrial biogenesis, and enhance cell survival [147,148,149]. Tumor-associated myeloid-derived suppressor cells lacking PERK exhibited impaired NRF2-driven antioxidant capacity and disrupted mitochondrial respiratory homeostasis [150]. Furthermore, NRF2 upregulates the expression of ER-resident antioxidant enzyme GPX8 [151], further supporting its role in mediating ER stress.

4. Implication of NRF2 in Trinucleotide Repeat Disorders

In trinucleotide repeat expansion disorders, the cellular pathways protecting against oxidative stress often become dysregulated, leading to an inadequate response to ROS overload [131,152,153]. The NRF2 pathway appears defective in trinucleotide repeat expansion disorders [131,153], while the modulation of NRF2 signaling has shown beneficial effects in haltering these degenerations (Table 2).

4.1. NRF2 and Huntington’s Disease

Huntington’s disease (HD), a progressive, inherited neurodegenerative disease affecting the striatum, cerebral cortex, and thalamus [182,183], arises from an abnormal expansion of the CAG trinucleotide repeat in the huntingtin (HTT) gene [17]. This expansion, present in healthy individuals in less than 34 repeats, grows to 35–140 repeats in HD patients [184]. This mutant huntingtin (mHTT) triggers a detrimental cascade involving protein aggregation, altered gene expression, mitochondrial deficits, chronic inflammation, and oxidative stress, ultimately leading to progressive motor dysfunction, psychiatric disturbance, cognitive decline, and dementia within 15–20 years of symptom onset [185,186,187,188,189].
Among the various pathogenic mechanisms implicated in HD, oxidative stress and inflammation are particularly noteworthy and serve as potential therapeutic targets. Brain tissue from HD patients shows mitochondrial DNA damage, diminished levels of oxidative phosphorylation enzymes, and iron-mediated mitochondrial impairment [152,190]. Moreover, HD patients exhibit elevated levels of peroxidative molecules, like malondialdehyde (MDA) and 8-hydroxy-deoxyguanosine (8-OHdG), coupled with reduced levels of protective antioxidant proteins, such as GSH, GPX, and SOD1, in peripheral blood [191,192]. Studies on STHdhQ111/Q111 HD transgenic mouse models demonstrate reduced NRF2 activity and altered expression of KEAP1 and P62 in striatal cells [193]. Overexpression of mutant HTT in PC12 cells affects the expression of NRF2 and its responsive proteins such as NQO1, GCLC, TXNRD1, GSTA4, and GSTA6 [194]. Neural stem cells derived from HD patients display heightened susceptibility to oxidative stress, with correction of the disease-causing mutation restoring cellular redox balance [154].
Numerous NRF2 inducers show potential in alleviating neurodegeneration in HD. The natural NRF2 inducer sulforaphane (SFN) exhibited potential by enhancing mHTT protein degradation and improving cell viability in HEK293 cells overexpressing HTT with 94 CAG repeats [154]. Moreover, SFN has demonstrated efficacy in ameliorating motor dysfunction and reducing striatal cell death in HD mice induced by 3-nitropropionic acid (3-NP) [155]. The triterpenoid derivative 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid-methyl amide (CDDO-MA) reduced neuronal loss, MDA and 8-OHdG in the striatum by activating NRF2 in 3-NP-induced rats [156]. Similar CDDO derivatives, CDDO-ethyl amide (CDDO-EA) and CDDO-trifluoroethyl amide (CDDO-TFEA), upregulate NRF2/ARE-regulated genes, alleviate oxidative stress, improve motor function, and enhance survival in N171-82Q HD transgenic mice [157]. Dimethyl fumarate (DMF), an orally bioavailable NRF2 inducer, showed beneficial effects on survival time, motor function, and preservation of neurons in the striatum and motor cortex in two transgenic HD mouse models, YAC128 and R6/2 [158]. Naringin, a flavanone found in grapefruit and citrus species, reduced 3-NP-induced neuronal loss, ROS, and inflammation through NRF2 activation in the striatum of rats [159]. Protopanaxtriol, a constituent of Panax ginseng Meyer, decreased ROS production, enhanced nuclear translocation, and expression of HO1 and NQO1 in the striatum, while also improving motor function in 3-NP-induced HD rats [162]. Gintonin, a ginseng-derived lysophosphatidic acid receptor ligand, mitigated neurological impairment severity and lethality in 3-NP-induced mice by promoting nuclear translocation of NRF2 [163]. Harmine, a plant-derived β-carboline alkaloid, increased the expression of NRF2, HO1, NQO1 and P62, and enhanced motor and cognitive functions in 3-NP-induced HD rats [165]. Diapocynin upregulated the expression of NRF2, GST, GSH, NFκB, and improved motor function in 3-NP-induced HD rats [164]. Luteolin and its synthetic derivatives, Lut-C4 and Lut-C6, upregulated the expression of NRF2, SOD1 and GCLC, and improved cell viability in striatal cells from STHdhQ111/Q111 HD transgenic mice [160]. Resveratrol also activated the NRF2 pathway [195] and alleviated motor dysfunction in YAC128 mice [161]. The triazole-containing NRF2 inducer 5-nitro-2-{[5-(phenoxymethyl)-4-phenyl-4H-1,2,4-triazol-3-yl]thio}pyridine (MIND4-17) increased NQO1 and GCLM expression in neural stem cells differentiated from HD patient-derived induced pluripotent stem cells [131]. In STHdhQ111/Q111 mice, miR-196a facilitated NRF2 nuclear translocation by downregulating ubiquitin-specific peptidase 15 (USP15), a deubiquitin enzyme involved in the KEAP1–CUL3–RBX1 complex [196].

4.2. NRF2 and Spinocerebellar Ataxia

Spinocerebellar ataxias (SCAs) caused by CAG repeat expansions (SCA1, 2, 3, 6, 7, 17 and DRPLA) are characterized by progressive degeneration of the cerebellum, leading to impaired coordination and gait [197]. This degeneration primarily affects Purkinje and granule cell layers, as well as neurons in the deep cerebellar nuclei [198,199]. The neurodegeneration extends beyond the cerebellum to affect brainstem, basal ganglia, spinal cord, and even peripheral nerves in various SCA forms [198,200,201]. A common pathological hallmark of SCAs is the formation of toxic protein aggregates by proteins carrying expanded polyglutamine tracts [200]. Initially, these aggregates may manifest as small oligomers, thought to be even more toxic to cells than larger inclusions [198]. These aggregates disrupt critical cellular processes and lead to an imbalance between the production of ROS and the cellular antioxidant defense system, particularly in Purkinje neurons, which are known to have high energy demands [166].

4.2.1. SCA1

SCA1 is caused by abnormal polyglutamine expansions in the ataxin-1 (ATXN1), which interacts with proteins that control gene transcription and splicing [202]. In ATXN1-154Q knock-in mice for SCA1, the mutant ATXN1 disrupts the function of the high mobility group box 1 complex (HMGB1), leading to increased mitochondrial DNA damage [203,204]. These mice exhibit morphological alterations in mitochondria, dysfunctional enzymes for electron transport chain, and elevated oxidative stress [166]. Interestingly, treating pre- or early symptomatic ATXN1-154Q knock-in mice with MitoQ, a compound that promotes NRF2 activation and translocation to the nucleus, reduced the levels of 8-OHdG and Purkinje cell loss and delayed the onset of motor coordination impairments [166].

4.2.2. SCA2

Studies using fibroblasts from SCA2 patients demonstrated impaired mitochondrial network structure, altered expression and activity of antioxidant genes, increased production of ROS, and decreased activity of complexes I, II, and III of the electron transport chain [167]. Coenzyme Q10, a lipid-soluble vitamin-like benzoquinone compound that plays an important role in the mitochondrial respiratory chain, exerted antioxidant and anti-apoptotic functions by upregulating the expression of NRF2, NQO1, SOD and GSH [205]. Although treatment with coenzyme Q10 partially ameliorates these defects in the fibroblasts of SCA2 patients [167], its clinical efficacy in human trials remains uncertain. A study investigating SCA1, SCA2, SCA3, and SCA6 found beneficial effects of coenzyme Q10 on clinical progression only in patients with SCA1 and SCA3 over a two-year follow-up period [206]. The treatment did not appear to significantly impact disease deterioration in patients with SCA2 or SCA6 [206].

4.2.3. SCA3

SCA3, the most common and well-studied SCA, highlights the connection between oxidative stress and neurodegeneration. SH-N-SH cells expressing ataxin-3 (ATXN3) with 78 CAG repeats showed reduced cell viability, decreased levels of GSH, and reduced expression of GSR, SOD, and CAT [207]. Reduced activity of complex II in the electron transport chain has also been reported in PC6-3 cells expressing ATXN3 with 108 CAG repeats. Cerebellar granular cells from ATXN3-71Q transgenic mouse models, as well as in lymphoblastic cell lines from SCA3 patients, showed increased ROS generation [208]. Clinical studies consistently reveal reduced levels of GSH and TXN, as well as increased mitochondrial DNA damage and reduced mitochondrial copy numbers in the blood of SCA3 patients [207,209]. A large study consistently revealed increased ROS levels and reduced SOD and GPX activities in the blood of SCA3 patients, with these changes also correlating with disease severity [210].
Studies indicate that ATXN3 aggregation reduces NRF2 levels and activity [169,170]. NRF2 activator ASC-JM17 and DMF upregulated CAT, GSH, NQO1, HO1, SOD1, SOD2, and nuclear levels of NRF2, while reducing intracellular aggregates, enhancing cell viability and improving mitochondrial function in SK-N-SH cells expressing ATXN3 with 78 CAG repeats [168]. Interestingly, treatment with aqueous extract of Gardenia jasminoides or Glycyrrhiza inflata reduced ROS levels and improved cell viability by upregulating NRF2, NQO1, GCLC, GST1, and SOD2 in HEK293 and SH-SY5Y cells expressing ATXN3 with 75 CAG repeats [169,170]. Resveratrol enhanced the expression of NRF2, HO1, SOD, GPX, and P62 with reduced ROS levels, increased autophagy activity, and improved mitochondrial function and cell viability in SK-N-SH cells and Drosophila expressing ATXN3 with 78 CAG repeats [117].

4.2.4. SCA7

In PC12 cells expressing ataxin-7 (ATXN7) with 65 CAG repeats, the mutant ATXN7 increased ROS levels and disrupted the normal function of NADPH oxidase complexes [171]. Treatment with two well-known NRF2 inducers, N-acetylcysteine and vitamin E, reduced ROS levels and ATXN7 aggregation in an inducible SCA7 cell model [171]. These findings suggest that targeting the NRF2 pathway may be a therapeutic strategy for SCA7.

4.2.5. SCA17

In TBP-71Q and TBP-105Q transgenic mice, an expanded polyglutamine tract in the TATA-binding protein (TBP) led to decreased expression levels of heat-shock protein β1 (HSBP1), a molecular chaperone known to protect cells from oxidative stress [211]. Furthermore, lymphoblastoid cells from SCA17 patients displayed increased susceptibility to oxidative stress [212] and downregulated expression of NQO1 and HO1 [172]. Treatment with the NRF2 inducers resveratrol or genipin improved cell viability, reduced ROS levels, and restored the expression of NQO1 and HO1 [172]. Treatment with 3-Benzoyl-5-Hydroxy-2H-Chromen-2-One (LM-031) promoted neurite outgrowth and reduced aggregation, partially by enhancing NRF2 expression in SH-SY5Y cells expressing TBP with 79 CAG repeats [173]. Shaoyao Gancao Tang (SG-Tang), a formulated Chinese herbal medicine made of P. lactiflora and G. uralensis, inhibited aggregation and rescued motor deficits in a TBP-109Q transgenic mouse model via increasing NRF2 expression [174].

4.3. NRF2 and Spinobulbar Muscular Atrophy (SBMA)

Spinobulbar muscular atrophy (SBMA), also known as Kennedy’s disease, is an X-linked neuromuscular disorder characterized by the progressive loss of motor neurons in the spinal cord and brainstem [213,214]. While primarily affecting motor function, SBMA patients may also experience gynecomastia (enlarged breast tissue in males) and sensory loss [215,216]. SBMA is caused by an expansion of CAG repeats in the androgen receptor (AR) gene [16,217]. These expanded polyglutamine tracts result in an increase in the α-helix structure, retain some function in AR, and may alter specific protein–protein interactions [218]. The pathogenic mechanism underlying SBMA involves oxidative stress [153] and mitochondrial dysfunction [219]. The normal AR protein regulates the expression of mitochondrial proteins coded by both the nucleus and mitochondria [220]. However, motor neuron-derived (MN-1) expressing AR with 113 CAG repeats exhibited elevated levels of ROS, decreased mitochondrial mass and number, downregulated expression of PPARGC1A, TFAM, SOD, and CAT, and activated the apoptosis pathway [153]. Aggregates formed by AR with 48 CAG repeats sequestered mitochondria [221] and impaired mitochondrial transport along neurites in HeLa and NSC34 cells [222].
Reduced NRF2 expression is consistently observed in motor neurons of AR100Q transgenic mice for SBMA, resulting in the downregulation of SOD, NQO1, and GPX [223]. Curcumin, a natural antioxidant found in turmeric, has been shown to decrease the formation of misfolded aggregates and upregulate NRF2 [224,225,226,227,228]. ASC-JM17, a curcumin analog, upregulated NRF2, NQO1, HO1 and GCLC, as well as improved motor function and muscle wasting in AR97Q mice for SBMA [175]. A current first-in-patient randomized, double-blind, placebo-controlled Phase 1/2a study in SBMA patients is under progress to assess the safety, pharmacokinetic and pharmacodynamic effects of ASC-JM17 [229]. Another analog, ASC-J9, ameliorated AR aggregates, motor function, and muscle wasting in AR97Q mice [176]. Taken together, these findings suggest that curcumin analogs have potential as therapeutic agents in SBMA by activating the NRF2 signaling pathway.

4.4. NRF2 and Friedreich Ataxia

Friedreich’s ataxia (FRDA) is an autosomal recessive neurodegenerative disease resulting from a homozygous GAA trinucleotide repeat expansion within the first intron of the frataxin (FXN) gene [20,230]. These expanded GAA repeats induce histone deacetylation and aberrant DNA conformation, consequently leading to diminished mRNA levels and protein expression of FXN [231]. Clinically, FRDA manifests as progressive ataxia, diabetes, cardiomyopathy, skeletal abnormalities, and disruptions in both the central and peripheral nervous systems, with characteristic lesions observed in dorsal root ganglia, the dentate nuclei of the cerebellum and corticospinal tracts, along with the sensory peripheral nerves [232,233,234]. Although the precise function of FXN remains unclear, it is known to play roles in iron–sulfur cluster biogenesis and heme biosynthesis. FXN deficiency results in mitochondrial iron accumulation, triggering oxidative stress in the affected tissues [235,236,237,238,239,240,241].
Lines of evidence have elucidated an impairment of the NRF2 pathway in FRDA [242,243,244,245]. Elevated levels of oxidative damage to both nuclear and mitochondrial DNA have been identified in the peripheral blood cells of FRDA patients, coupled with increased plasma MDA and urine 8-OHdG levels [246,247]. Erythrocytes from FRDA patients demonstrated decreased levels of reduced GSH [248,249]. Omaveloxolone, an NRF2 activator, works by preventing the ubiquitination-mediated degradation of NRF2 [250,251]. A large, randomized placebo-controlled clinical trial demonstrated that omaveloxolone treatment significantly improved neurological deficits in FRDA patients [178], leading to its approval as the first treatment for FRDA by the US Food and Drug administration in 2023. Other NRF2 activators, such as SFN, DMF, N-acetylcysteine and vatiquinone (EPI-743), increased NRF2 expression, rebalanced the GSH/GSSG ratio, and upregulated FXN expression in fibroblasts and lymphoblastoid cells from FRDA patients [179,180]. Vatiquinone is an orally bioavailable compound that readily crosses the blood–brain barrier, with a no-observable-adverse-effect level of 100 mg/kg [252]. A phase 2 randomized, placebo-controlled trial demonstrated that vatiquinone significantly improved the neurological function in FRDA patients [181]. Treatment with vatiquinone also increased GSH levels in leukocytes and erythrocytes, and also enhanced the activity of GPX in erythrocytes [253].

4.5. NRF2 and Fragile X-Associated Tremor/Ataxia Syndrome

Fragile X syndrome is caused by a deficiency in the fragile X mental retardation 1 protein (FMR1) [254]. In most cases, this deficiency is caused by an expansion of CGG trinucleotide repeats in the FMR1 gene promoter, leading to transcriptional silencing [255]. More than 200 CGG repeats are associated with the classic fragile X syndrome, often characterized by features of intellectual disability and autism spectrum disorder [256]. CGG repeat expansions in the range of 55–200 within the FMR1 gene cause fragile X-associated tremor/ataxia syndrome (FXTAS) [257,258]. FXTAS primarily affects adult males over 50 years old, with increasing penetrance with age [257,259]. Clinical manifestations of FXTAS include late-onset and progressive cerebellar ataxia, intention tremor, parkinsonism, cognitive decline, and peripheral neuropathy [257,259,260,261]. Interestingly, FXTAS patients typically show normal or low FMR1 protein levels, but elevated FMR1 mRNA transcripts [262]. These transcripts accumulate in the nucleus of neurons and astrocytes, forming inclusions containing ubiquitin, a protein tag for degradation [262,263,264]. The long CGG expansions in FMR1 mRNA may sequester other proteins, leading to the formation of dynamic intranuclear inclusions over time [42,265,266,267,268].
FMR1, a crucial RNA-binding protein that regulates mRNA metabolism, forms complexes with RNA and ribosomes, acting as a translation suppressor [269]. FMR1 is highly expressed in neurons, where it shuttles between the nucleus and neuronal processes [270,271]. Specifically at postsynaptic sites (where neurons receive signals), FMR1 transports mRNA cargo and its activity is tightly controlled by synaptic activity [272,273,274,275,276,277,278]. The absence of FMRP generally disrupts synaptic development and plasticity in specific brain regions [37,277,279]. Oxidative stress is a well-established feature of FXTAS, evidenced by increased lipid peroxidation, elevated levels of oxidative metabolites and ROS in both the fibroblasts and blood samples of FXTAS patients [280]. Dysregulated expression of mitochondrial proteins, including aconitase and ATPase β-subunit (ATPB), along with elevated ROS levels and diminished activities of complex I and IV in the electron transport chain, have been observed in the brain tissues of patients with FXTAS [281,282]. Moreover, reduced expression of manganese SOD in the frontal cortex of FXTAS patients has been shown [282]. Alterations in the mitochondrial network, along with impaired mitochondrial density and transport dynamics, have been reported in hippocampal neurons of preCGG KI mice for FXTAS and fibroblasts of FXTAS patients [283,284]. In fibroblasts from FXTAS patients, SFN has the potential to enhance pathways associated with brain function, bioenergetics, UPR, proteasome activity, antioxidant defenses, and iron metabolism, through NRF2-dependent and independent mechanisms [285].

5. NRF2 Activating Compounds

NRF2 activation, which can be induced by natural and synthetic compounds, has emerged as a promising therapeutic strategy for numerous diseases. Although initial research predominantly investigated NRF2 activators for cancer and inflammatory diseases, recent progress has yielded novel NRF2 activators tailored for the central nervous system. These compounds function by modulating the activity of KEAP1 protein, interfering with its interaction with NRF2, promote NRF2 nuclear accumulation, enhance PI3K/AKT, or elevating NRF2 expression-mediated by an unclear mechanism (Figure 2).

5.1. Curcumin and Its Derivatives

Curcumin, a natural compound found in turmeric, has been extensively studied for its diverse health benefits, including anti-inflammatory, anti-cancer, and antioxidant properties [286,287]. Its potential therapeutic applications extend to neurodegenerative diseases, with research indicating its ability to cross the blood–brain barrier and exert neuroprotective effects such as reducing oxidative stress and inflammation, enhancing energy metabolism, and modulating synaptic plasticity [288,289,290,291,292]. Studies have demonstrated that curcumin acts as a potent NRF2 inducer, thereby playing a neuroprotective role through the NRF2-ARE pathway [293,294,295]. The structural features of curcumin, including its two phenolic groups and β-diketone moiety, enable it to interact with KEAP1, which causes dissociation of NRF2 from KEAP1 and subsequent upregulation of antioxidant proteins [296,297,298,299,300]. Curcumin treatment in SH-SY5Y cells lowered ROS levels, boosted NRF2 expression, and enhanced cell survival against amyloid β toxicity [301]. Furthermore, curcumin treatment significantly improved motor function and restored the activity of tyrosine hydroxylase in a rotenone-induced rat model of Parkinson’s disease. This neuroprotective effect was probably mediated by the activation of the NRF2 pathway to restore HO1 and NQO1 expression [302].
The poor bioavailability of curcumin limits its clinical applications. Therefore, curcumin analogues that aim to retain beneficial properties while improving BBB penetration were developed. One such example is compound 28, which displays significant cell-protective effects and efficiently enters the brain following oral administration [303]. Other analogues, like ASC-JM17 and ASC-J9, have shown potential in treating SBMA [175,176]. Oral administration of ASC-JM17 enhanced cell viability and mitochondrial function in an SCA3 cell model [168]. Furthermore, studies have identified ASC-JM17 as a potent activator of key pathways involved in UPR, protein degradation, and anti-oxidative stress in cell, fly, and mouse models of SBMA [175]. Intraperitoneal injection of ASC-J9 reduced nuclear aggregation and improved cell survival in PC12 cells [176]. The administration of ASC-J9 to SBMA mice significantly mitigated muscular atrophy without notable alterations in serum testosterone levels, thus preserving normal sexual function and fertility [176].

5.2. Flavonoids

Flavonoids, a diverse group of phenolic compounds commonly found in plant-based foods and beverages, offer anti-neuroinflammatory and neuroprotective properties [304,305]. Within this family, many compounds have been shown to enhance the expression of the ARE gene [306,307]. For instance, naringenin has demonstrated the ability to mitigate neurotoxicity induced by 6-hydroxydopamine (6-OHDA) by upregulating NRF2 and activating the ARE pathway in SH-SY5Y cells [308,309]. Similarly, quercetin has been implicated in protecting against manganese-induced neurotoxicity by upregulating NRF2 and HO-1 expression in SK-N-MC cells and rats [310]. Quercetin stimulates NRF2-mediated ARE activity by inhibiting the degradation of NRF2 and enhancing the turnover of KEAP1 [311]. Quercetin also elevates the expression of NRF2 and its downstream antioxidative genes by enhancing the PI3K/AKT pathway [312].
Open-chain flavonoid chalcones, characterized by a three-carbon α,β-unsaturated carbonyl system, also display diverse biological properties, including anti-inflammation and antioxidant effects [313]. The chalcone derivative cardamonin binds to the cysteine residues or the Kelch domain of the KEAP1, causing NRF2 to dissociate from KEAP1 and translocate to the nucleus [314,315]. In addition, cardamonin also provides cytoprotection via activating NRF2 through the P62-dependent degradation of KEAP1 [316]. Licochalcone E, another chalcone, attenuates inflammatory responses in BV2 cells and protects SH-SY5Y cells from 6-OHDA cytotoxicity [317]. Oral administration of licochalcone E promotes nuclear translocation of NRF2 and activates the NRF2-ARE pathway, leading to increased GSH levels in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine [317].

5.3. Resveratrol

Resveratrol, also known as 3,5,4′-trihydroxytrans-stilbene, is found in foods, including berries, grapes, red wine, and peanuts [318,319,320,321]. This natural polyphenol exhibits a wide range of pharmacological effects, such as hepatoprotective, anti-diabetic, anti-cancer, antioxidant, anti-inflammatory, cardioprotective properties, and the potential to improve dyslipidemia [322,323,324,325,326,327]. The possible key molecular mechanism underlying the beneficial effects of resveratrol is by modulating the NRF2 pathway through the disruption of NRF2-KEAP1 binding and stimulation of the PI3K/AKT pathways [195]. It improved motor function in an HD mouse model [164]. It enhanced the expression of NRF2, HO1, SOD, and GPX, reduced ROS, improved mitochondrial function, and reduced neuronal death in SH-SY5Y cells expressing ATXN3 with 78 CAG repeats [117]. Furthermore, resveratrol administration improved motor function in a SCA3 fly model by inducing NRF2 activation [117]. In lymphoblastoid cells derived from patients with SCA17, resveratrol upregulated the expression of NRF2, NQO1, and HO1, while reducing ROS levels [172]. However, the oral bioavailability for resveratrol is probably low [328].

5.4. Herb Extracts and Constituents

Herb extracts have gained attention for their potential therapeutic effects in treating neurodegenerative diseases due to their diverse bioactive compounds, which exhibit neuroprotective properties. Ginseng constituents, such as protopanaxtriol and gintonin, have been shown to reduce oxidative stress, improve motor function, and protect brain cells in HD rats [162,163,174]. Harmine, a β-carboline alkaloid in Peganum harmala, also improved motor and cognitive function in HD rats [165]. The herb extract from Gardenia jasminoides, along with its primary constituents genipin, geniposide, and crocin, has exhibited potential in inhibiting aggregation and mitigating oxidative stress in an SCA3 cell model [169]. Interestingly, genipin also reduced ROS levels in lymphoblastoid cells derived from SCA17 patients [172]. The extract of Glycyrrhiza inflata extract, and its constituents, licochalcone A and ammonium glycyrrhizinate, increased the expression of NRF2/ARE-related antioxidant proteins and reduced aggregation in an SCA3 cell model [170]. SG-Tang, a formulated herbal medicine comprising Paeonia lactiflora and Glycyrrhiza uralensis, decreased motor-deficits in a SCA17 mouse model [174]. The mode of action of these compounds is to enhance the expression of NRF2 and its downstream antioxidants, but how NRF2 expression is increased remains to be explored.

5.5. Sulforaphane

Sulforaphane (SFN), also known as 1-isothiocyanato-4-(methylsulfinyl)butane, is an aliphatic isothiocyanate derived from glucoraphanin, a precursor primarily found in cruciferous vegetables like broccoli, cauliflower, cabbage, and Brussels sprouts [329]. SFN acts as a sulfur-rich compound that was shown to increase NRF2 DNA-binding activity and disrupt the interaction of NRF2 and KEAP1 to upregulate the expression NQO1, HO1, GST, and TXNRD, thereby counteracting oxidative stress [330]. In a 3-NP-induced mouse model of HD, SFN upregulated NRF2, NQO1, GCL, and HO1, inhibited NFκB, TNF-α, IL-1β and IL-6 in the striatum, and improved motor dysfunction and reduced striatal cell death [155]. SFN also upregulated NRF2 and NQO1, promoting neurite growth in FXN-deficient motor neurons [179,180]. In fibroblasts from patients with FRDA, SFN normalized the expression of NRF2, NQO1, HO1, and GCL [179,180]. A proteomics study in fibroblasts from FXTAS patients demonstrated the potential of SFN to regulate bioenergetics, UPR, proteasome, antioxidant, and iron metabolism pathways [285]. However, SFN faces several biopharmaceutical challenges, such as poor aqueous solubility and low bioavailability [331]. Developing an appropriate drug delivery system for SFN could enhance its solubility and bioavailability.

5.6. Dimethyl Fumarate

Dimethyl fumarate (DMF) is an orally bioavailable fumaric acid ester that metabolizes into methyl hydrogen fumarate [332]. Originally used to treat psoriasis for decades, DMF has recently emerged as a therapy for multiple sclerosis [333]. DMF undergoes hydrolysis to its active metabolites, monomethyl fumarate (MMF) [334]. In addition to modifying the reactive cysteines in BTB domain, MMF binds to the β-propeller domain as well as the BTB domain of KEAP1 to free NRF2 from KEAP1, and thus activates the NRF2-ARE pathway [335]. DMF treatment in an HD mouse model upregulated NRF2 in the striatum, preventing weight loss, improving motor function, and extending survival [158]. Furthermore, DMF upregulated NRF2 and NQO1, while also increasing FXN levels in FRDA patient-derived fibroblasts and in FRDA mouse models [179,180].

5.7. Triterpenoid Derivatives

Triterpenoid, mainly derived from Kadsura genus, exerts anti-inflammatory, anticancer and anti-viral activities [336]. Their derivatives demonstrated the potential to inhibit the interaction between KEAP1 and NRF2 [337]. Synthetic triterpenoids, such as CDDO-MA, CDDO-EA, and CDDO-TFEA, activated NRF2/ARE-regulated genes, reduced oxidative stress in the stratum, and enhanced motor function and survival in rodent models of HD [156,157]. Omaveloxone, a synthetic triterpenoid, showed promising results in improving neurological deficits among FRDA patients in a large randomized–controlled clinical trial [178], and became the first FDA-approved treatment for FRDA. Oral administration of omaveloxolone at doses higher than 80 mg generated plasma concentrations consistent with those that significantly induced NRF2 target genes in non-human primates, as demonstrated by the pharmacokinetic/pharmacodynamic model developed in monkeys [338].

5.8. Fatty Acid Esters of Hydroxy Fatty Acids

Fatty acid esters of hydroxy fatty acids (FAHFAs) are a family of endogenous lipids consisting of a fatty acid esterified with a hydroxy fatty acid at various positions. The biosynthesis of FAHFAs, such as eicosapentaenoic acid esterified with 12-hydroxy stearic acid (12-EPAHSA) and docosahexaenoic acid esters of 12-hydroxy oleic acid (12-DHAHOA), upregulated NRF2 expression, thereby suppressing the oxidation of small lipid droplets and mitigating oxidative stress induced by H2O2 in C2A human hepatoma-derived cells [339,340]. The detailed mechanisms underlying FAHFA biosynthesis, bioavailability, pharmacokinetics, pharmacodynamics, and especially their role in NRF2 activation, remain to be elucidated.

6. Conclusions

Trinucleotide repeat expansion disorders exhibit impaired NRF2 signaling, resulting in insufficient responses to excessive ROS production. Studies have shown that NRF2 activators, such as curcumin, resveratrol, SFN, and DMF, as well as extracts from Gardenia jasminoides and Glycyrrhiza inflata, can effectively alleviate oxidative stress damage in cell and animal models of these disorders. However, translating these findings into successful clinical trials remains a challenge. This discrepancy might be attributed to the complexity of neurodegenerative mechanisms and the limitations in recruiting participants for studies on rare diseases. Given the multifaceted pathogenesis of these diseases, targeting multiple pathways simultaneously could offer a more effective approach. A deeper understanding of the specific disease mechanisms and the development of better biomarkers are also crucial. Bridging this gap between preclinical findings and effective clinical outcomes requires further research into the mechanisms of action of these NRF2 activators and their clinical efficacy.

Funding

C.-M. Chen (CMRPG3N0341 and CMRPG3N0351 from Chang Gung Medical Foundation, Taiwan).

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Gur-Arie, R.; Cohen, C.J.; Eitan, Y.; Shelef, L.; Hallerman, E.M.; Kashi, Y. Simple sequence repeats in Escherichia coli: Abundance, distribution, composition, and polymorphism. Genome Res. 2000, 10, 62–71. [Google Scholar] [PubMed]
  2. Hamada, H.; Petrino, M.G.; Kakunaga, T. A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc. Natl. Acad. Sci. USA 1982, 79, 6465–6469. [Google Scholar] [CrossRef]
  3. Beckman, J.S.; Weber, J.L. Survey of human and rat microsatellites. Genomics 1992, 12, 627–631. [Google Scholar] [CrossRef]
  4. Quilez, J.; Guilmatre, A.; Garg, P.; Highnam, G.; Gymrek, M.; Erlich, Y.; Joshi, R.S.; Mittelman, D.; Sharp, A.J. Polymorphic tandem repeats within gene promoters act as modifiers of gene expression and DNA methylation in humans. Nucleic Acids Res. 2016, 44, 3750–3762. [Google Scholar] [CrossRef] [PubMed]
  5. Fotsing, S.F.; Margoliash, J.; Wang, C.; Saini, S.; Yanicky, R.; Shleizer-Burko, S.; Goren, A.; Gymrek, M. The impact of short tandem repeat variation on gene expression. Nat. Genet. 2019, 51, 1652–1659. [Google Scholar] [CrossRef]
  6. Hui, J.; Hung, L.H.; Heiner, M.; Schreiner, S.; Neumuller, N.; Reither, G.; Haas, S.A.; Bindereif, A. Intronic CA-repeat and CA-rich elements: A new class of regulators of mammalian alternative splicing. EMBO J. 2005, 24, 1988–1998. [Google Scholar] [CrossRef] [PubMed]
  7. Tseng, S.H.; Cheng, C.Y.; Huang, M.Z.; Chung, M.Y.; Su, T.S. Modulation of formation of the 3′-end of the human argininosuccinate synthetase mRNA by GT-repeat polymorphism. Int. J. Biochem. Mol. Biol. 2013, 4, 179–190. [Google Scholar] [PubMed]
  8. Kramer, M.; Sponholz, C.; Slaba, M.; Wissuwa, B.; Claus, R.A.; Menzel, U.; Huse, K.; Platzer, M.; Bauer, M. Alternative 5′ untranslated regions are involved in expression regulation of human heme oxygenase-1. PLoS ONE 2013, 8, e77224. [Google Scholar] [CrossRef] [PubMed]
  9. Liu, H.; Mulholland, N.; Fu, H.; Zhao, K. Cooperative activity of BRG1 and Z-DNA formation in chromatin remodeling. Mol. Cell Biol. 2006, 26, 2550–2559. [Google Scholar] [CrossRef]
  10. Ellegren, H. Microsatellite mutations in the germline: Implications for evolutionary inference. Trends Genet. 2000, 16, 551–558. [Google Scholar] [CrossRef]
  11. Chistiakov, D.A.; Hellemans, B.; Volckaert, F.A.M. Microsatellites and their genomic distribution, evolution, function and applications: A review with special reference to fish genetics. Aquaculture 2006, 255, 1–29. [Google Scholar] [CrossRef]
  12. Fu, Y.H.; Kuhl, D.P.; Pizzuti, A.; Pieretti, M.; Sutcliffe, J.S.; Richards, S.; Verkerk, A.J.; Holden, J.J.; Fenwick, R.G., Jr.; Warren, S.T.; et al. Variation of the CGG repeat at the fragile X site results in genetic instability: Resolution of the Sherman paradox. Cell 1991, 67, 1047–1058. [Google Scholar] [CrossRef] [PubMed]
  13. Oberle, I.; Rousseau, F.; Heitz, D.; Kretz, C.; Devys, D.; Hanauer, A.; Boue, J.; Bertheas, M.F.; Mandel, J.L. Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science 1991, 252, 1097–1102. [Google Scholar] [CrossRef]
  14. Verkerk, A.J.; Pieretti, M.; Sutcliffe, J.S.; Fu, Y.H.; Kuhl, D.P.; Pizzuti, A.; Reiner, O.; Richards, S.; Victoria, M.F.; Zhang, F.P.; et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 1991, 65, 905–914. [Google Scholar] [CrossRef]
  15. Kremer, E.J.; Pritchard, M.; Lynch, M.; Yu, S.; Holman, K.; Baker, E.; Warren, S.T.; Schlessinger, D.; Sutherland, G.R.; Richards, R.I. Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n. Science 1991, 252, 1711–1714. [Google Scholar] [CrossRef]
  16. La Spada, A.R.; Wilson, E.M.; Lubahn, D.B.; Harding, A.E.; Fischbeck, K.H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 1991, 352, 77–79. [Google Scholar] [CrossRef]
  17. The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993, 72, 971–983. [Google Scholar] [CrossRef] [PubMed]
  18. Klockgether, T.; Mariotti, C.; Paulson, H.L. Spinocerebellar ataxia. Nat. Rev. Dis. Primers 2019, 5, 24. [Google Scholar] [CrossRef]
  19. Holmes, S.E.; O’Hearn, E.E.; McInnis, M.G.; Gorelick-Feldman, D.A.; Kleiderlein, J.J.; Callahan, C.; Kwak, N.G.; Ingersoll-Ashworth, R.G.; Sherr, M.; Sumner, A.J.; et al. Expansion of a novel CAG trinucleotide repeat in the 5′ region of PPP2R2B is associated with SCA12. Nat. Genet. 1999, 23, 391–392. [Google Scholar] [CrossRef]
  20. Campuzano, V.; Montermini, L.; Molto, M.D.; Pianese, L.; Cossee, M.; Cavalcanti, F.; Monros, E.; Rodius, F.; Duclos, F.; Monticelli, A.; et al. Friedreich’s ataxia: Autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 1996, 271, 1423–1427. [Google Scholar] [CrossRef]
  21. Koob, M.D.; Moseley, M.L.; Schut, L.J.; Benzow, K.A.; Bird, T.D.; Day, J.W.; Ranum, L.P. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat. Genet. 1999, 21, 379–384. [Google Scholar] [CrossRef]
  22. Paulson, H. Repeat expansion diseases. Handb. Clin. Neurol. 2018, 147, 105–123. [Google Scholar]
  23. Paulson, H.L.; Fischbeck, K.H. Trinucleotide repeats in neurogenetic disorders. Annu. Rev. Neurosci. 1996, 19, 79–107. [Google Scholar] [CrossRef]
  24. Chatterjee, N.; Lin, Y.; Yotnda, P.; Wilson, J.H. Environmental stress induces trinucleotide repeat mutagenesis in human cells by alt-nonhomologous end joining repair. J. Mol. Biol. 2016, 428, 2978–2980. [Google Scholar] [CrossRef]
  25. Chatterjee, N.; Lin, Y.; Santillan, B.A.; Yotnda, P.; Wilson, J.H. Environmental stress induces trinucleotide repeat mutagenesis in human cells. Proc. Natl. Acad. Sci. USA 2015, 112, 3764–3769. [Google Scholar] [CrossRef]
  26. Reetz, K.; Dogan, I.; Costa, A.S.; Dafotakis, M.; Fedosov, K.; Giunti, P.; Parkinson, M.H.; Sweeney, M.G.; Mariotti, C.; Panzeri, M.; et al. Biological and clinical characteristics of the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS) cohort: A cross-sectional analysis of baseline data. Lancet Neurol. 2015, 14, 174–182. [Google Scholar] [CrossRef]
  27. Cook, A.; Giunti, P. Friedreich’s ataxia: Clinical features, pathogenesis and management. Br. Med. Bull. 2017, 124, 19–30. [Google Scholar] [CrossRef]
  28. Andrew, S.E.; Goldberg, Y.P.; Kremer, B.; Telenius, H.; Theilmann, J.; Adam, S.; Starr, E.; Squitieri, F.; Lin, B.; Kalchman, M.A.; et al. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat. Genet. 1993, 4, 398–403. [Google Scholar] [CrossRef]
  29. Figueroa, K.P.; Coon, H.; Santos, N.; Velazquez, L.; Mederos, L.A.; Pulst, S.M. Genetic analysis of age at onset variation in spinocerebellar ataxia type 2. Neurol. Genet. 2017, 3, e155. [Google Scholar] [CrossRef]
  30. Igarashi, S.; Tanno, Y.; Onodera, O.; Yamazaki, M.; Sato, S.; Ishikawa, A.; Miyatani, N.; Nagashima, M.; Ishikawa, Y.; Sahashi, K.; et al. Strong correlation between the number of CAG repeats in androgen receptor genes and the clinical onset of features of spinal and bulbar muscular atrophy. Neurology 1992, 42, 2300–2302. [Google Scholar] [CrossRef]
  31. Savic, D.; Rakocvic-Stojanovic, V.; Keckarevic, D.; Culjkovic, B.; Stojkovic, O.; Mladenovic, J.; Todorovic, S.; Apostolski, S.; Romac, S. 250 CTG repeats in DMPK is a threshold for correlation of expansion size and age at onset of juvenile-adult DM1. Hum. Mutat. 2002, 19, 131–139. [Google Scholar] [CrossRef]
  32. Leehey, M.A.; Berry-Kravis, E.; Goetz, C.G.; Zhang, L.; Hall, D.A.; Li, L.; Rice, C.D.; Lara, R.; Cogswell, J.; Reynolds, A.; et al. FMR1 CGG repeat length predicts motor dysfunction in premutation carriers. Neurology 2008, 70, 1397–1402. [Google Scholar] [CrossRef]
  33. Nelson, D.L.; Orr, H.T.; Warren, S.T. The unstable repeats--three evolving faces of neurological disease. Neuron 2013, 77, 825–843. [Google Scholar] [CrossRef]
  34. Gao, F.B.; Richter, J.D. Microsatellite Expansion diseases: Repeat toxicity found in translation. Neuron 2017, 93, 249–251. [Google Scholar] [CrossRef]
  35. Rodriguez, C.M.; Todd, P.K. New pathologic mechanisms in nucleotide repeat expansion disorders. Neurobiol. Dis. 2019, 130, 104515. [Google Scholar] [CrossRef]
  36. Nucifora, F.C., Jr.; Sasaki, M.; Peters, M.F.; Huang, H.; Cooper, J.K.; Yamada, M.; Takahashi, H.; Tsuji, S.; Troncoso, J.; Dawson, V.L.; et al. Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 2001, 291, 2423–2428. [Google Scholar] [CrossRef]
  37. Dunah, A.W.; Jeong, H.; Griffin, A.; Kim, Y.M.; Standaert, D.G.; Hersch, S.M.; Mouradian, M.M.; Young, A.B.; Tanese, N.; Krainc, D. Sp1 and TAFII130 transcriptional activity disrupted in early Huntington’s disease. Science 2002, 296, 2238–2243. [Google Scholar] [CrossRef]
  38. Ciechanover, A.; Brundin, P. The ubiquitin proteasome system in neurodegenerative diseases: Sometimes the chicken, sometimes the egg. Neuron 2003, 40, 427–446. [Google Scholar] [CrossRef]
  39. Echeverria, G.V.; Cooper, T.A. Muscleblind-like 1 activates insulin receptor exon 11 inclusion by enhancing U2AF65 binding and splicing of the upstream intron. Nucleic Acids Res. 2014, 42, 1893–1903. [Google Scholar] [CrossRef]
  40. Savkur, R.S.; Philips, A.V.; Cooper, T.A. Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat. Genet. 2001, 29, 40–47. [Google Scholar] [CrossRef]
  41. Mankodi, A.; Takahashi, M.P.; Jiang, H.; Beck, C.L.; Bowers, W.J.; Moxley, R.T.; Cannon, S.C.; Thornton, C.A. Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol. Cell 2002, 10, 35–44. [Google Scholar] [CrossRef]
  42. Sellier, C.; Rau, F.; Liu, Y.; Tassone, F.; Hukema, R.K.; Gattoni, R.; Schneider, A.; Richard, S.; Willemsen, R.; Elliott, D.J.; et al. Sam68 sequestration and partial loss of function are associated with splicing alterations in FXTAS patients. EMBO J. 2010, 29, 1248–1261. [Google Scholar] [CrossRef]
  43. Zu, T.; Gibbens, B.; Doty, N.S.; Gomes-Pereira, M.; Huguet, A.; Stone, M.D.; Margolis, J.; Peterson, M.; Markowski, T.W.; Ingram, M.A.; et al. Non-ATG-initiated translation directed by microsatellite expansions. Proc. Natl. Acad. Sci. USA 2011, 108, 260–265. [Google Scholar] [CrossRef]
  44. Ryter, S.W.; Kim, H.P.; Hoetzel, A.; Park, J.W.; Nakahira, K.; Wang, X.; Choi, A.M. Mechanisms of cell death in oxidative stress. Antioxid. Redox Signal 2007, 9, 49–89. [Google Scholar] [CrossRef]
  45. Ghosh, N.; Das, A.; Chaffee, S.; Roy, S.; Sen, C.K. Reactive Oxygen Species, Oxidative Damage and Cell Death. In Immunity and Inflammation in Health and Disease; Chatterjee, S., Jungraithmayr, W., Bagchi, D., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 45–55. [Google Scholar]
  46. Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J. 2012, 5, 9–19. [Google Scholar] [CrossRef]
  47. Thanan, R.; Oikawa, S.; Hiraku, Y.; Ohnishi, S.; Ma, N.; Pinlaor, S.; Yongvanit, P.; Kawanishi, S.; Murata, M. Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int. J. Mol. Sci. 2014, 16, 193–217. [Google Scholar] [CrossRef]
  48. Venditti, P.; Di Stefano, L.; Di Meo, S. Mitochondrial metabolism of reactive oxygen species. Mitochondrion 2013, 13, 71–82. [Google Scholar] [CrossRef]
  49. Rahal, A.; Kumar, A.; Singh, V.; Yadav, B.; Tiwari, R.; Chakraborty, S.; Dhama, K. Oxidative stress, prooxidants, and antioxidants: The interplay. Biomed. Res. Int. 2014, 2014, 761264. [Google Scholar] [CrossRef]
  50. Ray, P.D.; Huang, B.W.; Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 2012, 24, 981–990. [Google Scholar] [CrossRef]
  51. Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef]
  52. D’Autreaux, B.; Toledano, M.B. ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 2007, 8, 813–824. [Google Scholar] [CrossRef]
  53. Nandi, A.; Yan, L.J.; Jana, C.K.; Das, N. Role of catalase in oxidative stress- and age-associated degenerative diseases. Oxid. Med. Cell Longev. 2019, 2019, 9613090. [Google Scholar] [CrossRef]
  54. Brigelius-Flohe, R.; Maiorino, M. Glutathione peroxidases. Biochim. Biophys. Acta 2013, 1830, 3289–3303. [Google Scholar] [CrossRef]
  55. Mironczuk-Chodakowska, I.; Witkowska, A.M.; Zujko, M.E. Endogenous non-enzymatic antioxidants in the human body. Adv. Med. Sci. 2018, 63, 68–78. [Google Scholar] [CrossRef]
  56. Haenen, G.R.; Bast, A. Glutathione revisited: A better scavenger than previously thought. Front. Pharmacol. 2014, 5, 260. [Google Scholar] [CrossRef]
  57. Aquilano, K.; Baldelli, S.; Ciriolo, M.R. Glutathione: New roles in redox signaling for an old antioxidant. Front. Pharmacol. 2014, 5, 196. [Google Scholar] [CrossRef]
  58. Brigelius-Flohe, R. Tissue-specific functions of individual glutathione peroxidases. Free Radic. Biol. Med. 1999, 27, 951–965. [Google Scholar] [CrossRef]
  59. Sheehan, D.; Meade, G.; Foley, V.M.; Dowd, C.A. Structure, function and evolution of glutathione transferases: Implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem. J. 2001, 360, 1–16. [Google Scholar] [CrossRef]
  60. Forman, H.J.; Zhang, H.; Rinna, A. Glutathione: Overview of its protective roles, measurement, and biosynthesis. Mol. Asp. Med. 2009, 30, 1–12. [Google Scholar] [CrossRef]
  61. Njalsson, R.; Norgren, S. Physiological and pathological aspects of GSH metabolism. Acta Paediatr. 2005, 94, 132–137. [Google Scholar] [CrossRef] [PubMed]
  62. Ma, Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 401–426. [Google Scholar] [CrossRef] [PubMed]
  63. Shaw, P.; Chattopadhyay, A. Nrf2-ARE signaling in cellular protection: Mechanism of action and the regulatory mechanisms. J. Cell Physiol. 2020, 235, 3119–3130. [Google Scholar] [CrossRef] [PubMed]
  64. La Rosa, P.; Bertini, E.S.; Piemonte, F. The NRF2 signaling network defines clinical biomarkers and therapeutic opportunity in Friedreich’s ataxia. Int. J. Mol. Sci. 2020, 21, 916. [Google Scholar] [CrossRef] [PubMed]
  65. Kim, G.H.; Kim, J.E.; Rhie, S.J.; Yoon, S. The role of oxidative stress in neurodegenerative diseases. Exp. Neurobiol. 2015, 24, 325–340. [Google Scholar] [CrossRef] [PubMed]
  66. Liu, Z.; Zhou, T.; Ziegler, A.C.; Dimitrion, P.; Zuo, L. Oxidative stress in neurodegenerative diseases: From molecular mechanisms to clinical applications. Oxid. Med. Cell Longev. 2017, 2017, 2525967. [Google Scholar] [CrossRef] [PubMed]
  67. Moi, P.; Chan, K.; Asunis, I.; Cao, A.; Kan, Y.W. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc. Natl. Acad. Sci. USA 1994, 91, 9926–9930. [Google Scholar] [CrossRef]
  68. Cuadrado, A. Structural and functional characterization of Nrf2 degradation by glycogen synthase kinase 3/beta-TrCP. Free Radic. Biol. Med. 2015, 88, 147–157. [Google Scholar] [CrossRef] [PubMed]
  69. Tong, K.I.; Katoh, Y.; Kusunoki, H.; Itoh, K.; Tanaka, T.; Yamamoto, M. Keap1 recruits Neh2 through binding to ETGE and DLG motifs: Characterization of the two-site molecular recognition model. Mol. Cell Biol. 2006, 26, 2887–2900. [Google Scholar] [CrossRef] [PubMed]
  70. McMahon, M.; Thomas, N.; Itoh, K.; Yamamoto, M.; Hayes, J.D. Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a “tethering” mechanism: A two-site interaction model for the Nrf2-Keap1 complex. J. Biol. Chem. 2006, 281, 24756–24768. [Google Scholar] [CrossRef]
  71. Kobayashi, M.; Li, L.; Iwamoto, N.; Nakajima-Takagi, Y.; Kaneko, H.; Nakayama, Y.; Eguchi, M.; Wada, Y.; Kumagai, Y.; Yamamoto, M. The antioxidant defense system Keap1-Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds. Mol. Cell Biol. 2009, 29, 493–502. [Google Scholar] [CrossRef]
  72. Antelmann, H.; Helmann, J.D. Thiol-based redox switches and gene regulation. Antioxid. Redox Signal 2011, 14, 1049–1063. [Google Scholar] [CrossRef] [PubMed]
  73. Suzuki, T.; Yamamoto, M. Molecular basis of the Keap1-Nrf2 system. Free Radic. Biol. Med. 2015, 88, 93–100. [Google Scholar] [CrossRef] [PubMed]
  74. Niture, S.K.; Khatri, R.; Jaiswal, A.K. Regulation of Nrf2-an update. Free Radic. Biol. Med. 2014, 66, 36–44. [Google Scholar] [CrossRef] [PubMed]
  75. Motohashi, H.; Katsuoka, F.; Engel, J.D.; Yamamoto, M. Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway. Proc. Natl. Acad. Sci. USA 2004, 101, 6379–6384. [Google Scholar] [CrossRef] [PubMed]
  76. Itoh, K.; Chiba, T.; Takahashi, S.; Ishii, T.; Igarashi, K.; Katoh, Y.; Oyake, T.; Hayashi, N.; Satoh, K.; Hatayama, I.; et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 1997, 236, 313–322. [Google Scholar] [CrossRef] [PubMed]
  77. Rushmore, T.H.; Morton, M.R.; Pickett, C.B. The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J. Biol. Chem. 1991, 266, 11632–11639. [Google Scholar] [CrossRef] [PubMed]
  78. Nioi, P.; Nguyen, T.; Sherratt, P.J.; Pickett, C.B. The carboxy-terminal Neh3 domain of Nrf2 is required for transcriptional activation. Mol. Cell Biol. 2005, 25, 10895–10906. [Google Scholar] [CrossRef] [PubMed]
  79. Katoh, Y.; Itoh, K.; Yoshida, E.; Miyagishi, M.; Fukamizu, A.; Yamamoto, M. Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription. Genes. Cells 2001, 6, 857–868. [Google Scholar] [CrossRef]
  80. Chowdhry, S.; Zhang, Y.; McMahon, M.; Sutherland, C.; Cuadrado, A.; Hayes, J.D. Nrf2 is controlled by two distinct β-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity. Oncogene 2013, 32, 3765–3781. [Google Scholar] [CrossRef]
  81. Wang, H.; Liu, K.; Geng, M.; Gao, P.; Wu, X.; Hai, Y.; Li, Y.; Li, Y.; Luo, L.; Hayes, J.D.; et al. RXRalpha inhibits the NRF2-ARE signaling pathway through a direct interaction with the Neh7 domain of NRF2. Cancer Res. 2013, 73, 3097–3108. [Google Scholar] [CrossRef]
  82. Poganik, J.R.; Long, M.J.C.; Disare, M.T.; Liu, X.; Chang, S.H.; Hla, T.; Aye, Y. Post-transcriptional regulation of Nrf2-mRNA by the mRNA-binding proteins HuR and AUF1. FASEB J. 2019, 33, 14636–14652. [Google Scholar] [CrossRef] [PubMed]
  83. Kwak, M.K.; Itoh, K.; Yamamoto, M.; Kensler, T.W. Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: Role of antioxidant response element-like sequences in the nrf2 promoter. Mol. Cell Biol. 2002, 22, 2883–2892. [Google Scholar] [CrossRef] [PubMed]
  84. Rushworth, S.A.; Zaitseva, L.; Murray, M.Y.; Shah, N.M.; Bowles, K.M.; MacEwan, D.J. The high Nrf2 expression in human acute myeloid leukemia is driven by NF-kappaB and underlies its chemo-resistance. Blood 2012, 120, 5188–5198. [Google Scholar] [CrossRef] [PubMed]
  85. Eckert, D.; Buhl, S.; Weber, S.; Jager, R.; Schorle, H. The AP-2 family of transcription factors. Genome Biol. 2005, 6, 246. [Google Scholar] [CrossRef] [PubMed]
  86. Yu, S.; Khor, T.O.; Cheung, K.L.; Li, W.; Wu, T.Y.; Huang, Y.; Foster, B.A.; Kan, Y.W.; Kong, A.N. Nrf2 expression is regulated by epigenetic mechanisms in prostate cancer of TRAMP mice. PLoS ONE 2010, 5, e8579. [Google Scholar] [CrossRef] [PubMed]
  87. Cheng, D.; Wu, R.; Guo, Y.; Kong, A.N. Regulation of Keap1-Nrf2 signaling: The role of epigenetics. Curr. Opin. Toxicol. 2016, 1, 134–138. [Google Scholar] [CrossRef] [PubMed]
  88. Lo, J.Y.; Spatola, B.N.; Curran, S.P. WDR23 regulates NRF2 independently of KEAP1. PLoS Genet. 2017, 13, e1006762. [Google Scholar] [CrossRef]
  89. Wu, T.; Zhao, F.; Gao, B.; Tan, C.; Yagishita, N.; Nakajima, T.; Wong, P.K.; Chapman, E.; Fang, D.; Zhang, D.D. Hrd1 suppresses Nrf2-mediated cellular protection during liver cirrhosis. Genes. Dev. 2014, 28, 708–722. [Google Scholar] [CrossRef]
  90. Bloom, D.A.; Jaiswal, A.K. Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression. J. Biol. Chem. 2003, 278, 44675–44682. [Google Scholar]
  91. Apopa, P.L.; He, X.; Ma, Q. Phosphorylation of Nrf2 in the transcription activation domain by casein kinase 2 (CK2) is critical for the nuclear translocation and transcription activation function of Nrf2 in IMR-32 neuroblastoma cells. J. Biochem. Mol. Toxicol. 2008, 22, 63–76. [Google Scholar] [CrossRef]
  92. Jain, A.K.; Jaiswal, A.K. GSK-3beta acts upstream of Fyn kinase in regulation of nuclear export and degradation of NF-E2 related factor 2. J. Biol. Chem. 2007, 282, 16502–16510. [Google Scholar] [CrossRef] [PubMed]
  93. Farhat, F.; Nofal, S.; Raafat, E.M.; Eissa Ahmed, A.A. Akt / GSK3beta / Nrf2 / HO-1 pathway activation by flurbiprofen protects the hippocampal neurons in a rat model of glutamate excitotoxicity. Neuropharmacology 2021, 196, 108654. [Google Scholar] [CrossRef] [PubMed]
  94. Yan, L.J.; Fan, X.W.; Yang, H.T.; Wu, J.T.; Wang, S.L.; Qiu, C.G. MiR-93 inhibition ameliorates OGD/R induced cardiomyocyte apoptosis by targeting Nrf2. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 5456–5461. [Google Scholar] [PubMed]
  95. Zhu, X.; Zhao, Y.; Hou, W.; Guo, L. MiR-153 regulates cardiomyocyte apoptosis by targeting Nrf2/HO-1 signaling. Chromosome Res. 2019, 27, 167–178. [Google Scholar] [CrossRef] [PubMed]
  96. Zhao, Y.; Dong, D.; Reece, E.A.; Wang, A.R.; Yang, P. Oxidative stress-induced miR-27a targets the redox gene nuclear factor erythroid 2-related factor 2 in diabetic embryopathy. Am. J. Obs. Gynecol. 2018, 218, 136.e1–136.e10. [Google Scholar] [CrossRef] [PubMed]
  97. Jadeja, R.N.; Jones, M.A.; Abdelrahman, A.A.; Powell, F.L.; Thounaojam, M.C.; Gutsaeva, D.; Bartoli, M.; Martin, P.M. Inhibiting microRNA-144 potentiates Nrf2-dependent antioxidant signaling in RPE and protects against oxidative stress-induced outer retinal degeneration. Redox Biol. 2020, 28, 101336. [Google Scholar] [CrossRef] [PubMed]
  98. Sangokoya, C.; Telen, M.J.; Chi, J.T. microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease. Blood 2010, 116, 4338–4348. [Google Scholar] [CrossRef] [PubMed]
  99. Yang, M.; Yao, Y.; Eades, G.; Zhang, Y.; Zhou, Q. MiR-28 regulates Nrf2 expression through a Keap1-independent mechanism. Breast Cancer Res. Treat. 2011, 129, 983–991. [Google Scholar] [CrossRef]
  100. Narasimhan, M.; Patel, D.; Vedpathak, D.; Rathinam, M.; Henderson, G.; Mahimainathan, L. Identification of novel microRNAs in post-transcriptional control of Nrf2 expression and redox homeostasis in neuronal, SH-SY5Y cells. PLoS ONE 2012, 7, e51111. [Google Scholar] [CrossRef] [PubMed]
  101. Zhang, A.; Qian, Y.; Qian, J. MicroRNA-152-3p protects neurons from oxygen-glucose-deprivation/reoxygenation-induced injury through upregulation of Nrf2/ARE antioxidant signaling by targeting PSD-93. Biochem. Biophys. Res. Commun. 2019, 517, 69–76. [Google Scholar] [CrossRef]
  102. Kensler, T.W.; Wakabayashi, N.; Biswal, S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 89–116. [Google Scholar] [CrossRef] [PubMed]
  103. Ma, Q.; He, X. Molecular basis of electrophilic and oxidative defense: Promises and perils of Nrf2. Pharmacol. Rev. 2012, 64, 1055–1081. [Google Scholar] [CrossRef] [PubMed]
  104. Hayes, J.D.; McMahon, M.; Chowdhry, S.; Dinkova-Kostova, A.T. Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway. Antioxid. Redox Signal 2010, 13, 1713–1748. [Google Scholar] [CrossRef]
  105. Telakowski-Hopkins, C.A.; King, R.G.; Pickett, C.B. Glutathione S-transferase Ya subunit gene: Identification of regulatory elements required for basal level and inducible expression. Proc. Natl. Acad. Sci. USA 1988, 85, 1000–1004. [Google Scholar] [CrossRef] [PubMed]
  106. Hayes, J.D.; Dinkova-Kostova, A.T. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci. 2014, 39, 199–218. [Google Scholar] [CrossRef] [PubMed]
  107. Thimmulappa, R.K.; Mai, K.H.; Srisuma, S.; Kensler, T.W.; Yamamoto, M.; Biswal, S. Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res. 2002, 62, 5196–5203. [Google Scholar] [PubMed]
  108. Wild, A.C.; Moinova, H.R.; Mulcahy, R.T. Regulation of gamma-glutamylcysteine synthetase subunit gene expression by the transcription factor Nrf2. J. Biol. Chem. 1999, 274, 33627–33636. [Google Scholar] [CrossRef] [PubMed]
  109. Hao, Q.; Wang, M.; Sun, N.X.; Zhu, C.; Lin, Y.M.; Li, C.; Liu, F.; Zhu, W.W. Sulforaphane suppresses carcinogenesis of colorectal cancer through the ERK/Nrf2-UDP glucuronosyltransferase 1A metabolic axis activation. Oncol. Rep. 2020, 43, 1067–1080. [Google Scholar] [CrossRef]
  110. Chanas, S.A.; Jiang, Q.; McMahon, M.; McWalter, G.K.; McLellan, L.I.; Elcombe, C.R.; Henderson, C.J.; Wolf, C.R.; Moffat, G.J.; Itoh, K.; et al. Loss of the Nrf2 transcription factor causes a marked reduction in constitutive and inducible expression of the glutathione S-transferase Gsta1, Gsta2, Gstm1, Gstm2, Gstm3 and Gstm4 genes in the livers of male and female mice. Biochem. J. 2002, 365, 405–416. [Google Scholar] [CrossRef]
  111. Hawkes, H.J.; Karlenius, T.C.; Tonissen, K.F. Regulation of the human thioredoxin gene promoter and its key substrates: A study of functional and putative regulatory elements. Biochim. Biophys. Acta 2014, 1840, 303–314. [Google Scholar] [CrossRef]
  112. Lee, J.M.; Calkins, M.J.; Chan, K.; Kan, Y.W.; Johnson, J.A. Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J. Biol. Chem. 2003, 278, 12029–12038. [Google Scholar] [CrossRef] [PubMed]
  113. Mitsuishi, Y.; Taguchi, K.; Kawatani, Y.; Shibata, T.; Nukiwa, T.; Aburatani, H.; Yamamoto, M.; Motohashi, H. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 2012, 22, 66–79. [Google Scholar] [CrossRef]
  114. Wu, K.C.; Cui, J.Y.; Klaassen, C.D. Beneficial role of Nrf2 in regulating NADPH generation and consumption. Toxicol. Sci. 2011, 123, 590–600. [Google Scholar] [CrossRef]
  115. Alam, J.; Stewart, D.; Touchard, C.; Boinapally, S.; Choi, A.M.; Cook, J.L. Nrf2, a Cap’n’Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J. Biol. Chem. 1999, 274, 26071–26078. [Google Scholar] [CrossRef]
  116. Gozzelino, R.; Jeney, V.; Soares, M.P. Mechanisms of cell protection by heme oxygenase-1. Annu. Rev. Pharmacol. Toxicol. 2010, 50, 323–354. [Google Scholar] [CrossRef] [PubMed]
  117. Wu, Y.L.; Chang, J.C.; Lin, W.Y.; Li, C.C.; Hsieh, M.; Chen, H.W.; Wang, T.S.; Wu, W.T.; Liu, C.S.; Liu, K.L. Caffeic acid and resveratrol ameliorate cellular damage in cell and Drosophila models of spinocerebellar ataxia type 3 through upregulation of Nrf2 pathway. Free Radic. Biol. Med. 2018, 115, 309–317. [Google Scholar] [CrossRef]
  118. O’Mealey, G.B.; Plafker, K.S.; Berry, W.L.; Janknecht, R.; Chan, J.Y.; Plafker, S.M. A PGAM5-KEAP1-Nrf2 complex is required for stress-induced mitochondrial retrograde trafficking. J. Cell Sci. 2017, 130, 3467–3480. [Google Scholar] [CrossRef] [PubMed]
  119. Cho, H.Y.; Gladwell, W.; Wang, X.; Chorley, B.; Bell, D.; Reddy, S.P.; Kleeberger, S.R. Nrf2-regulated PPARgamma expression is critical to protection against acute lung injury in mice. Am. J. Respir. Crit. Care Med. 2010, 182, 170–182. [Google Scholar] [CrossRef]
  120. Agyeman, A.S.; Chaerkady, R.; Shaw, P.G.; Davidson, N.E.; Visvanathan, K.; Pandey, A.; Kensler, T.W. Transcriptomic and proteomic profiling of KEAP1 disrupted and sulforaphane-treated human breast epithelial cells reveals common expression profiles. Breast Cancer Res. Treat. 2012, 132, 175–187. [Google Scholar] [CrossRef]
  121. Abdullah, A.; Kitteringham, N.R.; Jenkins, R.E.; Goldring, C.; Higgins, L.; Yamamoto, M.; Hayes, J.; Park, B.K. Analysis of the role of Nrf2 in the expression of liver proteins in mice using two-dimensional gel-based proteomics. Pharmacol. Rep. 2012, 64, 680–697. [Google Scholar] [CrossRef]
  122. Piantadosi, C.A.; Carraway, M.S.; Babiker, A.; Suliman, H.B. Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1. Circ. Res. 2008, 103, 1232–1240. [Google Scholar] [CrossRef] [PubMed]
  123. Bellezza, I.; Tucci, A.; Galli, F.; Grottelli, S.; Mierla, A.L.; Pilolli, F.; Minelli, A. Inhibition of NF-kappaB nuclear translocation via HO-1 activation underlies alpha-tocopheryl succinate toxicity. J. Nutr. Biochem. 2012, 23, 1583–1591. [Google Scholar] [CrossRef] [PubMed]
  124. Calkins, M.J.; Townsend, J.A.; Johnson, D.A.; Johnson, J.A. Cystamine protects from 3-nitropropionic acid lesioning via induction of nf-e2 related factor 2 mediated transcription. Exp. Neurol. 2010, 224, 307–317. [Google Scholar] [CrossRef] [PubMed]
  125. Calkins, M.J.; Jakel, R.J.; Johnson, D.A.; Chan, K.; Kan, Y.W.; Johnson, J.A. Protection from mitochondrial complex II inhibition in vitro and in vivo by Nrf2-mediated transcription. Proc. Natl. Acad. Sci. USA 2005, 102, 244–249. [Google Scholar] [CrossRef] [PubMed]
  126. Vargas, M.R.; Johnson, J.A. The Nrf2-ARE cytoprotective pathway in astrocytes. Expert. Rev. Mol. Med. 2009, 11, e17. [Google Scholar] [CrossRef]
  127. Rojo, A.I.; Innamorato, N.G.; Martin-Moreno, A.M.; De Ceballos, M.L.; Yamamoto, M.; Cuadrado, A. Nrf2 regulates microglial dynamics and neuroinflammation in experimental Parkinson’s disease. Glia 2010, 58, 588–598. [Google Scholar] [CrossRef] [PubMed]
  128. Lee, D.F.; Kuo, H.P.; Liu, M.; Chou, C.K.; Xia, W.; Du, Y.; Shen, J.; Chen, C.T.; Huo, L.; Hsu, M.C.; et al. KEAP1 E3 ligase-mediated downregulation of NF-kappaB signaling by targeting IKKbeta. Mol. Cell 2009, 36, 131–140. [Google Scholar] [CrossRef] [PubMed]
  129. Saddawi-Konefka, R.; Seelige, R.; Gross, E.T.; Levy, E.; Searles, S.C.; Washington, A., Jr.; Santosa, E.K.; Liu, B.; O’Sullivan, T.E.; Harismendy, O.; et al. Nrf2 induces IL-17D to mediate tumor and virus surveillance. Cell Rep. 2016, 16, 2348–2358. [Google Scholar] [CrossRef]
  130. Ishii, T.; Itoh, K.; Ruiz, E.; Leake, D.S.; Unoki, H.; Yamamoto, M.; Mann, G.E. Role of Nrf2 in the regulation of CD36 and stress protein expression in murine macrophages: Activation by oxidatively modified LDL and 4-hydroxynonenal. Circ. Res. 2004, 94, 609–616. [Google Scholar] [CrossRef]
  131. Quinti, L.; Dayalan Naidu, S.; Trager, U.; Chen, X.; Kegel-Gleason, K.; Lleres, D.; Connolly, C.; Chopra, V.; Low, C.; Moniot, S.; et al. KEAP1-modifying small molecule reveals muted NRF2 signaling responses in neural stem cells from Huntington’s disease patients. Proc. Natl. Acad. Sci. USA 2017, 114, E4676–E4685. [Google Scholar] [CrossRef]
  132. Kobayashi, A.; Kang, M.I.; Watai, Y.; Tong, K.I.; Shibata, T.; Uchida, K.; Yamamoto, M. Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1. Mol. Cell Biol. 2006, 26, 221–229. [Google Scholar] [CrossRef] [PubMed]
  133. Park, S.H.; Park-Min, K.-H.; Chen, J.; Hu, X.; Ivashkiv, L.B. Tumor necrosis factor induces GSK3 kinase–mediated cross-tolerance to endotoxin in macrophages. Nat. Immunol. 2011, 12, 607–615. [Google Scholar] [CrossRef] [PubMed]
  134. Hu, B.; Wei, H.; Song, Y.; Chen, M.; Fan, Z.; Qiu, R.; Zhu, W.; Xu, W.; Wang, F. NF-kappaB and Keap1 interaction represses Nrf2-mediated antioxidant response in rabbit hemorrhagic disease virus infection. J. Virol. 2020, 94, e00016-20. [Google Scholar] [CrossRef]
  135. Liu, G.H.; Qu, J.; Shen, X. NF-kappaB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK. Biochim. Biophys. Acta 2008, 1783, 713–727. [Google Scholar] [CrossRef] [PubMed]
  136. Levine, B.; Kroemer, G. Autophagy in the pathogenesis of disease. Cell 2008, 132, 27–42. [Google Scholar] [CrossRef] [PubMed]
  137. Tran, M.; Reddy, P.H. Defective autophagy and mitophagy in aging and Alzheimer’s disease. Front. Neurosci. 2020, 14, 612757. [Google Scholar] [CrossRef] [PubMed]
  138. Pradeepkiran, J.A.; Reddy, P.H. Defective mitophagy in Alzheimer’s disease. Ageing Res. Rev. 2020, 64, 101191. [Google Scholar] [CrossRef] [PubMed]
  139. Scherz-Shouval, R.; Elazar, Z. Regulation of autophagy by ROS: Physiology and pathology. Trends Biochem. Sci. 2011, 36, 30–38. [Google Scholar] [CrossRef] [PubMed]
  140. Lau, A.; Wang, X.J.; Zhao, F.; Villeneuve, N.F.; Wu, T.; Jiang, T.; Sun, Z.; White, E.; Zhang, D.D. A noncanonical mechanism of Nrf2 activation by autophagy deficiency: Direct interaction between Keap1 and p62. Mol. Cell Biol. 2010, 30, 3275–3285. [Google Scholar] [CrossRef]
  141. Jain, A.; Lamark, T.; Sjottem, E.; Larsen, K.B.; Awuh, J.A.; Overvatn, A.; McMahon, M.; Hayes, J.D.; Johansen, T. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J. Biol. Chem. 2010, 285, 22576–22591. [Google Scholar] [CrossRef]
  142. Komatsu, M.; Kurokawa, H.; Waguri, S.; Taguchi, K.; Kobayashi, A.; Ichimura, Y.; Sou, Y.S.; Ueno, I.; Sakamoto, A.; Tong, K.I.; et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 2010, 12, 213–223. [Google Scholar] [CrossRef] [PubMed]
  143. Ron, D.; Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 2007, 8, 519–529. [Google Scholar] [CrossRef]
  144. Wang, C.; Yu, J.; Huo, L.; Wang, L.; Feng, W.; Wang, C.C. Human protein-disulfide isomerase is a redox-regulated chaperone activated by oxidation of domain a′. J. Biol. Chem. 2012, 287, 1139–1149. [Google Scholar] [CrossRef]
  145. Tavender, T.J.; Sheppard, A.M.; Bulleid, N.J. Peroxiredoxin IV is an endoplasmic reticulum-localized enzyme forming oligomeric complexes in human cells. Biochem. J. 2008, 411, 191–199. [Google Scholar] [CrossRef]
  146. Nguyen, V.D.; Saaranen, M.J.; Karala, A.R.; Lappi, A.K.; Wang, L.; Raykhel, I.B.; Alanen, H.I.; Salo, K.E.; Wang, C.C.; Ruddock, L.W. Two endoplasmic reticulum PDI peroxidases increase the efficiency of the use of peroxide during disulfide bond formation. J. Mol. Biol. 2011, 406, 503–515. [Google Scholar] [CrossRef] [PubMed]
  147. Cullinan, S.B.; Diehl, J.A. PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J. Biol. Chem. 2004, 279, 20108–20117. [Google Scholar] [CrossRef]
  148. Cullinan, S.B.; Zhang, D.; Hannink, M.; Arvisais, E.; Kaufman, R.J.; Diehl, J.A. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol. Cell Biol. 2003, 23, 7198–7209. [Google Scholar] [CrossRef] [PubMed]
  149. Zheng, M.; Kim, S.K.; Joe, Y.; Back, S.H.; Cho, H.R.; Kim, H.P.; Ignarro, L.J.; Chung, H.T. Sensing endoplasmic reticulum stress by protein kinase RNA-like endoplasmic reticulum kinase promotes adaptive mitochondrial DNA biogenesis and cell survival via heme oxygenase-1/carbon monoxide activity. FASEB J. 2012, 26, 2558–2568. [Google Scholar] [CrossRef]
  150. Mohamed, E.; Sierra, R.A.; Trillo-Tinoco, J.; Cao, Y.; Innamarato, P.; Payne, K.K.; de Mingo Pulido, A.; Mandula, J.; Zhang, S.; Thevenot, P.; et al. The Unfolded protein response mediator PERK governs myeloid cell-driven immunosuppression in tumors through inhibition of STING signaling. Immunity 2020, 52, 668–682.e7. [Google Scholar] [CrossRef]
  151. Granatiero, V.; Konrad, C.; Bredvik, K.; Manfredi, G.; Kawamata, H. Nrf2 signaling links ER oxidative protein folding and calcium homeostasis in health and disease. Life Sci. Alliance 2019, 2, e201900563. [Google Scholar] [CrossRef]
  152. Browne, S.E.; Beal, M.F. Oxidative damage in Huntington’s disease pathogenesis. Antioxid. Redox Signal 2006, 8, 2061–2073. [Google Scholar] [CrossRef]
  153. Ranganathan, S.; Harmison, G.G.; Meyertholen, K.; Pennuto, M.; Burnett, B.G.; Fischbeck, K.H. Mitochondrial abnormalities in spinal and bulbar muscular atrophy. Hum. Mol. Genet. 2009, 18, 27–42. [Google Scholar] [CrossRef] [PubMed]
  154. Liu, Y.; Hettinger, C.L.; Zhang, D.; Rezvani, K.; Wang, X.; Wang, H. Sulforaphane enhances proteasomal and autophagic activities in mice and is a potential therapeutic reagent for Huntington’s disease. J. Neurochem. 2014, 129, 539–547. [Google Scholar] [CrossRef] [PubMed]
  155. Jang, M.; Cho, I.-H. Sulforaphane ameliorates 3-nitropropionic acid-induced striatal toxicity by activating the Keap1-Nrf2-ARE pathway and inhibiting the MAPKs and NF-κB pathways. Mol. Neurobiol. 2016, 53, 2619–2635. [Google Scholar] [CrossRef] [PubMed]
  156. Yang, L.; Calingasan, N.Y.; Thomas, B.; Chaturvedi, R.K.; Kiaei, M.; Wille, E.J.; Liby, K.T.; Williams, C.; Royce, D.; Risingsong, R.; et al. Neuroprotective effects of the triterpenoid, CDDO methyl amide, a potent inducer of Nrf2-mediated transcription. PLoS ONE 2009, 4, e5757. [Google Scholar] [CrossRef] [PubMed]
  157. Stack, C.; Ho, D.; Wille, E.; Calingasan, N.Y.; Williams, C.; Liby, K.; Sporn, M.; Dumont, M.; Beal, M.F. Triterpenoids CDDO-ethyl amide and CDDO-trifluoroethyl amide improve the behavioral phenotype and brain pathology in a transgenic mouse model of Huntington’s disease. Free Radic. Biol. Med. 2010, 49, 147–158. [Google Scholar] [CrossRef] [PubMed]
  158. Ellrichmann, G.; Petrasch-Parwez, E.; Lee, D.H.; Reick, C.; Arning, L.; Saft, C.; Gold, R.; Linker, R.A. Efficacy of fumaric acid esters in the R6/2 and YAC128 models of Huntington’s disease. PLoS ONE 2011, 6, e16172. [Google Scholar] [CrossRef] [PubMed]
  159. Gopinath, K.; Sudhandiran, G. Naringin modulates oxidative stress and inflammation in 3-nitropropionic acid-induced neurodegeneration through the activation of nuclear factor-erythroid 2-related factor-2 signalling pathway. Neuroscience 2012, 227, 134–143. [Google Scholar] [CrossRef] [PubMed]
  160. Oliveira, A.M.; Cardoso, S.M.; Ribeiro, M.; Seixas, R.S.; Silva, A.M.; Rego, A.C. Protective effects of 3-alkyl luteolin derivatives are mediated by Nrf2 transcriptional activity and decreased oxidative stress in Huntington’s disease mouse striatal cells. Neurochem. Int. 2015, 91, 1–12. [Google Scholar] [CrossRef]
  161. Naia, L.; Rosenstock, T.R.; Oliveira, A.M.; Oliveira-Sousa, S.I.; Caldeira, G.L.; Carmo, C.; Laco, M.N.; Hayden, M.R.; Oliveira, C.R.; Rego, A.C. Comparative mitochondrial-based protective effects of resveratrol and nicotinamide in Huntington’s disease models. Mol. Neurobiol. 2017, 54, 5385–5399. [Google Scholar] [CrossRef]
  162. Gao, Y.; Chu, S.F.; Li, J.P.; Zhang, Z.; Yan, J.Q.; Wen, Z.L.; Xia, C.Y.; Mou, Z.; Wang, Z.Z.; He, W.B.; et al. Protopanaxtriol protects against 3-nitropropionic acid-induced oxidative stress in a rat model of Huntington’s disease. Acta Pharmacol. Sin. 2015, 36, 311–322. [Google Scholar] [CrossRef] [PubMed]
  163. Jang, M.; Choi, J.H.; Chang, Y.; Lee, S.J.; Nah, S.Y.; Cho, I.H. Gintonin, a ginseng-derived ingredient, as a novel therapeutic strategy for Huntington’s disease: Activation of the Nrf2 pathway through lysophosphatidic acid receptors. Brain Behav. Immun. 2019, 80, 146–162. [Google Scholar] [CrossRef] [PubMed]
  164. Ibrahim, W.W.; Abdel Rasheed, N.O. Diapocynin neuroprotective effects in 3-nitropropionic acid Huntington’s disease model in rats: Emphasis on Sirt1/Nrf2 signaling pathway. Inflammopharmacology 2022, 30, 1745–1758. [Google Scholar] [CrossRef] [PubMed]
  165. Habib, M.Z.; Tadros, M.G.; Abd-Alkhalek, H.A.; Mohamad, M.I.; Eid, D.M.; Hassan, F.E.; Elhelaly, H.; Faramawy, Y.E.; Aboul-Fotouh, S. Harmine prevents 3-nitropropionic acid-induced neurotoxicity in rats via enhancing NRF2-mediated signaling: Involvement of p21 and AMPK. Eur. J. Pharmacol. 2022, 927, 175046. [Google Scholar] [CrossRef] [PubMed]
  166. Stucki, D.M.; Ruegsegger, C.; Steiner, S.; Radecke, J.; Murphy, M.P.; Zuber, B.; Saxena, S. Mitochondrial impairments contribute to Spinocerebellar ataxia type 1 progression and can be ameliorated by the mitochondria-targeted antioxidant MitoQ. Free Radic. Biol. Med. 2016, 97, 427–440. [Google Scholar] [CrossRef] [PubMed]
  167. Cornelius, N.; Wardman, J.H.; Hargreaves, I.P.; Neergheen, V.; Bie, A.S.; Tumer, Z.; Nielsen, J.E.; Nielsen, T.T. Evidence of oxidative stress and mitochondrial dysfunction in spinocerebellar ataxia type 2 (SCA2) patient fibroblasts: Effect of coenzyme Q10 supplementation on these parameters. Mitochondrion 2017, 34, 103–114. [Google Scholar] [CrossRef]
  168. Wu, Y.L.; Chang, J.C.; Chao, Y.C.; Chan, H.; Hsieh, M.; Liu, C.S. In vitro efficacy and molecular mechanism of curcumin analog in pathological regulation of spinocerebellar ataxia type 3. Antioxidants 2022, 11, 1389. [Google Scholar] [CrossRef] [PubMed]
  169. Chang, K.H.; Chen, W.L.; Wu, Y.R.; Lin, T.H.; Wu, Y.C.; Chao, C.Y.; Lin, J.Y.; Lee, L.C.; Chen, Y.C.; Lee-Chen, G.J.; et al. Aqueous extract of Gardenia jasminoides targeting oxidative stress to reduce polyQ aggregation in cell models of spinocerebellar ataxia 3. Neuropharmacology 2014, 81, 166–175. [Google Scholar] [CrossRef] [PubMed]
  170. Chen, C.M.; Weng, Y.T.; Chen, W.L.; Lin, T.H.; Chao, C.Y.; Lin, C.H.; Chen, I.C.; Lee, L.C.; Lin, H.Y.; Wu, Y.R.; et al. Aqueous extract of Glycyrrhiza inflata inhibits aggregation by upregulating PPARGC1A and NFE2L2-ARE pathways in cell models of spinocerebellar ataxia 3. Free Radic. Biol. Med. 2014, 71, 339–350. [Google Scholar] [CrossRef]
  171. Ajayi, A.; Yu, X.; Lindberg, S.; Langel, U.; Strom, A.L. Expanded ataxin-7 cause toxicity by inducing ROS production from NADPH oxidase complexes in a stable inducible Spinocerebellar ataxia type 7 (SCA7) model. BMC Neurosci. 2012, 13, 86. [Google Scholar] [CrossRef]
  172. Lee, L.C.; Weng, Y.T.; Wu, Y.R.; Soong, B.W.; Tseng, Y.C.; Chen, C.M.; Lee-Chen, G.J. Downregulation of proteins involved in the endoplasmic reticulum stress response and Nrf2-ARE signaling in lymphoblastoid cells of spinocerebellar ataxia type 17. J. Neural Transm. 2014, 121, 601–610. [Google Scholar] [CrossRef] [PubMed]
  173. Chen, C.M.; Chen, W.L.; Yang, S.T.; Lin, T.H.; Yang, S.M.; Lin, W.; Chao, C.Y.; Wu, Y.R.; Chang, K.H.; Lee-Chen, G.J. New synthetic 3-benzoyl-5-hydroxy-2H-chromen-2-one (LM-031) inhibits polyglutamine aggregation and promotes neurite outgrowth through enhancement of CREB, NRF2, and reduction of AMPKalpha in SCA17 cell models. Oxid. Med. Cell Longev. 2020, 2020, 3129497. [Google Scholar] [CrossRef] [PubMed]
  174. Chen, C.M.; Chen, W.L.; Hung, C.T.; Lin, T.H.; Lee, M.C.; Chen, I.C.; Lin, C.H.; Chao, C.Y.; Wu, Y.R.; Chang, K.H.; et al. Shaoyao Gancao Tang (SG-Tang), a formulated Chinese medicine, reduces aggregation and exerts neuroprotection in spinocerebellar ataxia type 17 (SCA17) cell and mouse models. Aging 2019, 11, 986–1007. [Google Scholar] [CrossRef] [PubMed]
  175. Bott, L.C.; Badders, N.M.; Chen, K.L.; Harmison, G.G.; Bautista, E.; Shih, C.C.; Katsuno, M.; Sobue, G.; Taylor, J.P.; Dantuma, N.P.; et al. A small-molecule Nrf1 and Nrf2 activator mitigates polyglutamine toxicity in spinal and bulbar muscular atrophy. Hum. Mol. Genet. 2016, 25, 1979–1989. [Google Scholar] [CrossRef]
  176. Yang, Z.; Chang, Y.J.; Yu, I.C.; Yeh, S.; Wu, C.C.; Miyamoto, H.; Merry, D.E.; Sobue, G.; Chen, L.M.; Chang, S.S.; et al. ASC-J9 ameliorates spinal and bulbar muscular atrophy phenotype via degradation of androgen receptor. Nat. Med. 2007, 13, 348–353. [Google Scholar] [CrossRef] [PubMed]
  177. Abeti, R.; Baccaro, A.; Esteras, N.; Giunti, P. Novel Nrf2-inducer prevents mitochondrial defects and oxidative stress in Friedreich’s ataxia models. Front. Cell Neurosci. 2018, 12, 188. [Google Scholar] [CrossRef] [PubMed]
  178. Lynch, D.R.; Chin, M.P.; Delatycki, M.B.; Subramony, S.H.; Corti, M.; Hoyle, J.C.; Boesch, S.; Nachbauer, W.; Mariotti, C.; Mathews, K.D.; et al. Safety and efficacy of omaveloxolone in Friedreich ataxia (MOXIe Study). Ann. Neurol. 2021, 89, 212–225. [Google Scholar] [CrossRef] [PubMed]
  179. Petrillo, S.; Piermarini, E.; Pastore, A.; Vasco, G.; Schirinzi, T.; Carrozzo, R.; Bertini, E.; Piemonte, F. Nrf2-inducers counteract neurodegeneration in frataxin-silenced motor neurons: Disclosing new therapeutic targets for Friedreich’s ataxia. Int. J. Mol. Sci. 2017, 18, 2173. [Google Scholar] [CrossRef] [PubMed]
  180. Petrillo, S.; D’Amico, J.; La Rosa, P.; Bertini, E.S.; Piemonte, F. Targeting NRF2 for the treatment of Friedreich’s ataxia: A comparison among drugs. Int. J. Mol. Sci. 2019, 20, 5211. [Google Scholar] [CrossRef]
  181. Zesiewicz, T.; Salemi, J.L.; Perlman, S.; Sullivan, K.L.; Shaw, J.D.; Huang, Y.; Isaacs, C.; Gooch, C.; Lynch, D.R.; Klein, M.B. Double-blind, randomized and controlled trial of EPI-743 in Friedreich’s ataxia. Neurodegener. Dis. Manag. 2018, 8, 233–242. [Google Scholar] [CrossRef]
  182. Snell, R.G.; MacMillan, J.C.; Cheadle, J.P.; Fenton, I.; Lazarou, L.P.; Davies, P.; MacDonald, M.E.; Gusella, J.F.; Harper, P.S.; Shaw, D.J. Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington’s disease. Nat. Genet. 1993, 4, 393–397. [Google Scholar] [CrossRef] [PubMed]
  183. Furtado, S.; Suchowersky, O.; Rewcastle, B.; Graham, L.; Klimek, M.L.; Garber, A. Relationship between trinucleotide repeats and neuropathological changes in Huntington’s disease. Ann. Neurol. 1996, 39, 132–136. [Google Scholar] [CrossRef]
  184. Ravina, B.; Romer, M.; Constantinescu, R.; Biglan, K.; Brocht, A.; Kieburtz, K.; Shoulson, I.; McDermott, M.P. The relationship between CAG repeat length and clinical progression in Huntington’s disease. Mov. Disord. 2008, 23, 1223–1227. [Google Scholar] [CrossRef] [PubMed]
  185. Gallardo-Orihuela, A.; Hervás-Corpión, I.; Hierro-Bujalance, C.; Sanchez-Sotano, D.; Jiménez-Gómez, G.; Mora-López, F.; Campos-Caro, A.; Garcia-Alloza, M.; Valor, L.M. Transcriptional correlates of the pathological phenotype in a Huntington’s disease mouse model. Sci. Rep. 2019, 9, 18696. [Google Scholar] [CrossRef] [PubMed]
  186. Shacham, T.; Sharma, N.; Lederkremer, G.Z. Protein misfolding and ER stress in Huntington’s disease. Front. Mol. Biosci. 2019, 6, 20. [Google Scholar] [CrossRef]
  187. Stack, E.C.; Matson, W.R.; Ferrante, R.J. Evidence of oxidant damage in Huntington’s disease: Translational strategies using antioxidants. Ann. N. Y Acad. Sci. 2008, 1147, 79–92. [Google Scholar] [CrossRef] [PubMed]
  188. Walker, F.O. Huntington’s disease. Lancet 2007, 369, 218–228. [Google Scholar] [CrossRef] [PubMed]
  189. Yano, H.; Baranov, S.V.; Baranova, O.V.; Kim, J.; Pan, Y.; Yablonska, S.; Carlisle, D.L.; Ferrante, R.J.; Kim, A.H.; Friedlander, R.M. Inhibition of mitochondrial protein import by mutant huntingtin. Nat. Neurosci. 2014, 17, 822–831. [Google Scholar] [CrossRef]
  190. Agrawal, S.; Fox, J.; Thyagarajan, B.; Fox, J.H. Brain mitochondrial iron accumulates in Huntington’s disease, mediates mitochondrial dysfunction, and can be removed pharmacologically. Free Radic. Biol. Med. 2018, 120, 317–329. [Google Scholar] [CrossRef]
  191. Sanchez-Lopez, F.; Tasset, I.; Aguera, E.; Feijoo, M.; Fernandez-Bolanos, R.; Sanchez, F.M.; Ruiz, M.C.; Cruz, A.H.; Gascon, F.; Tunez, I. Oxidative stress and inflammation biomarkers in the blood of patients with Huntington’s disease. Neurol. Res. 2012, 34, 721–724. [Google Scholar] [CrossRef]
  192. Chen, C.M.; Wu, Y.R.; Cheng, M.L.; Liu, J.L.; Lee, Y.M.; Lee, P.W.; Soong, B.W.; Chiu, D.T. Increased oxidative damage and mitochondrial abnormalities in the peripheral blood of Huntington’s disease patients. Biochem. Biophys. Res. Commun. 2007, 359, 335–340. [Google Scholar] [CrossRef] [PubMed]
  193. Jin, Y.N.; Yu, Y.V.; Gundemir, S.; Jo, C.; Cui, M.; Tieu, K.; Johnson, G.V. Impaired mitochondrial dynamics and Nrf2 signaling contribute to compromised responses to oxidative stress in striatal cells expressing full-length mutant huntingtin. PLoS ONE 2013, 8, e57932. [Google Scholar] [CrossRef] [PubMed]
  194. van Roon-Mom, W.M.; Pepers, B.A.; t Hoen, P.A.; Verwijmeren, C.A.; den Dunnen, J.T.; Dorsman, J.C.; van Ommen, G.B. Mutant huntingtin activates Nrf2-responsive genes and impairs dopamine synthesis in a PC12 model of Huntington’s disease. BMC Mol. Biol. 2008, 9, 84. [Google Scholar] [CrossRef]
  195. Yadav, E.; Yadav, P.; Khan, M.M.U.; Singh, H.; Verma, A. Resveratrol: A potential therapeutic natural polyphenol for neurodegenerative diseases associated with mitochondrial dysfunction. Front. Pharmacol. 2022, 13, 922232. [Google Scholar] [CrossRef] [PubMed]
  196. Chan, S.C.; Tung, C.W.; Lin, C.W.; Tung, Y.S.; Wu, P.M.; Cheng, P.H.; Chen, C.M.; Yang, S.H. miR-196a provides antioxidative neuroprotection via USP15/Nrf2 regulation in Huntington’s disease. Free Radic. Biol. Med. 2023, 209, 292–300. [Google Scholar] [CrossRef] [PubMed]
  197. Taroni, F.; DiDonato, S. Pathways to motor incoordination: The inherited ataxias. Nat. Rev. Neurosci. 2004, 5, 641–655. [Google Scholar] [CrossRef] [PubMed]
  198. Paulson, H.L. The spinocerebellar ataxias. J. Neuroophthalmol. 2009, 29, 227–237. [Google Scholar] [CrossRef]
  199. Koeppen, A.H. The pathogenesis of spinocerebellar ataxia. Cerebellum 2005, 4, 62–73. [Google Scholar] [CrossRef] [PubMed]
  200. Dueñas, A.M.; Goold, R.; Giunti, P. Molecular pathogenesis of spinocerebellar ataxias. Brain 2006, 129, 1357–1370. [Google Scholar] [CrossRef]
  201. Harding, A.E. Clinical features and classification of inherited ataxias. Adv. Neurol. 1993, 61, 1–14. [Google Scholar]
  202. Kim, E.; Lee, Y.; Choi, S.; Song, J.J. Structural basis of the phosphorylation dependent complex formation of neurodegenerative disease protein Ataxin-1 and RBM17. Biochem. Biophys. Res. Commun. 2014, 449, 399–404. [Google Scholar] [CrossRef] [PubMed]
  203. Ito, H.; Fujita, K.; Tagawa, K.; Chen, X.; Homma, H.; Sasabe, T.; Shimizu, J.; Shimizu, S.; Tamura, T.; Muramatsu, S.; et al. HMGB1 facilitates repair of mitochondrial DNA damage and extends the lifespan of mutant ataxin-1 knock-in mice. EMBO Mol. Med. 2015, 7, 78–101. [Google Scholar] [CrossRef] [PubMed]
  204. Qi, M.L.; Tagawa, K.; Enokido, Y.; Yoshimura, N.; Wada, Y.; Watase, K.; Ishiura, S.; Kanazawa, I.; Botas, J.; Saitoe, M.; et al. Proteome analysis of soluble nuclear proteins reveals that HMGB1/2 suppress genotoxic stress in polyglutamine diseases. Nat. Cell Biol. 2007, 9, 402–414. [Google Scholar] [CrossRef] [PubMed]
  205. Li, X.; Zhan, J.; Hou, Y.; Chen, S.; Hou, Y.; Xiao, Z.; Luo, D.; Lin, D. Coenzyme Q10 suppresses oxidative stress and apoptosis via activating the Nrf-2/NQO-1 and NF-kappaB signaling pathway after spinal cord injury in rats. Am. J. Transl. Res. 2019, 11, 6544–6552. [Google Scholar] [PubMed]
  206. Lo, R.Y.; Figueroa, K.P.; Pulst, S.M.; Lin, C.Y.; Perlman, S.; Wilmot, G.; Gomez, C.; Schmahmann, J.; Paulson, H.; Shakkottai, V.G.; et al. Coenzyme Q10 and spinocerebellar ataxias. Mov. Disord. 2015, 30, 214–220. [Google Scholar] [CrossRef]
  207. Yu, Y.C.; Kuo, C.L.; Cheng, W.L.; Liu, C.S.; Hsieh, M. Decreased antioxidant enzyme activity and increased mitochondrial DNA damage in cellular models of Machado-Joseph disease. J. Neurosci. Res. 2009, 87, 1884–1891. [Google Scholar] [CrossRef] [PubMed]
  208. Laco, M.N.; Oliveira, C.R.; Paulson, H.L.; Rego, A.C. Compromised mitochondrial complex II in models of Machado-Joseph disease. Biochim. Biophys. Acta 2012, 1822, 139–149. [Google Scholar] [CrossRef]
  209. Pacheco, L.S.; da Silveira, A.F.; Trott, A.; Houenou, L.J.; Algarve, T.D.; Bello, C.; Lenz, A.F.; Manica-Cattani, M.F.; da Cruz, I.B. Association between Machado-Joseph disease and oxidative stress biomarkers. Mutat. Res. Genet. Toxicol. Env. Mutagen. 2013, 757, 99–103. [Google Scholar] [CrossRef]
  210. de Assis, A.M.; Saute, J.A.M.; Longoni, A.; Haas, C.B.; Torrez, V.R.; Brochier, A.W.; Souza, G.N.; Furtado, G.V.; Gheno, T.C.; Russo, A.; et al. Peripheral oxidative stress biomarkers in spinocerebellar ataxia type 3/Machado-Joseph disease. Front. Neurol. 2017, 8, 485. [Google Scholar] [CrossRef]
  211. Friedman, M.J.; Shah, A.G.; Fang, Z.H.; Ward, E.G.; Warren, S.T.; Li, S.; Li, X.J. Polyglutamine domain modulates the TBP-TFIIB interaction: Implications for its normal function and neurodegeneration. Nat. Neurosci. 2007, 10, 1519–1528. [Google Scholar] [CrossRef]
  212. Chen, C.M.; Lee, L.C.; Soong, B.W.; Fung, H.C.; Hsu, W.C.; Lin, P.Y.; Huang, H.J.; Chen, F.L.; Lin, C.Y.; Lee-Chen, G.J.; et al. SCA17 repeat expansion: Mildly expanded CAG/CAA repeat alleles in neurological disorders and the functional implications. Clin. Chim. Acta 2010, 411, 375–380. [Google Scholar] [CrossRef] [PubMed]
  213. Rhodes, L.E.; Freeman, B.K.; Auh, S.; Kokkinis, A.D.; La Pean, A.; Chen, C.; Lehky, T.J.; Shrader, J.A.; Levy, E.W.; Harris-Love, M.; et al. Clinical features of spinal and bulbar muscular atrophy. Brain 2009, 132, 3242–3251. [Google Scholar] [CrossRef] [PubMed]
  214. Beitel, L.K.; Alvarado, C.; Mokhtar, S.; Paliouras, M.; Trifiro, M. Mechanisms mediating spinal and bulbar muscular atrophy: Investigations into polyglutamine-expanded androgen receptor function and dysfunction. Front. Neurol. 2013, 4, 53. [Google Scholar] [CrossRef]
  215. Antonini, G.; Gragnani, F.; Romaniello, A.; Pennisi, E.M.; Morino, S.; Ceschin, V.; Santoro, L.; Cruccu, G. Sensory involvement in spinal-bulbar muscular atrophy (Kennedy’s disease). Muscle Nerve 2000, 23, 252–258. [Google Scholar] [CrossRef]
  216. Dejager, S.; Bry-Gauillard, H.; Bruckert, E.; Eymard, B.; Salachas, F.; LeGuern, E.; Tardieu, S.; Chadarevian, R.; Giral, P.; Turpin, G. A comprehensive endocrine description of Kennedy’s disease revealing androgen insensitivity linked to CAG repeat length. J. Clin. Endocrinol. Metab. 2002, 87, 3893–3901. [Google Scholar] [PubMed]
  217. Pellegrini, M.; Bulzomi, P.; Lecis, M.; Leone, S.; Campesi, I.; Franconi, F.; Marino, M. Endocrine disruptors differently influence estrogen receptor beta and androgen receptor in male and female rat VSMC. J. Cell Physiol. 2014, 229, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
  218. Davies, P.; Watt, K.; Kelly, S.M.; Clark, C.; Price, N.C.; McEwan, I.J. Consequences of poly-glutamine repeat length for the conformation and folding of the androgen receptor amino-terminal domain. J. Mol. Endocrinol. 2008, 41, 301–314. [Google Scholar] [CrossRef] [PubMed]
  219. Finsterer, J.; Mishra, A.; Wakil, S.; Pennuto, M.; Soraru, G. Mitochondrial implications in bulbospinal muscular atrophy (Kennedy disease). Amyotroph. Lateral Scler. Front. Degener. 2015, 17, 112–118. [Google Scholar] [CrossRef] [PubMed]
  220. Gavrilova-Jordan, L.P.; Price, T.M. Actions of steroids in mitochondria. Semin. Reprod. Med. 2007, 25, 154–164. [Google Scholar] [CrossRef]
  221. Stenoien, D.L.; Cummings, C.J.; Adams, H.P.; Mancini, M.G.; Patel, K.; DeMartino, G.N.; Marcelli, M.; Weigel, N.L.; Mancini, M.A. Polyglutamine-expanded androgen receptors form aggregates that sequester heat shock proteins, proteasome components and SRC-1, and are suppressed by the HDJ-2 chaperone. Hum. Mol. Genet. 1999, 8, 731–741. [Google Scholar] [CrossRef]
  222. Piccioni, F.; Pinton, P.; Simeoni, S.; Pozzi, P.; Fascio, U.; Vismara, G.; Martini, L.; Rizzuto, R.; Poletti, A. Androgen receptor with elongated polyglutamine tract forms aggregates that alter axonal trafficking and mitochondrial distribution in motor neuronal processes. FASEB J. 2002, 16, 1418–1420. [Google Scholar] [CrossRef] [PubMed]
  223. Malik, B.; Devine, H.; Patani, R.; La Spada, A.R.; Hanna, M.G.; Greensmith, L. Gene expression analysis reveals early dysregulation of disease pathways and links Chmp7 to pathogenesis of spinal and bulbar muscular atrophy. Sci. Rep. 2019, 9, 3539. [Google Scholar] [CrossRef] [PubMed]
  224. Mishra, P.; Paital, B.; Jena, S.; Swain, S.S.; Kumar, S.; Yadav, M.K.; Chainy, G.B.N.; Samanta, L. Possible activation of NRF2 by Vitamin E/Curcumin against altered thyroid hormone induced oxidative stress via NFkB/AKT/mTOR/KEAP1 signalling in rat heart. Sci. Rep. 2019, 9, 7408. [Google Scholar] [CrossRef] [PubMed]
  225. Dinkova-Kostova, A.T.; Massiah, M.A.; Bozak, R.E.; Hicks, R.J.; Talalay, P. Potency of Michael reaction acceptors as inducers of enzymes that protect against carcinogenesis depends on their reactivity with sulfhydryl groups. Proc. Natl. Acad. Sci. USA 2001, 98, 3404–3409. [Google Scholar] [CrossRef] [PubMed]
  226. Porat, Y.; Abramowitz, A.; Gazit, E. Inhibition of amyloid fibril formation by polyphenols: Structural similarity and aromatic interactions as a common inhibition mechanism. Chem. Biol. Drug Des. 2006, 67, 27–37. [Google Scholar] [CrossRef] [PubMed]
  227. Calamini, B.; Silva, M.C.; Madoux, F.; Hutt, D.M.; Khanna, S.; Chalfant, M.A.; Saldanha, S.A.; Hodder, P.; Tait, B.D.; Garza, D.; et al. Small-molecule proteostasis regulators for protein conformational diseases. Nat. Chem. Biol. 2011, 8, 185–196. [Google Scholar] [CrossRef] [PubMed]
  228. Alavez, S.; Vantipalli, M.C.; Zucker, D.J.; Klang, I.M.; Lithgow, G.J. Amyloid-binding compounds maintain protein homeostasis during ageing and extend lifespan. Nature 2011, 472, 226–229. [Google Scholar] [CrossRef] [PubMed]
  229. Chan, Y.; Ryan, M.; Lau, Y.; Wong, F.; Chang, J.; Pai, A.; Chan, H.; Chen, C.; MacLean, A.; Huang, W. P446 A novel Nrf2 activator with pleiotropic effects for the treatment of SBMA in a phase 1/2a study. Neuromuscul. Disord. 2023, 33, S190. [Google Scholar] [CrossRef]
  230. Cossee, M.; Schmitt, M.; Campuzano, V.; Reutenauer, L.; Moutou, C.; Mandel, J.L.; Koenig, M. Evolution of the Friedreich’s ataxia trinucleotide repeat expansion: Founder effect and premutations. Proc. Natl. Acad. Sci. USA 1997, 94, 7452–7457. [Google Scholar] [CrossRef]
  231. Kim, E.; Napierala, M.; Dent, S.Y. Hyperexpansion of GAA repeats affects post-initiation steps of FXN transcription in Friedreich’s ataxia. Nucleic Acids Res. 2011, 39, 8366–8377. [Google Scholar] [CrossRef]
  232. Parkinson, M.H.; Boesch, S.; Nachbauer, W.; Mariotti, C.; Giunti, P. Clinical features of Friedreich’s ataxia: Classical and atypical phenotypes. J. Neurochem. 2013, 126 (Suppl. S1), 103–117. [Google Scholar] [CrossRef] [PubMed]
  233. Pandolfo, M.; Pastore, A. The pathogenesis of Friedreich ataxia and the structure and function of frataxin. J. Neurol. 2009, 256 (Suppl. S1), 9–17. [Google Scholar] [CrossRef] [PubMed]
  234. Koeppen, A.H. Friedreich’s ataxia: Pathology, pathogenesis, and molecular genetics. J. Neurol. Sci. 2011, 303, 1–12. [Google Scholar] [CrossRef] [PubMed]
  235. Lupoli, F.; Vannocci, T.; Longo, G.; Niccolai, N.; Pastore, A. The role of oxidative stress in Friedreich’s ataxia. FEBS Lett. 2018, 592, 718–727. [Google Scholar] [CrossRef] [PubMed]
  236. Carletti, B.; Piemonte, F. Friedreich’s ataxia: A neuronal point of view on the oxidative stress hypothesis. Antioxidants 2014, 3, 592–603. [Google Scholar] [CrossRef] [PubMed]
  237. Gomes, C.M.; Santos, R. Neurodegeneration in Friedreich’s ataxia: From defective frataxin to oxidative stress. Oxid. Med. Cell Longev. 2013, 2013, 487534. [Google Scholar] [CrossRef] [PubMed]
  238. Koenig, M.; Mandel, J.L. Deciphering the cause of Friedreich ataxia. Curr. Opin. Neurobiol. 1997, 7, 689–694. [Google Scholar] [CrossRef]
  239. Vaubel, R.A.; Isaya, G. Iron-sulfur cluster synthesis, iron homeostasis and oxidative stress in Friedreich ataxia. Mol. Cell Neurosci. 2013, 55, 50–61. [Google Scholar] [CrossRef] [PubMed]
  240. Anzovino, A.; Lane, D.J.; Huang, M.L.; Richardson, D.R. Fixing frataxin: ‘Ironing out’ the metabolic defect in Friedreich’s ataxia. Br. J. Pharmacol. 2014, 171, 2174–2190. [Google Scholar] [CrossRef]
  241. Puccio, H.; Simon, D.; Cossee, M.; Criqui-Filipe, P.; Tiziano, F.; Melki, J.; Hindelang, C.; Matyas, R.; Rustin, P.; Koenig, M. Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nat. Genet. 2001, 27, 181–186. [Google Scholar] [CrossRef]
  242. Shan, Y.; Schoenfeld, R.A.; Hayashi, G.; Napoli, E.; Akiyama, T.; Iodi Carstens, M.; Carstens, E.E.; Pook, M.A.; Cortopassi, G.A. Frataxin deficiency leads to defects in expression of antioxidants and Nrf2 expression in dorsal root ganglia of the Friedreich’s ataxia YG8R mouse model. Antioxid. Redox Signal 2013, 19, 1481–1493. [Google Scholar] [CrossRef] [PubMed]
  243. D’Oria, V.; Petrini, S.; Travaglini, L.; Priori, C.; Piermarini, E.; Petrillo, S.; Carletti, B.; Bertini, E.; Piemonte, F. Frataxin deficiency leads to reduced expression and impaired translocation of NF-E2-related factor (Nrf2) in cultured motor neurons. Int. J. Mol. Sci. 2013, 14, 7853–7865. [Google Scholar] [CrossRef] [PubMed]
  244. Paupe, V.; Dassa, E.P.; Goncalves, S.; Auchere, F.; Lonn, M.; Holmgren, A.; Rustin, P. Impaired nuclear Nrf2 translocation undermines the oxidative stress response in Friedreich ataxia. PLoS ONE 2009, 4, e4253. [Google Scholar] [CrossRef] [PubMed]
  245. Anzovino, A.; Chiang, S.; Brown, B.E.; Hawkins, C.L.; Richardson, D.R.; Huang, M.L. Molecular alterations in a mouse cardiac model of Friedreich ataxia: An impaired Nrf2 response mediated via upregulation of Keap1 and activation of the Gsk3beta axis. Am. J. Pathol. 2017, 187, 2858–2875. [Google Scholar] [CrossRef] [PubMed]
  246. Schulz, J.B.; Dehmer, T.; Schols, L.; Mende, H.; Hardt, C.; Vorgerd, M.; Burk, K.; Matson, W.; Dichgans, J.; Beal, M.F.; et al. Oxidative stress in patients with Friedreich ataxia. Neurology 2000, 55, 1719–1721. [Google Scholar] [CrossRef] [PubMed]
  247. Emond, M.; Lepage, G.; Vanasse, M.; Pandolfo, M. Increased levels of plasma malondialdehyde in Friedreich ataxia. Neurology 2000, 55, 1752–1753. [Google Scholar] [CrossRef] [PubMed]
  248. Johnson, W.M.; Wilson-Delfosse, A.L.; Mieyal, J.J. Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients 2012, 4, 1399–1440. [Google Scholar] [CrossRef] [PubMed]
  249. Piemonte, F.; Pastore, A.; Tozzi, G.; Tagliacozzi, D.; Santorelli, F.M.; Carrozzo, R.; Casali, C.; Damiano, M.; Federici, G.; Bertini, E. Glutathione in blood of patients with Friedreich’s ataxia. Eur. J. Clin. Investig. 2001, 31, 1007–1011. [Google Scholar] [CrossRef] [PubMed]
  250. Holmstrom, K.M.; Kostov, R.V.; Dinkova-Kostova, A.T. The multifaceted role of Nrf2 in mitochondrial function. Curr. Opin. Toxicol. 2016, 1, 80–91. [Google Scholar] [CrossRef]
  251. Reisman, S.A.; Lee, C.Y.; Meyer, C.J.; Proksch, J.W.; Sonis, S.T.; Ward, K.W. Topical application of the synthetic triterpenoid RTA 408 protects mice from radiation-induced dermatitis. Radiat. Res. 2014, 181, 512–520. [Google Scholar] [CrossRef]
  252. Enns, G.M.; Kinsman, S.L.; Perlman, S.L.; Spicer, K.M.; Abdenur, J.E.; Cohen, B.H.; Amagata, A.; Barnes, A.; Kheifets, V.; Shrader, W.D.; et al. Initial experience in the treatment of inherited mitochondrial disease with EPI-743. Mol. Genet. Metab. 2012, 105, 91–102. [Google Scholar] [CrossRef] [PubMed]
  253. Pastore, A.; Petrillo, S.; Tozzi, G.; Carrozzo, R.; Martinelli, D.; Dionisi-Vici, C.; Di Giovamberardino, G.; Ceravolo, F.; Klein, M.B.; Miller, G.; et al. Glutathione: A redox signature in monitoring EPI-743 therapy in children with mitochondrial encephalomyopathies. Mol. Genet. Metab. 2013, 109, 208–214. [Google Scholar] [CrossRef]
  254. Hagerman, R.J.; Berry-Kravis, E.; Hazlett, H.C.; Bailey, D.B., Jr.; Moine, H.; Kooy, R.F.; Tassone, F.; Gantois, I.; Sonenberg, N.; Mandel, J.L.; et al. Fragile X syndrome. Nat. Rev. Dis. Primers 2017, 3, 17065. [Google Scholar] [CrossRef] [PubMed]
  255. Bell, M.V.; Hirst, M.C.; Nakahori, Y.; MacKinnon, R.N.; Roche, A.; Flint, T.J.; Jacobs, P.A.; Tommerup, N.; Tranebjaerg, L.; Froster-Iskenius, U.; et al. Physical mapping across the fragile X: Hypermethylation and clinical expression of the fragile X syndrome. Cell 1991, 64, 861–866. [Google Scholar] [CrossRef]
  256. Abbeduto, L.; McDuffie, A.; Thurman, A.J. The fragile X syndrome-autism comorbidity: What do we really know? Front. Genet. 2014, 5, 355. [Google Scholar] [CrossRef]
  257. Hagerman, R.J.; Hall, D.A.; Coffey, S.; Leehey, M.; Bourgeois, J.; Gould, J.; Zhang, L.; Seritan, A.; Berry-Kravis, E.; Olichney, J.; et al. Treatment of fragile X-associated tremor ataxia syndrome (FXTAS) and related neurological problems. Clin. Interv. Aging 2008, 3, 251–262. [Google Scholar] [CrossRef]
  258. Orr, H.T.; Zoghbi, H.Y. Trinucleotide repeat disorders. Annu. Rev. Neurosci. 2007, 30, 575–621. [Google Scholar] [CrossRef]
  259. Jacquemont, S.; Hagerman, R.J.; Hagerman, P.J.; Leehey, M.A. Fragile-X syndrome and fragile X-associated tremor/ataxia syndrome: Two faces of FMR1. Lancet Neurol. 2007, 6, 45–55. [Google Scholar] [CrossRef] [PubMed]
  260. Jacquemont, S.; Hagerman, R.J.; Leehey, M.A.; Hall, D.A.; Levine, R.A.; Brunberg, J.A.; Zhang, L.; Jardini, T.; Gane, L.W.; Harris, S.W.; et al. Penetrance of the fragile X-associated tremor/ataxia syndrome in a premutation carrier population. JAMA 2004, 291, 460–469. [Google Scholar] [CrossRef]
  261. Jacquemont, S.; Hagerman, R.J.; Leehey, M.; Grigsby, J.; Zhang, L.; Brunberg, J.A.; Greco, C.; Des Portes, V.; Jardini, T.; Levine, R.; et al. Fragile X premutation tremor/ataxia syndrome: Molecular, clinical, and neuroimaging correlates. Am. J. Hum. Genet. 2003, 72, 869–878. [Google Scholar] [CrossRef]
  262. Tassone, F.; Hagerman, R.J.; Chamberlain, W.D.; Hagerman, P.J. Transcription of the FMR1 gene in individuals with fragile X syndrome. Am. J. Med. Genet. 2000, 97, 195–203. [Google Scholar] [CrossRef]
  263. Tassone, F.; Iwahashi, C.; Hagerman, P.J. FMR1 RNA within the intranuclear inclusions of fragile X-associated tremor/ataxia syndrome (FXTAS). RNA Biol. 2004, 1, 103–105. [Google Scholar] [CrossRef] [PubMed]
  264. Greco, C.M.; Hagerman, R.J.; Tassone, F.; Chudley, A.E.; Del Bigio, M.R.; Jacquemont, S.; Leehey, M.; Hagerman, P.J. Neuronal intranuclear inclusions in a new cerebellar tremor/ataxia syndrome among fragile X carriers. Brain 2002, 125, 1760–1771. [Google Scholar] [CrossRef] [PubMed]
  265. Ma, L.; Herren, A.W.; Espinal, G.; Randol, J.; McLaughlin, B.; Martinez-Cerdeno, V.; Pessah, I.N.; Hagerman, R.J.; Hagerman, P.J. Composition of the Intranuclear Inclusions of Fragile X-associated Tremor/Ataxia Syndrome. Acta Neuropathol. Commun. 2019, 7, 143. [Google Scholar] [CrossRef] [PubMed]
  266. Sofola, O.A.; Jin, P.; Qin, Y.; Duan, R.; Liu, H.; de Haro, M.; Nelson, D.L.; Botas, J. RNA-binding proteins hnRNP A2/B1 and CUGBP1 suppress fragile X CGG premutation repeat-induced neurodegeneration in a Drosophila model of FXTAS. Neuron 2007, 55, 565–571. [Google Scholar] [CrossRef] [PubMed]
  267. Jin, P.; Duan, R.; Qurashi, A.; Qin, Y.; Tian, D.; Rosser, T.C.; Liu, H.; Feng, Y.; Warren, S.T. Pur alpha binds to rCGG repeats and modulates repeat-mediated neurodegeneration in a Drosophila model of fragile X tremor/ataxia syndrome. Neuron 2007, 55, 556–564. [Google Scholar] [CrossRef] [PubMed]
  268. Iwahashi, C.K.; Yasui, D.H.; An, H.J.; Greco, C.M.; Tassone, F.; Nannen, K.; Babineau, B.; Lebrilla, C.B.; Hagerman, R.J.; Hagerman, P.J. Protein composition of the intranuclear inclusions of FXTAS. Brain 2006, 129, 256–271. [Google Scholar] [CrossRef] [PubMed]
  269. Bardoni, B.; Schenck, A.; Mandel, J.L. The Fragile X mental retardation protein. Brain Res. Bull. 2001, 56, 375–382. [Google Scholar] [CrossRef] [PubMed]
  270. Feng, Y.; Gutekunst, C.A.; Eberhart, D.E.; Yi, H.; Warren, S.T.; Hersch, S.M. Fragile X mental retardation protein: Nucleocytoplasmic shuttling and association with somatodendritic ribosomes. J. Neurosci. 1997, 17, 1539–1547. [Google Scholar] [CrossRef]
  271. Devys, D.; Lutz, Y.; Rouyer, N.; Bellocq, J.P.; Mandel, J.L. The FMR-1 protein is cytoplasmic, most abundant in neurons and appears normal in carriers of a fragile X premutation. Nat. Genet. 1993, 4, 335–340. [Google Scholar] [CrossRef]
  272. Fernández, E.; Rajan, N.; Bagni, C. The FMRP regulon: From targets to disease convergence. Front. Neurosci. 2013, 7, 191. [Google Scholar] [CrossRef]
  273. Centonze, D.; Rossi, S.; Mercaldo, V.; Napoli, I.; Ciotti, M.T.; De Chiara, V.; Musella, A.; Prosperetti, C.; Calabresi, P.; Bernardi, G.; et al. Abnormal striatal GABA transmission in the mouse model for the fragile X syndrome. Biol. Psychiatry 2008, 63, 963–973. [Google Scholar] [CrossRef]
  274. Eadie, B.D.; Cushman, J.; Kannangara, T.S.; Fanselow, M.S.; Christie, B.R. NMDA receptor hypofunction in the dentate gyrus and impaired context discrimination in adult Fmr1 knockout mice. Hippocampus 2012, 22, 241–254. [Google Scholar] [CrossRef]
  275. Nakamoto, M.; Nalavadi, V.; Epstein, M.P.; Narayanan, U.; Bassell, G.J.; Warren, S.T. Fragile X mental retardation protein deficiency leads to excessive mGluR5-dependent internalization of AMPA receptors. Proc. Natl. Acad. Sci. USA 2007, 104, 15537–15542. [Google Scholar] [CrossRef]
  276. Huber, K.M.; Gallagher, S.M.; Warren, S.T.; Bear, M.F. Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc. Natl. Acad. Sci. USA 2002, 99, 7746–7750. [Google Scholar] [CrossRef] [PubMed]
  277. Dictenberg, J.B.; Swanger, S.A.; Antar, L.N.; Singer, R.H.; Bassell, G.J. A direct role for FMRP in activity-dependent dendritic mRNA transport links filopodial-spine morphogenesis to fragile X syndrome. Dev. Cell 2008, 14, 926–939. [Google Scholar] [CrossRef] [PubMed]
  278. Ferrari, F.; Mercaldo, V.; Piccoli, G.; Sala, C.; Cannata, S.; Achsel, T.; Bagni, C. The fragile X mental retardation protein–RNP granules show an mGluR-dependent localization in the post-synaptic spines. Mol. Cell. Neurosci. 2007, 34, 343–354. [Google Scholar] [CrossRef]
  279. Li, J.; Pelletier, M.R.; Perez Velazquez, J.L.; Carlen, P.L. Reduced cortical synaptic plasticity and GluR1 expression associated with fragile X mental retardation protein deficiency. Mol. Cell Neurosci. 2002, 19, 138–151. [Google Scholar] [CrossRef] [PubMed]
  280. Song, G.; Napoli, E.; Wong, S.; Hagerman, R.; Liu, S.; Tassone, F.; Giulivi, C. Altered redox mitochondrial biology in the neurodegenerative disorder fragile X-tremor/ataxia syndrome: Use of antioxidants in precision medicine. Mol. Med. 2016, 22, 548–559. [Google Scholar] [CrossRef]
  281. Napoli, E.; Ross-Inta, C.; Wong, S.; Omanska-Klusek, A.; Barrow, C.; Iwahashi, C.; Garcia-Arocena, D.; Sakaguchi, D.; Berry-Kravis, E.; Hagerman, R.; et al. Altered zinc transport disrupts mitochondrial protein processing/import in fragile X-associated tremor/ataxia syndrome. Hum. Mol. Genet. 2011, 20, 3079–3092. [Google Scholar] [CrossRef]
  282. Ross-Inta, C.; Omanska-Klusek, A.; Wong, S.; Barrow, C.; Garcia-Arocena, D.; Iwahashi, C.; Berry-Kravis, E.; Hagerman, R.J.; Hagerman, P.J.; Giulivi, C. Evidence of mitochondrial dysfunction in fragile X-associated tremor/ataxia syndrome. Biochem. J. 2010, 429, 545–552. [Google Scholar] [CrossRef] [PubMed]
  283. Alvarez-Mora, M.I.; Rodriguez-Revenga, L.; Madrigal, I.; Guitart-Mampel, M.; Garrabou, G.; Mila, M. Impaired mitochondrial function and dynamics in the pathogenesis of FXTAS. Mol. Neurobiol. 2017, 54, 6896–6902. [Google Scholar] [CrossRef]
  284. Kaplan, E.S.; Cao, Z.; Hulsizer, S.; Tassone, F.; Berman, R.F.; Hagerman, P.J.; Pessah, I.N. Early mitochondrial abnormalities in hippocampal neurons cultured from Fmr1 pre-mutation mouse model. J. Neurochem. 2012, 123, 613–621. [Google Scholar] [CrossRef]
  285. Napoli, E.; Flores, A.; Mansuri, Y.; Hagerman, R.J.; Giulivi, C. Sulforaphane improves mitochondrial metabolism in fibroblasts from patients with fragile X-associated tremor and ataxia syndrome. Neurobiol. Dis. 2021, 157, 105427. [Google Scholar] [CrossRef]
  286. Yang, F.; Lim, G.P.; Begum, A.N.; Ubeda, O.J.; Simmons, M.R.; Ambegaokar, S.S.; Chen, P.P.; Kayed, R.; Glabe, C.G.; Frautschy, S.A.; et al. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem. 2005, 280, 5892–5901. [Google Scholar] [CrossRef]
  287. Bairwa, D.K. Recent developments in chemistry and biology of curcumin analogues. RSC Adv. 2014, 4, 13946. [Google Scholar] [CrossRef]
  288. Jin, M.; Park, S.Y.; Shen, Q.; Lai, Y.; Ou, X.; Mao, Z.; Lin, D.; Yu, Y.; Zhang, W. Anti-neuroinflammatory effect of curcumin on Pam3CSK4-stimulated microglial cells. Int. J. Mol. Med. 2018, 41, 521–530. [Google Scholar] [CrossRef]
  289. Wu, A.; Ying, Z.; Schubert, D.; Gomez-Pinilla, F. Brain and spinal cord interaction: A dietary curcumin derivative counteracts locomotor and cognitive deficits after brain trauma. Neurorehabilit. Neural Repair 2011, 25, 332–342. [Google Scholar] [CrossRef]
  290. Sharma, S.; Ying, Z.; Gomez-Pinilla, F. A pyrazole curcumin derivative restores membrane homeostasis disrupted after brain trauma. Exp. Neurol. 2010, 226, 191–199. [Google Scholar] [CrossRef] [PubMed]
  291. Sharma, S.; Zhuang, Y.; Ying, Z.; Wu, A.; Gomez-Pinilla, F. Dietary curcumin supplementation counteracts reduction in levels of molecules involved in energy homeostasis after brain trauma. Neuroscience 2009, 161, 1037–1044. [Google Scholar] [CrossRef]
  292. Zhu, H.T.; Bian, C.; Yuan, J.C.; Chu, W.H.; Xiang, X.; Chen, F.; Wang, C.S.; Feng, H.; Lin, J.K. Curcumin attenuates acute inflammatory injury by inhibiting the TLR4/MyD88/NF-kappaB signaling pathway in experimental traumatic brain injury. J. Neuroinflam. 2014, 11, 59. [Google Scholar] [CrossRef] [PubMed]
  293. Tomren, M.A.; Masson, M.; Loftsson, T.; Tonnesen, H.H. Studies on curcumin and curcuminoids XXXI. Symmetric and asymmetric curcuminoids: Stability, activity and complexation with cyclodextrin. Int. J. Pharm. 2007, 338, 27–34. [Google Scholar] [CrossRef] [PubMed]
  294. Zhao, R.; Yang, B.; Wang, L.; Xue, P.; Deng, B.; Zhang, G.; Jiang, S.; Zhang, M.; Liu, M.; Pi, J.; et al. Curcumin protects human keratinocytes against inorganic arsenite-induced acute cytotoxicity through an NRF2-dependent mechanism. Oxid. Med. Cell Longev. 2013, 2013, 412576. [Google Scholar] [CrossRef] [PubMed]
  295. Li, W.; van Kuppeveld, F.J.M.; He, Q.; Rottier, P.J.M.; Bosch, B.J. Cellular entry of the porcine epidemic diarrhea virus. Virus Res. 2016, 226, 117–127. [Google Scholar] [CrossRef] [PubMed]
  296. McNally, S.J.; Harrison, E.M.; Ross, J.A.; Garden, O.J.; Wigmore, S.J. Curcumin induces heme oxygenase 1 through generation of reactive oxygen species, p38 activation and phosphatase inhibition. Int. J. Mol. Med. 2007, 19, 165–172. [Google Scholar] [CrossRef] [PubMed]
  297. Dinkova-Kostova, A.T.; Talalay, P. Relation of structure of curcumin analogs to their potencies as inducers of Phase 2 detoxification enzymes. Carcinogenesis 1999, 20, 911–914. [Google Scholar] [CrossRef] [PubMed]
  298. Scapagnini, G.; Colombrita, C.; Amadio, M.; D’Agata, V.; Arcelli, E.; Sapienza, M.; Quattrone, A.; Calabrese, V. Curcumin activates defensive genes and protects neurons against oxidative stress. Antioxid. Redox Signal 2006, 8, 395–403. [Google Scholar] [CrossRef] [PubMed]
  299. Ak, T.; Gulcin, I. Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact. 2008, 174, 27–37. [Google Scholar] [CrossRef] [PubMed]
  300. Jovanovic, S.V.; Boone, C.W.; Steenken, S.; Trinoga, M.; Kaskey, R.B. How curcumin works preferentially with water soluble antioxidants. J. Am. Chem. Soc. 2001, 123, 3064–3068. [Google Scholar] [CrossRef]
  301. Sarkar, B.; Dhiman, M.; Mittal, S.; Mantha, A.K. Curcumin revitalizes Amyloid beta (25-35)-induced and organophosphate pesticides pestered neurotoxicity in SH-SY5Y and IMR-32 cells via activation of APE1 and Nrf2. Metab. Brain Dis. 2017, 32, 2045–2061. [Google Scholar] [CrossRef]
  302. Cui, Q.; Li, X.; Zhu, H. Curcumin ameliorates dopaminergic neuronal oxidative damage via activation of the Akt/Nrf2 pathway. Mol. Med. Rep. 2016, 13, 1381–1388. [Google Scholar] [CrossRef] [PubMed]
  303. Li, Q.; Xing, S.; Chen, Y.; Liao, Q.; Li, Q.; Liu, Y.; He, S.; Feng, F.; Chen, Y.; Zhang, J.; et al. Reasonably activating Nrf2: A long-term, effective and controllable strategy for neurodegenerative diseases. Eur. J. Med. Chem. 2020, 185, 111862. [Google Scholar] [CrossRef]
  304. Song, L.L.; Kosmeder, J.W., 2nd; Lee, S.K.; Gerhauser, C.; Lantvit, D.; Moon, R.C.; Moriarty, R.M.; Pezzuto, J.M. Cancer chemopreventive activity mediated by 4′-bromoflavone, a potent inducer of phase II detoxification enzymes. Cancer Res. 1999, 59, 578–585. [Google Scholar] [PubMed]
  305. Ma, G.L.; Xiong, J.; Yang, G.X.; Pan, L.L.; Hu, C.L.; Wang, W.; Fan, H.; Zhao, Q.H.; Zhang, H.Y.; Hu, J.F. Biginkgosides A-I, Unexpected minor dimeric flavonol diglycosidic truxinate and truxillate esters from ginkgo biloba leaves and their antineuroinflammatory and neuroprotective activities. J. Nat. Prod. 2016, 79, 1354–1364. [Google Scholar] [CrossRef] [PubMed]
  306. Zbarsky, V.; Datla, K.P.; Parkar, S.; Rai, D.K.; Aruoma, O.I.; Dexter, D.T. Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radic. Res. 2005, 39, 1119–1125. [Google Scholar] [CrossRef] [PubMed]
  307. Zhang, W.; Go, M.L. Functionalized 3-benzylidene-indolin-2-ones: Inducers of NAD(P)H-quinone oxidoreductase 1 (NQO1) with antiproliferative activity. Bioorg Med. Chem. 2009, 17, 2077–2090. [Google Scholar] [CrossRef] [PubMed]
  308. Jing, X.; Ren, D.; Wei, X.; Shi, H.; Zhang, X.; Perez, R.G.; Lou, H.; Lou, H. Eriodictyol-7-O-glucoside activates Nrf2 and protects against cerebral ischemic injury. Toxicol. Appl. Pharmacol. 2013, 273, 672–679. [Google Scholar] [CrossRef] [PubMed]
  309. Wu, L.H.; Lin, C.; Lin, H.Y.; Liu, Y.S.; Wu, C.Y.; Tsai, C.F.; Chang, P.C.; Yeh, W.L.; Lu, D.Y. Naringenin suppresses neuroinflammatory responses through inducing suppressor of cytokine signaling 3 expression. Mol. Neurobiol. 2016, 53, 1080–1091. [Google Scholar] [CrossRef]
  310. Bahar, E.; Kim, J.Y.; Yoon, H. Quercetin attenuates manganese-induced neuroinflammation by alleviating oxidative stress through regulation of apoptosis, iNOS/NF-kappaB and HO-1/Nrf2 pathways. Int. J. Mol. Sci. 2017, 18, 1989. [Google Scholar] [CrossRef]
  311. Tanigawa, S.; Fujii, M.; Hou, D.X. Action of Nrf2 and Keap1 in ARE-mediated NQO1 expression by quercetin. Free Radic. Biol. Med. 2007, 42, 1690–1703. [Google Scholar] [CrossRef]
  312. Zhao, X.; Gong, L.; Wang, C.; Liu, M.; Hu, N.; Dai, X.; Peng, C.; Li, Y. Quercetin mitigates ethanol-induced hepatic steatosis in zebrafish via P2X7R-mediated PI3K/ Keap1/Nrf2 signaling pathway. J. Ethnopharmacol. 2021, 268, 113569. [Google Scholar] [CrossRef] [PubMed]
  313. Pereira, R.; Silva, A.M.S.; Ribeiro, D.; Silva, V.L.M.; Fernandes, E. Bis-chalcones: A review of synthetic methodologies and anti-inflammatory effects. Eur. J. Med. Chem. 2023, 252, 115280. [Google Scholar] [CrossRef] [PubMed]
  314. Kim, Y.J.; Kang, K.S.; Choi, K.C.; Ko, H. Cardamonin induces autophagy and an antiproliferative effect through JNK activation in human colorectal carcinoma HCT116 cells. Bioorg Med. Chem. Lett. 2015, 25, 2559–2564. [Google Scholar] [CrossRef]
  315. Hur, W.; Gray, N.S. Small molecule modulators of antioxidant response pathway. Curr. Opin. Chem. Biol. 2011, 15, 162–173. [Google Scholar] [CrossRef]
  316. Samir, S.M.; Elalfy, M.; Nashar, E.M.E.; Alghamdi, M.A.; Hamza, E.; Serria, M.S.; Elhadidy, M.G. Cardamonin exerts a protective effect against autophagy and apoptosis in the testicles of diabetic male rats through the expression of Nrf2 via p62-mediated Keap-1 degradation. Korean J. Physiol. Pharmacol. 2021, 25, 341–354. [Google Scholar] [CrossRef]
  317. Kim, S.S.; Lim, J.; Bang, Y.; Gal, J.; Lee, S.U.; Cho, Y.C.; Yoon, G.; Kang, B.Y.; Cheon, S.H.; Choi, H.J. Licochalcone E activates Nrf2/antioxidant response element signaling pathway in both neuronal and microglial cells: Therapeutic relevance to neurodegenerative disease. J. Nutr. Biochem. 2012, 23, 1314–1323. [Google Scholar] [CrossRef] [PubMed]
  318. Rimando, A.M.; Kalt, W.; Magee, J.B.; Dewey, J.; Ballington, J.R. Resveratrol, pterostilbene, and piceatannol in vaccinium berries. J. Agric. Food Chem. 2004, 52, 4713–4719. [Google Scholar] [CrossRef]
  319. Wang, Z.; Huang, Y.; Zou, J.; Cao, K.; Xu, Y.; Wu, J.M. Effects of red wine and wine polyphenol resveratrol on platelet aggregation in vivo and in vitro. Int. J. Mol. Med. 2002, 9, 77–79. [Google Scholar] [CrossRef] [PubMed]
  320. Medina-Bolivar, F.; Condori, J.; Rimando, A.M.; Hubstenberger, J.; Shelton, K.; O’Keefe, S.F.; Bennett, S.; Dolan, M.C. Production and secretion of resveratrol in hairy root cultures of peanut. Phytochemistry 2007, 68, 1992–2003. [Google Scholar] [CrossRef]
  321. Rocha-Gonzalez, H.I.; Ambriz-Tututi, M.; Granados-Soto, V. Resveratrol: A natural compound with pharmacological potential in neurodegenerative diseases. CNS Neurosci. Ther. 2008, 14, 234–247. [Google Scholar] [CrossRef]
  322. Simental-Mendia, L.E.; Guerrero-Romero, F. Effect of resveratrol supplementation on lipid profile in subjects with dyslipidemia: A randomized double-blind, placebo-controlled trial. Nutrition 2019, 58, 7–10. [Google Scholar] [CrossRef] [PubMed]
  323. Oyenihi, O.R.; Oyenihi, A.B.; Adeyanju, A.A.; Oguntibeju, O.O. Antidiabetic effects of resveratrol: The way forward in its clinical utility. J. Diabetes Res. 2016, 2016, 9737483. [Google Scholar] [CrossRef] [PubMed]
  324. Magyar, K.; Halmosi, R.; Palfi, A.; Feher, G.; Czopf, L.; Fulop, A.; Battyany, I.; Sumegi, B.; Toth, K.; Szabados, E. Cardioprotection by resveratrol: A human clinical trial in patients with stable coronary artery disease. Clin. Hemorheol. Microcirc. 2012, 50, 179–187. [Google Scholar] [CrossRef] [PubMed]
  325. Chen, W.M.; Shaw, L.H.; Chang, P.J.; Tung, S.Y.; Chang, T.S.; Shen, C.H.; Hsieh, Y.Y.; Wei, K.L. Hepatoprotective effect of resveratrol against ethanol-induced oxidative stress through induction of superoxide dismutase in vivo and in vitro. Exp. Ther. Med. 2016, 11, 1231–1238. [Google Scholar] [CrossRef] [PubMed]
  326. Varoni, E.M.; Lo Faro, A.F.; Sharifi-Rad, J.; Iriti, M. Anticancer molecular mechanisms of resveratrol. Front. Nutr. 2016, 3, 8. [Google Scholar] [CrossRef] [PubMed]
  327. de Sa Coutinho, D.; Pacheco, M.T.; Frozza, R.L.; Bernardi, A. Anti-inflammatory effects of resveratrol: Mechanistic insights. Int. J. Mol. Sci. 2018, 19, 1812. [Google Scholar] [CrossRef] [PubMed]
  328. Walle, T. Bioavailability of resveratrol. Ann. N. Y Acad. Sci. 2011, 1215, 9–15. [Google Scholar] [CrossRef] [PubMed]
  329. Panjwani, A.A.; Liu, H.; Fahey, J.W. Crucifers and related vegetables and supplements for neurologic disorders: What is the evidence? Curr. Opin. Clin. Nutr. Metab. Care 2018, 21, 451–457. [Google Scholar] [CrossRef]
  330. Eggler, A.L.; Gay, K.A.; Mesecar, A.D. Molecular mechanisms of natural products in chemoprevention: Induction of cytoprotective enzymes by Nrf2. Mol. Nutr. Food Res. 2008, 52 (Suppl. S1), S84–S94. [Google Scholar] [CrossRef]
  331. Mangla, B.; Javed, S.; Sultan, M.H.; Kumar, P.; Kohli, K.; Najmi, A.; Alhazmi, H.A.; Al Bratty, M.; Ahsan, W. Sulforaphane: A review of its therapeutic potentials, advances in its nanodelivery, recent patents, and clinical trials. Phytother. Res. 2021, 35, 5440–5458. [Google Scholar] [CrossRef]
  332. Rostami Yazdi, M.; Mrowietz, U. Fumaric acid esters. Clin. Dermatol. 2008, 26, 522–526. [Google Scholar] [CrossRef] [PubMed]
  333. Gold, R.; Kappos, L.; Arnold, D.L.; Bar-Or, A.; Giovannoni, G.; Selmaj, K.; Tornatore, C.; Sweetser, M.T.; Yang, M.; Sheikh, S.I.; et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N. Engl. J. Med. 2012, 367, 1098–1107. [Google Scholar] [CrossRef] [PubMed]
  334. Cada, D.J.; Levien, T.L.; Baker, D.E. Dimethyl fumarate. Hosp. Pharm. 2013, 48, 668–679. [Google Scholar] [CrossRef] [PubMed]
  335. Unni, S.; Deshmukh, P.; Krishnappa, G.; Kommu, P.; Padmanabhan, B. Structural insights into the multiple binding modes of Dimethyl Fumarate (DMF) and its analogs to the Kelch domain of Keap1. FEBS J. 2021, 288, 1599–1613. [Google Scholar] [CrossRef] [PubMed]
  336. Liu, Y.-B.; Yang, Y.-P.; Yuan, H.-W.; Li, M.-J.; Qiu, Y.-X.; Choudhary, M.I.; Wang, W. A review of triterpenoids and their pharmacological activities from genus kadsura. Digit. Chin. Med. 2018, 1, 247–258. [Google Scholar] [CrossRef]
  337. Kamble, S.M.; Patel, H.M.; Goyal, S.N.; Noolvi, M.N.; Mahajan, U.B.; Ojha, S.; Patil, C.R. In silico evidence for binding of pentacyclic triterpenoids to Keap1-Nrf2 protein-protein binding site. Comb. Chem. High. Throughput Screen. 2017, 20, 215–234. [Google Scholar] [CrossRef]
  338. Reisman, S.A.; Gahir, S.S.; Lee, C.I.; Proksch, J.W.; Sakamoto, M.; Ward, K.W. Pharmacokinetics and pharmacodynamics of the novel Nrf2 activator omaveloxolone in primates. Drug Des. Devel Ther. 2019, 13, 1259–1270. [Google Scholar] [CrossRef] [PubMed]
  339. Gowda, S.G.B.; Tsukui, T.; Fuda, H.; Minami, Y.; Gowda, D.; Chiba, H.; Hui, S.P. Docosahexaenoic acid esters of hydroxy fatty acid is a novel activator of NRF2. Int. J. Mol. Sci. 2021, 22, 7598. [Google Scholar] [CrossRef]
  340. Gowda, S.G.B.; Fuda, H.; Tsukui, T.; Chiba, H.; Hui, S.P. Discovery of eicosapentaenoic acid esters of hydroxy fatty acids as potent Nrf2 activators. Antioxidants 2020, 9, 397. [Google Scholar] [CrossRef]
Figure 1. NRF2 activation and downstream cytoprotective responses. Under normal conditions, NRF2 binds to KEAP1, undergoing ubiquitination by the CUL3 (E3 ubiquitin ligase) and subsequent degradation by the proteasome in cytosol. When cells encounter ROS or electrophiles, NRF2 is dissociated from KEAP1 and translocates to the nucleus, where it forms heterodimers with sMAF. These complexes bind to the ARE, initiating the transcription of genes involved in ROS detoxification, NADPH regeneration, GSH production and regeneration, heme and iron metabolism, the TXN antioxidant system, and mitochondrial biogenesis. ALDH: aldehyde dehydrogenase; ARE: antioxidant response element; BCL2: B-cell lymphoma 2; CAT: catalase: CD36: cluster of differentiation 36; CUL3: cullin 3; FTH: ferritin heavy chain; ER: endoplasmic reticulum; FTL: ferritin light chain; G6PD: glucose-6-phosphate dehydrogenase; GCLC: glutamate-cysteine ligase catalytic subunit; GCLM: glutamate-cysteine ligase modifier subunit; GPX2: glutathione peroxidase 2; GPX8: glutathione peroxidase 8; GSR: glutathione reductase; GST: glutathione S-transferase; GSH: glutathione; GST: glutathione S-transferase; HO1: Heme oxygenase 1; IDH1: isocitrate dehydrogenase 1; KEAP1: Kelch-like ECH-associated protein 1; IL17D: interleukin-17D; sMAF: small musculoaponeurotic fibrosarcoma protein; NADPH: nicotinamide adenine dinucleotide phosphate; NAT: N-acetyltransferase; NQO1: NAD(P)H quinone dehydrogenase 1; NRF1: nuclear respiratory factor 1; NRF2: nuclear factor erythroid 2-related factor 2; PGD: 6-phosphogluconate dehydrogenase; PPARG: peroxisome proliferator-activated receptor γ; PPARGC1A: peroxisome proliferator-activated receptor γ coactivator 1-α; ROS: reactive oxygen species; SG Tang: SIRT1: sirtuin 1; SOD: superoxide dismutase; SRXN1: sulfiredoxin 1; TFAM: mitochondrial transcription factor A; TXN: thioredoxin; TXNRD1: thioredoxin reductase 1; UGT: UDP-glucuronosyltransferase. UPR: unfolded protein response.
Figure 1. NRF2 activation and downstream cytoprotective responses. Under normal conditions, NRF2 binds to KEAP1, undergoing ubiquitination by the CUL3 (E3 ubiquitin ligase) and subsequent degradation by the proteasome in cytosol. When cells encounter ROS or electrophiles, NRF2 is dissociated from KEAP1 and translocates to the nucleus, where it forms heterodimers with sMAF. These complexes bind to the ARE, initiating the transcription of genes involved in ROS detoxification, NADPH regeneration, GSH production and regeneration, heme and iron metabolism, the TXN antioxidant system, and mitochondrial biogenesis. ALDH: aldehyde dehydrogenase; ARE: antioxidant response element; BCL2: B-cell lymphoma 2; CAT: catalase: CD36: cluster of differentiation 36; CUL3: cullin 3; FTH: ferritin heavy chain; ER: endoplasmic reticulum; FTL: ferritin light chain; G6PD: glucose-6-phosphate dehydrogenase; GCLC: glutamate-cysteine ligase catalytic subunit; GCLM: glutamate-cysteine ligase modifier subunit; GPX2: glutathione peroxidase 2; GPX8: glutathione peroxidase 8; GSR: glutathione reductase; GST: glutathione S-transferase; GSH: glutathione; GST: glutathione S-transferase; HO1: Heme oxygenase 1; IDH1: isocitrate dehydrogenase 1; KEAP1: Kelch-like ECH-associated protein 1; IL17D: interleukin-17D; sMAF: small musculoaponeurotic fibrosarcoma protein; NADPH: nicotinamide adenine dinucleotide phosphate; NAT: N-acetyltransferase; NQO1: NAD(P)H quinone dehydrogenase 1; NRF1: nuclear respiratory factor 1; NRF2: nuclear factor erythroid 2-related factor 2; PGD: 6-phosphogluconate dehydrogenase; PPARG: peroxisome proliferator-activated receptor γ; PPARGC1A: peroxisome proliferator-activated receptor γ coactivator 1-α; ROS: reactive oxygen species; SG Tang: SIRT1: sirtuin 1; SOD: superoxide dismutase; SRXN1: sulfiredoxin 1; TFAM: mitochondrial transcription factor A; TXN: thioredoxin; TXNRD1: thioredoxin reductase 1; UGT: UDP-glucuronosyltransferase. UPR: unfolded protein response.
Antioxidants 13 00649 g001
Figure 2. Regulation of NRF2 activity. Transcription factors like NF-κB and AP2 can activate NRF2 gene expression. MicroRNAs inhibit NRF2 protein production by binding to its messenger RNA. Post-translational regulation of NRF2 activity involves ubiquitin ligase complexes and kinase phosphorylation. Various compounds modulate NRF2 activity by inhibiting KEAP1-NRF2 interaction, activating P62, activating PI3K/AKT, and through mechanisms that remain unknown. Red arrows denote activation, while blue blunt ends represent inhibition. 12-DHAHOA: 12-docosahexaenoic acid hydroxy oleic acid; 12-EPAHSA: 12-eicosapentaenoic acid hydroxy stearic acid; AP2: activating protein 2; β-TrCP: β-transducin repeat-containing protein; CDDO-EA: 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid-ethyl amide; CDDO-MA: 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid-methyl amide; CDDP-TFMA: 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid-trifluoroethyl amide; CK2: casein kinase 2; CUL1: cullin 1; CUL3: cullin 3; CUL4: cullin 4; DDB1: damaged DNA binding protein 1; DMF: dimethyl fumarate; FYN: proto-oncogene tyrosine-protein kinase Fyn; GSK3: glycogen synthase kinase 3; HRD1: HMG-CoA reductase degradation protein 1; KEAP1: kelch-like ECH-associated protein 1; LM-031: 3-Benzoyl-5-Hydroxy-2H-Chromen-2-One; MIND4-17: 5-nitro-2-{[5-(phenoxymethyl)-4-phenyl-4H-1,2,4-triazol-3-yl]thio}pyridine; NFκB: nuclear factor kappa-light-chain-enhancer of activated B cells; NRF2: nuclear factor (erythroid-derived 2)-like 2; P62: sequestosome 1; PI3K/AKT: phosphatidylinositol 3-kinase/protein kinase B; PKC: protein kinase C; PSD93: postsynaptic density protein 93; RBX1: ring finger protein 1; SFN: sulforaphane; SG-Tang: Shaoyao Gancao Tang; SKP1: S-phase kinase-associated protein 1; USP15: ubiquitin-specific peptidase 15; WD23: WD-repeat protein 23.
Figure 2. Regulation of NRF2 activity. Transcription factors like NF-κB and AP2 can activate NRF2 gene expression. MicroRNAs inhibit NRF2 protein production by binding to its messenger RNA. Post-translational regulation of NRF2 activity involves ubiquitin ligase complexes and kinase phosphorylation. Various compounds modulate NRF2 activity by inhibiting KEAP1-NRF2 interaction, activating P62, activating PI3K/AKT, and through mechanisms that remain unknown. Red arrows denote activation, while blue blunt ends represent inhibition. 12-DHAHOA: 12-docosahexaenoic acid hydroxy oleic acid; 12-EPAHSA: 12-eicosapentaenoic acid hydroxy stearic acid; AP2: activating protein 2; β-TrCP: β-transducin repeat-containing protein; CDDO-EA: 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid-ethyl amide; CDDO-MA: 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid-methyl amide; CDDP-TFMA: 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid-trifluoroethyl amide; CK2: casein kinase 2; CUL1: cullin 1; CUL3: cullin 3; CUL4: cullin 4; DDB1: damaged DNA binding protein 1; DMF: dimethyl fumarate; FYN: proto-oncogene tyrosine-protein kinase Fyn; GSK3: glycogen synthase kinase 3; HRD1: HMG-CoA reductase degradation protein 1; KEAP1: kelch-like ECH-associated protein 1; LM-031: 3-Benzoyl-5-Hydroxy-2H-Chromen-2-One; MIND4-17: 5-nitro-2-{[5-(phenoxymethyl)-4-phenyl-4H-1,2,4-triazol-3-yl]thio}pyridine; NFκB: nuclear factor kappa-light-chain-enhancer of activated B cells; NRF2: nuclear factor (erythroid-derived 2)-like 2; P62: sequestosome 1; PI3K/AKT: phosphatidylinositol 3-kinase/protein kinase B; PKC: protein kinase C; PSD93: postsynaptic density protein 93; RBX1: ring finger protein 1; SFN: sulforaphane; SG-Tang: Shaoyao Gancao Tang; SKP1: S-phase kinase-associated protein 1; USP15: ubiquitin-specific peptidase 15; WD23: WD-repeat protein 23.
Antioxidants 13 00649 g002
Table 1. Genetics and main clinical features of trinucleotide repeat expansion disorders.
Table 1. Genetics and main clinical features of trinucleotide repeat expansion disorders.
DiseaseInheritanceGeneRepeat MotifExpanded Repeat LengthLocationMain Clinical Features
HDAutosomal dominantHTTCAG>35CDSChorea, dystonia, dementia, psychosis
SCA1Autosomal dominantATXN1CAG>38CDSAtaxia, spasticity, dementia
SCA2Autosomal dominantATXN2CAG>31CDSAtaxia, polyneuropathy
SCA3Autosomal dominantATXN3CAG>60CDSAtaxia, parkinsonism, spasticity
SCA6Autosomal dominantCACNA1ACAG>19CDSAtaxia, nystagmus
SCA7Autosomal dominantATXN7CAG>36CDSAtaxia, retinitis pigmentosa
SCA17Autosomal dominantTBPCAG>46CDSAtaxia, seizures, dementia, psychosis
DRPLAAutosomal dominantATN1CAG>48CDSAtaxia, chorea, seizure, dementia
SBMAX-linked recessiveARCAG>37CDSMuscle atrophy, dysphagia, gynecomastia, infertility
FRDAAutosomal recessiveFXNGAA>200IntronSensory ataxia, cardiomyopathy, diabetes
FXTASX-linked recessiveFMR1CGG60–2005′UTRAtaxia, tremor, parkinsonism, dementia
SCA8Autosomal dominantATXN8OSCTG>743′UTRAtaxia, dysarthria, nystagmus
SCA12Autosomal dominantPPP2R2BCAG>545′UTRAtaxia, seizure
AR: androgen receptor; ATN1: atrophin-1; ATXN1: ataxin-1; ATXN2: ataxin-2; ATXN3: ataxin-3; ATXN7: ataxin-7; ATXN8OS: ataxin-8 opposite strand; CACNA1A: calcium voltage-gated channel subunit α 1A; CDS: coding sequence; DRPLA: dentatorubral-pallidoluysian atrophy; FMR1: fragile X mental retardation 1; FRDA: Friedreich ataxia; FXN: frataxin; FXTAS: fragile x-associated tremor/ataxia syndrome; HD: Huntington’s disease; HTT: huntingtin; PPP2R2B: protein phosphatase 2 regulatory subunit B β; SBMA: spinobulbar muscular atrophy; SCA: spinocerebellar ataxia; TBP: TATA-box binding protein; UTR: untranslated region.
Table 2. The efficacy of NRF2-activating compounds in treating trinucleotide repeat expansion disorders.
Table 2. The efficacy of NRF2-activating compounds in treating trinucleotide repeat expansion disorders.
DiseaseCompoundCell ModelAnimal ModelClinical StudyBenefitReference
HDSulforaphaneHEK293 cells overexpressing HTT with 94 CAG repeats Increase of HTT degradation and cell viability[154]
3-NP-treated mice Decreased neurological impairment and lethality[155]
CDDO-MA 3-NP-treated rats Reduction in neuronal loss in striatum[156]
CDDO-EA and CDDO-TFEA N171-82Q mice Improvement of motor function and survival[157]
DMF YAC128 and R6/2 mice Improvement of motor function and survival; preservation of neurons in the striatum and motor cortex[158]
Naringin 3-NP-treated rats Reduction in neuronal loss, ROS and inflammation in striatum[159]
Luteolin, Lut-C4, Lut-C6Striatal cells from STHdhQ111/Q111 HD transgenic mice Improvement of cell viability[160]
Resveratrol YAC128 mice Improvement of motor function[161]
MIND4-17Neural stem cells from HD-iPSCs Increases the expression of NQO1 and GCLM[131]
Protopanaxtriol 3-NP-treated rats Reduction in ROS in the striatum, improvement of motor function[162]
Gintonin 3-NP-treated mice Improvement of motor function and survival[163]
Diapocynin 3-NP-treated rats Improvement of motor function[164]
Harmine 3-NP-treated rats Improvement of motor and cognitive functions[165]
SCA1MitoQ ATXN1-154Q mice Reduction in Purkinje cell loss; delay of the onset of motor impairment[166]
SCA2Coenzyme Q10Fibroblasts of SCA2 patients Reduction in ROS[167]
SCA3ASC-JM17SK-N-SH cells expressing ATXN3 with 78 CAG repeats Improvement of cell viability; reduction in aggregation[168]
DMFSK-N-SH cells expressing ATXN3 with 78 CAG repeats Improvement of cell viability; reduction in aggregation[168]
Gardenia jasminoidesHEK293 and SH-SY5Y cells expressing ATXN3 with 75 CAG repeats Reduction in ROS; improvement of cell viability[169]
Glycyrrhiza inflataHEK293 and SH-SY5Y cells expressing ATXN3 with 75 CAG repeats Reduction in ROS; improvement of cell viability[170]
ResveratrolSK-N-SH cells expressing ATXN3 with 78 CAG repeats Reduction in ROS; improvement of cell viability[117]
SCA7N-acetylcysteinePC12 cells expressing ATXN7 with 65 CAG repeats Reduction in ROS and aggregation[171]
Vitamin EPC12 cells expressing ATXN7 with 65 CAG repeats Reduction in ROS and aggregation[171]
SCA17Resveratrollymphoblastoid cells from SCA17 patients Improvement of cell viability; reduction in ROS[172]
Genipinlymphoblastoid cells from SCA17 patients Improvement of cell viability; reduction in ROS[172]
LM-031SH-SY5Y cells expressing TBP with 79 CAG repeats Reduction in aggregation[173]
SG-TangSH-SY5Y cells expressing TBP with 79 CAG repeats Reduction in aggregation; increased neurite outgrowth[174]
TBP-109Q mice Reduction in aggregation and improvement of motor function[174]
SBMAASC-JM17 AR97Q mice Improvement of motor function and muscle wasting[175]
ASC-J9 AR97Q mice Improvement of motor function and muscle wasting[176]
FRDAOmaveloxoloneCerebellar granular neuronss from KIKO and YG8R mice Restoration of complex I activity.[177]
Skin ffibroblasts from FRDpatients Reductopm of lipid peroxidation and mitochondrial ROS, and upregulation of GSH[177]
randomized placebo-controlled clinical trialImprovement of neurological deficits[178]
SulforaphaneLymphoblastoid cells from FRDA patients Upregulation of FXN expression[179,180]
DMFLymphoblastoid cells from FRDA patients Upregulation of FXN expression[180]
N-acetylcysteineLymphoblastoid cells from FRDA patients Upregulation of FXN expression[180]
Vatiquinone (EPI-743)Lymphoblastoid cells from FRDA patients Upregulation of FXN expression[180]
randomized placebo-controlled clinnical trialImprovement of neurological deficits[181]
CDDO-EA: 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid-ethyl amide; CDDO-MA: 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid-methyl amide; CDDP-TFMA: 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid-trifluoroethyl amide; DMF: dimethyl fumarate; FRDA: Friedreich’s ataxia; GCLM: glutamate-cysteine ligase modifier subunit; HD: Huntington’s disease; HD-iPSCs: induced pluripotent stem cells derived from Huntington’s disease patients; HTT: huntingtin; LM-031: 3-Benzoyl-5-Hydroxy-2H-Chromen-2-One; MIND4-17: 5-nitro-2-{[5-(phenoxymethyl)-4-phenyl-4H-1,2,4-triazol-3-yl]thio}pyridine; 3-NP: 3-nitropropionic acid; ROS: reactive oxygen species; NQO1: NAD(P)H quinone dehydrogenase 1; SBMA: spinobulbar muscular atrophy; SCA: spinocerebellar ataxia; SG-Tang: Shaoyao Gancao Tang.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Chang, K.-H.; Chen, C.-M. The Role of NRF2 in Trinucleotide Repeat Expansion Disorders. Antioxidants 2024, 13, 649. https://doi.org/10.3390/antiox13060649

AMA Style

Chang K-H, Chen C-M. The Role of NRF2 in Trinucleotide Repeat Expansion Disorders. Antioxidants. 2024; 13(6):649. https://doi.org/10.3390/antiox13060649

Chicago/Turabian Style

Chang, Kuo-Hsuan, and Chiung-Mei Chen. 2024. "The Role of NRF2 in Trinucleotide Repeat Expansion Disorders" Antioxidants 13, no. 6: 649. https://doi.org/10.3390/antiox13060649

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop