Green Synthesis of Metallic Nanoparticles from Quercus Bark Extracts: Characterization and Functional Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Collection and Plant Extracts
2.3. Biosynthesis of Gold Nanoparticles and Silver Nanoparticles
2.4. Identification and Quantification of Phenolic Compounds by High-Performance Liquid Chromatography (HPLC)
2.5. Characterization of Synthesized AuNPs and AgNPs
2.5.1. UV-VIS
2.5.2. Fourier Infrared Spectroscopy (FT-IR)
2.5.3. TEM and DLS
2.6. Total Phenolic Content
2.7. In Vitro Antioxidant Activity Assessment
2.7.1. DPPH Assay
2.7.2. FRAP Assay
2.7.3. ABTS Assay
2.7.4. CUPRAC Assay
2.8. Antibacterial Activity
2.9. Antifungal Activity
2.10. Cytotoxic Assays
2.10.1. HaCaT Cell Culture
2.10.2. Neutral Red Uptake Assay
2.11. Statistical Analysis
3. Results and Discussion
3.1. Production of AgNPs and AuNPs
3.2. HPLC Analysis
3.3. Characterization of AgNPs and AuNPs
3.3.1. UV–Visible Absorption Spectroscopy
3.3.2. Fourier Infrared Spectroscopy of Green-Synthesized AgNPs and AuNPs
3.3.3. TEM and DLS analyses of AgNPs and AuNPs
3.4. Total Phenolic Content Estimation
3.5. Antioxidant Potential of the Nanoparticles and the Extracts
3.6. Application of the Synthesized Silver and Gold Nanoparticles Antibacterial Activity
3.7. Antifungal Activity
3.8. Cytotoxic Effects on Human Keratinocytes (HaCaT Cells)
4. Spearman’s Correlations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yeo, S.Y.; Lee, H.J.; Jeong, S.H. Preparation of nanocomposite fibers for permanent antibacterial effect. J. Mater. Sci. 2003, 38, 2143–2147. [Google Scholar] [CrossRef]
- Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011, 13, 2638–2650. [Google Scholar] [CrossRef]
- Mikhailova, E.O. Selenium Nanoparticles: Green Synthesis and Biomedical Application. Molecules 2023, 28, 8125. [Google Scholar] [CrossRef] [PubMed]
- Ahmeda, A.; Zangeneh, A.; Zangeneh, M.M. Green synthesis and chemical characterization of gold nanoparticle synthesized using Camellia sinensis leaf aqueous extract for the treatment of acute myeloid leukemia in comparison to daunorubicin in a leukemic mouse model. Appl. Organomet. Chem. 2020, 34, e5290. [Google Scholar] [CrossRef]
- Gupta, V.K.; Kumar, S.; Kukreja, R.; Chander, N. Experimental thermal performance investigation of a direct absorption solar collector using hybrid nanofluid of gold nanoparticles with natural extract of Azadirachta Indica leaves. Renew. Energy 2023, 202, 1021–1031. [Google Scholar] [CrossRef]
- Nayak, S.; Rao, C.V.; Mutalik, S. Exploring bimetallic Au–Ag core shell nanoparticles reduced using leaf extract of Ocimum tenuiflorum as a potential antibacterial and nanocatalytic agent. Chem. Pap. 2022, 76, 6487–6497. [Google Scholar] [CrossRef]
- Serdar, G. Biosynthesis and Characterization of Gold Nanoparticles Using Microwave-Assisted Technology from Pomegranate (Punica granatum L.) Leaf Extract Produced by the Method of Supercritical Fluid Extraction (SFE). Plasmonics 2024. [Google Scholar] [CrossRef]
- Moosavy, M.-H.; de la Guardia, M.; Mokhtarzadeh, A.; Khatibi, S.A.; Hosseinzadeh, N.; Hajipour, N. Green synthesis, characterization, and biological evaluation of gold and silver nanoparticles using Mentha spicata essential oil. Sci. Rep. 2023, 13, 7230. [Google Scholar] [CrossRef]
- Keskin, C.; Ölçekçi, A.; Baran, A.; Baran, M.F.; Eftekhari, A.; Omarova, S.; Khalilov, R.; Aliyev, E.; Sufianov, A.; Beilerli, A.; et al. Green synthesis of silver nanoparticles mediated Diospyros kaki L. (Persimmon): Determination of chemical composition and evaluation of their antimicrobials and anticancer activities. Front. Chem. 2023, 11, 1187808. [Google Scholar] [CrossRef] [PubMed]
- Zuhrotun, A.; Oktaviani, D.J.; Hasanah, A.N. Biosynthesis of Gold and Silver Nanoparticles Using Phytochemical Compounds. Molecules 2023, 28, 3240. [Google Scholar] [CrossRef]
- Salomoni, R.; Léo, P.; Montemor, A.; Rinaldi, B.; Rodrigues, M. Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnol. Sci. Appl. 2017, 10, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Jaswal, T.; Gupta, J. A review on the toxicity of silver nanoparticles on human health. Mater. Today Proc. 2023, 81, 859–863. [Google Scholar] [CrossRef]
- Gharehyakheh, S.; Ahmeda, A.; Haddadi, A.; Jamshidi, M.; Nowrozi, M.; Zangeneh, M.M.; Zangeneh, A. Effect of gold nanoparticles synthesized using the aqueous extract of Satureja hortensis leaf on enhancing the shelf life and removing Escherichia coli O157:H7 and Listeria monocytogenes in minced camel’s meat: The role of nanotechnology in the food industry. Appl. Organomet. Chem. 2020, 34, e5492. [Google Scholar] [CrossRef]
- Akintunde, J.; Farai, T.; Arogundade, M.; Adeleke, J. Biogenic zinc-oxide nanoparticles of Moringa oleifera leaves abrogates rotenone induced neuroendocrine toxicity by regulation of oxidative stress and acetylcholinesterase activity. Biochem. Biophys. Rep. 2021, 26, 100999. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Vieyra, C.; Olguin, M.T.; Gutiérrez-Segura, E.; López-Tellez, G. Comparison of Ag, Cu and Zn nanoparticles obtained using Aloe vera extract and gamma ionizing radiation. J. Appl. Res. Technol. 2020, 18, 289–314. [Google Scholar] [CrossRef]
- Adamu, S.; Pindiga, N.Y.; Nuhu, A.H.; Ibrahim, A.; Yakubu, M.S. Green synthesis of copper and iron nanoparticles from extracts of eucalyptus with their antimicrobial activities. Sci. World J. 2024, 19, 279–283. [Google Scholar] [CrossRef]
- Iorhuna, B.T.; Awuhe, T.T.; Azuaga, I.C.; Isaac, E.; Shuaibu, F.; Yohanna, B. Synthesis, Characterization and Antimicrobial Activities of Copper-Tea Leaves (Camellia Sinensis) Extract Nanoparticles. J. Niger. Soc. Phys. Sci. 2022, 4, 835. [Google Scholar] [CrossRef]
- Li, Q.; Liu, L.; Duan, M.; Chen, X.; Li, J.; Zhao, T.; Fu, Y.; McClements, D.J.; Huang, J.; Lin, H.; et al. TiO2 nanoparticles negatively impact the bioavailability and antioxidant activity of tea polyphenols. Food Chem. 2022, 371, 131045. [Google Scholar] [CrossRef]
- Kandeil, M.A.; Mohammed, E.T.; Hashem, K.S.; Aleya, L.; Abdel-Daim, M.M. Moringa seed extract alleviates titanium oxide nanoparticles (TiO2-NPs)-induced cerebral oxidative damage, and increases cerebral mitochondrial viability. Environ. Sci. Pollut. Res. 2020, 27, 19169–19184. [Google Scholar] [CrossRef]
- Yilleng, T.; Samuel, N.; Stephen, D.; Akande, J.; Agendeh, Z.; Madaki, L. Biosynthesis of Copper and Iron Nanoparticles using Neem (Azadirachta indica) Leaf Extract and their Anti-bacterial Activity. J. Appl. Sci. Environ. Manag. 2021, 24, 1987–1991. [Google Scholar] [CrossRef]
- Sultana, T.; Malik, K.; Raja, N.I.; Sohail; Hameed, A.; Ali, A.; Mashwani, Z.-U.; Baloch, M.Y.J.; Alrefaei, A.F. Phytofabrication, characterization, and evaluation of novel bioinspired selenium–iron (Se–Fe) nanocomposites using Allium sativum extract for bio-potential applications. Green Process. Synth. 2023, 12, 20230049. [Google Scholar] [CrossRef]
- Prabhu, N.; Gajendran, T. Green Synthesis of Noble Metal of Platinum Nanoparticles from Ocimum sanctum (Tulsi) Plant- Extracts. IOSR J. Biotechnol. Biochem. 2017, 3, 107–112. [Google Scholar] [CrossRef]
- Hajipour, M.J.; Fromm, K.M.; Akbar Ashkarran, A.; Jimenez de Aberasturi, D.; de Larramendi, I.R.; Rojo, T.; Serpooshan, V.; Parak, W.J.; Mahmoudi, M. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012, 30, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Ajlouni, A.-W.; Hamdan, E.H.; Alshalawi, R.A.E.; Shaik, M.R.; Khan, M.; Kuniyil, M.; Alwarthan, A.; Ansari, M.A.; Khan, M.; Alkhathlan, H.Z.; et al. Green Synthesis of Silver Nanoparticles Using Aerial Part Extract of the Anthemis pseudocotula Boiss. Plant and Their Biological Activity. Molecules 2023, 28, 246. [Google Scholar] [CrossRef] [PubMed]
- Lomelí-Rosales, D.A.; Zamudio-Ojeda, A.; Reyes-Maldonado, O.K.; López-Reyes, M.E.; Basulto-Padilla, G.C.; Lopez-Naranjo, E.J.; Zuñiga-Mayo, V.M.; Velázquez-Juárez, G. Green Synthesis of Gold and Silver Nanoparticles Using Leaf Extract of Capsicum chinense Plant. Molecules 2022, 27, 1692. [Google Scholar] [CrossRef] [PubMed]
- Sani, A.; Cao, C.; Cui, D. Toxicity of gold nanoparticles (AuNPs): A review. Biochem. Biophys. Rep. 2021, 26, 100991. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Yu, G.; Yang, Z.; Yue, L.; Zhang, X.; Sun, C.; Wei, J.; Rao, L.; Chen, X.; Wang, R. Supramolecular Polymerization-Induced Nanoassemblies for Self-Augmented Cascade Chemotherapy and Chemodynamic Therapy of Tumor. Angew. Chem. Int. Ed. 2021, 60, 17570–17578. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Xiong, G.; Liu, Z. Toxicity of metal-based nanoparticles: Challenges in the nano era. Front. Bioeng. Biotechnol. 2022, 10, 1001572. [Google Scholar] [CrossRef] [PubMed]
- Mare, A.D.; Man, A.; Toma, F.; Tudor, B.; Berța, L.; Tanase, C.; Ciurea, C.N. The antibacterial potential of biosynthesized silver nanoparticles using beech bark and spruce bark extracts. Acta Marisiensis—Ser. Medica 2022, 68, 17–23. [Google Scholar] [CrossRef]
- Tanase, C.; Coșarcă, S.D.; Toma, F.; Mare, A.; Coșarcă, A.M.; Man, A.; Miklos, A.; Imre, S. Antibacterial Activities of Spruce Bark (Picea abies L.) Extract and Its Components Against Human Pathogens. Rev. Chim. 2018, 69, 1462–1467. [Google Scholar] [CrossRef]
- Chicea, D.; Nicolae-Maranciuc, A.; Chicea, L.-M. Silver Nanoparticles-Chitosan Nanocomposites: A Comparative Study Regarding Different Chemical Syntheses Procedures and Their Antibacterial Effect. Materials 2024, 17, 1113. [Google Scholar] [CrossRef]
- Mocan, A.; Schafberg, M.; Crișan, G.; Rohn, S. Determination of lignans and phenolic components of Schisandra chinensis (Turcz.) Baill. using HPLC-ESI-ToF-MS and HPLC-online TEAC: Contribution of individual components to overall antioxidant activity and comparison with traditional antioxidant assays. J. Funct. Foods 2016, 24, 579–594. [Google Scholar] [CrossRef]
- Babotă, M.; Frumuzachi, O.; Mocan, A.; Tămaș, M.; Dias, M.I.; Pinela, J.; Stojković, D.; Soković, M.; Bădărău, A.S.; Crișan, G.; et al. Unravelling Phytochemical and Bioactive Potential of Three Hypericum Species from Romanian Spontaneous Flora: H. alpigenum, H. perforatum and H. rochelii. Plants 2022, 11, 2773. [Google Scholar] [CrossRef]
- Babotă, M.; Frumuzachi, O.; Gâvan, A.; Iacoviță, C.; Pinela, J.; Barros, L.; Ferreira, I.C.; Zhang, L.; Lucini, L.; Rocchetti, G.; et al. Optimized ultrasound-assisted extraction of phenolic compounds from Thymus comosus Heuff. ex Griseb. et Schenk (wild thyme) and their bioactive potential. Ultrason. Sonochemistry 2022, 84, 105954. [Google Scholar] [CrossRef] [PubMed]
- Özyürek, M.; Güçlü, K.; Tütem, E.; Başkan, K.S.; Erçağ, E.; Çelik, S.E.; Baki, S.; Yıldız, L.; Karaman, E.; Apak, R. A comprehensive review of CUPRAC methodology. Anal. Methods 2011, 3, 2439–2453. [Google Scholar] [CrossRef]
- Coman, N.-A.; Babotă, M.; Nădășan, I.; Nicolescu, A.; Pitaru, A.R.; Ștefănescu, R.; Mocan, A.; Frumuzachi, O.; Tanase, C. The Influence of Ecological Factors on the Phytochemical Characteristics of Pinus cembra L. Appl. Sci. 2023, 13, 10184. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Y.-Y.; Huang, J.; Chen, C.-Y.; Wang, Z.-X.; Xie, H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics 2020, 10, 8996–9031. [Google Scholar] [CrossRef]
- Burlacu, E.; Tanase, C.; Coman, N.-A.; Berta, L. A Review of Bark-Extract-Mediated Green Synthesis of Metallic Nanoparticles and Their Applications. Molecules 2019, 24, 4354. [Google Scholar] [CrossRef]
- Tanase, C.; Berta, L.; Coman, N.A.; Roșca, I.; Man, A.; Toma, F.; Mocan, A.; Nicolescu, A.; Jakab-Farkas, L.; Biró, D.; et al. Antibacterial and Antioxidant Potential of Silver Nanoparticles Biosynthesized Using the Spruce Bark Extract. Nanomaterials 2019, 9, 1541. [Google Scholar] [CrossRef]
- Berta, L.; Coman, N.-A.; Rusu, A.; Tanase, C. A Review on Plant-Mediated Synthesis of Bimetallic Nanoparticles, Characterisation and Their Biological Applications. Materials 2021, 14, 7677. [Google Scholar] [CrossRef]
- Ranpariya, B.; Salunke, G.; Karmakar, S.; Babiya, K.; Sutar, S.; Kadoo, N.; Kumbhakar, P.; Ghosh, S. Antimicrobial Synergy of Silver-Platinum Nanohybrids With Antibiotics. Front. Microbiol. 2021, 11, 610968. [Google Scholar] [CrossRef] [PubMed]
- Taib, M.; Rezzak, Y.; Bouyazza, L.; Lyoussi, B. Medicinal Uses, Phytochemistry, and Pharmacological Activities of Quercus Species. Evid. -Based Complement. Altern. Med. 2020, 2020, 1920683. [Google Scholar] [CrossRef]
- García-Villalba, R.; Giménez-Bastida, J.A.; Cortés-Martín, A.; Ávila-Gálvez, M.; Tomás-Barberán, F.A.; Selma, M.V.; Espín, J.C.; González-Sarrías, A. Urolithins: A Comprehensive Update on their Metabolism, Bioactivity, and Associated Gut Microbiota. Mol. Nutr. Food Res. 2022, 66, 2101019. [Google Scholar] [CrossRef]
- Oxidative Medicine and Cellular Longevity. Retracted: Ellagic Acid: A Review on Its Natural Sources, Chemical Stability, and Therapeutic Potential. Oxidative Med. Cell. Longev. 2022, 2022, 9801541. [Google Scholar] [CrossRef]
- Hyllested, J.; Palanco, M.E.; Hagen, N.; Mogensen, K.B.; Kneipp, K. Green preparation and spectroscopic characterization of plasmonic silver nanoparticles using fruits as reducing agents. Beilstein J. Nanotechnol. 2015, 6, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Verduzco-Chavira, K.; Vallejo-Cardona, A.A.; González-Garibay, A.S.; Torres-González, O.R.; Sánchez-Hernández, I.M.; Flores-Fernández, J.M.; Padilla-Camberos, E. Antibacterial and Antibiofilm Activity of Chemically and Biologically Synthesized Silver Nanoparticles. Antibiotics 2023, 12, 1084. [Google Scholar] [CrossRef]
- Mallikarjuna, K.; Narasimha, G.; Dillip, G.R.; Praveen, B.; Sreedhar, B.; Lakshmi, C.; Reddy, B.V.S.; Deva Prasad Raju, B. Green Synthesis of Silver Nanoparticles Using Ocimum Leaf Extract and Their Characterization. Dig. J. Nanomater. Biostructures 2011, 6, 181–186. [Google Scholar]
- Chicea, D.; Nicolae-Maranciuc, A.; Doroshkevich, A.S.; Chicea, L.M.; Ozkendir, O.M. Comparative Synthesis of Silver Nanoparticles: Evaluation of Chemical Reduction Procedures, AFM and DLS Size Analysis. Materials 2023, 16, 5244. [Google Scholar] [CrossRef] [PubMed]
- Şöhretoğlu, D.; Renda, G. The polyphenolic profile of Oak (Quercus) species: A phytochemical and pharmacological overview. Phytochem. Rev. 2020, 19, 1379–1426. [Google Scholar] [CrossRef]
- Hong, T.; Yin, J.-Y.; Nie, S.-P.; Xie, M.-Y. Applications of infrared spectroscopy in polysaccharide structural analysis: Progress, challenge and perspective. Food Chem. X 2021, 12, 100168. [Google Scholar] [CrossRef]
- Anuradha, J.; Abbasi, T.; Abbasi, S. An eco-friendly method of synthesizing gold nanoparticles using an otherwise worthless weed pistia (Pistia stratiotes Ls.). J. Adv. Res. 2015, 6, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Jayaseelan, C.; Ramkumar, R.; Rahuman, A.A.; Perumal, P. Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind. Crop. Prod. 2013, 45, 423–429. [Google Scholar] [CrossRef]
- Nandiyanto, A.B.D.; Oktiani, R.; Ragadhita, R. How to Read and Interpret FTIR Spectroscope of Organic Material. Indones. J. Sci. Technol. 2019, 4, 97–118. [Google Scholar] [CrossRef]
- Nagalingam, M.; Kalpana, V.N.; Panneerselvam, A. Biosynthesis, characterization, and evaluation of bioactivities of leaf extract-mediated biocompatible gold nanoparticles from Alternanthera bettzickiana. Biotechnol. Rep. 2018, 19, e00268. [Google Scholar] [CrossRef]
- Kačíková, D.; Kubovský, I.; Eštoková, A.; Kačík, F.; Kmeťová, E.; Kováč, J.; Ďurkovič, J. The Influence of Nanoparticles on Fire Retardancy of Pedunculate Oak Wood. Nanomaterials 2021, 11, 3405. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Dai, D.; Huang, B. Fourier transform infrared spectroscopy for natural fibres. In Fourier Transform—Materials Analysis; IntechOpen: London, UK, 2012; pp. 45–68. [Google Scholar]
- Chicea, D.; Indrea, E.; Cretu, C.M. Assesing Fe3O4 nanoparticle size by DLS, XRD and AFM. J. Optoelectron. Adv. Mater. 2012, 14, 460–466. [Google Scholar]
- Pinto, D.; Franco, S.D.; Silva, A.M.; Cupara, S.; Koskovac, M.; Kojicic, K.; Soares, S.; Rodrigues, F.; Sut, S.; Dall’Acqua, S.; et al. Chemical characterization and bioactive properties of a coffee-like beverage prepared fromQuercus cerris kernels. Food Funct. 2019, 10, 2050–2060. [Google Scholar] [CrossRef]
- Othón-Díaz, E.D.; Fimbres-García, J.O.; Flores-Sauceda, M.; Silva-Espinoza, B.A.; López-Martínez, L.X.; Bernal-Mercado, A.T.; Ayala-Zavala, J.F. Antioxidants in Oak (Quercus sp.): Potential Application to Reduce Oxidative Rancidity in Foods. Antioxidants 2023, 12, 861. [Google Scholar] [CrossRef]
- Alañón, M.E.; Castro-Vázquez, L.; Díaz-Maroto, M.; Hermosín-Gutiérrez, I.; Gordon, M.H.; Pérez-Coello, M.S. Antioxidant capacity and phenolic composition of different woods used in cooperage. Food Chem. 2011, 129, 1584–1590. [Google Scholar] [CrossRef]
- Bondet, V.; Brand-Williams, W.; Berset, C. Kinetics and Mechanisms of Antioxidant Activity using the DPPH. Free Radical Method. LWT-Food Sci. Technol. 1997, 30, 609–615. [Google Scholar] [CrossRef]
- Mohanty, A.S.; Jena, B.S. Innate catalytic and free radical scavenging activities of silver nanoparticles synthesized using Dillenia indica bark extract. J. Colloid Interface Sci. 2017, 496, 513–521. [Google Scholar] [CrossRef]
- Zulfiqar, H.; Amjad, M.S.; Mehmood, A.; Mustafa, G.; Binish, Z.; Khan, S.; Arshad, H.; Proćków, J.; de la Lastra, J.M.P. Antibacterial, Antioxidant, and Phytotoxic Potential of Phytosynthesized Silver Nanoparticles Using Elaeagnus umbellata Fruit Extract. Molecules 2022, 27, 5847. [Google Scholar] [CrossRef]
- Shalaby, E.A.; Shanab, S.M.M.; El-Raheem, W.M.A.; Hanafy, E.A. Biological activities and antioxidant potential of different biosynthesized nanoparticles of Moringa oleifera. Sci. Rep. 2022, 12, 18400. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, F.; Mosleh-Shirazi, S.; Shafiee, M.; Kasaee, S.R.; Amani, A.M. Antiviral and antioxidant properties of green synthesized gold nanoparticles using Glaucium flavum leaf extract. Appl. Nanosci. 2023, 13, 4395–4405. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Shahid, S.; Lee, C.-S. Green Synthesis of Gold and Silver Nanoparticles Using Leaf Extract of Clerodendrum inerme; Characterization, Antimicrobial, and Antioxidant Activities. Biomolecules 2020, 10, 835. [Google Scholar] [CrossRef] [PubMed]
- Kocazorbaz, E.K.; Moulahoum, H.; Tut, E.; Sarac, A.; Tok, K.; Yalcin, H.T.; Zihnioglu, F. Kermes oak (Quercus coccifera L.) extract for a biogenic and eco-benign synthesis of silver nanoparticles with efficient biological activities. Environ. Technol. Innov. 2021, 24, 102067. [Google Scholar] [CrossRef]
- Khatamifar, M.; Fatemi, S.J.; Torkzadeh-Mahani, M.; Mohammadi, M.; Hassanshahian, M. Green and eco-friendly synthesis of silver nanoparticles by Quercus infectoria galls extract: Thermal behavior, antibacterial, antioxidant and anticancer properties. Part. Sci. Technol. 2021, 40, 281–289. [Google Scholar] [CrossRef]
- Sarwar, R.; Farooq, U.; Shah, M.R.; Khan, S.; Riaz, N.; Naz, S.; Ibrar, A.; Khan, A. Rapid Synthesis of Gold Nanoparticles from Quercus incana and Their Antimicrobial Potential against Human Pathogens. Appl. Sci. 2017, 7, 29. [Google Scholar] [CrossRef]
- Gul, F.; Khan, K.M.; Adhikari, A.; Zafar, S.; Akram, M.; Khan, H.; Saeed, M. Antimicrobial and antioxidant activities of a new metabolite from Quercus incana. Nat. Prod. Res. 2017, 31, 1901–1909. [Google Scholar] [CrossRef]
- Gajbhiye, M.; Kesharwani, J.; Ingle, A.; Gade, A.; Rai, M. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed. Nanotechnol. Biol. Med. 2009, 5, 382–386. [Google Scholar] [CrossRef]
- Krishnaraj, C.; Ramachandran, R.; Mohan, K.; Kalaichelvan, P. Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 93, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Aljabali, A.A.A.; Akkam, Y.; Al Zoubi, M.S.; Al-Batayneh, K.M.; Al-Trad, B.; Alrob, O.A.; Alkilany, A.M.; Benamara, M.; Evans, D.J. Synthesis of Gold Nanoparticles Using Leaf Extract of Ziziphus zizyphus and their Antimicrobial Activity. Nanomaterials 2018, 8, 174. [Google Scholar] [CrossRef] [PubMed]
- Younis, H.M.; Hussein, H.A.; Khaphi, F.L.; Saeed, Z.K. Green biosynthesis of silver and gold nanoparticles using Teak (Tectona grandis) leaf extract and its anticancer and antimicrobial activity. Heliyon 2023, 9, e21698. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Fu, J.; Cui, J.; Zhang, T.; Zouboulis, C.C.; Wang, J.; Yan, S. Effects and Stress-Relieving Mechanisms of Dark Tea Polysaccharide in Human HaCaT Keratinocytes and SZ95 Sebocytes. Molecules 2023, 28, 6128. [Google Scholar] [CrossRef]
Compound | RT (min) | QD | QF | QP | AuQD | AuQF | AuQP | AgQD | AgQF | AgQP |
---|---|---|---|---|---|---|---|---|---|---|
Gallic acid | 2.96 | 14.81 | 9.37 | 40.79 | 0.09 | NF | 0.01 | NF | NF | NF |
Eleutheroside B | 4.89 | 13.98 | 65.74 | 1.50 | NF | NF | NF | NF | NF | NF |
Chlorogenic acid | 4.94 | 3.19 | 1.37 | 0.64 | 0.01 | NF | 0.02 | 0.02 | 0.02 | NF |
Catechin | 4.97 | 30.02 | 12.38 | 1.50 | 0.02 | NF | 0.04 | 0.03 | NF | NF |
Epicatechin | 5.76 | 72.17 | 161.54 | 36.99 | 0.24 | 0.01 | NF | 0.38 | 0.43 | 0.31 |
Luteolin-3′,7-di-O—glucoside | 5.90 | 8.99 | 6.38 | 2.04 | NF | NF | NF | NF | NF | NF |
Caffeic acid | 6.01 | 12.63 | 19.81 | NF | 0.29 | NF | NF | NF | NF | NF |
Vanillic acid | 6.04 | 10.16 | NF | 5.18 | NF | NF | NF | NF | NF | 0.07 |
Luteolin-7-O-glucoside | 6.89 | 130.62 | 71.08 | NF | NF | NF | NF | NF | NF | NF |
Ellagic acid | 7.18 | 1477.26 | 8077.98 | 4902.84 | 14.88 | NF | NF | NF | NF | NF |
Sinapic acid | 7.95 | 3.13 | NF | 0.71 | NF | NF | NF | NF | NF | NF |
Taxifolin | 8.05 | 4.90 | 16.06 | 0.11 | 0.02 | 0.02 | 0.01 | 0.19 | 0.01 | NF |
Quercetin | 10.63 | 123.90 | 21.20 | 14.65 | NF | NF | NF | 8.24 | NF | NF |
Total (μg/mL) | 1905.76 | 8462.91 | 5006.94 | 15.557 | 0.03 | 0.084 | 8.864 | 0.466 | 0.381 |
Wavenumber (cm−1) | Chemical Vibration |
---|---|
3500–3200 | OH stretching |
2931–2937 | Asymmetric and symmetric vibrations of C-H-, CH2-, and CH3- from polysaccharides |
1710–1716 | C=O stretching |
1603–1605 | Primary amine |
1506–1520 | C=C aromatic symmetrical stretching |
1445–1447 | C-C stretch from aromatics compounds |
1336–1342 | Aromatic nitro compounds |
1196–1232 | C-O stretching vibration |
1033–1049 | C-C and C-H ring vibration of cyclic molecules and C-OH stretching |
TPC (mgGAE/g dw) | DPPH (mgTE/g dw) | ABTS (mgTE/g dw) | FRAP (mgTE/g dw) | CUPRAC (mgTE/g dw) | |
---|---|---|---|---|---|
QD | 407.0 (386.2–413.5) c | 2050 ± 24.74 f | 129.38 ± 136.45 e | 2350.31 ± 21.33 g | 810.69 ± 15.91 c |
AgQD | 192.6 (183.3–192.6) a | 302.97 ± 10.56 d | 446.38 ± 4.25 c | 332.94 ± 3.88 d | 332.98 ± 2.19 a |
AuQD | 132.7 (132.2–133.8) a | 119.01 ± 3.11 b | 129.38 ± 5.32 b | 138.22 ± 1.96 b | 287.10 ± 2.63 a |
QF | 437.9 (424.7–450.5) c | 1424 ± 32.49 g | 67.27 ± 170.76 d | 1578.17 ± 19.25 h | 844.89 ± 7.43 c |
AgQF | 196.7 (191.1–201.6) a | 220.89 ± 18.64 c | 426.38 ± 7.23 c | 306.96 ± 1.24 d | 318.35 ± 2.74 a |
AuQF | 53.06 (52.44–53.06) b | 72.25 ± 19.73 b | 67.27 ± 1.72 b | 82.17 ± 1.77 c | 102.15 ± 2.54 b |
QP | 319.8 (318.2–337.0) a | 972.9 ± 16.40 h | 114.10 ± 86.57 f | 1025.88 ± 7.22 f | 665.59 ± 7.47 a |
AgQP | 290.4 (277.2–295.5) a | 446.34 ± 2.54 e | 515.88 ± 9.10 c | 552.30 ± 12.15 e | 474.77 ± 13.22 a |
AuQP | 47.14 (46.53–48.36) b | 114.79 ± 1.28 b | 114.10 ± 2.05 b | 122.33 ± 0.88 b | 138.07 ± 0.62 b |
S. aureus ATCC 25923 | MRSA ATCC 43300 | E. faecalis ATCC 29212 | E. coli ATCC 25922 | K. pneumoniae ATCC 13883 | P. aeruginosa ATCC 27853 | |
---|---|---|---|---|---|---|
QD | 0.62/2.50 | 0.62/>5.00 | >5.00/>5.00 | >5.00/>5.00 | 0.62/>5.00 | 2.50/5.00 |
AgQD | 1.25/2.50 | 1.25/2.50 | 2.50/>5.00 | 2.50/2.50 | 1.25/1.25 | 1.25/5.00 |
AuQD | 2.50/>5.00 | 2.50/>5.00 | >5.00/>5.00 | >5.00/>5.00 | 2.50/2.50 | >5.00/>5.00 |
QF | 0.62/>5.00 | 0.62/>5.00 | >5.00/>5.00 | >5.00/>5.00 | 0.62/>5.00 | 1.25/5.00 |
AgQF | 0.62/2.50 | 1.25/1.25 | 2.50/2.50 | 2.50/2.50 | 1.25/1.25 | 1.25/2.50 |
AuQF | 1.25/>5.00 | 2.50/2.50 | >5.00/>5.00 | >5.00/>5.00 | 2.50/2.50 | >5.00/>5.00 |
QP | 1.25/5.00 | 0.31/>5.00 | >5.00/>5.00 | >5.00/>5.00 | 0.31/0.62 | 0.62/2.50 |
AgQP | 0.31/1.25 | 1.25/2.50 | 1.25/2.50 | 1.25/1.25 | 1.25/1.25 | 0.62/1.25 |
AuQP | 2.50/>5.00 | 5.00/5.00 | >5.00/>5.00 | >5.00/>5.00 | 2.50/2.50 | >5.00/>5.00 |
Candida albicans ATCC 10213 | Candida krusei ATCC 6258 | Candida auris ATCC 10913 | |
---|---|---|---|
QD | >5.00/>5.00 | 5.00/>5.00 | >5.00/>5.00 |
AgQD | 1.25/>5.00 | 0.04/0.63 | 1.25/>5.00 |
AuQD | >5.00/>5.00 | 5.00/>5.00 | 5.00/>5.00 |
QF | >5.00/>5.00 | 5.00/>5.00 | >5.00/>5.00 |
AgQF | 1.25/5.00 | 0.02/0.16 | 1.25/>5.00 |
AuQF | >5.00/>5.00 | 5.00/>5.00 | 5.00/>5.00 |
QP | >5.00/>5.00 | 2.50/>5.00 | >5.00/>5.00 |
AgQP | 0.62/2.50 | 0.01/0.16 | 0.63/2.50 |
AuQP | >5.00/>5.00 | 1.25/>5.00 | 5.00/>5.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coman, N.-A.; Nicolae-Maranciuc, A.; Berța, L.; Nicolescu, A.; Babotă, M.; Man, A.; Chicea, D.; Farczadi, L.; Jakab-Farkas, L.; Silva, B.; et al. Green Synthesis of Metallic Nanoparticles from Quercus Bark Extracts: Characterization and Functional Properties. Antioxidants 2024, 13, 822. https://doi.org/10.3390/antiox13070822
Coman N-A, Nicolae-Maranciuc A, Berța L, Nicolescu A, Babotă M, Man A, Chicea D, Farczadi L, Jakab-Farkas L, Silva B, et al. Green Synthesis of Metallic Nanoparticles from Quercus Bark Extracts: Characterization and Functional Properties. Antioxidants. 2024; 13(7):822. https://doi.org/10.3390/antiox13070822
Chicago/Turabian StyleComan, Năstaca-Alina, Alexandra Nicolae-Maranciuc, Lavinia Berța, Alexandru Nicolescu, Mihai Babotă, Adrian Man, Dan Chicea, Lenard Farczadi, László Jakab-Farkas, Barbara Silva, and et al. 2024. "Green Synthesis of Metallic Nanoparticles from Quercus Bark Extracts: Characterization and Functional Properties" Antioxidants 13, no. 7: 822. https://doi.org/10.3390/antiox13070822
APA StyleComan, N.-A., Nicolae-Maranciuc, A., Berța, L., Nicolescu, A., Babotă, M., Man, A., Chicea, D., Farczadi, L., Jakab-Farkas, L., Silva, B., Veiga-Matos, J., & Tanase, C. (2024). Green Synthesis of Metallic Nanoparticles from Quercus Bark Extracts: Characterization and Functional Properties. Antioxidants, 13(7), 822. https://doi.org/10.3390/antiox13070822