Next Issue
Volume 13, August
Previous Issue
Volume 13, June
 
 

Antioxidants, Volume 13, Issue 7 (July 2024) – 130 articles

Cover Story (view full-size image): Aquafeed contamination caused by microplastics (MPs) poses a risk to fish health due to their gastrointestinal absorption and translocation to other organs, particularly the liver, triggering oxidative stress. The present study aimed to combine the use of natural astaxanthin contained in natural-based microcapsules to counteract the negative side effects of MPs in juvenile European seabass (Dicentrarchus labrax) fed diets containing MPs. Specifically, starch contained in the microcapsules enabled the coagulation of MPs in fish gut, limiting their absorption and accumulation in all the tissues analyzed. Conversely, natural astaxanthin led to the mitigation of oxidative stress. This technology represents a new and economically affordable approach to promote fish welfare and quality within the aquaculture sector. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
5 pages, 3083 KiB  
Commentary
The Double-Edged Sword of ROS in Muscle Wasting and COPD: Insights from Aging-Related Sarcopenia
by S. M. H. Chan, S. Selemidis and R. Vlahos
Antioxidants 2024, 13(7), 882; https://doi.org/10.3390/antiox13070882 - 22 Jul 2024
Viewed by 496
Abstract
An elevation in reactive oxygen species (ROS) is widely accepted to be a key mechanism that drives chronic obstructive pulmonary disease (COPD) and its major co-morbidity, skeletal muscle wasting. However, it will be perhaps a surprise to many that an elevation in ROS [...] Read more.
An elevation in reactive oxygen species (ROS) is widely accepted to be a key mechanism that drives chronic obstructive pulmonary disease (COPD) and its major co-morbidity, skeletal muscle wasting. However, it will be perhaps a surprise to many that an elevation in ROS in skeletal muscle is also a critical process for normal skeletal muscle function and in the adaptations to physical exercise. The key message here is that ROS are not solely detrimental. This duality of ROS suggests that the mere use of a broad-acting antioxidant is destined to fail in alleviating skeletal muscle wasting in COPD because it will also be influencing critical physiological ROS-dependent processes. Here, we take a close look at this duality of ROS in skeletal muscle physiology and pathophysiology pertaining to COPD and will aim to gain critical insights from other skeletal muscle wasting conditions due to aging such as sarcopenia. Full article
Show Figures

Figure 1

16 pages, 2880 KiB  
Article
Tumoral Malignancy Decreases Coupled with Higher ROS and Lipid Peroxidation in HCT116 Colon Cancer Cells upon Loss of PRDX6
by Daniel J. Lagal, Antonio M. Montes-Osuna, Alberto Ortiz-Olivencia, Candela Arribas-Parejas, Ángel Ortiz-Alcántara, Cristina Pescuezo-Castillo, José Antonio Bárcena, Carmen Alicia Padilla and Raquel Requejo-Aguilar
Antioxidants 2024, 13(7), 881; https://doi.org/10.3390/antiox13070881 - 22 Jul 2024
Viewed by 514
Abstract
Peroxiredoxin 6 (PRDX6) is an atypical member of the peroxiredoxin family that presents not only peroxidase but also phospholipase A2 and lysophosphatidylcholine acyl transferase activities able to act on lipid hydroperoxides of cell membranes. It has been associated with the proliferation and invasive [...] Read more.
Peroxiredoxin 6 (PRDX6) is an atypical member of the peroxiredoxin family that presents not only peroxidase but also phospholipase A2 and lysophosphatidylcholine acyl transferase activities able to act on lipid hydroperoxides of cell membranes. It has been associated with the proliferation and invasive capacity of different tumoral cells including colorectal cancer cells, although the effect of its removal in these cells has not been yet studied. Here, using CRISPR/Cas9 technology, we constructed an HCT116 colorectal cancer cell line knockout for PRDX6 to study whether the mechanisms described for other cancer cells in terms of proliferation, migration, and invasiveness also apply in this tumoral cell line. HCT116 cells lacking PRDX6 showed increased ROS and lipid peroxidation, a decrease in the antioxidant response regulator NRF2, mitochondrial dysfunction, and increased sensitivity to ferroptosis. All these alterations lead to a decrease in proliferation, migration, and invasiveness in these cells. Furthermore, the reduced migratory and invasive capacity of HCT116 cancer cells is consistent with the observed cadherin switch and decrease in pro-invasive proteins such as MMPs. Therefore, the mechanism behind the effects of loss of PRDX6 in HCT116 cells could differ from that in HepG2 cells which is coherent with the fact that the correlation of PRDX6 expression with patient survival is different in hepatocellular carcinomas. Nonetheless, our results point to this protein as a good therapeutic target also for colorectal cancer. Full article
(This article belongs to the Section Antioxidant Enzyme Systems)
Show Figures

Graphical abstract

15 pages, 2330 KiB  
Article
Antioxidant and Anti-Apoptotic Neuroprotective Effects of Cinnamon in Imiquimod-Induced Lupus
by Georges Maalouly, Christine-Marie-Anne Martin, Yara Baz, Youakim Saliba, Anna-Maria Baramili and Nassim Fares
Antioxidants 2024, 13(7), 880; https://doi.org/10.3390/antiox13070880 - 22 Jul 2024
Viewed by 495
Abstract
Background: Despite accumulating evidence correlating oxidative stress with lupus disease activity, the brain redox pathways are still poorly investigated. Cinnamomum cassia, a widely used spice with powerful antioxidant properties, could be a novel therapeutic candidate in lupus. Methods: C57BL/6J female mice were divided [...] Read more.
Background: Despite accumulating evidence correlating oxidative stress with lupus disease activity, the brain redox pathways are still poorly investigated. Cinnamomum cassia, a widely used spice with powerful antioxidant properties, could be a novel therapeutic candidate in lupus. Methods: C57BL/6J female mice were divided into five groups: sham, sham-cinnamon, lupus, lupus-cinnamon starting from induction, and lupus-cinnamon starting two weeks before induction. Lupus was induced by skin application on the right ear with 1.25 mg of 5% imiquimod cream three times per week for six weeks. Cinnamomum cassia was given orally, five days per week, at 200 mg/kg. Results: Concomitant to TLR7-MYD88 pathway activation, the p-NRF2/NRF2 and p-FOXO3/FOXO3 ratios were increased in the hippocampus and alleviated by cinnamon treatment. BCL-2 positivity was enhanced in hippocampal neurons and reversed only by preventive cinnamon administration. In vitro, exposure of hippocampal cells to the plasma of different groups induced a surge in oxidative stress. This was associated with an increased t-BID/BID ratio. Cinnamon treatment, particularly in the preventive arm, normalized these modifications. Conclusions: Our study shows a neuroprotective effect of cinnamon by rescuing brain redox and apoptosis homeostasis in lupus, paving the way for its use as a natural therapeutic compound in the clinical management of lupus. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

15 pages, 723 KiB  
Review
Recent Advances in Astaxanthin as an Antioxidant in Food Applications
by Yimeng Dang, Zhixi Li and Fanqianhui Yu
Antioxidants 2024, 13(7), 879; https://doi.org/10.3390/antiox13070879 - 22 Jul 2024
Viewed by 632
Abstract
In recent years, astaxanthin as a natural substance has received widespread attention for its potential to replace traditional synthetic antioxidants and because its antioxidant activity exceeds that of similar substances. Based on this, this review introduces the specific forms of astaxanthin currently used [...] Read more.
In recent years, astaxanthin as a natural substance has received widespread attention for its potential to replace traditional synthetic antioxidants and because its antioxidant activity exceeds that of similar substances. Based on this, this review introduces the specific forms of astaxanthin currently used as an antioxidant in foods, both in its naturally occurring forms and in artificially added forms involving technologies such as emulsion, microcapsule, film, nano liposome and nano particle, aiming to improve its stability, dispersion and bioavailability in complex food systems. In addition, research progress on the application of astaxanthin in various food products, such as whole grains, seafood and poultry products, is summarized. In view of the characteristics of astaxanthin, such as insolubility in water and sensitivity to light, heat, oxygen and humidity, the main research trends of astaxanthin-loaded systems with high encapsulation efficiency, good stability, good taste masking effect and cost-effectiveness are also pointed out. Finally, the possible sensory effects of adding astaxanthin to food aresummarized, providing theoretical support for the development of astaxanthin-related food. Full article
Show Figures

Figure 1

16 pages, 19441 KiB  
Article
Ocular Inflammation and Oxidative Stress as a Result of Chronic Intermittent Hypoxia: A Rat Model of Sleep Apnea
by Nina Donkor, Jennifer J. Gardner, Jessica L. Bradshaw, Rebecca L. Cunningham and Denise M. Inman
Antioxidants 2024, 13(7), 878; https://doi.org/10.3390/antiox13070878 - 22 Jul 2024
Viewed by 564
Abstract
Obstructive sleep apnea (OSA) is a sleep disorder characterized by intermittent complete or partial occlusion of the airway. Despite a recognized association between OSA and glaucoma, the nature of the underlying link remains unclear. In this study, we investigated whether mild OSA induces [...] Read more.
Obstructive sleep apnea (OSA) is a sleep disorder characterized by intermittent complete or partial occlusion of the airway. Despite a recognized association between OSA and glaucoma, the nature of the underlying link remains unclear. In this study, we investigated whether mild OSA induces morphological, inflammatory, and metabolic changes in the retina resembling those seen in glaucoma using a rat model of OSA known as chronic intermittent hypoxia (CIH). Rats were randomly assigned to either normoxic or CIH groups. The CIH group was exposed to periodic hypoxia during its sleep phase with oxygen reduction from 21% to 10% and reoxygenation in 6 min cycles over 8 h/day. The eyes were subsequently enucleated, and then the retinas were evaluated for retinal ganglion cell number, oxidative stress, inflammatory markers, metabolic changes, and hypoxic response modulation using immunohistochemistry, multiplex assays, and capillary electrophoresis. Statistically significant differences were observed between normoxic and CIH groups for oxidative stress and inflammation, with CIH resulting in increased HIF-1α protein levels, higher oxidative stress marker 8-OHdG, and increased TNF-α. Pyruvate dehydrogenase kinase-1 protein was significantly reduced with CIH. No significant differences were found in retinal ganglion cell number. Our findings suggest that CIH induces oxidative stress, inflammation, and upregulation of HIF-1α in the retina, akin to early-stage glaucoma. Full article
Show Figures

Figure 1

38 pages, 4862 KiB  
Review
Ten “Cheat Codes” for Measuring Oxidative Stress in Humans
by James N. Cobley, Nikos V. Margaritelis, Panagiotis N. Chatzinikolaou, Michalis G. Nikolaidis and Gareth W. Davison
Antioxidants 2024, 13(7), 877; https://doi.org/10.3390/antiox13070877 - 22 Jul 2024
Viewed by 909
Abstract
Formidable and often seemingly insurmountable conceptual, technical, and methodological challenges hamper the measurement of oxidative stress in humans. For instance, fraught and flawed methods, such as the thiobarbituric acid reactive substances assay kits for lipid peroxidation, rate-limit progress. To advance translational redox research, [...] Read more.
Formidable and often seemingly insurmountable conceptual, technical, and methodological challenges hamper the measurement of oxidative stress in humans. For instance, fraught and flawed methods, such as the thiobarbituric acid reactive substances assay kits for lipid peroxidation, rate-limit progress. To advance translational redox research, we present ten comprehensive “cheat codes” for measuring oxidative stress in humans. The cheat codes include analytical approaches to assess reactive oxygen species, antioxidants, oxidative damage, and redox regulation. They provide essential conceptual, technical, and methodological information inclusive of curated “do” and “don’t” guidelines. Given the biochemical complexity of oxidative stress, we present a research question-grounded decision tree guide for selecting the most appropriate cheat code(s) to implement in a prospective human experiment. Worked examples demonstrate the benefits of the decision tree-based cheat code selection tool. The ten cheat codes define an invaluable resource for measuring oxidative stress in humans. Full article
Show Figures

Figure 1

15 pages, 3522 KiB  
Article
Syringaresinol Attenuates α-Melanocyte-Stimulating Hormone-Induced Reactive Oxygen Species Generation and Melanogenesis
by Kyuri Kim, Jihyun Yoon and Kyung-Min Lim
Antioxidants 2024, 13(7), 876; https://doi.org/10.3390/antiox13070876 - 21 Jul 2024
Viewed by 464
Abstract
Ginseng has been utilized for centuries in both the medicinal and cosmetic realms. Recent studies have actively investigated the biological activity of ginseng berry and its constituents. (+)-Syringaresinol [(+)-SYR], an active component of ginseng berry, has been demonstrated to have beneficial effects on [...] Read more.
Ginseng has been utilized for centuries in both the medicinal and cosmetic realms. Recent studies have actively investigated the biological activity of ginseng berry and its constituents. (+)-Syringaresinol [(+)-SYR], an active component of ginseng berry, has been demonstrated to have beneficial effects on the skin, but its potential impact on skin pigmentation has not been fully explored. Here, the antioxidant and anti-pigmentary activity of (+)-SYR were evaluated in B16F10 murine melanoma cells and in an artificial human pigmented skin model, Melanoderm™. A real-time PCR, Western blotting, immunofluorescence staining, and histochemistry staining were conducted to confirm the effects of (+)-SYR on pigmentation. (+)-SYR reduced melanogenesis and dendrite elongation in α-melanocyte-stimulating hormone (α-MSH)-primed B16F10 cells with low cytotoxicity. (+)-SYR suppressed the expression of melanogenic genes, namely tyrosinase (TYR), tyrosinase-related protein 1 (TRP-1), and tyrosinase-related protein 2 (TRP-2). Notably, (+)-SYR attenuated α-MSH-induced cytosolic and mitochondrial reactive oxygen species (ROS) generation, which was attributable at least in part to the suppression of NADPH oxidase-4 (NOX 4) expression. Finally, the brightening activities of (+)-SYR were verified using Melanoderm™, underscoring the potential of ginseng berry and (+)-SYR as functional ingredients in skin-brightening cosmetics. Full article
(This article belongs to the Special Issue Antioxidants for Skin Health)
Show Figures

Figure 1

16 pages, 8569 KiB  
Article
Rod-Shaped Mesoporous Zinc-Containing Bioactive Glass Nanoparticles: Structural, Physico-Chemical, Antioxidant, and Immuno-Regulation Properties
by Xiuan Zhu, Wenjie Wen, Jingjing Yan, Yuran Wang, Rumeng Wang, Xiang Ma, Dandan Ren, Kai Zheng, Chao Deng and Jue Zhang
Antioxidants 2024, 13(7), 875; https://doi.org/10.3390/antiox13070875 - 21 Jul 2024
Viewed by 509
Abstract
Bioactive glass nanoparticles (BGNs) are applied widely in tissue regeneration. Varied micro/nanostructures and components of BGNs have been designed for different applications. In the present study, nanorod-shaped mesoporous zinc-containing bioactive glass nanoparticles (ZnRBGNs) were designed and developed to form the bioactive content of [...] Read more.
Bioactive glass nanoparticles (BGNs) are applied widely in tissue regeneration. Varied micro/nanostructures and components of BGNs have been designed for different applications. In the present study, nanorod-shaped mesoporous zinc-containing bioactive glass nanoparticles (ZnRBGNs) were designed and developed to form the bioactive content of composite materials for hard/soft tissue repair and regeneration. The nanostructure and components of the ZnRBGNs were characterized, as were their cytocompatibility and radical-scavenging activity in the presence/absence of cells and their ability to modulate macrophage polarization. The ZnRBGNs possessed a uniform rod shape (length ≈ 500 nm; width ≈ 150 nm) with a mesoporous structure (diameter ≈ 2.4 nm). The leaching liquid of the nanorods at a concentration below 0.5 mg/mL resulted in no cytotoxicity. More significant improvements in the antioxidant and M1-polarization-inhibiting effects and the promotion of M2 polarization were found when culturing the cells with the ZnRBGNs compared to when culturing them with the RBGNs. The doping of the Zn element in RBGNs may lead to improved antioxidant and anti-inflammatory effects, which may be beneficial in tissue regeneration/repair. Full article
(This article belongs to the Special Issue Applications of Antioxidant Nanoparticles, 2nd Edition)
Show Figures

Figure 1

27 pages, 2201 KiB  
Article
Botanical Origin and Biological Properties of Honey and Propolis from Cuautitlan, State of Mexico, Mexico
by Jose Juan Alcivar-Saldaña, Marco Aurelio Rodriguez-Monroy, Liborio Carrillo-Miranda and Maria Margarita Canales-Martinez
Antioxidants 2024, 13(7), 874; https://doi.org/10.3390/antiox13070874 - 20 Jul 2024
Viewed by 443
Abstract
Beekeeping is an activity that generates various products, mainly honey and propolis, with different biological activities that are studied extensively using various methodologies. The influence of various phenolic compounds, such as phenols and flavonoids, which are synthesized and concentrated differently in each product [...] Read more.
Beekeeping is an activity that generates various products, mainly honey and propolis, with different biological activities that are studied extensively using various methodologies. The influence of various phenolic compounds, such as phenols and flavonoids, which are synthesized and concentrated differently in each product depending on the melliferous flora and sources of resources, on the manufacture of propolis or honey has been investigated. However, the analysis of these products has been performed separately and is outdated in time, and depending on the area and the flowering periods, different crops may be harvested. The analysis of the honey and propolis produced in Cuautitlan, State of Mexico, in the high plateau beekeeping zone, for a period of four years, both in the dry and rainy seasons, was proposed to determine the botanical origin of the honey and propolis. The primary pollen type in both honey and propolis was from Brassica rapa. Physicochemical tests were conducted, revealing higher concentrations of antimicrobial activity in the dry season than in the rainy season. Honey, propolis, and a vegetation extract showed activity against S. aureus, while only honey had an effect on E. coli in both seasons. For antifungal activity, only propolis collected in the rainy season had this activity. The biological properties of these products are closely related to the flora that varies both annually and between seasons, influencing the concentrations of phenolic compounds, as well as the biological activity of honey and propolis. Full article
(This article belongs to the Special Issue Bee Products as a Source of Natural Antioxidants: Second Edition)
Show Figures

Figure 1

14 pages, 2885 KiB  
Article
Culture of Bovine Aortic Endothelial Cells in Galactose Media Enhances Mitochondrial Plasticity and Changes Redox Sensing, Altering Nrf2 and FOXO3 Levels
by Leticia Selinger Galant, Laura Doblado, Rafael Radi, Andreza Fabro de Bem and Maria Monsalve
Antioxidants 2024, 13(7), 873; https://doi.org/10.3390/antiox13070873 - 20 Jul 2024
Viewed by 341
Abstract
Understanding the complex biological processes of cells in culture, particularly those related to metabolism, can be biased by culture conditions, since the choice of energy substrate impacts all of the main metabolic pathways. When glucose is replaced by galactose, cells decrease their glycolytic [...] Read more.
Understanding the complex biological processes of cells in culture, particularly those related to metabolism, can be biased by culture conditions, since the choice of energy substrate impacts all of the main metabolic pathways. When glucose is replaced by galactose, cells decrease their glycolytic flux, working as an in vitro model of limited nutrient availability. However, the effect of these changes on related physiological processes such as redox control is not well documented, particularly in endothelial cells, where mitochondrial oxidation is considered to be low. We evaluated the differences in mitochondrial dynamics and function in endothelial cells exposed to galactose or glucose culture medium. We observed that cells maintained in galactose-containing medium show a higher mitochondrial oxidative capacity, a more fused mitochondrial network, and higher intercellular coupling. These factors are documented to impact the cellular response to oxidative stress. Therefore, we analyzed the levels of two main redox regulators and found that bovine aortic endothelial cells (BAEC) in galactose media had higher levels of FOXO3 and lower levels of Nrf2 than those in glucose-containing media. Thus, cultures of endothelial cells in a galactose-containing medium may provide a more suitable target for the study of in vitro mitochondrial-related processes than those in glucose-containing media; the medium deeply influences redox signaling in these cells. Full article
(This article belongs to the Special Issue Advances in Mitochondrial Redox Biology)
Show Figures

Figure 1

28 pages, 21141 KiB  
Article
Integrated Metabolomics and Metagenomics Unveiled Biomarkers of Antioxidant Potential in Fermented Brewer’s Grains
by Hammad Qamar, Yuanfei Li, Rong He, Muhammad Waqas, Min Song, Dun Deng, Yiyan Cui, Pan Yang, Zhichang Liu, Bilal Qammar, Muhammad Asnan, Xiangxue Xie, Miao Yu and Xianyong Ma
Antioxidants 2024, 13(7), 872; https://doi.org/10.3390/antiox13070872 - 20 Jul 2024
Viewed by 468
Abstract
About one-third of the global food supply is wasted. Brewers’ spent grain (BSG), being produced in enormous amounts by the brewery industry, possesses an eminence nutritional profile, yet its recycling is often neglected for multiple reasons. We employed integrated metagenomics and metabolomics techniques [...] Read more.
About one-third of the global food supply is wasted. Brewers’ spent grain (BSG), being produced in enormous amounts by the brewery industry, possesses an eminence nutritional profile, yet its recycling is often neglected for multiple reasons. We employed integrated metagenomics and metabolomics techniques to assess the effects of enzyme treatments and Lactobacillus fermentation on the antioxidant capacity of BSG. The biotreated BSG revealed improved antioxidant capability, as evidenced by significantly increased (p < 0.05) radical scavenging activity and flavonoid and polyphenol content. Untargeted metabolomics revealed that Lactobacillus fermentation led to the prominent synthesis (p < 0.05) of 15 novel antioxidant peptides, as well as significantly higher (p < 0.05) enrichment of isoflavonoid and phenylpropanoid biosynthesis pathways. The correlation analysis demonstrated that Lactiplantibacillus plantarum exhibited strong correlation (p < 0.05) with aucubin and carbohydrate-active enzymes, namely, glycoside hydrolases 25, glycosyl transferases 5, and carbohydrate esterases 9. The fermented BSG has potential applications in the food industry as a culture medium, a functional food component for human consumption, and a bioactive feed ingredient for animals. Full article
Show Figures

Figure 1

15 pages, 2167 KiB  
Article
Sub-Chronic Methomyl Exposure Induces Oxidative Stress and Inflammatory Responses in Zebrafish with Higher Female Susceptibility
by Mingxiao Li, Xi Chen, Chao Song, Jing Xu, Limin Fan, Liping Qiu, Dandan Li, Huimin Xu, Shunlong Meng, Xiyan Mu, Bin Xia and Jun Ling
Antioxidants 2024, 13(7), 871; https://doi.org/10.3390/antiox13070871 - 20 Jul 2024
Viewed by 509
Abstract
The widespread use of carbamate pesticides has raised significant environmental and health concerns, particularly regarding water contamination and the disruption of defense systems in organisms. Despite these concerns, research on the differential impacts of pesticides on male and female organisms remains limited. This [...] Read more.
The widespread use of carbamate pesticides has raised significant environmental and health concerns, particularly regarding water contamination and the disruption of defense systems in organisms. Despite these concerns, research on the differential impacts of pesticides on male and female organisms remains limited. This study focused on methomyl, investigating sex-specific differences in liver antioxidant defenses and inflammatory response indices in male and female zebrafish after 56 days of exposure to environmentally relevant concentrations (0, 0.05, 0.10, and 0.20 mg/L). Our findings indicate that methomyl exposure significantly increased ROS content in zebrafish livers, inducing oxidative stress and activating enzymatic antioxidant defenses such as SOD, CAT, and GSH-Px activities. Sub-chronic exposure altered the expression of apoptosis-related genes (Bax/Bcl2a and Caspases3a), resulting in liver cell apoptosis in a concentration-dependent manner, with the 0.20 mg/L concentration causing the most severe damage. Additionally, methomyl exposure at environmentally relevant concentrations triggered persistent inflammatory responses in liver tissues, evidenced by increased transcription levels of inflammatory factor genes and the activation of toll-like receptors, heightening susceptibility to exogenous allergens. It is noteworthy that oxidative damage indicators (AST, ROS, MDA) and inflammatory gene expressions (IL-1β, TNF-α) were significantly higher in female livers compared to male livers at 0.10–0.20 mg/L methomyl exposure. Consequently, our study underscores the potential adverse effects of environmental methomyl exposure on aquatic organisms and highlights the need for heightened consideration of the risks posed by environmental endocrine disruptors to female health and safety. Full article
Show Figures

Figure 1

19 pages, 1586 KiB  
Article
The Impact of Weight Loss on Inflammation, Oxidative Stress, and Mitochondrial Function in Subjects with Obesity
by Neus Bosch-Sierra, Carmen Grau-del Valle, Jonathan Hermenejildo, Alberto Hermo-Argibay, Juan Diego Salazar, Marta Garrido, Beatriz Navajas-Porras, Guillermo Sáez, Carlos Morillas and Celia Bañuls
Antioxidants 2024, 13(7), 870; https://doi.org/10.3390/antiox13070870 - 19 Jul 2024
Viewed by 586
Abstract
Inflammation, oxidative stress, and mitochondrial function are implicated in the development of obesity and its comorbidities. The purpose of this study was to assess the impact of weight loss through calorie restriction on the metabolic profile, inflammatory and oxidative stress parameters, and mitochondrial [...] Read more.
Inflammation, oxidative stress, and mitochondrial function are implicated in the development of obesity and its comorbidities. The purpose of this study was to assess the impact of weight loss through calorie restriction on the metabolic profile, inflammatory and oxidative stress parameters, and mitochondrial respiration in an obese population. A total of 109 subjects underwent two cycles of a very low-calorie diet alternated with a low-calorie diet (24 weeks). We analyzed biochemical and inflammatory parameters in serum, as well as oxidative stress markers, mRNA antioxidant gene expression, and mitochondrial respiration in peripheral blood mononuclear cells (PBMCs). After the intervention, there was an improvement in both insulin resistance and lipid profiles, including cholesterol subfractions. Weight loss produced a significant reduction in mitochondrial ROSs content and an increase in glutathione levels, coupled with an enhancement in the mRNA expression of antioxidant systems (SOD1, GSR, and CAT). In addition, a significant improvement in basal oxygen consumption, maximal respiration, and ATP production was observed. These findings demonstrate that moderate weight loss can improve insulin resistance, lipid profiles and subfractions, inflammatory and oxidative stress parameters, and mitochondrial respiration. Therefore, we can affirm that dietary intervention can simultaneously achieve significant weight loss and improve metabolic profile and mitochondrial function in obesity. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

26 pages, 5877 KiB  
Article
Citrus Pomace as a Source of Plant Complexes to Be Used in the Nutraceutical Field of Intestinal Inflammation
by Mariarosaria Ingegneri, Maria Rita Braghini, Michela Piccione, Cristiano De Stefanis, Manuela Mandrone, Ilaria Chiocchio, Ferruccio Poli, Martina Imbesi, Anna Alisi, Antonella Smeriglio and Domenico Trombetta
Antioxidants 2024, 13(7), 869; https://doi.org/10.3390/antiox13070869 - 19 Jul 2024
Viewed by 489
Abstract
This study aims to recover the main by-product of Citrus fruits processing, the raw pomace, known also as pastazzo, to produce plant complexes to be used in the treatment of inflammatory bowel disease (IBD). Food-grade extracts from orange (OE) and lemon (LE) [...] Read more.
This study aims to recover the main by-product of Citrus fruits processing, the raw pomace, known also as pastazzo, to produce plant complexes to be used in the treatment of inflammatory bowel disease (IBD). Food-grade extracts from orange (OE) and lemon (LE) pomace were obtained by ultrasound-assisted maceration. After a preliminary phytochemical and biological screening by in vitro assays, primary and secondary metabolites were characterized by proton nuclear magnetic resonance (1H-NMR) and liquid chromatography coupled to diode array detection and electrospray ionization mass spectrometry (LC-DAD-ESI-MS) analyses. The intestinal bioaccessibility and antioxidant and anti-inflammatory properties were investigated by in vitro simulated gastro-intestinal digestion followed by treatments on a lipopolysaccharide (LPS)-stimulated human colorectal adenocarcinoma cell line (Caco-2). The tight junctions-associated structural proteins (ZO-1, Claudin-1, and Occludin), transepithelial electrical resistance (TEER), reactive oxygen species (ROS)-levels, expression of some key antioxidant (CAT, NRF2 and SOD2) and inflammatory (IL-1β, IL-6, TNF-α, IL-8) genes, and pNFkB p65 nuclear translocation, were evaluated. The OE and LE digesta, which did not show any significant difference in terms of phytochemical profile, showed significant effects in protecting against the LPS-induced intestinal barrier damage, oxidative stress and inflammatory response. In conclusion, both OE and LE emerged as potential candidates for further preclinical studies on in vivo IBD models. Full article
Show Figures

Figure 1

22 pages, 971 KiB  
Review
Traditional Chinese Medicine for Hashimoto’s Thyroiditis: Focus on Selenium and Antioxidant Phytochemicals
by Sheng Huang, Panos G. Ziros, Dionysios V. Chartoumpekis, Georgios Psarias, Leonidas Duntas, Xinhe Zuo, Xinyi Li, Zhiguo Ding and Gerasimos P. Sykiotis
Antioxidants 2024, 13(7), 868; https://doi.org/10.3390/antiox13070868 - 19 Jul 2024
Viewed by 570
Abstract
Hashimoto’s thyroiditis (HT) is not only the most frequent autoimmune thyroid disease (AITD), but it also has a significant impact on patients’ health-related quality of life (HRQoL), and it has been variably associated with differentiated thyroid carcinoma. Even though its pathogenesis is still [...] Read more.
Hashimoto’s thyroiditis (HT) is not only the most frequent autoimmune thyroid disease (AITD), but it also has a significant impact on patients’ health-related quality of life (HRQoL), and it has been variably associated with differentiated thyroid carcinoma. Even though its pathogenesis is still incompletely understood, oxidative stress is believed to play an important role. Hypothyroidism related to later stages of HT can be treated with levothyroxine substitution therapy; various approaches such as selenium supplementation and iodine-restricted diets have been proposed as disease-modifying treatments for earlier stages, and even thyroidectomy has been suggested for refractory cases of painful HT. Nevertheless, many patients still report suboptimal HRQoL, highlighting an unmet medical need in this area. The concepts and approaches of traditional Chinese medicine (TCM) in treating HT are not broadly known in the West. Here, we provide an overview of TCM for HT, including combinations of TCM with selenium. We encompass evidence from clinical trials and other studies related to complex TCM prescriptions, single herbs used in TCM, and phytochemicals; wherever possible, we delineate the probable underlying molecular mechanisms. The findings show that the main active components of TCM for HT have commonly known or presumed antioxidant and anti-inflammatory activities, which may account for their potential utility in HT. Further exploring the practices of TCM for HT and combining them with evidence- and mechanism-based approaches according to Western standards may help to identify new strategies to alter the clinical course of the disease and/or to treat patients’ symptoms better and improve their HRQoL. Full article
(This article belongs to the Special Issue Oxidative-Stress in Human Diseases—3rd Edition)
Show Figures

Figure 1

18 pages, 12347 KiB  
Article
In Vivo-Matured Oocyte Resists Post-Ovulatory Aging through the Hub Genes DDX18 and DNAJC7 in Pigs
by Cheng-Lin Zhan, Dongjie Zhou, Ming-Hong Sun, Wen-Jie Jiang, Song-Hee Lee, Xiao-Han Li, Qin-Yue Lu, Ji-Dam Kim, Gyu-Hyun Lee, Jae-Min Sim, Hak-Jae Chung, Eun-Seok Cho, Soo-Jin Sa and Xiang-Shun Cui
Antioxidants 2024, 13(7), 867; https://doi.org/10.3390/antiox13070867 - 19 Jul 2024
Viewed by 394
Abstract
Assisted reproduction technology (ART) procedures are often impacted by post-ovulatory aging (POA), which can lead to reduced fertilization rates and impaired embryo development. This study used RNA sequencing analysis and experimental validation to study the similarities and differences between in vivo- and vitro-matured [...] Read more.
Assisted reproduction technology (ART) procedures are often impacted by post-ovulatory aging (POA), which can lead to reduced fertilization rates and impaired embryo development. This study used RNA sequencing analysis and experimental validation to study the similarities and differences between in vivo- and vitro-matured porcine oocytes before and after POA. Differentially expressed genes (DEGs) between fresh in vivo-matured oocyte (F_vivo) and aged in vivo-matured oocyte (A_vivo) and DEGs between fresh in vitro-matured oocyte (F_vitro) and aged in vitro-matured oocyte (A_vitro) were intersected to explore the co-effects of POA. It was found that “organelles”, especially “mitochondria”, were significantly enriched Gene Ontology (GO) terms. The expression of genes related to the “electron transport chain” and “cell redox homeostasis” pathways related to mitochondrial function significantly showed low expression patterns in both A_vivo and A_vitro groups. Weighted correlation network analysis was carried out to explore gene expression modules specific to A_vivo. Trait–module association analysis showed that the red modules were most associated with in vivo aging. There are 959 genes in the red module, mainly enriched in “RNA binding”, “mRNA metabolic process”, etc., as well as in GO terms, and “spliceosome” and “nucleotide excision repair” pathways. DNAJC7, IK, and DDX18 were at the hub of the gene regulatory network. Subsequently, the functions of DDX18 and DNAJC7 were verified by knocking down their expression at the germinal vesicle (GV) and Metaphase II (MII) stages, respectively. Knockdown at the GV stage caused cell cycle disorders and increase the rate of abnormal spindle. Knockdown at the MII stage resulted in the inefficiency of the antioxidant melatonin, increasing the level of intracellular oxidative stress, and in mitochondrial dysfunction. In summary, POA affects the organelle function of oocytes. A_vivo oocytes have some unique gene expression patterns. These genes may be potential anti-aging targets. This study provides a better understanding of the detailed mechanism of POA and potential strategies for improving the success rates of assisted reproductive technologies in pigs and other mammalian species. Full article
Show Figures

Figure 1

14 pages, 3846 KiB  
Article
Activation of p38 and JNK by ROS Contributes to Deoxybouvardin-Mediated Intrinsic Apoptosis in Oxaliplatin-Sensitive and -Resistant Colorectal Cancer Cells
by Si Yeong Seo, Sang Hoon Joo, Seung-On Lee, Goo Yoon, Seung-Sik Cho, Yung Hyun Choi, Jin Woo Park and Jung-Hyun Shim
Antioxidants 2024, 13(7), 866; https://doi.org/10.3390/antiox13070866 - 19 Jul 2024
Viewed by 403
Abstract
Colorectal cancer (CRC) remains a global health burden, accounting for almost a million deaths annually. Deoxybouvardin (DB), a non-ribosomal peptide originally isolated from Bouvardia ternifolia, has been reported to possess antitumor activity; however, the detailed mechanisms underlying this anticancer activity have not [...] Read more.
Colorectal cancer (CRC) remains a global health burden, accounting for almost a million deaths annually. Deoxybouvardin (DB), a non-ribosomal peptide originally isolated from Bouvardia ternifolia, has been reported to possess antitumor activity; however, the detailed mechanisms underlying this anticancer activity have not been elucidated. We investigated the anticancer activity of the cyclic hexapeptide, DB, in human CRC HCT116 cells. Cell viability, evaluated by MTT assay, revealed that DB suppressed the growth of both oxaliplatin (Ox)-resistant HCT116 cells (HCT116-OxR) and Ox-sensitive cells in a concentration- and time-dependent manner. Increased reactive oxygen species (ROS) generation was observed in DB-treated CRC cells, and it induced cell cycle arrest at the G2/M phase by regulating p21, p27, cyclin B1, and cdc2 levels. In addition, Western blot analysis revealed that DB activated the phosphorylation of JNK and p38 MAPK in CRC. Furthermore, mitochondrial membrane potential (MMP) was dysregulated by DB, resulting in cytochrome c release and activation of caspases. Taken together, DB exhibited anticancer activity against both Ox-sensitive and Ox-resistant CRC cells by targeting JNK and p38 MAPK, increasing cellular ROS levels, and disrupting MMP. Thus, DB is a potential therapeutic agent for the treatment of Ox-resistant CRC. Full article
Show Figures

Graphical abstract

26 pages, 5605 KiB  
Article
Ocimum basilicum and Lagenaria siceraria Loaded Lignin Nanoparticles as Versatile Antioxidant, Immune Modulatory, Anti-Efflux, and Antimicrobial Agents for Combating Multidrug-Resistant Bacteria and Fungi
by Lamiaa A. El-Samahy, Yasmine H. Tartor, Adel Abdelkhalek, Ioan Pet, Mirela Ahmadi and Sameh M. El-Nabtity
Antioxidants 2024, 13(7), 865; https://doi.org/10.3390/antiox13070865 - 19 Jul 2024
Viewed by 515
Abstract
Lignin nanoparticles emerged as a promising alternative for drug delivery systems owing to their biodegradability and bioactive properties. This study investigated the antimicrobial activity of the ethanolic extract of Ocimum basilicum-loaded lignin nanoparticles (OB-LNPs) and Lagenaria siceraria seed oil-loaded lignin nanoparticles (LS-LNPs) [...] Read more.
Lignin nanoparticles emerged as a promising alternative for drug delivery systems owing to their biodegradability and bioactive properties. This study investigated the antimicrobial activity of the ethanolic extract of Ocimum basilicum-loaded lignin nanoparticles (OB-LNPs) and Lagenaria siceraria seed oil-loaded lignin nanoparticles (LS-LNPs) to find a solution for antimicrobial resistance. OB-LNPs and LS-LNPs were tested for their antimicrobial potential against Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, Staphylococcus aureus, Salmonella enterica, Trichophyton mentagrophytes, Trichophyton rubrum, and Microsporum canis. OB-LNPs and LS-LNPs were further tested for their anti-efflux activity against ciprofloxacin-resistant Salmonella enterica strains and for treating Salmonella infection in a rat model. We also investigated the antifungal efficacy of OB-LNPs and LS-LNPs for treating T. rubrum infection in a guinea pig model. Both OB-LNPs and LS-LNPs showed strong antimicrobial potential against S. Typhimurium and T. rubrum infections. LS-LNPs showed antibacterial activity against Salmonella enterica species with a MIC range of 0.5–4 µg/mL and antifungal activity against T. rubrum with a MIC range of 0.125–1 µg/mL. OB-LNPs showed antibacterial activity against Salmonella enterica species with a MIC range of 0.5–2 µg/mL and antifungal activity against T. rubrum with a MIC range of 0.25–2 µg/mL. OB-LNPs and LS-LNPs downregulated the expression of ramA and acrB efflux pump genes (fold change values ranged from 0.2989 to 0.5434; 0.4601 to 0.4730 for ramA and 0.3842–0.6199; 0.5035–0.8351 for acrB). Oral administration of OB-LNPs and LS-LNPs in combination with ciprofloxacin had a significant effect on all blood parameters, as well as on liver and kidney function parameters. Oxidative stress mediators, total antioxidant capacity, and malondialdehyde were abolished by oral administration of OB-LNPs and LS-LNPs (0.5 mL/rat once daily for 5 days). Interferon-γ and tumor necrosis factor-α were also reduced in comparison with the positive control group and the ciprofloxacin-treated group. Histopathological examination of the liver and intestine of OB-LNPs and LS-LNPs-treated rats revealed an elevation in Salmonella clearance. Treatment of T. rubrum-infected guinea pigs with OB-LNPs and LS-LNPs topically in combination with itraconazole resulted in a reduction in lesion scores, microscopy, and culture results. In conclusion, OB-LNPs and LS-LNPs possess immunomodulatory and antioxidant potential and can be used as naturally derived nanoparticles for drug delivery and treatment of Salmonellosis and dermatophytosis infections. Full article
Show Figures

Figure 1

25 pages, 3093 KiB  
Article
A Combination of Cardamonin and Doxorubicin Selectively Affect Cell Viability of Melanoma Cells: An In Vitro Study
by Lara Ebbert, Claudia von Montfort, Chantal-Kristin Wenzel, Andreas S. Reichert, Wilhelm Stahl and Peter Brenneisen
Antioxidants 2024, 13(7), 864; https://doi.org/10.3390/antiox13070864 - 19 Jul 2024
Viewed by 596
Abstract
Treatment of the most aggressive and deadliest form of skin cancer, the malignant melanoma, still has room for improvement. Its invasive nature and ability to rapidly metastasize and to develop resistance to standard treatment often result in a poor prognosis. While the highly [...] Read more.
Treatment of the most aggressive and deadliest form of skin cancer, the malignant melanoma, still has room for improvement. Its invasive nature and ability to rapidly metastasize and to develop resistance to standard treatment often result in a poor prognosis. While the highly effective standard chemotherapeutic agent doxorubicin (DOX) is widely used in a variety of cancers, systemic side effects still limit therapy. Especially, DOX-induced cardiotoxicity remains a big challenge. In contrast, the natural chalcone cardamonin (CD) has been shown to selectively kill tumor cells. Besides its anti-tumor activity, CD exhibits anti-oxidative, anti-inflammatory and anti-bacterial properties. In this study, we investigated the effect of the combinational treatment of DOX with CD on A375 melanoma cells compared to normal human dermal fibroblasts (NHDF) and rat cardiac myoblasts (H9C2 cells). DOX-induced cytotoxicity was unselective and affected all cell types, especially H9C2 cardiac myoblasts, demonstrating its cardiotoxic effect. In contrast, CD only decreased the cell viability of A375 melanoma cells, without harming normal (healthy) cells. The addition of CD selectively protected human dermal fibroblasts and rat cardiac myoblasts from DOX-induced cytotoxicity. While no apoptosis was induced by the combinational treatment in normal (healthy) cells, an apoptosis-mediated cytotoxicity was demonstrated in A375 melanoma cells. CD exhibited thiol reactivity as it was able to directly interact with N-acetylcysteine (NAC) in a cell-free assay and to induce heme oxygenase-1 (HO-1) in all cell types. And that took place in a reactive oxygen species (ROS)-independent manner. DOX decreased the mitochondrial membrane potential (Δψm) in all cell types, whereas CD selectively decreased mitochondrial respiration, affecting basal respiration, maximal respiration, spare respiratory capacity and ATP production in A375 melanoma cells, but not in healthy cardiac myoblasts. The DOX-induced cytotoxicity seen in melanoma cells was ROS-independent, whereas the cytotoxic effect of CD was associated with CD-induced ROS-formation and/or its thiol reactivity. This study highlights the beneficial properties of the addition of CD to DOX treatment, which might protect patients from DOX-induced cardiotoxicity. Future experiments with other tumor cell lines or a mouse model should substantiate this hypothesis. Full article
Show Figures

Figure 1

18 pages, 18799 KiB  
Article
Protective Effects of Beta-3 Adrenoceptor Agonism on Mucosal Integrity in Hyperoxia-Induced Ileal Alterations
by Patrizia Nardini, Virginia Zizi, Marta Molino, Camilla Fazi, Maura Calvani, Francesco Carrozzo, Giorgia Giuseppetti, Laura Calosi, Daniele Guasti, Denise Biagini, Fabio Di Francesco, Luca Filippi and Alessandro Pini
Antioxidants 2024, 13(7), 863; https://doi.org/10.3390/antiox13070863 - 18 Jul 2024
Viewed by 394
Abstract
Organogenesis occurs in the uterus under low oxygen levels (4%). Preterm birth exposes immature newborns to a hyperoxic environment, which can induce a massive production of reactive oxygen species and potentially affect organ development, leading to diseases such as necrotizing enterocolitis. The β3-adrenoreceptor [...] Read more.
Organogenesis occurs in the uterus under low oxygen levels (4%). Preterm birth exposes immature newborns to a hyperoxic environment, which can induce a massive production of reactive oxygen species and potentially affect organ development, leading to diseases such as necrotizing enterocolitis. The β3-adrenoreceptor (β3-AR) has an oxygen-dependent regulatory mechanism, and its activation exerts an antioxidant effect. To test the hypothesis that β3-AR could protect postnatal ileal development from the negative impact of high oxygen levels, Sprague–Dawley rat pups were raised under normoxia (21%) or hyperoxia (85%) for the first 2 weeks after birth and treated or not with BRL37344, a selective β3-AR agonist, at 1, 3, or 6 mg/kg. Hyperoxia alters ileal mucosal morphology, leading to increased cell lipid oxidation byproducts, reduced presence of β3-AR-positive resident cells, decreased junctional protein expression, disrupted brush border, mucin over-production, and impaired vascularization. Treatment with 3 mg/kg of BRL37344 prevented these alterations, although not completely, while the lower 1 mg/kg dose was ineffective, and the higher 6 mg/kg dose was toxic. Our findings indicate the potential of β3-AR agonism as a new therapeutic approach to counteract the hyperoxia-induced ileal alterations and, more generally, the disorders of prematurity related to supra-physiologic oxygen exposure. Full article
(This article belongs to the Special Issue Hormones and Oxidative Stress)
Show Figures

Figure 1

22 pages, 1057 KiB  
Review
The Interplay of Protein Aggregation, Genetics, and Oxidative Stress in Alzheimer’s Disease: Role for Natural Antioxidants and Immunotherapeutics
by Jawad Ali, Kyonghwan Choe, Jun Sung Park, Hyun Young Park, Heeyoung Kang, Tae Ju Park and Myeong Ok Kim
Antioxidants 2024, 13(7), 862; https://doi.org/10.3390/antiox13070862 - 18 Jul 2024
Viewed by 542
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that comprises amyloid-beta protein (Aβ) as a main component of neuritic plaques. Its deposition is considered a trigger for AD pathogenesis, progression, and the clinical symptoms of cognitive impairment. Some distinct pathological features of AD [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that comprises amyloid-beta protein (Aβ) as a main component of neuritic plaques. Its deposition is considered a trigger for AD pathogenesis, progression, and the clinical symptoms of cognitive impairment. Some distinct pathological features of AD include phosphorylation of tau protein, oxidative stress, and mitochondrial dysfunction. These pathological consequences tend to produce reactive oxygen species (ROS), resulting in the dysregulation of various signaling pathways of neuroinflammation and neurodegeneration. The relationship between the Aβ cascade and oxidative stress in AD pathogenesis is like a “chicken and egg” story, with the etiology of the disease regarding these two factors remaining a question of “which comes first.” However, in this review, we have tried our best to clarify the interconnection between these two mechanisms and to show the precise cause-and-effect relationship. Based on the above hallmarks of AD, several therapeutic strategies using natural antioxidants, monoclonal antibodies, and vaccines are employed as anti-Aβ therapy to decrease ROS, Aβ burden, chronic neuroinflammation, and synaptic failure. These natural antioxidants and immunotherapeutics have demonstrated significant neuroprotective effects and symptomatic relief in various in vitro and in vivo models, as well as in clinical trials for AD. However, none of them have received final approval to enter the drug market for mitigating AD. In this review, we extensively elaborate on the pitfalls, assurances, and important crosstalk between oxidative stress and Aβ concerning current anti-Aβ therapy. Additionally, we discuss future strategies for the development of more Aβ-targeted approaches and the optimization of AD treatment and mitigation. Full article
Show Figures

Figure 1

15 pages, 3606 KiB  
Article
Antioxidant and Neuroprotective Effects of Seed Oils from Trichosanthes kirilowii and T. laceribractea in Caenorhabditis elegans: A Comparative Analysis and Mechanism Study
by Wenqian Wang, Shan Li, Yunguo Zhu, Xianghuan Cui, Zhejin Sheng, Hongbing Wang and Zhou Cheng
Antioxidants 2024, 13(7), 861; https://doi.org/10.3390/antiox13070861 - 18 Jul 2024
Viewed by 439
Abstract
Excess reactive oxygen species (ROS) can accelerate amyloid β (Aβ) aggregation and tau protein hyperphosphorylation in neuron cells, which further leads to neurodegenerative diseases such as Alzheimer’s disease (AD). Therefore, there is an urgent need to find natural and safe antioxidants for preventing [...] Read more.
Excess reactive oxygen species (ROS) can accelerate amyloid β (Aβ) aggregation and tau protein hyperphosphorylation in neuron cells, which further leads to neurodegenerative diseases such as Alzheimer’s disease (AD). Therefore, there is an urgent need to find natural and safe antioxidants for preventing or treating such neurodegenerative diseases. The seeds of Trichosanthes kirilowii Maxim and T. laceribractea Hayata have long been used for medicinal and edible purposes in China. However, the antioxidant and neuroprotective activities and underlying mechanisms of their seed oils still remain unclear. Herein, we examine the antioxidant and neuroprotective effects of seed oils extracted from different germplasms, T. kirilowii (YNHH and SDJN) and T. laceribractea (ZJQT and SXHZ), on ROS levels and neuroprotective activities in C. elegans. The results demonstrated that the seed oils significantly reduced the ROS levels in C. elegans by 17.03–42.74%, with T. kirilowii (YNHH and SDJN) exhibiting significantly stronger ROS scavenging abilities than T. laceribractea (ZJQT and SXHZ). The seed oils from T. kirilowii (YNHH and SDJN) alleviated the production and aggregation of Aβ and the phosphorylation and polymerization of tau, suggesting a potential neuroprotective role. Conversely, seed oils from T. laceribractea (ZJQT and SXHZ) show minimal neuroprotective effects in C. elegans. These differential outcomes might stem from distinct mechanisms underlying antioxidant and neuroprotective effects, with the ctl-2 gene implicated as pivotal in mediating the significant neuroprotective effects of seed oils from T. kirilowii (YNHH and SDJN). Our findings have provided valuable insights into the antioxidant and neuroprotective properties of T. kirilowii seed oils, paving the way for further research aimed at elucidating the underlying mechanisms and exploring their potential therapeutic applications in combating neurodegenerative diseases. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

19 pages, 5421 KiB  
Article
Poplar Bud (Populus) Extraction and Chinese Propolis Counteract Oxidative Stress in Caenorhabditis elegans via Insulin/IGF-1 Signaling Pathway
by Shuo Wang, Chengchao Yang, Yaling Luo, Qingyi Chen, Mengyang Xu, Yuntao Ji, Xiasen Jiang and Changqing Qu
Antioxidants 2024, 13(7), 860; https://doi.org/10.3390/antiox13070860 - 18 Jul 2024
Viewed by 349
Abstract
Poplar buds are characterized by a high content of phenolic compounds, which exhibit a broad spectrum of biological activities. However, the relationship between Chinese propolis and poplar buds based on their antioxidant capacities and underlying mechanisms remains unclear. This study aimed to investigate [...] Read more.
Poplar buds are characterized by a high content of phenolic compounds, which exhibit a broad spectrum of biological activities. However, the relationship between Chinese propolis and poplar buds based on their antioxidant capacities and underlying mechanisms remains unclear. This study aimed to investigate the antioxidant properties of poplar bud (Populus) extract (PBE) and Chinese propolis (CP) and to elucidate the mechanisms behind their activity. High-performance liquid chromatography (HPLC) analysis revealed that both PBE and CP contain a significant amount of phenolic acids and flavonoids. 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and ferric-reducing antioxidant power (FRAP) assays demonstrated that PBE and CP possess excellent antioxidant activity. Furthermore, administration of PBE and CP improved the survival rate of C. elegans under oxidative stress. They also decreased the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), while enhancing the activity of antioxidant enzymes (SOD, CAT). PBE and CP intervention upregulated the expression of key genes daf-16, sod-3, hsp-16.2, and skn-1 in nematodes. This suggests that the antioxidant activity of PBE and CP is dependent on daf-16 and skn-1 signaling pathways. In conclusion, poplar bud extracts ha have the potential to become a substitute for propolis and a potential therapeutic agent for treating diseases associated with oxidative damage. Full article
Show Figures

Graphical abstract

19 pages, 7549 KiB  
Article
Astragalin from Thesium chinense: A Novel Anti-Aging and Antioxidant Agent Targeting IGFR/CD38/Sirtuins
by Ruifeng Wang, Anping Ding, Jiaye Wang, Jiaxue Wang, Yujie Zhou, Miao Chen, Shuang Ju, Mingpu Tan and Zengxu Xiang
Antioxidants 2024, 13(7), 859; https://doi.org/10.3390/antiox13070859 - 18 Jul 2024
Viewed by 452
Abstract
Astragalin (AG), a typical flavonoid found in Thesium chinense Turcz (T. chinense), is abundant in various edible plants and possesses high nutritional value, as well as antioxidant and antibacterial effects. In this study, we initially predicted the mechanism of action of [...] Read more.
Astragalin (AG), a typical flavonoid found in Thesium chinense Turcz (T. chinense), is abundant in various edible plants and possesses high nutritional value, as well as antioxidant and antibacterial effects. In this study, we initially predicted the mechanism of action of AG with two anti-aging and antioxidant-related protein targets (CD38 and IGFR) by molecular docking and molecular dynamics simulation techniques. Subsequently, we examined the anti-aging effects of AG in Caenorhabditis elegans (C. elegans), the antioxidant effects in zebrafish, and verified the related molecular mechanisms. In C. elegans, AG synergistically extended the lifespan of C. elegans by up-regulating the expression of daf-16 through inhibiting the expression of daf-2/IGFR and also activating the AMPK and MAPK pathways to up-regulate the expression of sir-2.1, sir-2.4, and skn-1. In oxidatively damaged zebrafish embryos, AG demonstrated a synergistic effect in augmenting the resistance of zebrafish embryos to oxidative stress by up-regulating the expression levels of SIRT1 and SIRT6 within the zebrafish embryos system via the suppression of CD38 enzymatic activity and then inhibiting the expression of IGFR through high levels of SIRT6. These findings highlight the antioxidant and anti-aging properties of AG and indicate its potential application as a supplementary ingredient in aquaculture for enhancing fish health and growth. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

18 pages, 2490 KiB  
Article
Placental Bioenergetics and Antioxidant Homeostasis in Maternal Obesity and Gestational Diabetes
by Chiara Mandò, Sara Castiglioni, Chiara Novielli, Gaia Maria Anelli, Anaïs Serati, Francesca Parisi, Chiara Lubrano, Monica Zocchi, Roberta Ottria and Matteo Giovarelli
Antioxidants 2024, 13(7), 858; https://doi.org/10.3390/antiox13070858 - 18 Jul 2024
Viewed by 354
Abstract
Maternal obesity has been associated with short- and long-term risks of pregnancy-perinatal adverse events, possibly due to alterations of placental mitochondrial bioenergetics. However, several detrimental mechanisms occurring in the placentas of women with obesity still need to be clarified. Here, we analyzed placental [...] Read more.
Maternal obesity has been associated with short- and long-term risks of pregnancy-perinatal adverse events, possibly due to alterations of placental mitochondrial bioenergetics. However, several detrimental mechanisms occurring in the placentas of women with obesity still need to be clarified. Here, we analyzed placental mitochondrial features and oxidative environment of 46 pregnancies in relation to pre-pregnancy BMI. Seventeen Caucasian normal-weight (NW) and twenty-nine women who were obese (OB) were enrolled. The protein expression of mitochondrial CypD and electron transfer chain complexes (C) I–V were measured, as well as ATP production and oxygen consumption rates (OCRs). The protein levels of the pro/anti-oxidant enzymes TXNIP, SOD2, and PON2 were also analyzed. Despite no differences in CypD expression, OCRs were significantly lower in OB vs. NW women. Accordingly, ATP synthase (CV) levels and ATP content were decreased in OB women, positively correlating with placental efficiency, suggesting a link between ATP deficiency and placental dysfunction. SOD2 expression negatively correlated with maternal BMI, indicating a possible impairment of antioxidant defenses with increasing BMI. These changes were worsened in 10 OB women presenting with gestational diabetes mellitus. Overall, these results suggest alterations of placental bioenergetics in pregnancies of women with obesity, possibly leading to placental dysfunction and altered fetal development and programming. Full article
(This article belongs to the Special Issue Oxidative Stress in Pregnancy and Childhood)
Show Figures

Graphical abstract

16 pages, 5730 KiB  
Article
Thermal-Responsive Antibacterial Hydrogel with Photothermal Therapy and Improving Wound Microenvironment for Promote Healing
by Linjie Huang, Jingwen Deng, Yina Su, Xueqi Hu, Yichao Zhang, Shanni Hong and Xiahui Lin
Antioxidants 2024, 13(7), 857; https://doi.org/10.3390/antiox13070857 - 17 Jul 2024
Viewed by 483
Abstract
Skin damage is one of the most prevalent human injuries, which affects the health of human beings. However, skin damage is often accompanied by bacterial infection and wound microenvironment changes, causing damage to normal cells and inhibiting wound healing. Herein, we designed a [...] Read more.
Skin damage is one of the most prevalent human injuries, which affects the health of human beings. However, skin damage is often accompanied by bacterial infection and wound microenvironment changes, causing damage to normal cells and inhibiting wound healing. Herein, we designed a thermal-responsive antibacterial hydrogel (GAG hydrogel) loaded with catalase (CAT)-like Au@Pt@MgSiO3 nanoparticles (APM NPs) and gentamicin (GM) to promote wound healing. The GAG hydrogel was used in a photothermal therapy (PTT)/antibiotic combination to kill bacteria, reduce the use of antibiotics, improve the wound microenvironment, promote cell proliferation, and accelerate wound healing. Under near-infrared laser irradiation, APM NPs in the hydrogel generated local hyperthermia to kill bacteria. Meanwhile, the generated heat led to a change in the hydrogel’s morphology, enabling it to release GM and APM NPs to prevent the overuse of antibiotics. Subsequently, the CAT-like ability of the APM NPs decreased the oxidative stress caused by hydrogen peroxide (H2O2), thus remodeling the wound microenvironment. Then, the weakly acidic microenvironment of the wound caused the decomposition of the APM NPs and the release of magnesium ions (Mg2+), promoting the growth and migration of cells for wound healing. Therefore, the studied thermal-responsive antibacterial (GAG) hydrogel has potential in the field of wound healing. Full article
Show Figures

Figure 1

19 pages, 7891 KiB  
Article
The Combination of Molecular Hydrogen and Heme Oxygenase 1 Effectively Inhibits Neuropathy Caused by Paclitaxel in Mice
by Ignacio Martínez-Martel, Xue Bai, Rebecca Kordikowski, Christie R. A. Leite-Panissi and Olga Pol
Antioxidants 2024, 13(7), 856; https://doi.org/10.3390/antiox13070856 - 17 Jul 2024
Viewed by 542
Abstract
Chemotherapy-provoked peripheral neuropathy and its associated affective disorders are important adverse effects in cancer patients, and its treatment is not completely resolved. A recent study reveals a positive interaction between molecular hydrogen (H2) and a heme oxygenase (HO-1) enzyme inducer, cobalt [...] Read more.
Chemotherapy-provoked peripheral neuropathy and its associated affective disorders are important adverse effects in cancer patients, and its treatment is not completely resolved. A recent study reveals a positive interaction between molecular hydrogen (H2) and a heme oxygenase (HO-1) enzyme inducer, cobalt protoporphyrin IX (CoPP), in the inhibition of neuropathic pain provoked by nerve injury. Nevertheless, the efficacy of CoPP co-administered with hydrogen-rich water (HRW) on the allodynia and emotional disorders related to paclitaxel (PTX) administration has not yet been assessed. Using male C57BL/6 mice injected with PTX, we examined the effects of the co-administration of low doses of CoPP and HRW on mechanical and thermal allodynia and anxiodepressive-like behaviors triggered by PTX. Moreover, the impact of this combined treatment on the oxidative stress and inflammation caused by PTX in the amygdala (AMG) and dorsal root ganglia (DRG) were studied. Our results indicated that the antiallodynic actions of the co-administration of CoPP plus HRW are more rapid and higher than those given by each of them when independently administered. This combination inhibited anxiodepressive-like behaviors, the up-regulation of the inflammasome NLRP3 and 4-hydroxynonenal, as well as the high mRNA levels of some inflammatory mediators. This combination also increased the expression of NRF2, HO-1, superoxide dismutase 1, glutathione S-transferase mu 1, and/or the glutamate-cysteine ligase modifier subunit and decreased the protein levels of BACH1 in the DRG and/or AMG. Thus, it shows a positive interaction among HO-1 and H2 systems in controlling PTX-induced neuropathy by modulating inflammation and activating the antioxidant system. This study recommends the co-administration of CoPP plus HRW as an effective treatment for PTX-provoked neuropathy and its linked emotive deficits. Full article
(This article belongs to the Special Issue Experimental and Therapeutic Targeting of Heme Oxygenase)
Show Figures

Figure 1

30 pages, 5219 KiB  
Article
Apocynin Prevents Cigarette Smoke-Induced Anxiety-Like Behavior and Preserves Microglial Profiles in Male Mice
by Rana Alateeq, Alina Akhtar, Simone N. De Luca, Stanley M. H. Chan and Ross Vlahos
Antioxidants 2024, 13(7), 855; https://doi.org/10.3390/antiox13070855 - 16 Jul 2024
Viewed by 593
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death globally and is primarily caused by cigarette smoking (CS). Neurocognitive comorbidities such as anxiety and cognitive impairments are common among people with COPD. CS-induced lung inflammation and oxidative stress may “spill-over” [...] Read more.
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death globally and is primarily caused by cigarette smoking (CS). Neurocognitive comorbidities such as anxiety and cognitive impairments are common among people with COPD. CS-induced lung inflammation and oxidative stress may “spill-over” into the systemic circulation, driving the onset of these comorbidities. We investigated whether a prophylactic treatment with the NADPH Oxidase 2 (NOX2) inhibitor, apocynin, could prevent CS-induced neurocognitive impairments. Adult male BALB/c mice were exposed to CS (9 cigarettes/day, 5 days/week) or room air (sham) for 8 weeks with co-administration of apocynin (5 mg/kg, intraperitoneal injection once daily) or vehicle (0.01% DMSO in saline). Following 7 weeks of CS exposure, mice underwent behavioral testing to assess recognition and spatial memory (novel object recognition and Y maze, respectively) and anxiety-like behaviors (open field and elevated plus maze). Mice were then euthanized, and blood, lungs, and brains were collected. Apocynin partially improved CS-induced lung neutrophilia and reversed systemic inflammation (C-reactive protein) and oxidative stress (malondialdehyde). Apocynin exerted an anxiolytic effect in CS-exposed mice, which was associated with restored microglial profiles within the amygdala and hippocampus. Thus, targeting oxidative stress using apocynin can alleviate anxiety-like behaviors and could represent a novel strategy for managing COPD-related anxiety disorders. Full article
(This article belongs to the Special Issue Novel Antioxidant Mechanisms for Health and Diseases)
Show Figures

Figure 1

16 pages, 4742 KiB  
Article
Isolation, Characterization, and Functional Properties of Antioxidant Peptides from Mulberry Leaf Enzymatic Hydrolysates
by Yichen Zhou, Rijun Zhang, Junyong Wang, Yucui Tong, Jing Zhang, Zhenzhen Li, Haosen Zhang, Zaheer Abbas, Dayong Si and Xubiao Wei
Antioxidants 2024, 13(7), 854; https://doi.org/10.3390/antiox13070854 - 16 Jul 2024
Viewed by 497
Abstract
Recent evidence suggests that mulberry leaves have good antioxidant activity. However, what the antioxidant ingredient is and how the ingredient works are still not well understood. In this study, we enzymatically hydrolyze mulberry leaf proteins (MLPs) using neutral protease and find that the [...] Read more.
Recent evidence suggests that mulberry leaves have good antioxidant activity. However, what the antioxidant ingredient is and how the ingredient works are still not well understood. In this study, we enzymatically hydrolyze mulberry leaf proteins (MLPs) using neutral protease and find that the mulberry leaf protein hydrolysates (MLPHs) have stronger antioxidant activity compared to MLPs. We separate the core antioxidant components in MLPHs by ion-exchange columns and molecular sieves and identify 798 antioxidant peptides by LC-MS/MS. Through bioinformatics analysis and biochemical assays, we screen two previously unreported peptides, P6 and P7, with excellent antioxidant activities. P6 and P7 not only significantly reduce ROS in cells but also improve the activities of the antioxidant enzymes SOD and CAT. In addition, both peptides are found to exert protective effects against H2O2-induced chromatin damage and cell apoptosis. Collectively, these results provide support for the application of mulberry leaf peptides as antioxidants in the medical, food and livestock industries. Full article
Show Figures

Figure 1

17 pages, 2741 KiB  
Review
The Antioxidant Properties, Metabolism, Application and Mechanism of Ferulic Acid in Medicine, Food, Cosmetics, Livestock and Poultry
by Mengli Zheng, Yating Liu, Guanfeng Zhang, Zhikang Yang, Weiwei Xu and Qinghua Chen
Antioxidants 2024, 13(7), 853; https://doi.org/10.3390/antiox13070853 - 16 Jul 2024
Viewed by 635
Abstract
Ferulic acid is a ubiquitous ingredient in cereals, vegetables, fruits and Chinese herbal medicines. Due to the ferulic phenolic nucleus coupled to an extended side chain, it readily forms a resonant-stable phenoxy radical, which explains its potent antioxidant potential. In addition, it also [...] Read more.
Ferulic acid is a ubiquitous ingredient in cereals, vegetables, fruits and Chinese herbal medicines. Due to the ferulic phenolic nucleus coupled to an extended side chain, it readily forms a resonant-stable phenoxy radical, which explains its potent antioxidant potential. In addition, it also plays an important role in anti-cancer, pro-angiogenesis, anti-thrombosis, neuroprotection, food preservation, anti-aging, and improving the antioxidant performance of livestock and poultry. This review provides a comprehensive summary of the structure, mechanism of antioxidation, application status, molecular mechanism of pharmacological activity, existing problems, and application prospects of ferulic acid and its derivatives. The aim is to establish a theoretical foundation for the utilization of ferulic acid in medicine, food, cosmetics, livestock, and poultry. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop