Metallothionein: A Comprehensive Review of Its Classification, Structure, Biological Functions, and Applications
Abstract
:1. Introduction
2. The Classification and Structure of Metallothionein
2.1. Classification
2.2. Structure
3. Biological Functions of Metallothionein
3.1. Detoxification of Heavy Metals
Metallothionein Source | Target of Action | Type of Metal Ion | Effect | Reference |
---|---|---|---|---|
Anabaena PCC 7120 NmtA | E. coli cells | Cd2+ | NmtA-expressing E. coli exhibits better growth at certain cadmium concentrations | [27] |
Metallothionein expressed by Alishewanella sp. WH16-1-MT | Rice | Cd2+ | Increased plant height, spike length, and thousand-grain weight of rice, resulting in a significant reduction in Cd2+ content in brown rice, rice husk, roots, and shoots | [28] |
S. cerevisiae expresses the PtMT2b gene from Populus trichocarpa | S. cerevisiae | Cd2+ | Enhanced Cd2+ tolerance in S. cerevisiae | [29] |
Ipomoea aquatica metallothionein IaMT expressed in E. coli | E. coli | Cd2+ | Increased tolerance to and accumulation of Cd2+ in E. coli | [30] |
Rabbit liver MT-2 | Grass carp | Cd2+ | Reduced cadmium levels in kidneys and blood, attenuating organ damage | [31] |
Commercial production of metallothionein | PC12 cells | As3+ | Reduced As3+-induced metabolic disturbances and inhibited ROS accumulation | [32] |
ShMT expressed in E. coli | Metal ions in solution | Zn2+, Cu2+ and Cd2+ | SnMT has a strong ability to bind Zn, Cu, and Cd metals | [33] |
Human metallothionein HsMT1L gene expressed in tobacco | tobacco | Zn2+ and Cd2+ | Increased accumulation of Zn2+ and Cd2+ in tobacco and enhanced tolerance to Zn2+ and Cd2+ | [34] |
Metallothionein expressed by the engineered bacterium EcN-MT | Mice | Cd2+ | Significantly reduced the content of Cd in mouse liver and accelerated the metabolism of Cd | [35] |
Metallothionein expressed by Rhizobium leguminosarum strains expressing the pea metallothionein gene | CdCl2 solution | Cd2+ | Enhanced Cd tolerance in peas | [36] |
3.2. Antioxidant Effect
3.3. Neuroprotective Effect
3.4. Anticancer Effect
Metallothionein Type | Type of Cancer | Effect | Reference |
---|---|---|---|
Metallothionein I-II | Feline injection site fibrosarcoma | The degree of metallothionein expression negatively correlates with the degree of inflammation and tumor grade | [9] |
MT1M | Esophageal squamous cell carcinoma | Overexpression of MT1M altered cell morphology, induced apoptosis, decreased cell viability and epithelial-mesenchymal transition, up-regulated ROS levels, down-regulated SOD1 activity, and phosphorylated the SOD1 downstream pathway PI3K/AKT | [66] |
MT1G and MT2A | Colorectal cancer | Synergizing with cannabidiol in the treatment of colorectal cancer | [67] |
MT1E | Hepatocellular carcinoma | MT1E inhibits hepatocellular carcinoma cell proliferation, migration, and invasion and induces apoptosis | [68] |
MT1M | Gastric cancer | Inhibits proliferation, migration, and invasion of gastric cancer cells, promotes apoptosis, increases chemosensitivity to 5-fluorouracil, and inhibits stem cell production | [69] |
MT1G | Hepatocellular carcinoma | Inhibition of proliferation, cloning, migration and invasion of hepatocellular carcinoma cells and mediation of the anticancer effect of sorafenib | [70] |
MT-1 | Hepatocellular carcinoma | Suppression of MT-1 expression leads to proliferation of hepatocellular carcinoma cells | [71] |
MT2A | Colorectal cancer | Overexpression of MT2A suppresses proliferation and migration of colorectal cancer cells | [72] |
MT1G | Pancreatic ductal adenocarcinoma | MT1G negatively regulates NF-κB signaling and limits activin A secretion | [73] |
MT2A | Malignant pleural mesothelioma | Knockdown of MT2A expression enhances the apoptosis rate of malignant pleural mesothelioma cells under cisplatin effect | [75] |
MT2A | Osteosarcoma | MT2A silencing elevates the sensitivity of osteosarcoma cell lines to multiple chemotherapeutic agents | [76] |
Nuclear metallothionein | Ovarian cancer | CO treatment attenuates the expression of nuclear metallothionein in cisplatin-resistant ovarian cancer cell lines and enhances the sensitivity of cisplatin-resistant cell lines to cisplatin | [77] |
3.5. Anti-Inflammatory Effect
4. Applications of Metallothionein
4.1. Detection and Removal of Heavy Metal Ions from the Environment
4.2. Disease Prediction and Diagnosis in Medicine
4.3. Development of Products with Skincare Functions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Margoshes, M.; Vallee, B.L. A Cadmium Protein from Equine Kidney Cortex. J. Am. Chem. Soc. 1957, 79, 4813–4814. [Google Scholar] [CrossRef]
- Jamrozik, D.; Dutczak, R.; Machowicz, J.; Wojtyniak, A.; Smedowski, A.; Pietrucha-Dutczak, M. Metallothioneins, a Part of the Retinal Endogenous Protective System in Various Ocular Diseases. Antioxidants 2023, 12, 1251. [Google Scholar] [CrossRef] [PubMed]
- Krizkova, S.; Kepinska, M.; Emri, G.; Eckschlager, T.; Stiborova, M.; Pokorna, P.; Heger, Z.; Adam, V. An insight into the complex roles of metallothioneins in malignant diseases with emphasis on (sub)isoforms/isoforms and epigenetics phenomena. Pharmacol. Ther. 2018, 183, 90–117. [Google Scholar] [CrossRef] [PubMed]
- Coyle, P.; Philcox, J.C.; Carey, L.C.; Rofe, A.M. Metallothionein: The multipurpose protein. Cell Mol. Life Sci. 2002, 59, 627–647. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Z.; Guo, K.; Zhou, Y.; Xing, K.; Zheng, J.; Sun, Y.; Zhang, J. Metallothionein-1 gene from Exopalaemon carinicauda and its response to heavy metal ions challenge. Mar. Pollut. Bull. 2022, 175, 113324. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, I.; Asanuma, M. Multifunctional Metallothioneins as a Target for Neuroprotection in Parkinson’s Disease. Antioxidants 2023, 12, 894. [Google Scholar] [CrossRef]
- McLeary, F.A.; Rcom-H’cheo-Gauthier, A.N.; Goulding, M.; Radford, R.A.W.; Okita, Y.; Faller, P.; Chung, R.S.; Pountney, D.L. Switching on Endogenous Metal Binding Proteins in Parkinson’s Disease. Cells 2019, 8, 179. [Google Scholar] [CrossRef] [PubMed]
- Kanbara, S.; Ohkawara, B.; Nakashima, H.; Ohta, K.; Koshimizu, H.; Inoue, T.; Tomita, H.; Ito, M.; Masuda, A.; Ishiguro, N.; et al. Zonisamide ameliorates progression of cervical spondylotic myelopathy in a rat model. Sci. Rep. 2020, 10, 13138. [Google Scholar] [CrossRef]
- Mikiewicz, M.; Pazdzior-Czapula, K.; Fiedorowicz, J.; Gesek, M.; Otrocka-Domagala, I. Metallothionein expression in feline injection site fibrosarcomas. BMC Vet. Res. 2023, 19, 42. [Google Scholar] [CrossRef]
- Jose, D.; Allen, A.L.; Blakley, B.; Al-Dissi, A. Evaluation of metallothionein and Ki-67 expression in chronic cholangiohepatitis in cats. Can. J. Vet. Res. 2021, 85, 36–44. [Google Scholar]
- Binz, P.A.; Kägi, J.H.R. Metallothionein: Molecular evolution and classification. In Metallothionein IV; Springer: Basel, Switzerland, 1999; pp. 7–13. [Google Scholar]
- Alvarez-Barrios, A.; Alvarez, L.; Garcia, M.; Artime, E.; Pereiro, R.; Gonzalez-Iglesias, H. Antioxidant Defenses in the Human Eye: A Focus on Metallothioneins. Antioxidants 2021, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Thirumoorthy, N.; Manisenthil Kumar, K.T.; Shyam Sundar, A.; Panayappan, L.; Chatterjee, M. Metallothionein: An overview. World J. Gastroenterol. 2007, 13, 993–996. [Google Scholar] [CrossRef] [PubMed]
- Moffatt, P.; Seguin, C. Expression of the gene encoding metallothionein-3 in organs of the reproductive system. DNA Cell Biol. 1998, 17, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Quaife, C.J.; Findley, S.D.; Erickson, J.C.; Froelick, G.J.; Kelly, E.J.; Zambrowicz, B.P.; Palmiter, R.D. Induction of a new metallothionein isoform (MT-IV) occurs during differentiation of stratified squamous epithelia. Biochemistry 1994, 33, 7250–7259. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, D.E.; Stillman, M.J. Challenging conventional wisdom: Single domain metallothioneins. Metallomics 2014, 6, 702–728. [Google Scholar] [CrossRef] [PubMed]
- Ziller, A.; Fraissinet-Tachet, L. Metallothionein diversity and distribution in the tree of life: A multifunctional protein. Metallomics 2018, 10, 1549–1559. [Google Scholar] [CrossRef] [PubMed]
- Stankovic, R.K.; Chung, R.S.; Penkowa, M. Metallothioneins I and II: Neuroprotective significance during CNS pathology. Int. J. Biochem. Cell Biol. 2007, 39, 484–489. [Google Scholar] [CrossRef]
- Sakulsak, N. Metallothionein: An Overview on its Metal Homeostatic Regulation in Mammals. Int. J. Morphol. 2012, 30, 1007–1012. [Google Scholar] [CrossRef]
- Braun, W.; Vasak, M.; Robbins, A.H.; Stout, C.D.; Wagner, G.; Kagi, J.H.; Wuthrich, K. Comparison of the NMR solution structure and the x-ray crystal structure of rat metallothionein-2. Proc. Natl. Acad. Sci. USA 1992, 89, 10124–10128. [Google Scholar] [CrossRef]
- Juarez-Rebollar, D.; Rios, C.; Nava-Ruiz, C.; Mendez-Armenta, M. Metallothionein in Brain Disorders. Oxidative Med. Cell. Longev. 2017, 2017, 5828056. [Google Scholar] [CrossRef]
- Chan, J. Studies of metal binding reactions in metallothioneins by spectroscopic, molecular biology, and molecular modeling techniques. Coord. Chem. Rev. 2002, 233–234, 319–339. [Google Scholar] [CrossRef]
- Vijver, M.G.; Van Gestel, C.A.; Lanno, R.P.; Van Straalen, N.M.; Peijnenburg, W.J. Internal metal sequestration and its ecotoxicological relevance: A review. Environ. Sci. Technol. 2004, 38, 4705–4712. [Google Scholar] [CrossRef] [PubMed]
- Bremner, I. Nutritional and physiological significance of metallothionein. Exp. Suppl. 1987, 52, 81–107. [Google Scholar] [CrossRef]
- Richards, M.P. Recent developments in trace element metabolism and function: Role of metallothionein in copper and zinc metabolism. J. Nutr. 1989, 119, 1062–1070. [Google Scholar] [CrossRef]
- Järup, L.; Åkesson, A. Current status of cadmium as an environmental health problem. Toxicol. Appl. Pharm. 2009, 238, 201–208. [Google Scholar] [CrossRef]
- T, V.D.; Chandwadkar, P.; Acharya, C. NmtA, a novel metallothionein of Anabaena sp. strain PCC 7120 imparts protection against cadmium stress but not oxidative stress. Aquat. Toxicol. 2018, 199, 152–161. [Google Scholar] [CrossRef]
- Yu, Y.; Shi, K.; Li, X.; Luo, X.; Wang, M.; Li, L.; Wang, G.; Li, M. Reducing cadmium in rice using metallothionein surface-engineered bacteria WH16-1-MT. Environ. Res. 2022, 203, 111801. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, V.H.; Ullah, I.; Dunwell, J.M.; Tibbett, M. Bioremediation potential of Cd by transgenic yeast expressing a metallothionein gene from Populus trichocarpa. Ecotoxicol. Environ. Saf. 2020, 202, 110917. [Google Scholar] [CrossRef]
- Huang, Y.-Y.; Gong, F.-Y.; Shen, C.; He, C.-T.; Fu, H.-L.; Wang, X.-S.; Tan, X.; Xu, P.-L.; Yang, Z.-Y. Cloning, characterization and expression analysis of metallothioneins from Ipomoea aquatica and their cultivar-dependent roles in Cd accumulation and detoxification. Ecotoxicol. Environ. Saf. 2018, 165, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Xiong, G.; Feng, Y.; Fan, W.; Yang, S.; Duan, J.; Duan, Y.; Wang, K.; Ou, Y.; Rehman, T.; et al. Protective effects of metallothionein and vitamin E in the trunk kidney and blood of cadmium poisoned Ctenopharyngodon idellus. Fish. Physiol. Biochem. 2020, 46, 1053–1061. [Google Scholar] [CrossRef]
- Qi, Z.; Wang, Q.; Wang, H.; Tan, M. Metallothionein Attenuated Arsenic-Induced Cytotoxicity: The Underlying Mechanism Reflected by Metabolomics and Lipidomics. J. Agric. Food Chem. 2021, 69, 5372–5380. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Wang, L.; Ma, W.; Lu, X.; Li, Y.; Liu, J. Secretory expression, immunoaffinity purification and metal-binding ability of recombinant metallothionein (ShMT) from freshwater crab Sinopotamon henanense. Ecotoxicol. Environ. Saf. 2019, 169, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Cui, M.; Ni, L.; Qin, Y.; Li, J.; Pan, Y.; Zhang, X. Heterologous Expression of Human Metallothionein Gene HsMT1L Can Enhance the Tolerance of Tobacco (Nicotiana nudicaulis Watson) to Zinc and Cadmium. Genes 2022, 13, 2413. [Google Scholar] [CrossRef]
- Zou, C.; Chen, Y.; Li, H.; Li, W.; Wei, J.; Li, Z.; Wang, X.; Chen, T.; Huang, H. Engineered Bacteria EcN-MT Alleviate Liver Injury in Cadmium-Exposed Mice via its Probiotics Characteristics and Expressing of Metallothionein. Front. Pharmacol. 2022, 13, 857869. [Google Scholar] [CrossRef] [PubMed]
- Tsyganov, V.E.; Tsyganova, A.V.; Gorshkov, A.P.; Seliverstova, E.V.; Kim, V.E.; Chizhevskaya, E.P.; Belimov, A.A.; Serova, T.A.; Ivanova, K.A.; Kulaeva, O.A.; et al. Efficacy of a Plant-Microbe System: Pisum sativum (L.) Cadmium-Tolerant Mutant and Rhizobium leguminosarum Strains, Expressing Pea Metallothionein Genes PsMT1 and PsMT2, for Cadmium Phytoremediation. Front. Microbiol. 2020, 11, 15. [Google Scholar] [CrossRef] [PubMed]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef]
- Paithankar, J.G.; Saini, S.; Dwivedi, S.; Sharma, A.; Chowdhuri, D.K. Heavy metal associated health hazards: An interplay of oxidative stress and signal transduction. Chemosphere 2021, 262, 128350. [Google Scholar] [CrossRef] [PubMed]
- McCord, J.M. The evolution of free radicals and oxidative stress. Am. J. Med. 2000, 108, 652–659. [Google Scholar] [CrossRef]
- Thornalley, P.J.; Vasak, M. Possible role for metallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochim. Biophys. Acta 1985, 827, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Eibl, J.K.; Abdallah, Z.; Ross, G.M. Zinc-metallothionein: A potential mediator of antioxidant defence mechanisms in response to dopamine-induced stress. Can. J. Physiol. Pharmacol. 2010, 88, 305–312. [Google Scholar] [CrossRef]
- Patankar, H.V.; Al-Harrasi, I.; Al Kharusi, L.; Jana, G.A.; Al-Yahyai, R.; Sunkar, R.; Yaish, M.W. Overexpression of a Metallothionein 2A Gene from Date Palm Confers Abiotic Stress Tolerance to Yeast and Arabidopsis thaliana. Int. J. Mol. Sci. 2019, 20, 2871. [Google Scholar] [CrossRef] [PubMed]
- Lazo, J.S.; Pitt, B.R. Metallothioneins and cell death by anticancer drugs. Annu. Rev. Pharmacol. Toxicol. 1995, 35, 635–653. [Google Scholar] [CrossRef]
- Bensellam, M.; Laybutt, D.R.; Jonas, J.C. Emerging Roles of Metallothioneins in Beta Cell Pathophysiology: Beyond and Above Metal Homeostasis and Antioxidant Response. Biology 2021, 10, 176. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Jagadapillai, R.; Cai, J.; Cai, L.; Shao, G.; Gozal, E. Metallothionein induction attenuates the progression of lung injury in mice exposed to long-term intermittent hypoxia. Inflamm. Res. 2020, 69, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Babaei-Bondarti, Z.; Shahpiri, A. A metallothionein type 2 from Avicennia marina binds to iron and mediates hydrogen peroxide balance by activation of enzyme catalase. Phytochemistry 2020, 176, 112396. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.I.; Shiota, S.; Sakakibara, O.; Shimoda, M.; Takafuji, A.; Takabatake, M.; Kadota, Y.; Kawakami, T.; Suzuki, S.; Kawahara, M. Exacerbation of Elastase-Induced Emphysema via Increased Oxidative Stress in Metallothionein-Knockout Mice. Biomolecules 2022, 12, 583. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Qin, J.; Yuan, H.; Guo, M.; Shang, M.; Niu, S.; Li, Y.; Li, Q.; Xue, Y. Recombinant human metallothionein-III alleviates oxidative damage induced by copper and cadmium in Caenorhabditis elegans. J. Appl. Toxicol. 2023, 43, 1242–1252. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Kim, M.J.; Lee, S.H.; Jin, L.; Cong, W.; Jeong, H.G.; Lee, K.Y. Metallothionein 3 Promotes Osteoblast Differentiation in C2C12 Cells via Reduction of Oxidative Stress. Int. J. Mol. Sci. 2021, 22, 4312. [Google Scholar] [CrossRef]
- Sung, H.C.; Chang, K.S.; Chen, Y.T.; Hsu, S.Y.; Lin, Y.H.; Hou, C.P.; Feng, S.H.; Tsui, K.H.; Juang, H.H. Metallothionein 2A with Antioxidant and Antitumor Activity Is Upregulated by Caffeic Acid Phenethyl Ester in Human Bladder Carcinoma Cells. Antioxidants 2022, 11, 1509. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lee, S.H.; Piao, M.; Kim, H.S.; Lee, K.Y. Metallothionein 3 Inhibits 3T3-L1 Adipocyte Differentiation via Reduction of Reactive Oxygen Species. Antioxidants 2023, 12, 640. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhao, J.; Ye, H.; Ceylan-Isik, A.F.; Zhang, B.; Liu, Q.; Yang, Y.; Dong, M.; Luo, B.; Ren, J. Beneficial impact of cardiac heavy metal scavenger metallothionein in sepsis-provoked cardiac anomalies dependent upon regulation of endoplasmic reticulum stress and ferroptosis but not autophagy. Life Sci. 2024, 336, 122291. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, Y.; Liu, C.; Li, Y.; Zhang, F.; Ma, H. Isolation and Characterization of the GmMT-II Gene and Its Role in Response to High Temperature and Humidity Stress in Glycine max. Plants 2022, 11, 1503. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhu, W.; Deng, H.; Pei, X.; Zhang, J.; Liu, J.; Ma, P. Heterologous expression of the Leymus chinensis metallothionein gene LcMT3 confers enhanced tolerance to salt stress in Escherichia coli, yeast, and Arabidopsis thaliana. J. Plant Physiol. 2023, 287, 154022. [Google Scholar] [CrossRef] [PubMed]
- Zaręba, N.; Kepinska, M. The Function of Transthyretin Complexes with Metallothionein in Alzheimer’s Disease. Int. J. Mol. Sci. 2020, 21, 9003. [Google Scholar] [CrossRef]
- Smith, D.P.; Ciccotosto, G.D.; Tew, D.J.; Fodero-Tavoletti, M.T.; Johanssen, T.; Masters, C.L.; Barnham, K.J.; Cappai, R. Concentration dependent Cu2+ induced aggregation and dityrosine formation of the Alzheimer’s disease amyloid-beta peptide. Biochemistry 2007, 46, 2881–2891. [Google Scholar] [CrossRef]
- Santner, A.; Uversky, V.N. Metalloproteomics and metal toxicology of alpha-synuclein. Metallomics 2010, 2, 378–392. [Google Scholar] [CrossRef] [PubMed]
- Pretsch, D.; Rollinger, J.M.; Schmid, A.; Genov, M.; Wohrer, T.; Krenn, L.; Moloney, M.; Kasture, A.; Hummel, T.; Pretsch, A. Prolongation of metallothionein induction combats Ass and alpha-synuclein toxicity in aged transgenic Caenorhabditis elegans. Sci. Rep. 2020, 10, 11707. [Google Scholar] [CrossRef]
- Tamano, H.; Suzuki, H.; Murakami, T.; Fujii, H.; Adlard, P.A.; Bush, A.I.; Takeda, A. Amyloid beta(1-42)-Induced Rapid Zn(2+) Influx into Dentate Granule Cells Attenuates Maintained LTP Followed by Retrograde Amnesia. Mol. Neurobiol. 2019, 56, 5041–5050. [Google Scholar] [CrossRef]
- Calvo, J.S.; Mulpuri, N.V.; Dao, A.; Qazi, N.K.; Meloni, G. Membrane insertion exacerbates the alpha-Synuclein-Cu(II) dopamine oxidase activity: Metallothionein-3 targets and silences all alpha-synuclein-Cu(II) complexes. Free Radic. Biol. Med. 2020, 158, 149–161. [Google Scholar] [CrossRef]
- Mohamad Najib, N.H.; Yahaya, M.F.; Das, S.; Teoh, S.L. The effects of metallothionein in paraquat-induced Parkinson disease model of zebrafish. Int. J. Neurosci. 2023, 133, 822–833. [Google Scholar] [CrossRef] [PubMed]
- Paryani, F.; Kwon, J.S.; Ng, C.W.; Madden, N.; Ofori, K.; Tang, A.; Lu, H.; Li, J.; Mahajan, A.; Davidson, S.M.; et al. Multi-OMIC analysis of Huntington disease reveals a neuroprotective astrocyte state. bioRxiv 2023. [Google Scholar] [CrossRef]
- Navarro-Sempere, A.; Martinez-Peinado, P.; Rodrigues, A.S.; Garcia, P.V.; Camarinho, R.; Grindlay, G.; Gras, L.; Garcia, M.; Segovia, Y. Metallothionein expression in the central nervous system in response to chronic heavy metal exposure: Possible neuroprotective mechanism. Environ. Geochem. Health 2023, 45, 8257–8269. [Google Scholar] [CrossRef] [PubMed]
- Kawano, Y.; Tamura, K.; Egawa, M.; Tamano, H.; Takeda, A. Isoproterenol, an adrenergic beta receptor agonist, induces metallothionein synthesis followed by canceling amyloid beta(1-42)-induced neurodegeneration. Biometals 2022, 35, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Kwon, I.S.; Hwang, Y.N.; Park, J.H.; Na, H.H.; Kwon, T.H.; Park, J.S.; Kim, K.C. Metallothionein Family Proteins as Regulators of Zinc Ions Synergistically Enhance the Anticancer Effect of Cannabidiol in Human Colorectal Cancer Cells. Int. J. Mol. Sci. 2023, 24, 16621. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Peng, W.; Wu, B.; Liu, H.; Zhang, R.; Zhou, R.; Yao, L.; Ye, L. Metallothionein MT1M Suppresses Carcinogenesis of Esophageal Carcinoma Cells through Inhibition of the Epithelial-Mesenchymal Transition and the SOD1/PI3K Axis. Mol. Cells 2021, 44, 267–278. [Google Scholar] [CrossRef]
- Zhou, L.; Deng, X.; Xiao, X.; Liao, Y.; Chen, W.; Dai, Q. Kruppel-like factor 9 inhibits growth and metastasis of cholangiocarcinoma cells by targeted regulation of metallothionein 1 M transcription. Tissue Cell 2022, 79, 101962. [Google Scholar] [CrossRef]
- Liu, Q.; Lu, F.; Chen, Z. Identification of MT1E as a novel tumor suppressor in hepatocellular carcinoma. Pathol. Res. Pr. 2020, 216, 153213. [Google Scholar] [CrossRef]
- Li, K.; Sun, S.; Lu, Y.; Liang, W.; Xu, X.; Zhang, H.; Chang, Z.; Wang, C.; Gao, Y.; Chen, L. MT1M regulates gastric cancer progression and stemness by modulating the Hedgehog pathway protein GLI1. Biochem. Biophys. Res. Commun. 2023, 670, 63–72. [Google Scholar] [CrossRef]
- Wei, T.; Lin, R.; Fu, X.; Lu, Y.; Zhang, W.; Li, Z.; Zhang, J.; Wang, H. Epigenetic regulation of the DNMT1/MT1G/KLF4/CA9 axis synergises the anticancer effects of sorafenib in hepatocellular carcinoma. Pharmacol. Res. 2022, 180, 106244. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.J.; Ko, B.S.; Liang, S.M.; Lu, Y.J.; Jan, Y.J.; Jiang, S.S.; Shyue, S.K.; Chen, L.; Liou, J.Y. ZNF479 downregulates metallothionein-1 expression by regulating ASH2L and DNMT1 in hepatocellular carcinoma. Cell Death Dis. 2019, 10, 408. [Google Scholar] [CrossRef]
- Liu, X.; Quan, J.; Shen, Z.; Zhang, Z.; Chen, Z.; Li, L.; Li, X.; Hu, G.; Deng, X. Metallothionein 2A (MT2A) controls cell proliferation and liver metastasis by controlling the MST1/LATS2/YAP1 signaling pathway in colorectal cancer. Cancer Cell Int. 2022, 22, 205. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Zhang, Z.; Mei, Y.; Yang, Q.; Qiao, S.; Ni, C.; Yao, Y.; Li, X.; Li, M.; Wei, D.; et al. Metallothionein-1G suppresses pancreatic cancer cell stemness by limiting activin A secretion via NF-kappaB inhibition. Theranostics 2021, 11, 3196–3212. [Google Scholar] [CrossRef] [PubMed]
- Merlos Rodrigo, M.A.; Jimenez Jimemez, A.M.; Haddad, Y.; Bodoor, K.; Adam, P.; Krizkova, S.; Heger, Z.; Adam, V. Metallothionein isoforms as double agents—Their roles in carcinogenesis, cancer progression and chemoresistance. Drug Resist. Updat. 2020, 52, 100691. [Google Scholar] [CrossRef] [PubMed]
- Borchert, S.; Suckrau, P.M.; Walter, R.F.H.; Wessolly, M.; Mairinger, E.; Steinborn, J.; Hegedus, B.; Hager, T.; Herold, T.; Eberhardt, W.E.E.; et al. Impact of metallothionein-knockdown on cisplatin resistance in malignant pleural mesothelioma. Sci. Rep. 2020, 10, 18677. [Google Scholar] [CrossRef] [PubMed]
- Mangelinck, A.; da Costa, M.E.M.; Stefanovska, B.; Bawa, O.; Polrot, M.; Gaspar, N.; Fromigue, O. MT2A is an early predictive biomarker of response to chemotherapy and a potential therapeutic target in osteosarcoma. Sci. Rep. 2019, 9, 12301. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, B.; Ramadoss, S.; Chaudhuri, G.; Janzen, C.; Sen, S.; Mascharak, P.K. Carbon monoxide sensitizes cisplatin-resistant ovarian cancer cell lines toward cisplatin via attenuation of levels of glutathione and nuclear metallothionein. J. Inorg. Biochem. 2019, 191, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liu, L.; Li, M.; Huang, X.; Yang, H.; Li, K. Naringenin inhibits pro-inflammatory cytokine production in macrophages through inducing MT1G to suppress the activation of NF-kappaB. Mol. Immunol. 2021, 137, 155–162. [Google Scholar] [CrossRef]
- Choo, X.Y.; McInnes, L.E.; Grubman, A.; Wasielewska, J.M.; Belaya, I.; Burrows, E.; Quek, H.; Martin, J.C.; Loppi, S.; Sorvari, A.; et al. Novel Anti-Neuroinflammatory Properties of a Thiosemicarbazone-Pyridylhydrazone Copper(II) Complex. Int. J. Mol. Sci. 2022, 23, 722. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Gong, Z.; Hu, S.; Zhang, G. Metallothionein-1 is associated with osteoarthritis disease activity and suppresses proinflammatory cytokines production in synovial cells. Int. Immunopharmacol. 2019, 75, 105815. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhong, S.; Sun, Y.; Huang, X.; Li, Y.; Wang, L.; Wu, Y.; Yang, M.; Yuan, H.X.; Liu, J.; et al. Integration analysis identifies the role of metallothionein in the progression from hepatic steatosis to steatohepatitis. Front. Endocrinol. 2022, 13, 951093. [Google Scholar] [CrossRef]
- Foligne, B.; George, F.; Standaert, A.; Garat, A.; Poiret, S.; Peucelle, V.; Ferreira, S.; Sobry, H.; Muharram, G.; Lucau-Danila, A.; et al. High-dose dietary supplementation with zinc prevents gut inflammation: Investigation of the role of metallothioneins and beyond by transcriptomic and metagenomic studies. FASEB J. 2020, 34, 12615–12633. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Zhao, H.; Wang, Y.; Guo, M.; Mu, M.; Liu, Y.; Nie, X.; Huang, P.; Xing, M. Arsenic (III) induces oxidative stress and inflammation in the gills of common carp, which is ameliorated by zinc (II). J. Inorg. Biochem. 2021, 225, 111617. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, D.; Gardner, J.C.; Satpati, A.; Nookala, S.; Mukundan, S.; Porollo, A.; Landero Figueroa, J.A.; Subramanian Vignesh, K. Metallothionein 3-Zinc Axis Suppresses Caspase-11 Inflammasome Activation and Impairs Antibacterial Immunity. Front. Immunol. 2021, 12, 755961. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Huang, D.; Nie, S.; Xie, M. Polysaccharide from the Seeds of Plantago asiatica L. Protect Against Lipopolysaccharide-Induced Liver Injury. J. Med. Food 2019, 22, 1058–1066. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Du, J.; Yin, Z.; Dai, H.; Wei, Y.; Xia, Y.; Li, L.; Ye, Z.; Huang, Z. Metallothionein-1 is Positively Correlated with Inflammation and Ankylosing Spondylitis Activity. J. Inflamm. Res. 2022, 15, 5935–5944. [Google Scholar] [CrossRef] [PubMed]
- Lang, Q.; Wei, J.; Tian, M.; Wei, S.; Yu, X.; Zhao, C.; Zhang, J.; Huang, B. Attenuated effect of zinc gluconate on oxidative stress, inflammation, and angiogenic imbalance in pre-eclampsia rats. Life Sci. 2022, 310, 121055. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Liang, Z.; Wang, F.; Zhou, C.; Zheng, X.; Hu, T.; He, X.; Wu, X.; Lan, P. Exosomes from mesenchymal stromal cells reduce murine colonic inflammation via a macrophage-dependent mechanism. JCI Insight 2019, 4, e131273. [Google Scholar] [CrossRef]
- Ma, J.; Cao, H.; Rodrigues, R.M.; Xu, M.; Ren, T.; He, Y.; Hwang, S.; Feng, D.; Ren, R.; Yang, P.; et al. Chronic-plus-binge alcohol intake induces production of proinflammatory mtDNA-enriched extracellular vesicles and steatohepatitis via ASK1/p38MAPKalpha-dependent mechanisms. JCI Insight 2020, 5, e136496. [Google Scholar] [CrossRef]
- Royzman, D.; Andreev, D.; Stich, L.; Peckert-Maier, K.; Wild, A.B.; Zinser, E.; Muhl-Zurbes, P.; Jones, E.; Adam, S.; Frey, S.; et al. The soluble CD83 protein prevents bone destruction by inhibiting the formation of osteoclasts and inducing resolution of inflammation in arthritis. Front. Immunol. 2022, 13, 936995. [Google Scholar] [CrossRef]
- Cho, J.H.; Lee, J.S.; Kim, H.G.; Lee, H.W.; Fang, Z.; Kwon, H.H.; Kim, D.W.; Lee, C.M.; Jeong, J.W. Ethyl Acetate Fraction of Amomum villosum var. xanthioides Attenuates Hepatic Endoplasmic Reticulum Stress-Induced Non-Alcoholic Steatohepatitis via Improvement of Antioxidant Capacities. Antioxidants 2021, 10, 998. [Google Scholar] [CrossRef]
- Subramanian Vignesh, K.; Deepe, G., Jr. Metallothioneins: Emerging Modulators in Immunity and Infection. Int. J. Mol. Sci. 2017, 18, 2197. [Google Scholar] [CrossRef]
- Nagamatsu, P.C.; Vargas, D.A.R.; Prodocimo, M.M.; Opuskevitch, I.; Ferreira, F.; Zanchin, N.; de Oliveira Ribeiro, C.A.; de Souza, C. Synthetic fish metallothionein design as a potential tool for monitoring toxic metals in water. Environ. Sci. Pollut. Res. Int. 2021, 28, 9517–9528. [Google Scholar] [CrossRef]
- Strogyloudi, E.; Paraskevopoulou, V.; Campillo, J.A.; Zervoudaki, S.; Bouga, V.; Catsiki, V.A.; Dassenakis, E.; Krasakopoulou, E. Metal and metallothionein levels in zooplankton in relation to environmental exposure: Spatial and temporal variability (Saronikos Gulf, Greece). Environ. Sci. Pollut. Res. Int. 2021, 28, 28640–28657. [Google Scholar] [CrossRef] [PubMed]
- Freire, M.M.; Gomez, C.; Moreira, J.C.; Linde Arias, A.R. Multibiomarker approach in fish to assess a heavily polluted Brazilian estuary, Guanabara Bay. Environ. Monit. Assess. 2022, 195, 187. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Dong, Y.; Zhu, L.; Xia, X.; Li, S.; Wang, G.; Shi, K. Effective and stable adsorptive removal of Cadmium(II) and Lead(II) using selenium nanoparticles modified by microbial SmtA metallothionein. Chemosphere 2022, 307, 135818. [Google Scholar] [CrossRef] [PubMed]
- Mwandira, W.; Nakashima, K.; Togo, Y.; Sato, T.; Kawasaki, S. Cellulose-metallothionein biosorbent for removal of Pb(II) and Zn(II) from polluted water. Chemosphere 2020, 246, 125733. [Google Scholar] [CrossRef]
- Zhu, N.; Zhang, B.; Yu, Q. Genetic Engineering-Facilitated Coassembly of Synthetic Bacterial Cells and Magnetic Nanoparticles for Efficient Heavy Metal Removal. ACS Appl. Mater. Interfaces 2020, 12, 22948–22957. [Google Scholar] [CrossRef] [PubMed]
- Akkurt, S.; Oguz, M.; Alkan Uckun, A. Bioreduction and bioremoval of hexavalent chromium by genetically engineered strains (Escherichia coli MT2A and Escherichia coli MT3). World J. Microbiol. Biotechnol. 2022, 38, 45. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.; Satpati, S.; Dixit, A.; Ranjan, R. Fabrication of biobeads expressing heavy metal-binding protein for removal of heavy metal from wastewater. Appl. Microbiol. Biotechnol. 2019, 103, 5411–5420. [Google Scholar] [CrossRef] [PubMed]
- Diep, P.; Leo Shen, H.; Wiesner, J.A.; Mykytczuk, N.; Papangelakis, V.; Yakunin, A.F.; Mahadevan, R. Engineered nickel bioaccumulation in Escherichia coli by NikABCDE transporter and metallothionein overexpression. Eng. Life Sci. 2023, 23, 2200133. [Google Scholar] [CrossRef]
- Yilmaz, S.; Kilic, N.; Kaya, S.; Tasci, G. A Potential Biomarker for Predicting Schizophrenia: Metallothionein-1. Biomedicines 2023, 11, 590. [Google Scholar] [CrossRef]
- Wang, S.; Gribskov, M. Transcriptome analysis identifies metallothionein as biomarkers to predict recurrence in hepatocellular cacinoma. Mol. Genet. Genom. Med. 2019, 7, e693. [Google Scholar] [CrossRef]
- Wiethoff, H.; Mohr, I.; Fichtner, A.; Merle, U.; Schirmacher, P.; Weiss, K.H.; Longerich, T. Metallothionein: A game changer in histopathological diagnosis of Wilson disease. Histopathology 2023, 83, 936–948. [Google Scholar] [CrossRef]
- Miao, C.; He, X.; Chen, G.; Kahlert, U.D.; Yao, C.; Shi, W.; Su, D.; Hu, L.; Zhang, Z. Seven oxidative stress-related genes predict the prognosis of hepatocellular carcinoma. Aging 2023, 15, 15050–15063. [Google Scholar] [CrossRef]
- Hung, K.C.; Huang, T.C.; Cheng, C.H.; Cheng, Y.W.; Lin, D.Y.; Fan, J.J.; Lee, K.H. The Expression Profile and Prognostic Significance of Metallothionein Genes in Colorectal Cancer. Int. J. Mol. Sci. 2019, 20, 3849. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Fang, J.; Chen, M.; Xu, Y.; Liu, N.; Fang, S.; Xiang, W.; Chen, R.; Wu, C.; Yu, H. MT1X is an oncogene and indicates prognosis in ccRCC. Biosci. Rep. 2022, 42, BSR20221128. [Google Scholar] [CrossRef]
- Tong, M.; Lu, W.; Liu, H.; Wu, J.; Jiang, M.; Wang, X.; Hao, J.; Fan, D. Evaluation of MT Family Isoforms as Potential Biomarker for Predicting Progression and Prognosis in Gastric Cancer. Biomed. Res. Int. 2019, 2019, 2957821. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Lou, J.; Yang, S.; Lou, J.; Liao, W.; Zhou, R.; Qiu, C.; Ding, G. MT1JP inhibits glioma progression via negative regulation of miR-24. Oncol. Lett. 2020, 19, 334–342. [Google Scholar] [CrossRef]
- Sirvent, S.; Vallejo, A.F.; Corden, E.; Teo, Y.; Davies, J.; Clayton, K.; Seaby, E.G.; Lai, C.; Ennis, S.; Alyami, R.; et al. Impaired expression of metallothioneins contributes to allergen-induced inflammation in patients with atopic dermatitis. Nat. Commun. 2023, 14, 2880. [Google Scholar] [CrossRef]
- Yeh, C.N.; Huang, W.K.; Lu, C.W.; Chen, C.P.; Lin, S.H.; Pan, Y.R.; Wu, C.E. A Potential Association of Zinc Deficiency and Tyrosine Kinase Inhibitor-Induced Hand-Foot Skin Reaction. Biol. Trace Elem. Res. 2023, 201, 5540–5545. [Google Scholar] [CrossRef] [PubMed]
- Jagoda, S.V.; Dixon, K.M. Protective effects of 1,25 dihydroxyvitamin D(3) and its analogs on ultraviolet radiation-induced oxidative stress: A review. Redox Rep. 2020, 25, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Widyarini, S.; Allanson, M.; Gallagher, N.L.; Pedley, J.; Boyle, G.M.; Parsons, P.G.; Whiteman, D.C.; Walker, C.; Reeve, V.E. Isoflavonoid photoprotection in mouse and human skin is dependent on metallothionein. J. Investig. Dermatol. 2006, 126, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.H.; Li, L.F.; Zhang, B.X.; Lu, X.Y. Metallothionein-null mice exhibit reduced tolerance to ultraviolet B injury in vivo. Clin. Exp. Dermatol. 2004, 29, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Parker, R.; Aganahi, A. Up-Regulated Expression of ICAM1, MT1A, PTGS2, LCE3D, PPARD, and GM-CSF2 Following Solar Skincare Protection and Repair Strategies in a 3-Dimensional Reconstructed Human Skin Model. Clin. Cosmet. Investig. Dermatol. 2023, 16, 2829–2839. [Google Scholar] [CrossRef] [PubMed]
- Wahyudi, L.D.; Yu, S.H.; Cho, M.K. The effect of curcumin on the cadmium-induced mitochondrial apoptosis pathway by metallothionein 2A regulation. Life Sci. 2022, 310, 121076. [Google Scholar] [CrossRef] [PubMed]
- Agren, M.S.; Chafranska, L.; Eriksen, J.O.; Forman, J.L.; Bjerrum, M.J.; Schjerling, P.; Larsen, H.F.; Cottarelli, E.; Jorgensen, L.N.; Gjerdrum, L.M.R. Spatial expression of metallothionein, matrix metalloproteinase-1 and Ki-67 in human epidermal wounds treated with zinc and determined by quantitative immunohistochemistry: A randomised double-blind trial. Eur. J. Cell Biol. 2021, 100, 151147. [Google Scholar] [CrossRef]
Metallothionein Source | Target of Action | Effect | Reference |
---|---|---|---|
GST-AmMT2 expressed in E. coli | E. coli | Enhance tolerance of E. coli to H2O2 | [46] |
Self-expressed metallothionein in mice | Mice | Relief of oxidative stress and damage to the lungs | [45] |
Self-expressed metallothionein in mice | Mice | Inhibited PPE-induced ROS production in the lungs | [47] |
rh-MT-III | Caenorhabditis elegans | Reduced levels of malondialdehyde and reactive oxygen species | [48] |
Metallothionein 2A gene from date palm expressed by yeast and Arabidopsis thaliana | yeast and Arabidopsis thaliana | Improved oxidative stress tolerance | [42] |
MT3 expressed by C2C12 cells | C2C12 cells | Reduced oxidative stress during osteoblast differentiation | [49] |
MT2A gene expressed by HT1376 cells | HT1376 cells | Inhibited H2O2-induced ROS production | [50] |
MT3 expressed by 3T3-L1 cells | 3T3-L1 cells | Reduced levels of ROS at the adipose differentiation stage | [51] |
Metallothionein expressed in mouse cardiomyocytes | Mouse cardiomyocytes | Reduction of superoxide anion radical production and glutathione levels | [52] |
GmMT-II expressed by transgenic Arabidopsis | Transgenic Arabidopsis | Enhanced activities of SOD, CAT, and POD | [53] |
LcMT3 expressed by transgenic Arabidopsis thaliana | Transgenic Arabidopsis | Reduced accumulation of malondialdehyde and reactive oxygen species and increased activities of SOD, POD, and CAT | [54] |
Metallothionein Source | Target of Action | Effect | Reference |
---|---|---|---|
Metallothionein expressed by aged transgenic Caenorhabditis elegans | aged transgenic Caenorhabditis elegans | Reduction of Aβ and α-syn toxicity | [58] |
Metallothionein expressed by dentate granule cells | Dentate granule cells | Chelating Zn2+ and maintaining Zn2+ homeostasis | [59] |
Zn7MT-3 | α-syn-Cu(II) | Elimination of α-syn-Cu(II) dopamine oxidase activity and removal of Cu(II) from α-syn-Cu(II) | [60] |
Human metallothionein 2 peptide (hMT2) | Zebrafish brain | Increased lipid peroxidation and an increased number of dopaminergic neurons | [61] |
MT3 expressed by astrocytes | Astrocyte | Increased expression of glutamate transporter protein and glutamine synthetase | [62] |
Metallothionein 2A expressed by astrocytes | Astrocyte | Oxidative stress in spinal motor neurons exerts a neuroprotective effect | [8] |
MT-2A expressed in the central nervous system | Central nervous system | Higher MT-2A labeling was observed in the subgranular zone and white matter, in the cytoplasm of some cells in the molecular layer, and in the choroid plexus of the brain | [63] |
Metallothionein in the cell layer of dentate granules | Dentate granular cell layer | Maintenance of Zn2+ homeostasis and reduction of Aβ1-42 toxicity | [64] |
Metallothionein Type | Type of Inflammation | Effect | Reference |
---|---|---|---|
MT-1 | Osteoarthritis | MT-1 inhibits inflammatory cytokine expression in synoviocytes | [80] |
MT1 | Non-alcoholic steatohepatitis | Attenuates steatosis, improves hepatic aspartate aminotransferase, and downregulates timp-1, coll1, ten-α, and mcp-1 | [81] |
MT1G | LPS induces inflammation in macrophages | Reduced expression of pro-inflammatory cytokines such as TNF-α, IL-1, and IL-1β | [78] |
MT1 and MT2 | Colitis | Modulation of intestinal inflammation in terms of intestinal tissue protection, epithelial integrity, immune system regulation, targeted digestion, metabolic function, and counteracting oxidative stress | [82] |
MT | As3+-induced inflammatory responses | Inhibition of NF-κB signaling pathway activation and reduction of inflammatory factor secretion | [83] |
MT1 | Neuroinflammation | Upregulation of MT1 expression may correlate with CuL5-mediated anti-inflammatory effect | [79] |
MT3 | Inflammation caused by activation of non-canonical inflammasome | MT3 expression increased Zn2+ levels, inhibited caspase-11 signaling through the TRIF-IRF3-STAT1 axis, and decreased activation of caspase-11 and its downstream targets, caspase-1 and IL-1β | [84] |
MT | Inflammatory liver injury | May exert anti-inflammatory effects by scavenging excess ROS | [85] |
MT-1 | Ankylosing spondylitis activity | Elevated MT-1 levels are positively correlated with ankylosing spondylitis activity, inflammatory response, clinical indicators, and pro-inflammatory cytokines | [86] |
MT | Inflammatory response during pre-eclampsia | Decreased pro-inflammatory cytokines such as IL-6 and TNF-α | [87] |
MT-2 | Colitis | Up-regulation of MT-2 expression increases IκBα transcript levels and inhibits IκBα phosphorylation in macrophages of mice with colitis | [88] |
MT1 and MT2 | Alcoholic hepatitis | Increassed expression of Mt1 and Mt2 decreased the levels of lipid peroxides such as 4-hydroxynonenal and malondialdehyde and reduced the activation of stress kinases | [89] |
MT-1 and MT-2 | Rheumatoid arthritis | Inhibits osteoclasts and prevents osteoporosis and other damage caused by rheumatoid arthritis | [90] |
MT1 | Non-alcoholic steatohepatitis | Ethyl acetate fraction of Amomum villosum var. xanthioides enhances antioxidant capacity and improves oxidative status by increasing MT1 expression | [91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, R.; Roshani, D.; Gao, B.; Li, P.; Shang, N. Metallothionein: A Comprehensive Review of Its Classification, Structure, Biological Functions, and Applications. Antioxidants 2024, 13, 825. https://doi.org/10.3390/antiox13070825
Yang R, Roshani D, Gao B, Li P, Shang N. Metallothionein: A Comprehensive Review of Its Classification, Structure, Biological Functions, and Applications. Antioxidants. 2024; 13(7):825. https://doi.org/10.3390/antiox13070825
Chicago/Turabian StyleYang, Ruoqiu, Dumila Roshani, Boya Gao, Pinglan Li, and Nan Shang. 2024. "Metallothionein: A Comprehensive Review of Its Classification, Structure, Biological Functions, and Applications" Antioxidants 13, no. 7: 825. https://doi.org/10.3390/antiox13070825
APA StyleYang, R., Roshani, D., Gao, B., Li, P., & Shang, N. (2024). Metallothionein: A Comprehensive Review of Its Classification, Structure, Biological Functions, and Applications. Antioxidants, 13(7), 825. https://doi.org/10.3390/antiox13070825