Differences in HDL Remodeling during Healthy Pregnancy and Pregnancy with Cardiometabolic Complications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Sampling and Methods
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parrettini, S.; Caroli, A.; Torlone, E. Nutrition and Metabolic Adaptations in Physiological and Complicated Pregnancy: Focus on Obesity and Gestational Diabetes. Front. Endocrinol. 2020, 11, 611929. [Google Scholar] [CrossRef] [PubMed]
- Mulder, J.W.; Kusters, D.M.; van Lennep, J.E.R.; Hutten, B.A. Lipid Metabolism during Pregnancy: Consequences for Mother and Child. Curr. Opin. Lipidol. 2024, 35, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Abu-Awwad, S.-A.; Craina, M.; Boscu, L.; Bernad, E.; Ciordas, P.D.; Marian, C.; Iurciuc, M.; Abu-Awwad, A.; Iurciuc, S.; Bernad, B.; et al. Lipid Profile Variations in Pregnancies with and without Cardiovascular Risk: Consequences for Both Mother and Newborn. Children 2023, 10, 1521. [Google Scholar] [CrossRef]
- Jiang, L.; Tang, K.; Magee, L.A.; von Dadelszen, P.; Ekeroma, A.; Li, X.; Zhang, E.; Bhutta, Z.A. A Global View of Hypertensive Disorders and Diabetes Mellitus during Pregnancy. Nat. Rev. Endocrinol. 2022, 18, 760–775. [Google Scholar] [CrossRef] [PubMed]
- Ardalić, D.; Stefanović, A.; Banjac, G.; Cabunac, P.; Miljković, M.; Mandić-Marković, V.; Stanimirović, S.; Pažin, B.D.; Spasić, S.; Spasojević-Kalimanovska, V.; et al. Lipid Profile and Lipid Oxidative Modification Parameters in the First Trimester of High- Risk Pregnancies—Possibilities for Preeclampsia Prediction. Clin. Biochem. 2020, 81, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Antonić, T.D.; Ardalić, D.; Vladimirov, S.S.; Banjac, G.S.; Cabunac, P.J.; Zeljković, A.R.; Karadžov-Orlić, N.T.; Spasojević-Kalimanovska, V.V.; Miković, .D.; Stefanović, A. Cholesterol Homeostasis Is Dysregulated in Women with Preeclampsia. Pol. Arch. Med. Wewn.-Pol. Arch. Intern. Med. 2021, 131, 16144. [Google Scholar] [CrossRef] [PubMed]
- Zeljković, A.; Ardalić, D.; Vekić, J.; Antonić, T.; Vladimirov, S.; Rizzo, M.; Gojković, T.; Ivanišević, J.; Mihajlović, M.; Vujčić, S.; et al. Effects of Gestational Diabetes Mellitus on Cholesterol Metabolism in Women with High-Risk Pregnancies: Possible Implications for Neonatal Outcome. Metabolites 2022, 12, 959. [Google Scholar] [CrossRef]
- Wang, H.; Dang, Q.; Zhu, H.; Liang, N.; Le, Z.; Huang, D.; Xiao, R.; Yu, H. Associations between Maternal Serum HDL-c Concentrations during Pregnancy and Neonatal Birth Weight: A Population-Based Cohort Study. Lipids Health Dis. 2020, 19, 93. [Google Scholar] [CrossRef]
- Spracklen, C.N.; Smith, C.J.; Saftlas, A.F.; Robinson, J.G.; Ryckman, K.K. Maternal Hyperlipidemia and the Risk of Preeclampsia: A Meta-Analysis. Am. J. Epidemiol. 2014, 180, 346–358. [Google Scholar] [CrossRef]
- Woollett, L.A.; Catov, J.M.; Jones, H.N. Roles of Maternal HDL during Pregnancy. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2022, 1867, 159106. [Google Scholar] [CrossRef]
- Gallo, L.A.; Barrett, H.L.; Nitert, M.D. Review: Placental Transport and Metabolism of Energy Substrates in Maternal Obesity and Diabetes. Placenta 2017, 54, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Jomard, A.; Osto, E. High Density Lipoproteins: Metabolism, Function, and Therapeutic Potential. Front. Cardiovasc. Med. 2020, 7, 39. [Google Scholar] [CrossRef] [PubMed]
- Bonizzi, A.; Piuri, G.; Corsi, F.; Cazzola, R.; Mazzucchelli, S. HDL Dysfunctionality: Clinical Relevance of Quality rather than Quantity. Biomedicines 2021, 9, 729. [Google Scholar] [CrossRef] [PubMed]
- Cao, P.; Pan, H.; Xiao, T.; Zhou, T.; Guo, J.; Su, Z. Advances in the Study of the Antiatherogenic Function and Novel Therapies for HDL. Int. J. Mol. Sci. 2015, 16, 17245–17272. [Google Scholar] [CrossRef] [PubMed]
- Phoswa, W.N.; Khaliq, O.P. The Role of Oxidative Stress in Hypertensive Disorders of Pregnancy (Preeclampsia, Gestational Hypertension) and Metabolic Disorder of Pregnancy (Gestational Diabetes Mellitus). Oxidative Med. Cell. Longev. 2021, 2021, 5581570. [Google Scholar] [CrossRef]
- Kerage, D.; Gombos, R.B.; Wang, S.; Brown, M.; Hemmings, D.G. Sphingosine 1-Phosphate-Induced Nitric Oxide Production Simultaneously Controls Endothelial Barrier Function and Vascular Tone in Resistance Arteries. Vasc. Pharmacol. 2021, 140, 106874. [Google Scholar] [CrossRef]
- Patanapirunhakit, P.; Karlsson, H.; Mulder, M.; Ljunggren, S.; Graham, D.; Freeman, D. Sphingolipids in HDL—Potential Markers for Adaptation to Pregnancy? Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2021, 1866, 158955. [Google Scholar] [CrossRef]
- Del Gaudio, I.; Sreckovic, I.; Zardoya-Laguardia, P.; Bernhart, E.; Christoffersen, C.; Frank, S.; Marsche, G.; Illanes, S.E.; Wadsack, C. Circulating Cord Blood HDL-S1P Complex Preserves the Integrity of the Feto-Placental Vasculature. Biochim. Et Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2020, 1865, 158632. [Google Scholar] [CrossRef]
- Xu, X.; Song, Z.; Mao, B.; Xu, G. Apolipoprotein A1-Related Proteins and Reverse Cholesterol Transport in Antiatherosclerosis Therapy: Recent Progress and Future Perspectives. Cardiovasc. Ther. 2022, 2022, 4610834. [Google Scholar] [CrossRef]
- Pasternak, Y.; Biron-Shental, T.; Ohana, M.; Einbinder, Y.; Arbib, N.; Benchetrit, S.; Zitman-Gal, T. Gestational Diabetes Type 2: Variation in High-Density Lipoproteins Composition and Function. Int. J. Mol. Sci. 2020, 21, 6281. [Google Scholar] [CrossRef]
- Retnakaran, R.; Ye, C.; Connelly, P.W.; Hanley, A.J.; Sermer, M.; Zinman, B. Serum ApoA1 (Apolipoprotein A-1), Insulin Resistance, and the Risk of Gestational Diabetes Mellitus in Human Pregnancy—Brief Report. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 2192–2197. [Google Scholar] [CrossRef]
- Webb, N.R. High-Density Lipoproteins and Serum Amyloid a (SAA). Curr. Atheroscler. Rep. 2021, 23, 7. [Google Scholar] [CrossRef] [PubMed]
- Garelnabi, M.; Litvinov, D.; Mahini, H. Antioxidant and Anti-Inflammatory Role of Paraoxonase 1: Implication in Arteriosclerosis Diseases. N. Am. J. Med. Sci. 2012, 4, 523. [Google Scholar] [CrossRef]
- National Institute of Health and Excellence. Quality Standard [QS35]: Hypertension in Pregnancy; National Institute of Health and Excellence: Manchester, UK, 2013. [Google Scholar]
- Katz, E.D.; Ruoff, B.E. Commonly Used Formulas and Calculations. In Clinical Procedures in Emergency Medicine, 4th ed.; Roberts, J., Hedges, J., Eds.; Elsevier Mosby Publishing: Philadelphia, PA, USA, 2004; p. 1434. [Google Scholar]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Erel, O. A Novel Automated Direct Measurement Method for Total Antioxidant Capacity Using a New Generation, More Stable ABTS Radical Cation. Clin. Biochem. 2004, 37, 277–285. [Google Scholar] [CrossRef]
- Erel, O. A New Automated Colorimetric Method for Measuring Total Oxidant Status. Clin. Biochem. 2005, 38, 1103–1111. [Google Scholar] [CrossRef] [PubMed]
- Alamdari, D.H.; Paletas, K.; Pegiou, T.; Sarigianni, M.; Befani, C.; Koliakos, G. A Novel Assay for the Evaluation of the Prooxidant–Antioxidant Balance, before and after Antioxidant Vitamin Administration in Type II Diabetes Patients. Clin. Biochem. 2007, 40, 248–254. [Google Scholar] [CrossRef]
- Kotur-Stevuljevic, J.; Spasic, S.; Stefanovic, A.; Zeljkovic, A.; Bogavac-Stanojevic, N.; Kalimanovska-Ostric, D.; Spasojevic-Kalimanovska, V.; Jelic-Ivanovic, Z. Paraoxonase-1 (PON1) Activity, but Not PON1Q192R Phenotype, Is a Predictor of Coronary Artery Disease in a Middle-Aged Serbian Population. Clin. Chem. Lab. Med. (CCLM) 2006, 44, 1206–1213. [Google Scholar] [CrossRef]
- Endo, Y.; Fujita, M.; Ikewaki, K. HDL Functions—Current Status and Future Perspectives. Biomolecules 2023, 13, 105. [Google Scholar] [CrossRef] [PubMed]
- Zeljkovic, A.; Vekic, J.; Stefanovic, A. Obesity and Dyslipidemia in Early Life: Impact on Cardiometabolic Risk. Metab. Clin. Exp. 2024, 156, 155919. [Google Scholar] [CrossRef]
- Zhu, H.; He, D.; Liang, N.; Lai, A.; Zeng, J.; Yu, H. High Serum Triglyceride Levels in the Early First Trimester of Pregnancy Are Associated with Gestational Diabetes Mellitus: A Prospective Cohort Study. J. Diabetes Investig. 2020, 11, 1635–1642. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Zhang, J.; Xiong, Y.; Wang, H.; Lu, D.; Guo, M.; Zhang, J.; Chen, L.; Fan, J.; Huang, H.; et al. Effect of Maternal Glucose and Triglyceride Levels during Early Pregnancy on Pregnancy Outcomes: A Retrospective Cohort Study. Nutrients 2022, 14, 3295. [Google Scholar] [CrossRef] [PubMed]
- Saarelainen, H.; Laitinen, T.; Raitakari, O.T.; Juonala, M.; Heiskanen, N.; Lyyra-Laitinen, T.; Viikari, J.S.; Vanninen, E.; Heinonen, S. Pregnancy-Related Hyperlipidemia and Endothelial Function in Healthy Women. Circ. J. 2006, 70, 768–772. [Google Scholar] [CrossRef] [PubMed]
- Wild, R.; Feingold, K.R. Effect of Pregnancy on Lipid Metabolism and Lipoprotein Levels. In Endotext; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK498654 (accessed on 10 June 2024).
- Bao, W.; Dar, S.; Zhu, Y.; Wu, J.; Rawal, S.; Li, S.; Weir, N.L.; Tsai, M.Y.; Zhang, C. Plasma Concentrations of Lipids during Pregnancy and the Risk of Gestational Diabetes Mellitus: A Longitudinal Study. J. Diabetes 2017, 10, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Stadler, J.T.; Scharnagl, H.; Wadsack, C.; Marsche, G. Preeclampsia Affects Lipid Metabolism and HDL Function in Mothers and Their Offspring. Antioxidants 2023, 12, 795. [Google Scholar] [CrossRef]
- Hussain, T.; Murtaza, G.; Metwally, E.; Kalhoro, D.H.; Kalhoro, M.S.; Rahu, B.A.; Sahito, R.G.A.; Yin, Y.; Yang, H.; Chughtai, M.I.; et al. The Role of Oxidative Stress and Antioxidant Balance in Pregnancy. Mediat. Inflamm. 2021, 2021, 9962860. [Google Scholar] [CrossRef]
- Weng, J.; Couture, C.; Girard, S. Innate and Adaptive Immune Systems in Physiological and Pathological Pregnancy. Biology 2023, 12, 402. [Google Scholar] [CrossRef] [PubMed]
- Bogavac, M.A.; Ćelić, D.D.; Perić, T.M. A Prospective Study of Mid-Trimester MCP-1 Levels as a Predictor of Preterm Delivery. Medicines 2022, 10, 7. [Google Scholar] [CrossRef] [PubMed]
- Kumari, R.; Singh, H. The Prevalence of Elevated High-Sensitivity C-Reactive Protein in Normal Pregnancy and Gestational Diabetes Mellitus. J. Fam. Med. Prim. Care 2017, 6, 259. [Google Scholar] [CrossRef]
- Diarte-Añazco, E.M.G.; Méndez-Lara, K.A.; Pérez, A.; Alonso, N.; Blanco-Vaca, F.; Julve, J. Novel Insights into the Role of HDL-Associated Sphingosine-1-Phosphate in Cardiometabolic Diseases. Int. J. Mol. Sci. 2019, 20, 6273. [Google Scholar] [CrossRef]
- Borodzicz-Jażdżyk, S.; Jażdżyk, P.; Łysik, W.; Cudnoch-Jȩdrzejewska, A.; Czarzasta, K. Sphingolipid Metabolism and Signaling in Cardiovascular Diseases. Front. Cardiovasc. Med. 2022, 9, 915961. [Google Scholar] [CrossRef] [PubMed]
- Dobierzewska, A.; Soman, S.; Illanes, S.E.; Morris, A.J. Plasma Cross-Gestational Sphingolipidomic Analyses Reveal Potential First Trimester Biomarkers of Preeclampsia. PLoS ONE 2017, 12, e0175118. [Google Scholar] [CrossRef]
- Melland-Smith, M.; Ermini, L.; Chauvin, S.; Craig-Barnes, H.; Tagliaferro, A.; Todros, T.; Post, M.; Caniggia, I. Disruption of Sphingolipid Metabolism Augments Ceramide-Induced Autophagy in Preeclampsia. Autophagy 2015, 11, 653–669. [Google Scholar] [CrossRef]
- Johnstone, E.D.; Westwood, M.; Dilworth, M.; Wray, J.R.; Kendall, A.C.; Nicolaou, A.; Myers, J.E. Plasma S1P and Sphingosine Are Not Different prior to Pre-Eclampsia in Women at High Risk of Developing the Disease. J. Lipid Res. 2023, 64, 100312. [Google Scholar] [CrossRef] [PubMed]
- Tydén, H.; Lood, C.; Jönsen, A.; Gullstrand, B.; Kahn, R.; Linge, P.; Kumaraswamy, S.B.; Dahlbäck, B.; Bengtsson, A.A. Low Plasma Concentrations of Apolipoprotein M Are Associated with Disease Activity and Endothelial Dysfunction in Systemic Lupus Erythematosus. Arthritis Res. Ther. 2019, 21, 110. [Google Scholar] [CrossRef]
- Jiang, H.; Znang, J.; Zhang, Y.; Xu, N.; Xu, G. Changes of serum apolipoprotein M level in women during normal and gestational diabetes mellitus. Chin. J. Endocrinol. Metabolism. 2014, 12, 727–730. [Google Scholar]
- Ahnström, J.; Lindqvist, P.G.; Walle, U.; Dahlbäck, B. Plasma Levels of Apolipoprotein M in Normal and Complicated Pregnancy. Acta Obstet. Et Gynecol. Scand. 2010, 89, 1214–1217. [Google Scholar] [CrossRef] [PubMed]
- Melhem, H.; Kallol, S.; Huang, X.; Lüthi, M.; Ontsouka, C.E.; Keogh, A.; Stroka, D.; Thormann, W.; Schneider, H.; Albrecht, C. Placental Secretion of Apolipoprotein A1 and E: The Anti-Atherogenic Impact of the Placenta. Sci. Rep. 2019, 9, 6225. [Google Scholar] [CrossRef]
- Gil-Acevedo, L.; Ceballos, G.; Torres-Ramos, Y. Foetal Lipoprotein Oxidation and Preeclampsia. Lipids Health Dis. 2022, 21, 51. [Google Scholar] [CrossRef]
- Liu, Z.; Pei, J.; Zhang, X.; Wang, C.; Tang, Y.; Liu, H.; Yu, Y.; Luo, S.; Gu, W. APOA1 Is a Novel Marker for Preeclampsia. Int. J. Mol. Sci. 2023, 24, 16363. [Google Scholar] [CrossRef]
- Faaborg-Andersen, C.C.; Liu, C.; Subramaniyam, V.; Desai, S.R.; Sun, Y.V.; Wilson, P.W.F.; Sperling, L.S.; Quyyumi, A.A. U-Shaped Relationship between Apolipoprotein A1 Levels and Mortality Risk in Men and Women. Eur. J. Prev. Cardiol. 2022, 30, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Denimal, D. Antioxidant and Anti-Inflammatory Functions of High-Density Lipoprotein in Type 1 and Type 2 Diabetes. Antioxidants 2024, 13, 57. [Google Scholar] [CrossRef]
- Ferré, N.; Camps, J.; Fernández-Ballart, J.; Arija, V.; Murphy, M.M.; Marsillach, J.; Joven, J. Longitudinal Changes in Serum Paraoxonase-1 Activity throughout Normal Pregnancy. Clin. Chem. Lab. Med. (CCLM) 2006, 44I, 880–882. [Google Scholar] [CrossRef] [PubMed]
- Kotur-Stevuljević, J.; Vekić, J.; Stefanović, A.; Zeljković, A.; Ninić, A.; Ivanišević, J.; Miljković, M.; Sopić, M.; Munjas, J.; Mihajlović, M.; et al. Paraoxonase 1 and Atherosclerosis-Related Diseases. BioFactors 2020, 46, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Zhu, P.; Wang, W.; Sun, K. Serum Amyloid A, a Host-Derived DAMP in Pregnancy? Front. Immunol. 2022, 13, 978929. [Google Scholar] [CrossRef] [PubMed]
- Gan, X.-W.; Wang, W.-S.; Lu, J.-W.; Ling, L.-J.; Zhou, Q.; Zhang, H.-J.; Ying, H.; Sun, K. De Novo Synthesis of SAA1 in the Placenta Participates in Parturition. Front. Immunol. 2020, 11, 1038. [Google Scholar] [CrossRef]
- Sato, M.; Ohkawa, R.; Yoshimoto, A.; Yano, K.; Ichimura, N.; Nishimori, M.; Okubo, S.; Yatomi, Y.; Tozuka, M. Effects of Serum Amyloid a on the Structure and Antioxidant Ability of High-Density Lipoprotein. Biosci. Rep. 2016, 36, e00369. [Google Scholar] [CrossRef]
- Jayaraman, S.; Haupt, C.; Gursky, O. Paradoxical Effects of SAA on Lipoprotein Oxidation Suggest a New Antioxidant Function for SAA. J. Lipid Res. 2016, 57, 2138–2149. [Google Scholar] [CrossRef]
Control Group | Group with Complications | p | |
---|---|---|---|
N | 84 | 46 | |
Age (years) | 31.6 ± 5.42 | 33.3 ± 5.46 | 0.081 |
Pregestational BMI (kg/m2) | 21.7 ± 2.89 | 23.9 ± 3.63 | <0.001 |
Smoking before pregnancy (%) # | 27.4 | 28.3 | 0.551 |
Pregestational vitamin supplementation (%) # | 35.7 | 71.7 | <0.001 |
Positive family history for cardiometabolic diseases (%) # | 58.3 | 52.1 | 0.486 |
First pregnancy (%) # | 40.4 | 36.7 | 0.721 |
Polycystic ovary syndrome before pregnancy (N) | - | 3 | |
Hashimoto’s thyroiditis before pregnancy (N) | - | 4 | |
Pregnancy weight gain (kg) * | 17.5 (11.5–22.5) | 15.0 (9.5–2.5) | 0.092 |
Gestational diabetes (N) | - | 13 | |
Gestational hypertension (N) | - | 15 | |
Preeclampsia (N) | - | 12 | |
Gestational diabetes and gestational hypertension (N) | - | 2 | |
Gestational diabetes and preeclampsia (N) | - | 4 |
1st Trimester | 2nd Trimester | 3rd Trimester | P1 | P2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Control Group (N = 84) | Group with Complications (N = 46) | p | Control Group (N = 84) | Group with Complications (N = 46) | p | Control Group (N = 84) | Group with Complications (N = 46) | p | |||
>MAP & | 87.3 (80.0–93.3) | 93.7 (86.0–102.2) | <0.001 | 82.5 a* (73.3–88.3) | 89.5 a# (82.9–89.5) | <0.001 | 83.3 a* (78.5–87.7) | 86.3 a# (78.6–93.3) | 0.090 | <0.001 | <0.05 |
>Glucose, mmol/L | 4.6 ± 0.40 | 4.8 ± 0.75 | 0.054 | 4.4 ± 0.47 a# | 4.7 ± 0.70 | <0.05 | 4.5 ± 0.46 a# | 4.6 ± 0.6 | 0.173 | <0.05 | 0.158 |
>Body weight, kg | 63.2 ± 8.95 | 70.9 ± 12.98 | <0.001 | 67.1 ± 9.21 a* | 76.2 ± 13 a* | <0.001 | 70.7 ± 11.79 a*, b* | 81.7 ± 13.76 a*, b* | <0.001 | <0.001 | <0.001 |
>BMI, kg/m 2& | 22.0 (20.0–23.5) | 25.0 (22.1–28.9) | <0.001 | 23.4 a* (21.5–24.9) | 26.7 a* (24.4–29.5) | <0.001 | 24.5 a*, b* (23.1–26.7) | 28.5 a*, b* (26.8–32.0) | <0.001 | <0.001 | <0.001 |
>TC, mmol/L | 5.3 ± 0.97 | 5.3 ± 0.94 | 0.887 | 6.7 ± 1.34 a* | 6.6 ± 1.39 a* | 0.474 | 7.2 ± 1.46 a*,b* | 6.6 ± 1.34 a* | <0.05 | <0.001 | <0.001 |
>TG, mmol/L † | 1.23 (1.13–1.35) | 1.51 (1.32–1.72) | <0.05 | 1.82 a* (1.66–1.99) | 2.10 a* (1.86–2.36) | <0.05 | 2.28 a*,b* (2.06–2.52) | 2.60 a*,b* (2.35–2.88) | 0.258 | <0.001 | <0.001 |
>HDL-C, mmol/L | 1.7 ± 0.31 | 1.6 ± 0.35 | 0.589 | 1.9 ± 0.32 a* | 1.8 ± 0.39 | 0.280 | 1.8 ± 0.31 b* | 1.7 ± 0.33 | 0.736 | <0.05 | 0.479 |
>LDL-C, mmol/L | 3.0 ± 0.86 | 2.8 ± 0.81 | 0.185 | 4.1 ± 1.21 a* | 3.7 ± 1.17 a* | 0.117 | 4.2 ± 1.22 a*,b# | 3.6 ± 1.13 a* | <0.05 | <0.05 | <0.001 |
1st Trimester | 2nd Trimester | 3rd Trimester | P1 | P2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Control Group (N = 84) | Group with Complications (N = 46) | p | Control Group (N = 84) | Group with Complications (N = 46) | p | Control Group (N = 84) | Group with Complications (N = 46) | p | |||
TAC, mmol/L | 1.063 (0.992–1.131) | 0.756 (0.629–1.064) | <0.001 | 1.102 (0.973–1.213) | 0.91 a# (0.739–1.075) | <0.001 | 1.029 (0.877–1.171) | 0.859 (0.772–1.054) | <0.001 | 0.101 | <0.05 |
TOS, μmol/L | 7.7 (6.42–9.17) | 11.6 (7.70–17.46) | <0.001 | 6.7 (5.7–10.8) | 10.0 (6.6–17.6) | <0.05 | 8.0 (6.6–9.7) | 9.4 (6.6–14.7) | 0.059 | 0.141 | 0.899 |
PAB, HK units | 194.9 (162.72–215.96) | 176.7 (150.80–230.22) | 0.608 | 157.57 (142.44–190.33) | 190.63 a# (154.41–257.40) | <0.001 | 169.8 (149.9–187.48) | 187.62 (165.25–228.20) | <0.001 | 0.707 | <0.05 |
hsCRP, mg/L | 3.90 (2.32–7.12) | 3.85 (2.42–6.40) 1.72) | 0.806 | 4.40 (2.30–8.47) | 4.60 a# (2.37–7.92) | 0.979 | 4.10 (2.9–6.9) | 4.15 (1.97–8.87) | 0.886 | 0.176 | <0.05 |
MCP-1, pg/ml | 162.56 (106.01–199.80) | 201.70 (133.03–325.47) | <0.05 | 129.5 a* (89.31–166.54) | 139.97 a* (99.73–199.96) | 0.313 | 70.78 a* (48.03–100.40) | 142.90 a# (71.92–222.47) | <0.001 | <0.001 | <0.001 |
1st Trimester | 2nd Trimester | 3rd Trimester | P1 | P2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Control Group (N = 84) | Group with Complications (N = 46) | p | Control Group (N = 84) | Group with Complications (N = 46) | p | Control Group (N = 84) | Group with Complications (N = 46) | p | |||
S1P, nmol/L † | 477.8 (337.8–980.7) | 432.2 (349.6–601.1) | <0.05 | 496.9 (377.4–749.8) | 532.7 a# (404.8–701.9) | 0.881 | 557.5 a# (405.1–833.4) | 537.1 a# (410.3–705.6) | 0.497 | <0.05 | <0.05 |
Apo M, mg/L † | 44.9 (25.8–58.9) | 44.3 (24.7–63.5) | 0.831 | 25.2 a* (18.9–29.8) | 29.8 a# (23.9–43.8) | 0.068 | 29.7 a* (22.7–39.1) | 24.8 a# (18.1–33.8) | <0.05 | <0.001 | <0.05 |
S1P/Apo M ratio | 13.7 (6.64–24.08) | 12.1 (8.10–14.39) | 0.288 | 22.2 a* (15.57–33.68) | 16.3 a* (11.87–21.52) | <0.05 | 21.1 a* (13.94–32.31) | 17.3 a* (13.26–29.63) | 0.512 | <0.001 | <0.001 |
Apo A1, g/L | 1.82 ± 0.273 | 1.90 ± 0.253 | 0.098 | 1.98 ± 0.34 a* | 2.20 ± 0.372 a* | <0.001 | 1.93 ± 0.276 a* | 2.10 ± 0.404 a* | <0.05 | <0.001 | <0.001 |
PON1, ng/mL † | 1259.7 (717.5–1657.2) | 1157.1 (868.9–1478.8) | <0.05 | 1624.3 a# (1002.3–1832.0) | 1655.7 a# (1266.6–2107.0) | 0.501 | 1168.9 b# (745.4–1491.3) | 1097.9 b# (738.7–1368.1) | <0.05 | <0.05 | <0.05 |
PON1 act., U/L † | 311.0 (235.0–806.2) | 318.0 (246.5–669.0) | 0.667 | 287.0 a# (228.2–727.7) | 351.0 (264.5–652.5) | 0.432 | 305.5 b# (246.0–726.5) | 393.0 (229.0–779.5) | 0.998 | <0.05 | 0.856 |
SAA, ng/L † | 86.9 (67.2–112.2) | 50.3 (23.3–79.1) | <0.001 | 101.5 a# (77.6–147.1) | 47.5 (19.3–88.7) | <0.001 | 150.4 a*,b# (117.4–188.9) | 50.8 (12.6–138.6) | <0.001 | <0.001 | 0.171 |
Parameter | OR | 95%CI | p |
---|---|---|---|
>Age, years | 1.062 | 0.992–1.136 | 0.083 |
>BMI, kg/m2 | 1.238 | 1.093–1.402 | <0.05 |
>MAP | 1.068 | 1.026–1.113 | <0.05 |
>Pregestational prenatal vitamin supplementation | 4.569 | 2.091–9.985 | <0.001 |
>Glucose, mmol/L | 1.916 | 0.947–3.878 | 0.071 |
>TC, mmol/L | 0.973 | 0.669–1.416 | 0.886 |
>TGs, mmol/L | 2.265 | 1.044–4.965 | <0.05 |
>HDL-C, mmol/L | 0.730 | 0.236–2.261 | 0.586 |
>LDL-C, mmol/L | 0.735 | 0.466–1.161 | 0.187 |
>TAC, mmol/L | 0.994 | 0.992–0.997 | <0.001 |
>TOS, μmol/L | 1.139 | 1.061–1.222 | <0.001 |
>PAB, HK unites | 0.999 | 0.99–1.099 | 0.896 |
>hsCRP, mg/L | 0.985 | 0.922–1.053 | 0.663 |
>MCP-1, pg/ml | 1.002 | 0.999–1.004 | 0.166 |
>PON1, ng/ml | 0.999 | 0.999–1.000 | 0.096 |
>PON1 act, U/L | 1.000 | 0.999–1.001 | 0.419 |
>Apo A1, g/L | 0.992 | 0.936–1.098 | 0.552 |
>Apo M, mg/L | 0.996 | 0.979–1.014 | 0.655 |
>SAA, ng/L | 0.981 | 0.969–0.992 | <0.05 |
>S1P, nmol/L | 0.999 | 0.998–1.000 | 0.073 |
Parameter | OR | 95%CI | p |
---|---|---|---|
>Age, years | 1.070 | 0.969–1.181 | 0.181 |
>BMI, kg/m2 | 1.292 | 1.078–1.549 | <0.05 |
>MAP | 1.053 | 1.000–1.109 | 0.051 |
>Glucose, mmol/L | 1.893 | 0.664–5.396 | 0.232 |
>TGs, mmol/L | 2.634 | 0.852–8.143 | 0.098 |
>SAA, ng/L | 0.995 | 0.984–1.007 | 0.426 |
>TAC, mmol/L | 0.994 | 0.990–0.997 | <0.001 |
>PON1, ng/ml | 1.000 | 0.998–1.001 | 0.799 |
>S1P, nmol/L | 0.998 | 0.997–1.000 | <0.05 |
>Pregestational prenatal vitamin supplementation | 3.871 | 1.144–13.103 | <0.05 |
>Model Summary: Nagelkerke R Square 0.592 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stankovic, M.; Zeljkovic, A.; Vekic, J.; Antonic, T.; Ardalic, D.; Miljkovic-Trailovic, M.; Munjas, J.; Saric Matutinovic, M.; Gojkovic, T.; Jovicic, S.; et al. Differences in HDL Remodeling during Healthy Pregnancy and Pregnancy with Cardiometabolic Complications. Antioxidants 2024, 13, 948. https://doi.org/10.3390/antiox13080948
Stankovic M, Zeljkovic A, Vekic J, Antonic T, Ardalic D, Miljkovic-Trailovic M, Munjas J, Saric Matutinovic M, Gojkovic T, Jovicic S, et al. Differences in HDL Remodeling during Healthy Pregnancy and Pregnancy with Cardiometabolic Complications. Antioxidants. 2024; 13(8):948. https://doi.org/10.3390/antiox13080948
Chicago/Turabian StyleStankovic, Marko, Aleksandra Zeljkovic, Jelena Vekic, Tamara Antonic, Daniela Ardalic, Milica Miljkovic-Trailovic, Jelena Munjas, Marija Saric Matutinovic, Tamara Gojkovic, Snezana Jovicic, and et al. 2024. "Differences in HDL Remodeling during Healthy Pregnancy and Pregnancy with Cardiometabolic Complications" Antioxidants 13, no. 8: 948. https://doi.org/10.3390/antiox13080948
APA StyleStankovic, M., Zeljkovic, A., Vekic, J., Antonic, T., Ardalic, D., Miljkovic-Trailovic, M., Munjas, J., Saric Matutinovic, M., Gojkovic, T., Jovicic, S., Mikovic, Z., & Stefanovic, A. (2024). Differences in HDL Remodeling during Healthy Pregnancy and Pregnancy with Cardiometabolic Complications. Antioxidants, 13(8), 948. https://doi.org/10.3390/antiox13080948