In Vitro Bond Strength of Dentin Treated with Sodium Hypochlorite: Effects of Antioxidant Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Information Sources and Search Strategy
2.3. Selection Process and Data Collection Process
2.4. Quality Assessment
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Cai, C.; Chen, X.; Li, Y.; Jiang, Q. Advances in the Role of Sodium Hypochlorite Irrigant in Chemical Preparation of Root Canal Treatment. BioMed Res. Int. 2023, 2023, 8858283. [Google Scholar] [CrossRef]
- Nima, G.; Cavalli, V.; Bacelar-Sá, R.; Ambrosano, G.M.; Giannini, M. Effects of Sodium Hypochlorite as Dentin Deproteinizing Agent and Aging Media on Bond Strength of Two Conventional Adhesives. Microsc. Res. Tech. 2020, 83, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.N.; de Oliveira Carrilho, M.R.; De Goes, M.F.; Zaia, A.A.; de Almeida Gomes, B.P.F.; de Souza-Filho, F.J.; Ferraz, C.C.R. Effect of Chemical Irrigants on the Bond Strength of a Self-Etching Adhesive to Pulp Chamber Dentin. J. Endod. 2006, 32, 1088–1090. [Google Scholar] [CrossRef] [PubMed]
- Gökçe, B.; Çömlekoğlu, M.E.; Özpinar, B.; Türkün, M.; Kaya, A.D. Effect of Antioxidant Treatment on Bond Strength of a Luting Resin to Bleached Enamel. J. Dent. 2008, 36, 780–785. [Google Scholar] [CrossRef] [PubMed]
- Paulose, N.E.; Fawzy, A.S. Effect of Grape Seed Extract on the Bond Strength and Durability of Resin-Dentin Interface. J. Adhes. Sci. Technol. 2017, 31, 2525–2541. [Google Scholar] [CrossRef]
- Corrêa, A.C.P.; Cecchin, D.; de Almeida, J.F.A.; de Almeida Gomes, B.P.F.; Zaia, A.A.; Ferraz, C.C.R. Sodium Thiosulfate for Recovery of Bond Strength to Dentin Treated with Sodium Hypochlorite. J. Endod. 2016, 42, 284–288. [Google Scholar] [CrossRef]
- Gotti, V.B.; Correr-Sobrinho, L.; Correr, A.B.; Feitosa, V.P.; Sauro, S.; Leale, F.B.; Stansbury, J.W. Effect of Antioxidants on the Dentin Interface Bond Stability of Adhesives Exposed to Hydrolytic Degradation. J. Adhes. Dent. 2015, 17, 35–44. [Google Scholar] [CrossRef]
- Karadas, M.; Demirbuga, S. Influence of a Short-time Antioxidant Application on the Dentin Bond Strength after Intracoronal Bleaching. Microsc. Res. Tech. 2019, 82, 1720–1727. [Google Scholar] [CrossRef]
- Banu, M.A.; Sravanthi, T.; Bolla, N.; Vemuri, S.; Basam, R.C.; Garlapati, R.; Chukka, R.S. Evidence of Improved Bond Strength of Resin-Based Sealer with the Use of Natural Antioxidants on Hypochlorite Treated Dentin: An in Vitro Study. Med. Pharm. Rep. 2022, 95, 300. [Google Scholar]
- Suh, B.I. Oxygen-inhibited Layer in Adhesion Dentistry. J. Esthet. Restor. Dent. 2004, 16, 316–323. [Google Scholar] [CrossRef]
- Feiz, A.; Mosleh, H.; Nazeri, R. Evaluating the Effect of Antioxidant Agents on Shear Bond Strength of Tooth-Colored Restorative Materials after Bleaching: A Systematic Review. J. Mech. Behav. Biomed. Mater. 2017, 71, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Syst. Rev. 2021, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hardan, L.; Bourgi, R.; Kharouf, N.; Mancino, D.; Zarow, M.; Jakubowicz, N.; Haikel, Y.; Cuevas-Suárez, C.E. Bond Strength of Universal Adhesives to Dentin: A Systematic Review and Meta-Analysis. Polymers 2021, 13, 814. [Google Scholar] [CrossRef] [PubMed]
- Hardan, L.; Mancino, D.; Bourgi, R.; Alvarado-Orozco, A.; Rodríguez-Vilchis, L.E.; Flores-Ledesma, A.; Cuevas-Suárez, C.E.; Lukomska-Szymanska, M.; Eid, A.; Danhache, M.-L. Bond Strength of Adhesive Systems to Calcium Silicate-Based Materials: A Systematic Review and Meta-Analysis of In Vitro Studies. Gels 2022, 8, 311. [Google Scholar] [CrossRef]
- Abo-Hamar, S.E. Effect of Endodontic Irrigation and Dressing Procedures on the Shear Bond Strength of Composite to Coronal Dentin. J. Adv. Res. 2013, 4, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Arısu, H.D.; Kıvanç, B.H.; Sağlam, B.C.; Şimşek, E.; Görgül, G. Effect of Post-space Treatments on the Push-out Bond Strength and Failure Modes of Glass Fibre Posts. Aust. Endod. J. 2013, 39, 19–24. [Google Scholar] [CrossRef] [PubMed]
- da Silveira Bueno, C.E.; Pelegrine, R.A.; de Magalhães Silveira, C.F.; da Silveira Bueno, V.C.P.; de Oliveira Alves, V.; Cunha, R.S.; da Silveira Pereira, G.D.; Paulillo, L.A.M.S. The Impact of Endodontic Irrigating Solutions on the Push-out Shear Bond Strength of Glass Fiber Posts Luted with Resin Cements. Gen. Dent. 2016, 64, 26–30. [Google Scholar]
- Ertas, H.; Ok, E.; Uysal, B.; Arslan, H. Effects of Different Irrigating Solutions and Disinfection Methods on Push-out Bond Strengths of Fiber Posts. Acta Odontol. Scand. 2014, 72, 783–787. [Google Scholar] [CrossRef]
- Farina, A.P.; Cecchin, D.; Barbizam, J.V.; Carlini-Júnior, B. Influence of Endodontic Irrigants on Bond Strength of a Self-etching Adhesive. Aust. Endod. J. 2011, 37, 26–30. [Google Scholar] [CrossRef]
- Lima, J.F.C.; Lima, A.F.; Humel, M.M.C.; Paulillo, L.A.M.S.; Marchi, G.M.; Ferraz, C.C.R. Influence of Irrigation Protocols on the Bond Strength of Fiber Posts Cemented with a Self-Adhesive Luting Agent 24 h after Endodontic Treatment. Gen. Dent. 2015, 63, 22–26. [Google Scholar]
- De-Deus, G.; Namen, F.; Galan, J., Jr.; Zehnder, M. Soft Chelating Irrigation Protocol Optimizes Bonding Quality of Resilon/Epiphany Root Fillings. J. Endod. 2008, 34, 703–705. [Google Scholar] [CrossRef] [PubMed]
- Kalra, M.; Iqbal, K.; Nitisusanta, L.; Daood, U.; Sum, C.; Fawzy, A. The Effect of Proanthocyanidins on the Bond Strength and Durability of Resin Sealer to Root Dentine. Int. Endod. J. 2013, 46, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Ozlek, E.; Rath, P.P.; Kishen, A.; Neelakantan, P. A Chitosan-Based Irrigant Improves the Dislocation Resistance of a Mineral Trioxide Aggregate-Resin Hybrid Root Canal Sealer. Clin. Oral Investig. 2020, 24, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, D.; Wu, W.C.; He, Q.Y.; Wei, X.; Ling, J.Q. Effect of Sodium Ascorbate on Degree of Conversion and Bond Strength of RealSeal SE to Sodium Hypochlorite Treated Root Dentin. Dent. Mater. J. 2013, 32, 96–100. [Google Scholar] [CrossRef]
- Alandia-Román, C.C.; Vincenti, S.A.F.; Silami, F.D.J.; Silveira, R.E.; Pinto, G.C.D.S.; de Pires-de, F.C.P. The Effect of Proanthocyanidins and Chlorhexidine on the Bond Strength of Glass Fiber Posts to Root Dentin. Gen. Dent. 2017, 65, 23–27. [Google Scholar]
- Ebrahimi-Chaharom, M.-E.; Kimyai, S.; Mohammadi, N.; Oskoee, P.-A.; Daneshpuy, M.; Bahari, M. Effect of Sodium Ascorbate on the Bond Strength of All-in-One Adhesive Systems to NaOCl-Treated Dentin. J. Clin. Exp. Dent. 2015, 7, e595. [Google Scholar] [CrossRef]
- Mazzi-Chaves, J.F.; Martins, C.V.; Souza-Gabriel, A.E.; Brito-Jùnior, M.; da Cruz-Filho, A.M.; Steier, L.; de Sousa-Neto, M.D. Effect of a Chitosan Final Rinse on the Bond Strength of Root Canal Fillings. Gen. Dent. 2019, 67, 54–57. [Google Scholar]
- Soeno, K.; Suzuki, S.; Yokomichi, R.; Taira, Y.; Atsuta, M. Evaluation of a Novel Dentin Bonding System Compared to Commercial Bonding System. J. Dent. 2004, 32, 315–320. [Google Scholar] [CrossRef]
- Albino Souza, M.; de Lima Dalla Lana, D.; Pletsch, A.; Scartazzini Palhano, H.; Bervian, J.; de Carli, J.P.; Cecchin, D. Effectiveness of Grape Seed Extract-Based Intracanal Dressings against Enterococcus Faecalis and Its Influence on Dentin Microhardness and Bond Strength of Filling Material. Biosci. J. 2020, 36, 2287–2296. [Google Scholar]
- Nagpal, R.; Manuja, N.; Pandit, I. Effect of Proanthocyanidin Treatment on the Bonding Effectiveness of Adhesive Restorations in Pulp Chamber. J. Clin. Pediatr. Dent. 2013, 38, 49–53. [Google Scholar] [CrossRef]
- Prasansuttiporn, T.; Thanatvarakorn, O.; Mamanee, T.; Hosaka, K.; Tagami, J.; Foxton, R.M.; Nakajima, M. Effect of Antioxidant/Reducing Agents on the Initial and Long-Term Bonding Performance of a Self-Etch Adhesive to Caries-Affected Dentin with and without Smear Layer-Deproteinizing. Int. J. Adhes. Adhes. 2020, 102, 102648. [Google Scholar] [CrossRef]
- Fawzi, E.M.; Elkassas, D.W.; Ghoneim, A.G. Bonding Strategies to Pulp Chamber Dentin Treated with Different Endodontic Irrigants: Microshear Bond Strength Testing and SEM Analysis. J. Adhes. Dent. 2010, 12, 63–70. [Google Scholar] [PubMed]
- Kalyoncuoğlu, E.; Gönülol, N.; Özsezer Demiryürek, E.; Bodrumlu, E. Effect of Propolis as a Root Canal Irrigant on Bond Strength to Dentin. J. Appl. Biomater. Funct. Mater. 2015, 13, 362–366. [Google Scholar] [CrossRef]
- Nassar, M.; Hiraishi, N.; Islam, M.S.; Romero, M.J.; Otsuki, M.; Tagami, J. Effect of Phytic Acid as an Endodontic Chelator on Resin Adhesion to Sodium Hypochlorite-Treated Dentin. Restor. Dent. Endod. 2020, 45, e44. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ma, W.; Chen, X.; Zhao, J.; Nakata, T.; Tanaka, K.; Takahashi, K.; Nishitani, Y.; Yoshiyama, M. Bonding to NaOCl-Treated Dentin: Effect of Pretreatment with Sodium Toluene Sulfinic Acid. J. Adhes. Dent. 2012, 14, 129–136. [Google Scholar] [CrossRef]
- Cecchin, D.; Farina, A.P.; Bedran-Russo, A.K. Efficacy of Natural Collagen Crosslinkers on the Compromised Adhesive Bond Strength to NaOCl-Treated Pulp Chamber Dentin. J. Adhes. Dent. 2018, 20, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Celik, C.; Erkut, S.; Gulsahi, K.; Yamanel, K.; Kucukesmen, C. Effect of Sodium Ascorbate on Bond Strength of Different Adhesive Systems to NaOCl-Treated Dentin. Aust. Endod. J. 2010, 36, 12–18. [Google Scholar] [CrossRef]
- Chandrashekhar, S.; Patil, S.; Abraham, S.; Mehta, D.; Chaudhari, S.; Shashidhar, J. A Comparative Evaluation of Shear Bond Strength of Composite Resin to Pulp Chamber Dentin Treated with Sodium Thiosulfate and Proanthocyanidin: An: In Vitro: Study. J. Conserv. Dent. Endod. 2018, 21, 671–675. [Google Scholar] [CrossRef]
- da Cunha, L.F.; Furuse, A.Y.; Mondelli, R.F.L.; Mondelli, J. Compromised Bond Strength after Root Dentin Deproteinization Reversed with Ascorbic Acid. J. Endod. 2010, 36, 130–134. [Google Scholar] [CrossRef]
- de Carli, G.; Cecchin, D.; Ghinzelli, K.C.; Souza, M.A.; de Vidal, C.M.P.; Trevelin, L.T.; Bedran-Russo, A.K.; Farina, A.P. Effect of Natural Collagen Cross-Linker Concentration and Application Time on Collagen Biomodification and Bond Strengths of Fiber Posts to Root Dentin. Int. J. Adhes. Adhes. 2018, 87, 42–46. [Google Scholar] [CrossRef]
- Dikmen, B.; Gurbuz, O.; Ozsoy, A.; Eren, M.M.; Cilingir, A.; Yucel, T. Effect of Different Antioxidants on the Microtensile Bond Strength of an Adhesive System to Sodium Hypochlorite-Treated Dentin. J. Adhes. Dent. 2015, 17, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Dikmen, B.; Tarim, B. The Effect of Endodontic Irrigants on the Microtensile Bond Strength of Different Dentin Adhesives. Niger. J. Clin. Pract. 2018, 21, 280–286. [Google Scholar] [CrossRef]
- Furuse, A.Y.; Cunha, L.F.; Baratto, S.P.; Leonardi, D.P.; Haragushiku, G.A.; Gonzaga, C.C. Bond Strength of Fiber-Reinforced Posts to Deproteinized Root Canal Dentin. J. Contemp. Dent. Pract. 2015, 15, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Gönülol, N.; Kalyoncuoʇlu, E.; Ertaş, E. Effect of Sodium Ascorbate on Dentin Bond Strength after Treatment with Oxidizing Root Canal Irrigants. J. Dent. Sci. 2015, 10, 139–144. [Google Scholar] [CrossRef]
- Jain, K.; Beri, L.; Kunjir, K.; Borse, N.; Neekhara, N.; Kadam, A. Comparative Evaluation of the Effect of 10% Sodium Ascorbate, 10% Hesperidin, 1% Riboflavin 5 Phosphate, Collagen Cross-Linkers, on the Pushout Bond Strength of Fiber Postluted to Radicular Dentin: In Vitro: Study. J. Conserv. Dent. 2018, 21, 95–99. [Google Scholar]
- Kasim, H.; Al-Shamma, A.M. The Effects of Natural Collagen Cross-Linking Agent “Proanthocyanidin” on the Flexure Strength of the Radicular Dentin. Iraqi New Med. J. 2023, 9. [Google Scholar]
- Khoroushi, M.; Kachuei, M. Pull-out Bond Strength of a Self-Adhesive Resin Cement to NaOCl-Treated Root Dentin: Effect of Antioxidizing Agents. Restor. Dent. Endod. 2014, 39, 95–103. [Google Scholar] [CrossRef]
- Lai, S.C.N.; Mak, Y.F.; Cheung, G.S.P.; Osorio, R.; Toledano, M.; Carvalho, R.M.; Tay, F.R.; Pashley, D.H. Reversal of Compromised Bonding to Oxidized Etched Dentin. J. Dent. Res. 2001, 80, 1919–1924. [Google Scholar] [CrossRef] [PubMed]
- Manimaran, V.S.; Srinivasulu, S.; Ebenezar, A.V.R.; Mahalaxmi, S.; Srinivasan, N. Application of a Proanthocyanidin Agent to Improve the Bond Strength of Root Dentin Treated with Sodium Hypochlorite. J. Conserv. Dent. 2011, 14, 306–308. [Google Scholar] [CrossRef]
- Pelozo, L.L.; Silva-Neto, R.D.; Corona, S.A.M.; Palma-Dibb, R.G.; Souza-Gabriel, A.E. Dentin Pretreatment with Er: YAG Laser and Sodium Ascorbate to Improve the Bond Strength of Glass Fiber Post. Lasers Med. Sci. 2019, 34, 47–54. [Google Scholar] [CrossRef]
- Prasansuttiporn, T.; Nakajima, M.; Kunawarote, S.; Foxton, R.M.; Tagami, J. Effect of Reducing Agents on Bond Strength to NaOCl-Treated Dentin. Dent. Mater. 2011, 27, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Prasansuttiporn, T.; Thanatvarakorn, O.; Tagami, J.; Foxton, R.M.; Nakajima, M. Bonding Durability of a Self-Etch Adhesive to Normal versus Smear-Layer Deproteinized Dentin: Effect of a Reducing Agent and Plant-Extract Antioxidant. J. Adhes. Dent. 2017, 19, 253–258. [Google Scholar]
- Stevens, C.D. Immediate Shear Bond Strength of Resin Cements to Sodium Hypochlorite–Treated Dentin. J. Endod. 2014, 40, 1459–1462. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, G.; Nakajima, M.; Hosaka, K.; Iwamoto, N.; Ikeda, M.; Foxton, R.M.; Tagami, J. Improving the Effect of NaOCl Pretreatment on Bonding to Caries-Affected Dentin Using Self-Etch Adhesives. J. Dent. 2009, 37, 769–775. [Google Scholar] [CrossRef] [PubMed]
- Thanatvarakorn, O.; Prasansuttiporn, T.; Thittaweerat, S.; Foxton, R.M.; Ichinose, S.; Tagami, J.; Hosaka, K.; Nakajima, M. Smear Layer-Deproteinizing Improves Bonding of One-Step Self-Etch Adhesives to Dentin. Dent. Mater. 2018, 34, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Vongphan, N.; Senawongse, P.; Somsiri, W.; Harnirattisai, C. Effects of Sodium Ascorbate on Microtensile Bond Strength of Total-Etching Adhesive System to NaOCl Treated Dentine. J. Dent. 2005, 33, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, C.; Zang, H.L.; Liang, Y.H. The Recovery Effect of Proanthocyanidin on Microtensile Bond Strength to Sodium Hypochlorite-Treated Dentine. Int. Endod. J. 2019, 52, 371–376. [Google Scholar] [CrossRef]
- Weston, C.H.; Ito, S.; Wadgaonkar, B.; Pashley, D.H. Effects of Time and Concentration of Sodium Ascorbate on Reversal of NaOCl-Induced Reduction in Bond Strengths. J. Endod. 2007, 33, 879–881. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, L.; Xu, S.; Li, F.; Yu, F.; Liu, Z.; Huang, L.; Chen, J. Effects of Epigallocatechin-3-Gallate (EGCG) on the Bond Strength of Fiber Posts to Sodium Hypochlorite (NaOCl) Treated Intraradicular Dentin. Sci. Rep. 2017, 7, 4235. [Google Scholar]
- Kharouf, N.; Haikel, Y.; Ball, V. Polyphenols in Dental Applications. Bioengineering 2020, 7, 72. [Google Scholar] [CrossRef]
- Pauletto, G.; Lena, I.M.; Beier, V.L.; Morgental, R.D.; Bier, C.A.S. The Use of Sodium Ascorbate to Recover the Bond Strength to Sodium Hypochlorite-Treated Dentin: A Scoping Review. J. Adhes. Sci. Technol. 2024, 38, 1795–1810. [Google Scholar] [CrossRef]
- Varghese, A.S.; Prakash, V.; Mitthra, S.; Mary, N.S.G.P.; Deepti, J.V.; Subbiya, A.; Nilofer, J. Role of Different Collagen Cross-Linking Agents like Proanthocyanidin, Riboflavin and White Tea on the Shear Bond Strength to Dentin-An In-Vitro Study. NVEO-Nat. VOLATILES Essent. OILS J. NVEO 2021, 8, 6396–6407. [Google Scholar]
- Ishizuka, T.; Kataoka, H.; Yoshioka, T.; Suda, H.; Iwasaki, N.; Takahashi, H.; Nishimura, F. Effect of NaClO treatment on bonding to root canal dentin using a new evaluation method. Dent. Mater. J. 2001, 20, 24–33. [Google Scholar] [CrossRef]
- Francescantonio, M.D.; Nurrohman, H.; Takagaki, T.; Nikaido, T.; Tagami, J.; Giannini, M. Sodium hypochlorite effects on dentin bond strength and acid-base resistant zone formation by adhesive systems. Braz. J. Oral Sci. 2015, 14, 334–340. [Google Scholar] [CrossRef]
- Demarco, F.F.; Cenci, M.S.; Montagner, A.F.; de Lima, V.P.; Correa, M.B.; Moraes, R.R.; Opdam, N.J. Longevity of composite restorations is definitely not only about materials. Dent. Mater. 2023, 39, 1–12. [Google Scholar] [CrossRef]
- Laske, M.; Opdam, N.J.; Bronkhorst, E.M.; Braspenning, J.C.; Huysmans, M. Risk Factors for Dental Restoration Survival: A Practice-Based Study. J. Dent. Res. 2019, 98, 414–422. [Google Scholar] [CrossRef]
- de Kuijper, M.C.F.M.; Meisberger, E.W.; Rijpkema, A.G.; Fong, C.T.; Beus, J.H.W.D.; De Beus, J.H.W.; Ozcan, M.; Cune, M.S.; Gresnigt, M.M.M. Survival of Molar Teeth in Need of Complex Endodontic Treatment: Influence of the Endodontic Treatment and Quality of the Restoration. J. Dent. 2021, 108, 103611. [Google Scholar] [CrossRef]
- Chotvorrarak, K.; Suksaphar, W.; Banomyong, D. Retrospective Study of Fracture Survival in Endodontically Treated Molars: The Effect of Single-Unit Crowns versus Direct-Resin Composite Restorations. Restor. Dent. Endod. 2021, 46, e29. [Google Scholar] [CrossRef] [PubMed]
- Jeong, M.-Y.; Lim, Y.-J.; Kim, M.-J.; Kwon, H.-B. Comparison of Two Computerized Occlusal Analysis Systems for Indicating Occlusal Contacts. J. Adv. Prosthodont. 2020, 12, 49. [Google Scholar] [CrossRef]
- Lührs, A.; Jacker-Guhr, S.; Günay, H.; Herrmann, P. Composite Restorations Placed in Non-carious Cervical Lesions—Which Cavity Preparation Is Clinically Reliable? Clin. Exp. Dent. Res. 2020, 6, 558–567. [Google Scholar] [CrossRef]
- Guedes, F.-R.; de Souza, G.-L.; Paranhos, L.-R.; Turrioni, A.-P. Cytotoxicity and Dentin Composition Alterations Promoted by Different Chemomechanical Caries Removal Agents: A Preliminary in Vitro Study. J. Clin. Exp. Dent. 2021, 13, e826. [Google Scholar] [CrossRef] [PubMed]
- Kwansirikul, A.; Sae-Lee, D.; Angwaravong, O.; Angwarawong, T. Effect of Different Surface Treatments of Human Occlusal Sclerotic Dentin on Micro-tensile Bond Strength to Resin Composite Core Material. Eur. J. Oral Sci. 2020, 128, 263–273. [Google Scholar] [CrossRef] [PubMed]
Number | Search Terms |
---|---|
# 1 | NaOCl OR NaOCl-treated dentin OR Sodium Hypochlorite OR NaOCl-Induced OR sodium hypochlorite-treated dentine OR smear layer-deproteinizing OR Oxidized Etched Dentin OR Deproteinized Dentin OR Root Dentin Deproteinization |
# 2 | antioxidant OR reducing agent OR Sodium Ascorbate OR Proanthocyanidin OR Grape seed extract OR ascorbic acid |
# 3 | Bond OR Bonding OR Dental bonding OR Bonding efficacy OR bond strength OR Bonding performance OR bonding effectiveness OR Bond performance OR adhesive properties OR microtensile strength OR Micro-tensile strength OR bonding properties OR Microtensile bond strength OR shear bond strength OR microshear bond strength OR performance |
# 4 | # 1 AND # 2 AND # 3 |
Study | Antioxidants Used | NaOCl Treatment | Adhesive System Evaluated | Antioxidant Protocol Application | Bond Strength Test | Aging |
---|---|---|---|---|---|---|
Cecchin 2018 [36] | Grape seed extract Tannic acid Green tea N-acetyl cysteine | 5.25% for 30 min | Etch-and-rinse: Single Bond Plus (3M ESPE) Universal: Scotchbond Universal (3M ESPE) | 5 mL of 10% solution for 5 min | Microtensile | Distilled water for 24 h at 37 °C |
Celik 2010 [37] | Sodium thiosulfate | 5.25% NaOCl for 30 min | Etch-and-rinse: Scotchbond Multi-Purpose 3M | 5 mL 0.5% to 5% for 1, 5, or 10 min | Microtensile | Distilled water for 24 h at 37 °C |
Chandrashekhar 2018 [38] | Sodium thiosulfate Proanthocyanidin | 3% NaOCl for 30 min | Etch-and-rinse: One Coat SL (Coltene) | 5% sodium thiosulfate or proanthocyanidin solution for 10 min | Microtensile | Distilled water for 24 h at 37 °C |
Correa 2016 [6] | Sodium thiosulfate | 5.25% NaOCl for 30 min | Etch-and-rinse: Scotchbond Multi-Purpose (3M ESPE) | 0.5% or 5% sodium thiosulfate used for 1, 5, or 10 min | Microtensile | Distilled water for 24 h at 37 °C |
Da Cunha 2010 [39] | Ascorbic acid | 5.25% NaOCl for 10 min | Self-adhesive resin cement: Rely X U100 (3M ESPE) Etch-and-rinse: Adper Single Bond 2 (3M ESPE) Self-etch: Clearfil SE Bond (Kuraray) | 10% ascorbic acid for 10 min | Push-out | Distilled water for 24 h at 37 °C |
De Carli 2018 [40] | Grape seed extract | 0.9% sodium chloride solution | Self-adhesive resin cement: RelyX U200 (3M ESPE) | 6.5% or 10% grape seed extract for 30, 60, or 120 s | Push-out | Distilled water for 24 h and 12 months at 37 °C |
De Deus 2008 [21] | Citric acid | 1.25% NaOCl | Self-etch primer: Epiphany self-etch primer (Resilon Research LLC) | 5 mL of BioPure MTAD (citric acid) | Micropush-out | Distilled water for 7 days at 37 °C |
Dikmen 2017 [41] | Sodium ascorbate | 5.25% NaOCl for 30 s | Etch-and-rinse: Adper Single Bond 2 (3M ESPE) Self-etch: Clearfil SE Bond (Kuraray) Self-etch: Xeno III (Dentsply) | 10% sodium ascorbate for 10 min | Microtensile | Distilled water for 24 h at 37 °C |
Dikmen 2015 [42] | Grape seed extract p-toluene sulfonic acid | 5.25% NaOCl for 30 s | Universal: Single Bond Universal (3M ESPE) | 5% grape seed extract or p-toluene sulfonic acid solution for 10 min | Microtensile | Distilled water for 24 h at 37 °C |
Ebrahimi-Chaharom [26] | Sodium ascorbate | 5.25% NaOCl for 10 minutes | Self-etch: Clearfil S3 Bond (Kuraray) and Adper Easy One (3M ESPE) | 10% sodium ascorbate for 10 minutes. | Shear | Distilled water for 24 h at 37°C and then 500 rounds thermocycling at 5/55 °C |
Fawzi 2010 [32] | Citric acid | 5.25% NaOCl for 10 min | Self-etch: Clearfil S3 Bond (Kuraray) Etch-and-rinse: Adper Single Bond 2 (3M ESPE) | Citric acid for 5 min | Micro shear | Distilled water for 24 h at 37 °C |
Furuse 2015 [43] | Sodium ascorbate | 5.25% NaOCl for 10 min | Etch-and-rinse: Scotchbond Multi- Purpose Plus (3M ESPE) Self-etch: Xeno III (Dentsply) | 10% sodium ascorbate during 10 min | Push-out | Distilled water for 24 h at 37 °C |
Gönülol 2015 [44] | Sodium ascorbate | 5.25% NaOCl for 10 min | Self-etch: Clearfil SE Bond (Kuraray) | 10% sodium ascorbate solution for 10 min | Microtensile | Distilled water for 24 h at 37 °C |
Jain 2018 [45] | Sodium ascorabte Hesperidin Riboflavin | 3% NaOCl | Self-adhesive resin cement: Rely X Arc (3M ESPE) | 10% sodium ascorbate or hesperidin for 4 min, 1% riboflavin for 4 min | Push-out | Not mentioned |
Kalyoncuoğlu 2015 [33] | Propolis | 5.25% NaOCl for 10 min | Self-etch: Clearfil. SE Bond (Kuraray) | 20% propolis solution for 5 min | Micro shear | Distilled water for 1 week at 37 °C |
Kasim 2019 [46] | Proanthocyanidin | 5.25% NaOCl for 1 min | Self-adhesive resin cement: U-Cem (Vericom) | 1 ml of Proanthocyanidin for 1 min | Push-out | Not mentioned |
Khoroushi 2014 [47] | Rosmarinic acid Hesperidin Sodium ascorbate | 5.25% NaOCl for 1 min | Self-adhesive resin cement: Bifix SE (Voco) | 10% of each solution for 2 min | Push-out | Distilled water for 24 h at 37 °C |
Lai 2001 [48] | Sodium ascorbate | 5.25% NaOCl for 1 to 10 min | Etch-and-rinse: Single bond (3M ESPE) Etch-and-rinse: Excite (Ivoclar Vivadent) | 10% sodium ascorbate for 1 to 10 min | Microtensile | Distilled water for 24 h at 37 °C |
Li 2011 [35] | Sodium toluene sulfinic acid | 10% NaOCl for 1 min | Self-etch: Super-Bond C&B (Sun Medical) | Sodium toluene sulfinic acid for 10 s | Microtensile | Distilled water for 24 h at 37 °C |
Manimaran 2011 [49] | Proanthocyanidin agent/grape seed extract Sodium ascorbate | 5.25% NaOCl for 15 to 20 min | Self-etch: Adper Bond (3M ESPE) | 10% proanthocyanidin or sodium ascorbate for 10 min | Microtensile | Distilled water for 24 h at 37 °C |
Nassar 2020 [34] | Phytic acid | 5.25% NaOCl for 5 min | Universal: Scotchbond Universal (3M ESPE) | 1% phytic acid for 1 min | Microtensile | Distilled water for 24 h at 37 °C |
Pelozo 2018 [50] | Sodium ascorbate | 1% NaOCl | Self-adhesive resin cement: RelyX U200 (3M ESPE) | 10% sodium ascorbate for 10 min | Push-out | Distilled water for 24 h at 37 °C |
Prasansuttiporn 2011 [51] | Sodium ascorbate Rosmarinic acid p-toluene sulfinic acid salt | 6% NaOCl for 30 s | Self-etch: Clearfil Protect Bond (Kuraray). | 10% antioxidant for 5 or 10 s | Microtensile | Distilled water for 24 h at 37 °C |
Prasansuttiporn 2017 [52] | Rosmarinic acid p-toluene sulfinic acid salt | 6% NaOCl for 30 s | Self-etch: Clearfil SE bond (Kuraray) | 10% antioxidant solution for 5 s | Microtensile | Distilled water for 24 h at 37 °C |
Stevens 2014 [53] | Sodium ascorbate | 6% NaOCl | Etch-and-rinse: Excite (Ivoclar Vivadent) Self-Adhesive Resin Cement: Multilink (Ivoclar Vivadent) Self-etch: Clearfil DC Bond (Kuraray) Self-adhesive resin cement: SpeedCEM (Ivoclar Vivadent) Self-adhesive resin cement: Clearfil SA Cement (Kuraray) | 10% sodium ascorbate for 5 s | Shear | Not mentioned |
Taniguchi 2009 [54] | p-toluene sulfinic acid salt | 6%NaOCl for 15 or 30 s | Self-etch: Clearfil DC Bond (Kuraray) | p-toluene sulfinic acid salt for 30 s | Microtensile | Distilled water for 24 h at 37 °C |
Thanatvarakorn 2017 [55] | p-toluene sulfinic acid salt | hypochlorous acid solution for 15 s | Self-etch: Clearfil Bond SE One (Kuraray) Universal: Scotchbond Universal (3M ESPE) Self-etch: BeautiBond Multi (Shofu) Self-etch: Bond Force (Tokuyama). | p-toluene sulfinic acid salt for 5 s | Microtensile | Distilled water for 24 h at 37 °C |
Vangphan 2005 [56] | Sodium ascorbate | 5.25% NaOCl for 10 min | Etch-and-rinse: Single bond (3M-ESPE) | 10% sodium ascorbate for 10 min | Microtensile | Distilled water for 24 h at 37 °C |
Wang 2018 [57] | Proanthocyanidin | 5.25% NaOCl for 20 min | Self-etch: Clearfil SE Bond (Kuraray) | 5, 10 or 15% Proanthocyanidin for 1, 5, or 10 min | Microtensile | Distilled water for 24 h at 37 °C |
Weston 2007 [58] | Sodium ascorbate | 5.25% NaOCl for 1 min | Self-etch: Clearfil SE Bond (Kuraray) Etch-and-rinse: Single bond 2 (3M-ESPE) | 10% sodium ascorbate for 1, 3, and 10 min | tensile | Distilled water for 24 h at 37 °C |
Yu 2017 [59] | Epigallocatechin | 5.25% NaOCl for 1 min | Self-adhesive resin cement: U-Cem (Vericom) | 10 mL of Epigallocatechin | Push-out | Distilled water for 24 h at 37 °C |
Study | Specimen Randomization | Single Operator | Operator Blinded | Standardized Specimens | Sound Teeth | Sample Size Calculation | Control Groups | Risk of Bias |
---|---|---|---|---|---|---|---|---|
Cecchin 2018 [36] | YES | NO | NO | YES | YES | YES | YES | Medium |
Celik 2010 [37] | YES | NO | NO | NO | YES | NO | NO | High |
Chandrashekhar 2018 [38] | YES | NO | NO | YES | NO | NO | YES | High |
Correa 2016 [6] | YES | NO | NO | YES | NO | YES | YES | Medium |
Da Cunha 2010 [39] | YES | YES | NO | YES | NO | YES | NO | Medium |
De Carli 2018 [40] | YES | NO | NO | YES | YES | NO | YES | Medium |
De Deus 2008 [21] | YES | NO | NO | YES | YES | NO | YES | Medium |
Dikmen 2017 [41] | NO | NO | NO | YES | YES | YES | NO | High |
Dikmen 2015 [42] | YES | NO | YES | YES | YES | YES | NO | Medium |
Ebrahimi-Chaharom [26] | YES | NO | NO | YES | YES | NO | YES | Medium |
Fawzi 2010 [32] | YES | NO | NO | YES | YES | YES | NO | Medium |
Furuse 2015 [43] | NO | NO | NO | YES | NO | YES | NO | High |
Gönülol 2015 [44] | YES | NO | NO | YES | YES | NO | YES | Medium |
Jain 2018 [45] | NO | NO | NO | YES | YES | YES | NO | High |
Kalyoncuoğlu 2015 [33] | YES | NO | NO | YES | NO | YES | NO | High |
Kasim 2019 [46] | YES | NO | NO | YES | NO | YES | NO | High |
Khoroushi 2014 [47] | YES | NO | NO | NO | YES | NO | YES | High |
Lai 2001 [48] | NO | NO | NO | NO | NO | YES | YES | High |
Li 2011 [35] | NO | NO | NO | YES | NO | NO | NO | High |
Manimaran 2011 [49] | YES | NO | NO | YES | YES | NO | YES | Medium |
Nassar 2020 [34] | NO | NO | NO | YES | YES | NO | NO | High |
Pelozo 2018 [50] | NO | NO | NO | YES | NO | YES | NO | High |
Prasansuttiporn 2011 [51] | NO | NO | NO | YES | YES | YES | NO | High |
Prasansuttiporn 2017 [52] | YES | NO | NO | YES | YES | YES | NO | Medium |
Stevens 2014 [53] | NO | NO | NO | NO | YES | NO | NO | High |
Taniguchi 2009 [54] | NO | NO | NO | YES | YES | YES | NO | High |
Thanatvarakorn 2017 [55] | YES | NO | NO | YES | YES | NO | YES | Medium |
Vangphan 2005 [56] | NO | NO | NO | YES | YES | YES | NO | High |
Wang 2018 [57] | YES | NO | NO | YES | YES | YES | NO | Medium |
Weston 2007 [58] | YES | NO | NO | YES | YES | NO | NO | High |
Yu 2017 [59] | YES | NO | NO | YES | NO | YES | NO | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grazioli, G.; de León Cáceres, E.; Tessore, R.; Lund, R.G.; Monjarás-Ávila, A.J.; Lukomska-Szymanska, M.; Hardan, L.; Bourgi, R.; Cuevas-Suárez, C.E. In Vitro Bond Strength of Dentin Treated with Sodium Hypochlorite: Effects of Antioxidant Solutions. Antioxidants 2024, 13, 1116. https://doi.org/10.3390/antiox13091116
Grazioli G, de León Cáceres E, Tessore R, Lund RG, Monjarás-Ávila AJ, Lukomska-Szymanska M, Hardan L, Bourgi R, Cuevas-Suárez CE. In Vitro Bond Strength of Dentin Treated with Sodium Hypochlorite: Effects of Antioxidant Solutions. Antioxidants. 2024; 13(9):1116. https://doi.org/10.3390/antiox13091116
Chicago/Turabian StyleGrazioli, Guillermo, Elisa de León Cáceres, Romina Tessore, Rafael Guerra Lund, Ana Josefina Monjarás-Ávila, Monika Lukomska-Szymanska, Louis Hardan, Rim Bourgi, and Carlos Enrique Cuevas-Suárez. 2024. "In Vitro Bond Strength of Dentin Treated with Sodium Hypochlorite: Effects of Antioxidant Solutions" Antioxidants 13, no. 9: 1116. https://doi.org/10.3390/antiox13091116
APA StyleGrazioli, G., de León Cáceres, E., Tessore, R., Lund, R. G., Monjarás-Ávila, A. J., Lukomska-Szymanska, M., Hardan, L., Bourgi, R., & Cuevas-Suárez, C. E. (2024). In Vitro Bond Strength of Dentin Treated with Sodium Hypochlorite: Effects of Antioxidant Solutions. Antioxidants, 13(9), 1116. https://doi.org/10.3390/antiox13091116