Intermittent Fasting Protects Against the Progression from Acute Kidney Injury to Chronic Kidney Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Experimental Design
2.2. Histologic Examination
2.3. Immunohistochemical Analysis
2.4. Quantitative Real-Time Polymerase Chain Reaction (PCR) Analysis
2.5. Statistical Analysis
3. Results
3.1. Effect of IF on Metabolism
3.2. Effect of IF on Kidney Pathology and Function During the Progression from AKI to CKD
3.3. Effect of IF on Tubular EMT During the Progression from AKI to CKD
3.4. Effect of IF on Inflammation During the Progression from AKI to CKD
3.5. Effect of IF on Oxidative Stress During the Progression from AKI to CKD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kellum, J.A.; Romagnani, P.; Ashuntantang, G.; Ronco, C.; Zarbock, A.; Anders, H.J. Acute Kidney Injury. Nat. Rev. Dis. Primers 2021, 7, 52. [Google Scholar] [CrossRef] [PubMed]
- Kung, C.W.; Chou, Y.H. Acute Kidney Disease: An Overview of the Epidemiology, Pathophysiology, and Management. Kidney Res. Clin. Pract. 2023, 42, 686–699. [Google Scholar] [CrossRef] [PubMed]
- Rifkin, D.E.; Coca, S.G.; Kalantar-Zadeh, K. Does Aki Truly Lead to Ckd? J. Am. Soc. Nephrol. 2012, 23, 979–984. [Google Scholar] [CrossRef] [PubMed]
- Guzzi, F.; Cirillo, L.; Roperto, R.M.; Romagnani, P.; Lazzeri, E. Molecular Mechanisms of the Acute Kidney Injury to Chronic Kidney Disease Transition: An Updated View. Int. J. Mol. Sci. 2019, 20, 4941. [Google Scholar] [CrossRef] [PubMed]
- Peerapornratana, S.; Manrique-Caballero, C.L.; Gomez, H.; Kellum, J.A. Acute Kidney Injury from Sepsis: Current Concepts, Epidemiology, Pathophysiology, Prevention and Treatment. Kidney Int. 2019, 96, 1083–1099. [Google Scholar] [CrossRef]
- Sheng, L.; Zhuang, S. New Insights into the Role and Mechanism of Partial Epithelial-Mesenchymal Transition in Kidney Fibrosis. Front. Physiol. 2020, 11, 569322. [Google Scholar] [CrossRef]
- Lovisa, S.; LeBleu, V.S.; Tampe, B.; Sugimoto, H.; Vadnagara, K.; Carstens, J.L.; Wu, C.C.; Hagos, Y.; Burckhardt, B.C.; Pentcheva-Hoang, T.; et al. Epithelial-to-Mesenchymal Transition Induces Cell Cycle Arrest and Parenchymal Damage in Renal Fibrosis. Nat. Med. 2015, 21, 998–1009. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, C. From Aki to Ckd: Maladaptive Repair and the Underlying Mechanisms. Int. J. Mol. Sci. 2022, 23, 10880. [Google Scholar] [CrossRef] [PubMed]
- Mattison, J.A.; Colman, R.J.; Beasley, T.M.; Allison, D.B.; Kemnitz, J.W.; Roth, G.S.; Ingram, D.K.; Weindruch, R.; de Cabo, R.; Anderson, R.M. Caloric Restriction Improves Health and Survival of Rhesus Monkeys. Nat. Commun. 2017, 8, 14063. [Google Scholar] [CrossRef]
- de Cabo, R.; Mattson, M.P. Effects of Intermittent Fasting on Health, Aging, and Disease. N. Engl. J. Med. 2019, 381, 2541–2551. [Google Scholar] [CrossRef]
- James, D.L.; Hawley, N.A.; Mohr, A.E.; Hermer, J.; Ofori, E.; Yu, F.; Sears, D.D. Impact of Intermittent Fasting and/or Caloric Restriction on Aging-Related Outcomes in Adults: A Scoping Review of Randomized Controlled Trials. Nutrients 2024, 16, 316. [Google Scholar] [CrossRef]
- Kim, I.Y.; Park, Y.K.; Song, S.H.; Seong, E.Y.; Lee, D.W.; Bae, S.S.; Lee, S.B. Role of Akt1 in Renal Fibrosis and Tubular Dedifferentiation During the Progression of Acute Kidney Injury to Chronic Kidney Disease. Korean J. Intern. Med. 2021, 36, 962–974. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.K.; Kim, Y.S.; Kim, M.J.; Kim, S.R.; Lee, D.W.; Lee, S.B.; Kim, I.Y. Time-Restricted Feeding Protects against Renal Ischemia-Reperfusion Injury in Mice. Int. J. Mol. Sci. 2024, 25, 7652. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Novoa, J.M.; Nieto, M.A. Inflammation and Emt: An Alliance Towards Organ Fibrosis and Cancer Progression. EMBO Mol. Med. 2009, 1, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Le Clef, N.; Verhulst, A.; D’Haese, P.C.; Vervaet, B.A. Unilateral Renal Ischemia-Reperfusion as a Robust Model for Acute to Chronic Kidney Injury in Mice. PLoS ONE 2016, 11, e0152153. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, Q.; Wen, J.; Chen, T.; He, L.; Wang, Y.; Yin, J.; Wu, R.; Xue, R.; Li, S.; et al. Ischemic Duration and Frequency Determines Aki-to-Ckd Progression Monitored by Dynamic Changes of Tubular Biomarkers in Iri Mice. Front. Physiol. 2019, 10, 153. [Google Scholar] [CrossRef]
- Dwaib, H.S.; AlZaim, I.; Eid, A.H.; Obeid, O.; El-Yazbi, A.F. Modulatory Effect of Intermittent Fasting on Adipose Tissue Inflammation: Amelioration of Cardiovascular Dysfunction in Early Metabolic Impairment. Front. Pharmacol. 2021, 12, 626313. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Morales, P.; Leon-Contreras, J.C.; Aparicio-Trejo, O.E.; Reyes-Ocampo, J.G.; Medina-Campos, O.N.; Jimenez-Osorio, A.S.; Gonzalez-Reyes, S.; Marquina-Castillo, B.; Hernandez-Pando, R.; Barrera-Oviedo, D.; et al. Fasting Reduces Oxidative Stress, Mitochondrial Dysfunction and Fibrosis Induced by Renal Ischemia-Reperfusion Injury. Free Radic. Biol. Med. 2019, 135, 60–67. [Google Scholar] [CrossRef]
- Rojas-Morales, P.; Tapia, E.; Leon-Contreras, J.C.; Gonzalez-Reyes, S.; Jimenez-Osorio, A.S.; Trujillo, J.; Pavon, N.; Granados-Pineda, J.; Hernandez-Pando, R.; Sanchez-Lozada, L.G.; et al. Mechanisms of Fasting-Mediated Protection against Renal Injury and Fibrosis Development after Ischemic Acute Kidney Injury. Biomolecules 2019, 9, 404. [Google Scholar] [CrossRef]
- Mattson, M.P.; Allison, D.B.; Fontana, L.; Harvie, M.; Longo, V.D.; Malaisse, W.J.; Mosley, M.; Notterpek, L.; Ravussin, E.; Scheer, F.A.; et al. Meal Frequency and Timing in Health and Disease. Proc. Natl. Acad. Sci. USA 2014, 111, 16647–16653. [Google Scholar] [CrossRef] [PubMed]
- Mierziak, J.; Burgberger, M.; Wojtasik, W. 3-Hydroxybutyrate as a Metabolite and a Signal Molecule Regulating Processes of Living Organisms. Biomolecules 2021, 11, 402. [Google Scholar] [CrossRef]
- Kim, D.H.; Park, M.H.; Ha, S.; Bang, E.J.; Lee, Y.; Lee, A.K.; Lee, J.; Yu, B.P.; Chung, H.Y. Anti-Inflammatory Action of Beta-Hydroxybutyrate Via Modulation of Pgc-1alpha and Foxo1, Mimicking Calorie Restriction. Aging 2019, 11, 1283–1304. [Google Scholar] [CrossRef]
- Mohr, A.E.; McEvoy, C.; Sears, D.D.; Arciero, P.J.; Sweazea, K.L. Impact of Intermittent Fasting Regimens on Circulating Markers of Oxidative Stress in Overweight and Obese Humans: A Systematic Review of Randomized Controlled Trials. Adv. Redox Res. 2021, 3, 100026. [Google Scholar] [CrossRef]
- Lettieri-Barbato, D.; Minopoli, G.; Caggiano, R.; Izzo, R.; Santillo, M.; Aquilano, K.; Faraonio, R. Fasting Drives Nrf2-Related Antioxidant Response in Skeletal Muscle. Int. J. Mol. Sci. 2020, 21, 7780. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.M.; Ramprasath, T.; Zou, M.H. Beta-Hydroxybutyrate and Its Metabolic Effects on Age-Associated Pathology. Exp. Mol. Med. 2020, 52, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, S.W.; Zhong, X.; Liu, B.C.; Lv, L.L. An Update on Renal Fibrosis: From Mechanisms to Therapeutic Strategies with a Focus on Extracellular Vesicles. Kidney Res. Clin. Pract. 2023, 42, 174–187. [Google Scholar] [CrossRef] [PubMed]
- Grgic, I.; Duffield, J.S.; Humphreys, B.D. The Origin of Interstitial Myofibroblasts in Chronic Kidney Disease. Pediatr. Nephrol. 2012, 27, 183–193. [Google Scholar] [CrossRef]
Gene | Gene Accession Number | Forward | Reverse |
---|---|---|---|
GAPDH | NM_008084.4 | 5′-CATCACTGCCACCCAGAAGACTG-3′ | 5′-ATGCCAGTGAGCTTCCCGTTCAG-3′ |
IL-6 | NM_031168.2 | 5′-TACCACTTCACAAGTCGGAGGC-3′ | 5′-CTGCAAGTGCATCATCGTTGTTC-3′ |
TNF-α | NM_013693.3 | 5′-GGTGCCTATGTCTCAGCCTCTT-3′ | 5′-GCCATAGAACTGATGAGAGGGAG-3′ |
IL-1β | NM_008361.4 | 5′-CCACAGACCTTCCAGGAGAATG-3′ | 5′-GTGCAGTTCAGTGATCGTACAGG-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, Y.; Kim, Y.S.; Kim, S.R.; Lee, D.W.; Lee, S.B.; Kim, I.Y. Intermittent Fasting Protects Against the Progression from Acute Kidney Injury to Chronic Kidney Disease. Antioxidants 2025, 14, 119. https://doi.org/10.3390/antiox14010119
Jang Y, Kim YS, Kim SR, Lee DW, Lee SB, Kim IY. Intermittent Fasting Protects Against the Progression from Acute Kidney Injury to Chronic Kidney Disease. Antioxidants. 2025; 14(1):119. https://doi.org/10.3390/antiox14010119
Chicago/Turabian StyleJang, Yoonjoo, Young Suk Kim, Seo Rin Kim, Dong Won Lee, Soo Bong Lee, and Il Young Kim. 2025. "Intermittent Fasting Protects Against the Progression from Acute Kidney Injury to Chronic Kidney Disease" Antioxidants 14, no. 1: 119. https://doi.org/10.3390/antiox14010119
APA StyleJang, Y., Kim, Y. S., Kim, S. R., Lee, D. W., Lee, S. B., & Kim, I. Y. (2025). Intermittent Fasting Protects Against the Progression from Acute Kidney Injury to Chronic Kidney Disease. Antioxidants, 14(1), 119. https://doi.org/10.3390/antiox14010119