Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA): A Targeted Antioxidant Strategy to Counter Oxidative Stress in Retinopathy
Abstract
:1. Introduction
2. Clinical Evidence
2.1. Age-Related Macular Degeneration: Risk of Progression to Advanced Disease Andnew Presentation
2.2. Diabetic Retinopathy
2.3. Retinopathy of Prematurity
3. Dosage and Safety
4. Anti-Angiogenic Properties
5. Neuroprotective Effects
6. Population Studies
6.1. Age-Related Macular Degeneration
6.2. Diabetic Retinopathy
7. Combination with Other Nutrients
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dutot, M.; de la Tourrette, V.; Fagon, R.; Rat, P. New Approach to Modulate Retinal Cellular Toxic Effects of High Glucose Using Marine Epa and Dha. Nutr. Metab. 2011, 8, 39. [Google Scholar] [CrossRef] [PubMed]
- Vítor, A.C.M.; Correia, J.J.; Alves, S.P.; Bessa, R.J.B. Enrichment of Brain N-3 Docosapentaenoic Acid (DPA) and Retinal n-3 Eicosapentaenoic Acid (EPA) in Lambs Fed Nannochloropsis Oceanica Microalga. Animals 2023, 13, 828. [Google Scholar] [CrossRef] [PubMed]
- Simón, M.V.; Agnolazza, D.L.; German, O.L.; Garelli, A.; Politi, L.E.; Agbaga, M.-P.; Anderson, R.E.; Rotstein, N.P. Synthesis of Docosahexaenoic Acid from Eicosapentaenoic Acid in Retina Neurons Protects Photoreceptors from Oxidative Stress. J. Neurochem. 2016, 136, 931–946. [Google Scholar] [CrossRef] [PubMed]
- Saenz de Viteri, M.; Hernandez, M.; Bilbao-Malavé, V.; Fernandez-Robredo, P.; González-Zamora, J.; Garcia-Garcia, L.; Ispizua, N.; Recalde, S.; Garcia-Layana, A. A Higher Proportion of Eicosapentaenoic Acid (EPA) When Combined with Docosahexaenoic Acid (DHA) in Omega-3 Dietary Supplements Provides Higher Antioxidant Effects in Human Retinal Cells. Antioxidants 2020, 9, 828. [Google Scholar] [CrossRef]
- Fock, E.; Parnova, R. Omega-3 Polyunsaturated Fatty Acids in the Brain and Visual System: Focus on Invertebrates. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2025, 275, 111023. [Google Scholar] [CrossRef]
- Kuroha, S.; Katada, Y.; Isobe, Y.; Uchino, H.; Shishikura, K.; Nirasawa, T.; Tsubota, K.; Negishi, K.; Kurihara, T.; Arita, M. Long Chain Acyl-CoA Synthetase 6 Facilitates the Local Distribution of Di-Docosahexaenoic Acid- and Ultra-Long-Chain-PUFA-Containing Phospholipids in the Retina to Support Normal Visual Function in Mice. FASEB J. 2023, 37, e23151. [Google Scholar] [CrossRef]
- Querques, G.; Benlian, P.; Chanu, B.; Portal, C.; Coscas, G.; Soubrane, G.; Souied, E.H. Nutritional AMD Treatment Phase I (NAT-1): Feasibility of Oral DHA Supplementation in Age-Related Macular Degeneration. Eur. J. Ophthalmol. 2009, 19, 100–106. [Google Scholar] [CrossRef]
- Bettadahalli, S.; Acharya, P.; Talahalli, R. Evidence on N-3 Fatty Acids and Oleic Acid Role in Retinal Inflammation and Microvascular Integrity: Insight from a Hyperlipidemic Rat Model. Inflammation 2020, 43, 868–877. [Google Scholar] [CrossRef]
- Chamorro, F.; Otero, P.; Carpena, M.; Fraga-Corral, M.; Echave, J.; Seyyedi-Mansour, S.; Cassani, L.; Prieto, M.A. Health Benefits of Oily Fish: Illustrated with Blue Shark (Prionace Glauca), Shortfin Mako Shark (Isurus Oxyrinchus), and Swordfish (Xiphias Gladius). Nutrients 2023, 15, 4919. [Google Scholar] [CrossRef]
- Lu, Y.; Tian, H.; Peng, H.; Wang, Q.; Bunnell, B.A.; Bazan, N.G.; Hong, S. Novel Lipid Mediator 7S,14R-Docosahexaenoic Acid: Biogenesis and Harnessing Mesenchymal Stem Cells to Ameliorate Diabetic Mellitus and Retinal Pericyte Loss. Front. Cell Dev. Biol. 2024, 12, 1380059. [Google Scholar] [CrossRef]
- Prokopiou, E.; Kolovos, P.; Kalogerou, M.; Neokleous, A.; Nicolaou, O.; Sokratous, K.; Kyriacou, K.; Georgiou, T. Omega-3 Fatty Acids Supplementation: Therapeutic Potential in a Mouse Model of Stargardt Disease. Investig. Ophthalmol. Vis. Sci. 2018, 59, 2757–2767. [Google Scholar] [CrossRef] [PubMed]
- Souied, E.H.; Aslam, T.; Garcia-Layana, A.; Holz, F.G.; Leys, A.; Silva, R.; Delcourt, C. Omega-3 Fatty Acids and Age-Related Macular Degeneration. Ophthalmic Res. 2015, 55, 62–69. [Google Scholar] [CrossRef] [PubMed]
- James, G.; Bohannan, W.; Adewunmi, E.; Schmidt, K.; Park, H.G.; Shchepinov, M.S.; Agbaga, M.-P.; Brenna, J.T. Pharmacokinetics and Metabolism in Mouse Retina of Bis-Allylic Deuterated Docosahexaenoic Acid (D-DHA), a New Dry AMD Drug Candidate. Exp. Eye Res. 2022, 222, 109193. [Google Scholar] [CrossRef]
- Jacob, J.; Mangelschots, E.; Michez, M.; Sanak, S.N.; Leys, A. Cross-Sectional Study on Vitamin D, Zinc Oxide and Fatty Acid Status in a Population with a Moderate to High Risk of AMD Identified by the STARS® Questionnaire. Ophthalmol. Ther. 2021, 10, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Schuchardt, J.P.; Kräter, M.; Schlögel, M.; Guck, J.; van Oirschot-Hermans, B.A.; Bos, J.; van Wijk, R.; Tintle, N.L.; Westra, J.; Kerlikowsky, F.; et al. Omega-3 Supplementation Changes the Physical Properties of Leukocytes but Not Erythrocytes in Healthy Individuals: An Exploratory Trial. Prostaglandins Leukot. Essent. Fatty Acids 2024, 202, 102636. [Google Scholar] [CrossRef]
- The Age-Related Eye Disease Study 2 (AREDS2) Research Group. Lutein + Zeaxanthin and Omega-3 Fatty Acids for Age-Related Macular Degeneration: The Age-Related Eye Disease Study 2 (AREDS2) Randomized Clinical Trial. JAMA 2013, 309, 2005–2015. [Google Scholar] [CrossRef]
- Chew, E.Y.; Clemons, T.E.; Agrón, E.; Domalpally, A.; Keenan, T.D.L.; Vitale, S.; Weber, C.; Smith, D.C.; Christen, W.; AREDS2 Research Group. Long-Term Outcomes of Adding Lutein/Zeaxanthin and ω-3 Fatty Acids to the AREDS Supplements on Age-Related Macular Degeneration Progression: AREDS2 Report 28. JAMA Ophthalmol. 2022, 140, 692–698. [Google Scholar] [CrossRef]
- Christen, W.G.; Cook, N.R.; Manson, J.E.; Buring, J.E.; Chasman, D.I.; Lee, I.-M.; Bubes, V.; Li, C.; Haubourg, M.; Schaumberg, D.A.; et al. Effect of Vitamin D and ω-3 Fatty Acid Supplementation on Risk of Age-Related Macular Degeneration: An Ancillary Study of the VITAL Randomized Clinical Trial. JAMA Ophthalmol. 2020, 138, 1280–1289. [Google Scholar] [CrossRef]
- Querques, G.; Merle, B.M.J.; Pumariega, N.M.; Benlian, P.; Delcourt, C.; Zourdani, A.; Leisy, H.B.; Lee, M.D.; Smith, R.T.; Souied, E.H. Dynamic Drusen Remodelling in Participants of the Nutritional AMD Treatment-2 (NAT-2) Randomized Trial. PLoS ONE 2016, 11, e0149219. [Google Scholar] [CrossRef]
- Dawczynski, J.; Jentsch, S.; Schweitzer, D.; Hammer, M.; Lang, G.E.; Strobel, J. Long Term Effects of Lutein, Zeaxanthin and Omega-3-LCPUFAs Supplementation on Optical Density of Macular Pigment in AMD Patients: The LUTEGA Study. Graefes Arch. Clin. Exp. Ophthalmol. 2013, 251, 2711–2723. [Google Scholar] [CrossRef]
- Dangour, A.D.; Allen, E.; Elbourne, D.; Fletcher, A.E.; Neveu, M.M.; Uauy, R.; Holder, G.E. N-3 Fatty Acids and Retinal Function. Ophthalmology 2013, 120, 643–643.e3. [Google Scholar] [CrossRef] [PubMed]
- Sammons, E.L.; Buck, G.; Bowman, L.J.; Stevens, W.M.; Hammami, I.; Parish, S.; Armitage, J.; Sammons, E.; Bowman, L.; Stevens, W.; et al. ASCEND-Eye: Effects of Omega-3 Fatty Acids on Diabetic Retinopathy. Ophthalmology 2024, 131, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Sala-Vila, A.; Díaz-López, A.; Valls-Pedret, C.; Cofán, M.; García-Layana, A.; Lamuela-Raventós, R.-M.; Castañer, O.; Zanon-Moreno, V.; Martinez-Gonzalez, M.A.; Toledo, E.; et al. Dietary Marine ω-3 Fatty Acids and Incident Sight-Threatening Retinopathy in Middle-Aged and Older Individuals with Type 2 Diabetes: Prospective Investigation From the PREDIMED Trial. JAMA Ophthalmol. 2016, 134, 1142–1149. [Google Scholar] [CrossRef] [PubMed]
- Piñas García, P.; Hernández Martínez, F.J.; Aznárez López, N.; Castillón Torre, L.; Tena Sempere, M.E. Supplementation with a Highly Concentrated Docosahexaenoic Acid (DHA) in Non-Proliferative Diabetic Retinopathy: A 2-Year Randomized Double-Blind Placebo-Controlled Study. Antioxidants 2022, 11, 116. [Google Scholar] [CrossRef]
- González-Herrero, M.E.R.; Ruiz, M.; Román, F.J.L.; Sánchez, J.M.M.; Domingo, J.C. Supplementation with a Highly Concentrated Docosahexaenoic Acid plus Xanthophyll Carotenoid Multivitamin in Nonproliferative Diabetic Retinopathy: Prospective Controlled Study of Macular Function by Fundus Microperimetry. Clin. Ophthalmol. 2018, 12, 1011–1020. [Google Scholar] [CrossRef]
- Hellström, A.; Nilsson, A.K.; Wackernagel, D.; Pivodic, A.; Vanpee, M.; Sjöbom, U.; Hellgren, G.; Hallberg, B.; Domellöf, M.; Klevebro, S.; et al. Effect of Enteral Lipid Supplement on Severe Retinopathy of Prematurity: A Randomized Clinical Trial. JAMA Pediatr. 2021, 175, 359–367. [Google Scholar] [CrossRef]
- Hellström, A.; Pivodic, A.; Gränse, L.; Lundgren, P.; Sjöbom, U.; Nilsson, A.K.; Söderling, H.; Hård, A.-L.; Smith, L.E.H.; Löfqvist, C.A. Association of Docosahexaenoic Acid and Arachidonic Acid Serum Levels With Retinopathy of Prematurity in Preterm Infants. JAMA Netw. Open 2021, 4, e2128771. [Google Scholar] [CrossRef]
- Cagliari, P.Z.; Hoeller, V.R.F.; Kanzler, É.L.R.; Carraro, M.C.M.; Corrêa, Z.G.D.; Blazius, G.; Marghetti, P.G.; Lenz, G.B.; Mastroeni, S.S.d.B.S.; Mastroeni, M.F. Oral DHA Supplementation and Retinopathy of Prematurity: The Joinville DHA Clinical Trial. Br. J. Nutr. 2024, 132, 341–350. [Google Scholar] [CrossRef]
- Bernabe-García, M.; Villegas-Silva, R.; Villavicencio-Torres, A.; Calder, P.C.; Rodríguez-Cruz, M.; Maldonado-Hernández, J.; Macías-Loaiza, D.; López-Alarcón, M.; Inda-Icaza, P.; Cruz-Reynoso, L. Enteral Docosahexaenoic Acid and Retinopathy of Prematurity: A Randomized Clinical Trial. J. Parenter. Enter. Nutr. 2019, 43, 874–882. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) Scientific Opinion on the Tolerable Upper Intake Level of Eicosapentaenoic Acid (EPA), Docosahexaenoic Acid (DHA) and Docosapentaenoic Acid (DPA). EFSA J. 2012, 10, 2815. [CrossRef]
- Behl, T.; Kaur, I.; Goel, H.; Kotwani, A. Significance of the Antiangiogenic Mechanisms of Thalidomide in the Therapy of Diabetic Retinopathy. Vascul. Pharmacol. 2017, 92, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Nagase, H.; Visse, R.; Murphy, G. Structure and Function of Matrix Metalloproteinases and TIMPs. Cardiovasc. Res. 2006, 69, 562–573. [Google Scholar] [CrossRef] [PubMed]
- Yanni, S.E.; McCollum, G.W.; Penn, J.S. Genetic Deletion of COX-2 Diminishes VEGF Production in Mouse Retinal Müller Cells. Exp. Eye Res. 2010, 91, 34–41. [Google Scholar] [CrossRef]
- Matesanz, N.; Park, G.; McAllister, H.; Leahey, W.; Devine, A.; McVeigh, G.E.; Gardiner, T.A.; McDonald, D.M. Docosahexaenoic Acid Improves the Nitroso-Redox Balance and Reduces VEGF-Mediated Angiogenic Signaling in Microvascular Endothelial Cells. Investig. Ophthalmol. Vis. Sci. 2010, 51, 6815–6825. [Google Scholar] [CrossRef]
- Ceradini, D.J.; Yao, D.; Grogan, R.H.; Callaghan, M.J.; Edelstein, D.; Brownlee, M.; Gurtner, G.C. Decreasing Intracellular Superoxide Corrects Defective Ischemia-Induced New Vessel Formation in Diabetic Mice. J. Biol. Chem. 2008, 283, 10930–10938. [Google Scholar] [CrossRef]
- Emanueli, C.; Monopoli, A.; Kraenkel, N.; Meloni, M.; Gadau, S.; Campesi, I.; Ongini, E.; Madeddu, P. Nitropravastatin Stimulates Reparative Neovascularisation and Improves Recovery from Limb Ischaemia in Type-1 Diabetic Mice. Br. J. Pharmacol. 2007, 150, 873–882. [Google Scholar] [CrossRef]
- Mori, T.A.; Bao, D.Q.; Burke, V.; Puddey, I.B.; Beilin, L.J. Docosahexaenoic Acid but Not Eicosapentaenoic Acid Lowers Ambulatory Blood Pressure and Heart Rate in Humans. Hypertension 1999, 34, 253–260. [Google Scholar] [CrossRef]
- De Caterina, R.; Cybulsky, M.I.; Clinton, S.K.; Gimbrone, M.A.; Libby, P. The Omega-3 Fatty Acid Docosahexaenoate Reduces Cytokine-Induced Expression of Proatherogenic and Proinflammatory Proteins in Human Endothelial Cells. Arterioscler. Thromb. J. Vasc. Biol. 1994, 14, 1829–1836. [Google Scholar] [CrossRef]
- McLennan, P.; Howe, P.; Abeywardena, M.; Muggli, R.; Raederstorff, D.; Mano, M.; Rayner, T.; Head, R. The Cardiovascular Protective Role of Docosahexaenoic Acid. Eur. J. Pharmacol. 1996, 300, 83–89. [Google Scholar] [CrossRef]
- Yang, S.P.; Morita, I.; Murota, S.-I. Eicosapentaenoic Acid Attenuates Vascular Endothelial Growth Factor-Induced Proliferation via Inhibiting Flk-1 Receptor Expression in Bovine Carotid Artery Endothelial Cells. J. Cell. Physiol. 1998, 176, 342–349. [Google Scholar] [CrossRef]
- Fernando, W.; MacLean, E.; Monro, S.; Power Coombs, M.R.; Marcato, P.; Rupasinghe, H.P.V.; Hoskin, D.W. Phloridzin Docosahexaenoate, an Omega-3 Fatty Acid Ester of a Flavonoid Precursor, Inhibits Angiogenesis by Suppressing Endothelial Cell Proliferation, Migration, and Differentiation. Biomolecules 2024, 14, 769. [Google Scholar] [CrossRef] [PubMed]
- Souied, E.H.; Delcourt, C.; Querques, G.; Bassols, A.; Merle, B.; Zourdani, A.; Smith, T.; Benlian, P. Oral Docosahexaenoic Acid in the Prevention of Exudative Age-Related Macular Degeneration: The Nutritional AMD Treatment 2 Study. Ophthalmology 2013, 120, 1619–1631. [Google Scholar] [CrossRef] [PubMed]
- Dziedziak, J.; Kasarełło, K.; Cudnoch-Jędrzejewska, A. Dietary Antioxidants in Age-Related Macular Degeneration and Glaucoma. Antioxidants 2021, 10, 1743. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.T.O.; Vingrys, A.J.; Bui, B.V. Dietary Omega-3 Fatty Acids and Ganglion Cell Function. Investig. Ophthalmol. Vis. Sci. 2008, 49, 3586–3594. [Google Scholar] [CrossRef]
- Nguyen, C.T.O.; Vingrys, A.J.; Bui, B.V. Dietary ω-3 Deficiency and IOP Insult Are Additive Risk Factors for Ganglion Cell Dysfunction. J. Glaucoma 2013, 22, 269. [Google Scholar] [CrossRef]
- Bas, O.; Songur, A.; Sahin, O.; Mollaoglu, H.; Ozen, O.A.; Yaman, M.; Eser, O.; Fidan, H.; Yagmurca, M. The Protective Effect of Fish N-3 Fatty Acids on Cerebral Ischemia in Rat Hippocampus. Neurochem. Int. 2007, 50, 548–554. [Google Scholar] [CrossRef]
- Miyauchi, O.; Mizota, A.; Adachi-Usami, E.; Nishikawa, M. Protective Effect of Docosahexaenoic Acid against Retinal Ischemic Injury: An Electroretinographic Study. Ophthalmic Res. 2001, 33, 191–195. [Google Scholar] [CrossRef]
- Murayama, K.; Yoneya, S.; Miyauchi, O.; Adachi-Usami, E.; Nishikawa, M. Fish Oil (Polyunsaturated Fatty Acid) Prevents Ischemic-Induced Injury in the Mammalian Retina. Exp. Eye Res. 2002, 74, 671–676. [Google Scholar] [CrossRef]
- Kalogerou, M.; Ioannou, S.; Kolovos, P.; Prokopiou, E.; Potamiti, L.; Kyriacou, K.; Panagiotidis, M.; Ioannou, M.; Fella, E.; Worth, E.P.; et al. Omega-3 Fatty Acids Promote Neuroprotection, Decreased Apoptosis and Reduced Glial Cell Activation in the Retina of a Mouse Model of OPA1-Related Autosomal Dominant Optic Atrophy. Exp. Eye Res. 2022, 215, 108901. [Google Scholar] [CrossRef]
- Yee, P.; Weymouth, A.E.; Fletcher, E.L.; Vingrys, A.J. A Role for Omega-3 Polyunsaturated Fatty Acid Supplements in Diabetic Neuropathy. Investig. Ophthalmol. Vis. Sci. 2010, 51, 1755–1764. [Google Scholar] [CrossRef]
- Deinema, L.A.; Vingrys, A.J.; Wong, C.Y.; Jackson, D.C.; Chinnery, H.R.; Downie, L.E. A Randomized, Double-Masked, Placebo-Controlled Clinical Trial of Two Forms of Omega-3 Supplements for Treating Dry Eye Disease. Ophthalmology 2017, 124, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Downie, L.E.; Gad, A.; Wong, C.Y.; Gray, J.H.V.; Zeng, W.; Jackson, D.C.; Vingrys, A.J. Modulating Contact Lens Discomfort With Anti-Inflammatory Approaches: A Randomized Controlled Trial. Investig. Ophthalmol. Vis. Sci. 2018, 59, 3755–3766. [Google Scholar] [CrossRef] [PubMed]
- de Lorgeril, M.; Salen, P.; Laporte, F.; de Leiris, J. Alpha-Linolenic Acid in the Prevention and Treatment of Coronary Heart Disease. Eur. Heart J. Suppl. 2001, 3, D26–D32. [Google Scholar] [CrossRef]
- Shen, J.; Ma, Q.; Shen, S.; Xu, G.-T.; Das, U.N. Effect of α-Linolenic Acid on Streptozotocin-Induced Diabetic Retinopathy Indices In Vivo. Arch. Med. Res. 2013, 44, 514–520. [Google Scholar] [CrossRef]
- Hadjighassem, M.; Kamalidehghan, B.; Shekarriz, N.; Baseerat, A.; Molavi, N.; Mehrpour, M.; Joghataei, M.T.; Tondar, M.; Ahmadipour, F.; Meng, G.Y. Oral Consumption of α-Linolenic Acid Increases Serum BDNF Levels in Healthy Adult Humans. Nutr. J. 2015, 14, 20. [Google Scholar] [CrossRef]
- Caligiuri, S.P.B.; Love, K.; Winter, T.; Gauthier, J.; Taylor, C.G.; Blydt-Hansen, T.; Zahradka, P.; Aukema, H.M. Dietary Linoleic Acid and α-Linolenic Acid Differentially Affect Renal Oxylipins and Phospholipid Fatty Acids in Diet-Induced Obese Rats. J. Nutr. 2013, 143, 1421–1431. [Google Scholar] [CrossRef]
- Rotstein, N.P.; Politi, L.E.; German, O.L.; Girotti, R. Protective Effect of Docosahexaenoic Acid on Oxidative Stress-Induced Apoptosis of Retina Photoreceptors. Investig. Ophthalmol. Vis. Sci. 2003, 44, 2252–2259. [Google Scholar] [CrossRef]
- Organisciak, D.T.; Darrow, R.M.; Jiang, Y.L.; Blanks, J.C. Retinal Light Damage in Rats with Altered Levels of Rod Outer Segment Docosahexaenoate. Investig. Ophthalmol. Vis. Sci. 1996, 37, 2243–2257. [Google Scholar]
- Jiang, B.; Wei, X.; Cai, D.; Wang, X.; Zhou, X.; Chen, F.; Shen, X.; Cao, X.; Zheng, C. Association between Dietary Consumption of Fatty Acids and Age-Related Macular Degeneration in the National Health and Nutrition Examination Survey. Sci. Rep. 2024, 14, 11016. [Google Scholar] [CrossRef]
- Elmore, A.; Harris, W.S.; Mu, L.; Brady, W.E.; Hovey, K.M.; Mares, J.A.; Espeland, M.A.; Haan, M.N.; Millen, A.E. Red Blood Cell Fatty Acids and Age-Related Macular Degeneration in Postmenopausal Women. Eur. J. Nutr. 2022, 61, 1585–1594. [Google Scholar] [CrossRef]
- Meng, X.-T.; Shi, Y.-Y.; Hong-Yan, Z. Dietary Omega-3 LCPUFA Intake in the Prevention of Neovascular Age-Related Macular Degeneration: A Systematic Review and Meta-Analysis. Nutr. Hosp. 2022, 39, 910–915. [Google Scholar] [PubMed]
- Zhong, Y.; Wang, K.; Jiang, L.; Wang, J.; Zhang, X.; Xu, J.; Yao, K. Dietary Fatty Acid Intake, Plasma Fatty Acid Levels, and the Risk of Age-Related Macular Degeneration (AMD): A Dose–Response Meta-Analysis of Prospective Cohort Studies. Eur. J. Nutr. 2021, 60, 3013–3027. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, H.; Deng, Q.; Huang, A.M.; Qiu, W.; Wang, L.; Xiang, Z.; Yang, R.; Liang, J.; Liu, Z. Correlation between Omega-3 Intake and the Incidence of Diabetic Retinopathy Based on NHANES from 2005 to 2008. Acta Diabetol. 2024, 61, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Weir, N.L.; Guan, W.; Karger, A.B.; Klein, B.E.K.; Meuer, S.M.; Cotch, M.F.; Guo, X.; Li, X.; Tan, J.; Genter, P.; et al. OMEGA-3 Fatty Acids Are Associated with Decreased Presence and Severity of Diabetic Retinopathy: A Combined Analysis of MESA and GOLDR Cohorts. RETINA 2023, 43, 984. [Google Scholar] [CrossRef]
- Li, K.; Liu, J.; Li, X.; Liu, X.; Hu, P.; He, M. Association of EPA and DHA with Age-Related Macular Degeneration: A Cross-Sectional Study from NHANES. Front. Med. 2024, 11, 1440479. [Google Scholar] [CrossRef]
- Courtaut, F.; Aires, V.; Acar, N.; Bretillon, L.; Guerrera, I.C.; Chhuon, C.; Pais de Barros, J.-P.; Olmiere, C.; Delmas, D. RESVEGA, a Nutraceutical Omega-3/Resveratrol Supplementation, Reduces Angiogenesis in a Preclinical Mouse Model of Choroidal Neovascularization. Int. J. Mol. Sci. 2021, 22, 11023. [Google Scholar] [CrossRef]
- García-Layana, A.; Recalde, S.; Hernandez, M.; Abraldes, M.J.; Nascimento, J.; Hernández-Galilea, E.; Olmedilla-Alonso, B.; Escobar-Barranco, J.J.; Zapata, M.A.; Silva, R.; et al. A Randomized Study of Nutritional Supplementation in Patients with Unilateral Wet Age-Related Macular Degeneration. Nutrients 2021, 13, 1253. [Google Scholar] [CrossRef]
- Othman, K.R.-B.; Cercy, C.; Amri, M.; Doly, M.; Ranchon-Cole, I. Dietary Supplement Enriched in Antioxidants and Omega-3 Protects from Progressive Light-Induced Retinal Degeneration. PLoS ONE 2015, 10, e0128395. [Google Scholar] [CrossRef]
- Courtaut, F.; Scagliarini, A.; Aires, V.; Cornebise, C.; Pais de Barros, J.-P.; Olmiere, C.; Delmas, D. VEGF-R2/Caveolin-1 Pathway of Undifferentiated ARPE-19 Retina Cells: A Potential Target as Anti-VEGF-A Therapy in Wet AMD by Resvega, an Omega-3/Polyphenol Combination. Int. J. Mol. Sci. 2021, 22, 6590. [Google Scholar] [CrossRef]
- Perus, M.; Courtaut, F.; de Barros, J.-P.P.; Aires, V.; Hermetet, F.; Delmas, D. VEGF-R2/CAV-1 Interaction Induced by Resveratrol/Eicosapentaenoic Acid/Docosahexaenoic Acid-Enriched Formulation through Functional Detergent-Resistant Membranes Is Associated with Decreased VEGF-A Release in ARPE-19 Cells. Mol. Nutr. Food Res. 2024, 68, 2300893. [Google Scholar] [CrossRef]
- Attallah, A.; Ardourel, M.; Lesne, F.; De Oliveira, A.; Felgerolle, C.; Briault, S.; Ranchon-Cole, I.; Perche, O. Dietary Supplement Enriched in Antioxidants and Omega-3 Promotes Retinal Glutamine Synthesis. Exp. Eye Res. 2024, 245, 109964. [Google Scholar] [CrossRef] [PubMed]
- Ramkumar, H.L.; Tuo, J.; Shen, D.F.; Zhang, J.; Cao, X.; Chew, E.Y.; Chan, C.-C. Nutrient Supplementation with N3 Polyunsaturated Fatty Acids, Lutein, and Zeaxanthin Decrease A2E Accumulation and VEGF Expression in the Retinas of Ccl2/Cx3cr1-Deficient Mice on Crb1rd8 Background1–3. J. Nutr. 2013, 143, 1129–1135. [Google Scholar] [CrossRef] [PubMed]
Study/Source | Subjects | Omega-3 Fatty Acids Studied | Key Findings | Effects on Retinal Health |
---|---|---|---|---|
Nguyen et al. [44,45] | Human and animal models | ω-3 PUFAs (EPA, DHA) | Significant benefits to retinal health, improving photoreceptor and bipolar cell function. Notable improvements in retinal ganglion cell (RGC) function. | Enhances RGC function, photoreceptor, and bipolar cell function. |
Kalogerou et al. [49] | Murine model (OPA1-associated ADOA) | EPA, DHA | EPA supplementation reduced arachidonic acid levels and improved retinal ganglion cell density and optic nerve axon density. Reduced apoptotic cells, inflammation, and pro-apoptotic markers. | Neuroprotection through suppression of inflammation. Improved retinal structure and function. |
Yee et al. [50] | Mice | ω-3 PUFAs | Balanced ω-6/ω-3 diet did not prevent diabetes-induced changes in Müller cell processes. | No effect on Müller cell processes in diabetic mice. |
Deinema et al. [51], Downie et al. [52] | Human subjects (contact lens users, dry eye disease) | ω-3 PUFAs | Oral ω-3 PUFA supplements reduced pro-inflammatory cytokines, alleviating discomfort from contact lenses and dry eye disease. | Reduces inflammation in dry eye disease and contact lens discomfort. |
De Lorgeril et al. [53] | Human subjects, dietary in-take | ALA (flaxseeds, walnuts, etc.) | High ALA intake demonstrated neuroprotective and cytoprotective properties and reduced inflammatory mediators (VEGF, IL-6, IL-1β, TNF-α). | Reduces inflammatory mediators in diabetic retinopathy models, neuroprotective properties. |
Shen et al. [54] | Animal models (diabetic retinopathy) | ALA | ALA-mitigated oxidative stress by lowering nitric oxide synthase activity and lipid peroxidation. Enhanced antioxidant enzyme function. | Reduces oxidative stress, protecting against retinal degeneration in diabetic retinopathy. |
Hadjighassem et al. [55] | Human subjects | ALA | ALA promotes production of BDNF, a protein protecting neurons and supporting survival. | Protects against retinal degeneration, promotes neuronal survival. |
Caliguiri et al. [56] | Obese murine models | 13-hydroxyoctadecadienoic acid (ALA derivative) | ALA derivative inhibits MMP expression, reducing inflammation and angiogenesis. | Prevents retinal damage and inflammation in obese models. |
Rotstein et al. [57] | Cultured rat retinas | DHA | DHA reduced photoreceptor apoptosis, maintained mitochondrial membrane integrity, increased Bcl-2 expression. | Protects photoreceptors from oxidative stress. |
Organisciak et al. [58] | SD rats | DHA | DHA accumulation in photoreceptors resulted in greater retinal damage after light exposure, suggesting DHA oxidation could contribute to damage. | DHA has protective qualities but may contribute to retinal damage under oxidative conditions. |
Study | Population | Sample Size | Age Range | Key Findings | Omega-3 Fatty Acids Studied | Outcome/Association |
---|---|---|---|---|---|---|
NHANES (2005–2008) Cross-Sectional Study [65] | US population, aged 40+ | 4702 individuals | 40+ |
| EPA, DHA, DPA | Negative association between increased EPA/DHA intake and early AMD. No definitive link with late AMD. |
WHI Clinical Trial (Post-Menopausal Women) [60] | Post-menopausal women | 1456 women | Post-menopausal |
| EPA, DHA, AA, LA/ALA ratio | No significant link between serum or dietary EPA/DHA and AMD; potential increased risk with AA and LA/ALA ratio. |
Chinese Cohort Case-Control Study [45] | Chinese cohort | 297 individuals (99 with neovascular AMD, 198 controls) | N/A |
| DHA, EPA, Omega-6 PUFAs | Negative association between DHA, EPA, and neovascular AMD. |
Meta-Analysis of Observational Cohorts [61,62] | Various populations | Multiple cohorts | Various |
| DHA, EPA | Inverse relationship between DHA/EPA intake and early AMD; plasma DHA/EPA also inversely correlated with advanced AMD. |
NHANES (2005–2008) Diabetic Retinopathy Study [63] | US population, with diabetes | 1243 individuals | 40+ |
| DHA, DPA, EPA | DHA/DPA intake negatively correlated with DR incidence. |
MESA and GOLDR Cohorts Combined Analysis [64] | Individuals with type 2 diabetes | 1356 individuals | N/A |
| DHA, EPA | Increased DHA linked to reduced risk and severity of DR. No significant correlation with EPA. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeppieri, M.; Gagliano, C.; D’Esposito, F.; Musa, M.; Gattazzo, I.; Zanella, M.S.; Rossi, F.B.; Galan, A.; Babighian, S. Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA): A Targeted Antioxidant Strategy to Counter Oxidative Stress in Retinopathy. Antioxidants 2025, 14, 6. https://doi.org/10.3390/antiox14010006
Zeppieri M, Gagliano C, D’Esposito F, Musa M, Gattazzo I, Zanella MS, Rossi FB, Galan A, Babighian S. Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA): A Targeted Antioxidant Strategy to Counter Oxidative Stress in Retinopathy. Antioxidants. 2025; 14(1):6. https://doi.org/10.3390/antiox14010006
Chicago/Turabian StyleZeppieri, Marco, Caterina Gagliano, Fabiana D’Esposito, Mutali Musa, Irene Gattazzo, Maria Sole Zanella, Federico Bernardo Rossi, Alessandro Galan, and Silvia Babighian. 2025. "Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA): A Targeted Antioxidant Strategy to Counter Oxidative Stress in Retinopathy" Antioxidants 14, no. 1: 6. https://doi.org/10.3390/antiox14010006
APA StyleZeppieri, M., Gagliano, C., D’Esposito, F., Musa, M., Gattazzo, I., Zanella, M. S., Rossi, F. B., Galan, A., & Babighian, S. (2025). Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA): A Targeted Antioxidant Strategy to Counter Oxidative Stress in Retinopathy. Antioxidants, 14(1), 6. https://doi.org/10.3390/antiox14010006