Antioxidants in Age-Related Macular Degeneration: Lights and Shadows
Abstract
:1. Introduction
2. Materials and Methods
3. Antioxidants in Age-Related Macular Degeneration
3.1. Overview of Age-Related Macular Degeneration (AMD)
3.1.1. Epidemiology and Global Impact
3.1.2. Clinical Classification: Dry (Non-Exudative) and Wet (Exudative) AMD
3.2. Role of Oxidative Stress in AMD Pathogenesis
3.2.1. Oxidative Stress and Its Contribution to Retinal Damage
3.2.2. Accumulation of Reactive Oxygen Species (ROS) and Retinal Aging
3.3. Pathophysiology of Oxidative Damage in AMD
3.3.1. Retinal Anatomy and Susceptibility
High Metabolic Activity and Oxygen Consumption of the Retina
Photoreceptor-RPE Complex as a Target of Oxidative Damage
3.4. Molecular Mechanisms of Oxidative Stress
3.4.1. Lipofuscin Accumulation
3.4.2. Drusen Formation and the Role of Oxidative Stress in Their Development
3.4.3. P2X7 Receptor and Oxidative Stress
3.4.4. Mitochondrial Dysfunction in Retinal Pigment Epithelium (RPE)
3.5. Genetic and Environmental Risk Factors
3.5.1. Variants in the Complement Factor H (CFH) Gene and Oxidative Stress
3.5.2. Risk Factors
3.6. Antioxidants in AMD
3.6.1. Antioxidants of Interest
Vitamin C, Vitamin E and Beta-Carotene
Zinc and Copper
Lutein and Zeaxanthin
Coenzyme Q10
Citicoline
Vitamin D3
Curcumin
Statins
3.7. Landmark Trials: The AREDS Studies
3.7.1. AREDS 1: Study Design, Results, and Impact on AMD Management
3.7.2. AREDS 2: Modified Formulation and Updated Findings
3.7.3. Critique of the AREDS Formulations (Benefits, Limitations and Controversies)
3.8. Mechanisms of Action of Antioxidants in AMD
3.8.1. Direct Scavenging of Free Radicals
3.8.2. Modulation of Inflammatory Pathways
3.8.3. Increasing Macular Pigment Optical Density
3.9. Novel Antioxidants and Emerging Therapies
3.9.1. Mitochondrial-Targeted Antioxidants
3.9.2. Nanoceria Particles
3.9.3. Gene Therapy
3.9.4. Saffron
3.9.5. Resveratrol
3.10. Challenges with the Use of Antioxidants in AMD Management
3.10.1. Variability in Patient Responses (Genetic Polymorphism Affecting Treatment Response)
3.10.2. Interactions of Beta-Carotene, Smoking and Long-Term Safety
3.10.3. Notable Side Effects
3.11. Moving Beyond Supplements
3.11.1. Dietary Recommendations: Role of a Mediterranean Diet and Other Dietary Patterns
3.11.2. Lifestyle Changes and Their Benefits
Antioxidant | Study | Findings | Proposed Mechanism of Action and Effect | Reference |
---|---|---|---|---|
Beta-carotene | AREDS 1 [84] (Randomized Placebo-Controlled, Clinical Trial) | Reduced the odds of developing advanced AMD (OR—0.72, CI—0.52–0.98); Significant reduction in rates of moderate visual acuity loss (OR—0.73, CI—0.54–0.99) | Conjugated double bonds in the molecule structure help accept electrons from ROS, neutralizing free radicals and reducing oxidative stress. | Rutz, J.K. et al. [194] |
Citicoline | Nashine, S. et al. [102] (in vivo study) | Downregulated pro-apoptotic genes such as BAX, Caspase-3, and Caspase-9 in AMD RPE cybrid cells and decreased reactive oxygen species (ROS) levels by 22.8%. | Aids in glutathione synthesis, decreases lipid peroxidation, ROS generation and oxidative stress | Faiq, M.A. et al. [101] |
Prevents the degeneration of RPE cells | Nashine, S. et al. [102] | |||
Coenzyme Q10 | Lee, D. et al. [98] (in vivo study on a mouse eye model) | Blocked the upregulation of NR1 and NR2A genes, and the expression of SOD2 and HO1 proteins. | Maintains mitochondrial membrane potential as an essential cofactor of the electron transport chain, supports ATP synthesis and inhibits ROS formation | Duberley, K. et al. [95] |
Ameliorates glutamate excitotoxicity and oxidative stress in the retina | Lee, D. et al. [102] | |||
Copper | Ferns, G.A.A. et al. [89] | Reduces ROS and regulates oxidative stress | Critical cofactor in SOD enzyme (CuZnSOD) | Ferns, G.A.A. et al. [90] |
Curcumin | Burugula, B. et al. [112] (in vivo study) | Significantly reduced protease-mediated retinal ganglion cell (RGC) and amacrine cell death. | Upregulates heme oxygenase 1 (HO-1) activity, decreases SOD, glutathione and other biomarkers of oxidative stress | Bucolo, C. et al. [111] |
Diterpenoid Dihydrotanshinone (DHTS) | Fresta, C.G. et al. [195] (in vitro model | Reduces IL-β maturation and inflammasome activation | Antagonist at the P2X7 receptor | Fresta, C.G. et al. [195] |
Lutein | AREDS2 [126] (Randomized controlled clinical trial) | 18% reduction in the risk of advanced AMD progression and a 22% decrease in neovascular AMD risk | Absorbs light between 390–540 nm, and protects the retina from photochemical light damage from harmful blue light | Van Norren, D. et al. [94] |
Decreases Factor D secretion, reducing alternative complement activation, and reduces macular inflammation | Barker, F.M. et al. [95] | |||
Mitochondrial-targeted Antioxidants (SkQ1 and MitoQ) | Skulachev, V.P. et al. [154,155] (in-vitro study on animal eye model) | Prevented early signs of retinopathy, improving retinal pigment epithelium (RPE) function and reducing lipofuscin accumulation | Specifically target Mitochondrial ROS, and the NLRP3 inflammasome, decreasing ROS and oxidative damage, preserving RPE function | Skulachev, V.P. et al. [154,155] |
Resveratrol | Cosín-Tomàs, M. et al. [175] (in vivo study) | Increased the expression of genes encoding known antioxidants (catalase, copper chaperone for superoxide dismutase 1, glutathione S-transferase zeta 1) | Reduces nitric oxide levels, inhibits lipid peroxidation, and increases reduced glutathione (GSH). Neutralizes ROS and decreases oxidative damage preserving macular function | Ryan, M.J. et al. [176,177] |
Saffron | Piccardi, M. et al. [172] (Longitudinal-interventional study) | Visual acuity improved by two Snellen lines compared to baseline values (0.75 to 0.9, p < 0.01) after oral supplementation (20 mg/day) over a period of 14 (±2) months | Modulates gene expression by regulating calcium signalling through the P2X7 receptors. Preserves RPE function and offers neuroprotection. | Corso, L. et al. [173] |
Statins | Habeos, I.G. et al. [116] (in-vitro study on a rat model) | Upregulated antioxidant enzymes like HO-1 and GPX while suppressing oxidant enzymes such as NAD(P)H oxidase and myeloperoxidase | Stimulate the Nrf2/HO-1 signaling pathway, and decreases oxidative stress and ROS production. | Habeos, I.G. et al. [116] |
Vitamin C | AREDS 1 [120,121] (Randomized Placebo-Controlled, Clinical Trial) | Reduced the odds of developing advanced AMD (OR—0.72, CI—0.52–0.98); Significant reduction in rates of moderate visual acuity loss (OR—0.73, CI—0.54–0.99) | Accepts electrons from ROS due to lactone ring’s hydroxyl group in the structure, neutralizes ROS and decrease oxidative stress | Englard, S. et al. [78] |
Vitamin D | Lazzara et al. [109] (in vitro study on RPE cells) | Reduces MPO activity, decreases concentrations of inflammatory markers such as MMP-9, IL-1β, like TNF-alpha, iNOS, and COX-2. | Modulates inflammatory response and reduces oxidative stress. | Lazzara et al. [109] and Leal AM et al. [108] |
Vitamin E | AREDS 1 [120,121] (Randomized Placebo-Controlled, Clinical Trial) | Reduced the odds of developing advanced AMD (OR–0.72, CI–0.52–0.98); Significant reduction in rates of moderate visual acuity loss (OR–0.73, CI–0.54–0.99) | Natural forms like γ-tocopherol can trap nitrogen ROS, accepts electrons from peroxyl radicals through hydrogen donation | Wong, R.S. et al. [79] |
Zeaxanthin | AREDS2 [126] (Randomized controlled clinical trial) | 18% reduction in the risk of advanced AMD progression and a 22% decrease in neovascular AMD risk | Xanthophyll carotenoid concentrated in the macula absorbs blue lights and protects the macula from photochemical light damage | Van Norren, D. et al. [94] |
Zinc | AREDS2 [126] (Randomized controlled clinical trial) | 18% reduction in the risk of advanced AMD progression and a 22% decrease in neovascular AMD risk | Induces metallothionein synthesis and stabilizes sulfhydryl groups, also acts a cofactor in CuZnSOD enzyme, neutralizes ROS and decreases oxidative stress | Swerdel, M.R. et al. [86] |
4. Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Macular Degeneration Association|Research. Hope. Education. Available online: https://macularhope.org/ (accessed on 13 November 2024).
- Fine, S.L.; Berger, J.W.; Maguire, M.G.; Ho, A.C. Age-Related Macular Degeneration. New Engl. J. Med. 2000, 342, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Marchesi, N.; Capierri, M.; Pascale, A.; Barbieri, A. Different Therapeutic Approaches for Dry and Wet AMD. Int. J. Mol. Sci. 2024, 25, 13053. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, P.; Liew, G.; Gopinath, B.; Wong, T.Y. Age-Related Macular Degeneration. Lancet 2018, 392, 1147–1159. [Google Scholar] [CrossRef]
- Wong, W.L.; Su, X.; Li, X.; Cheung, C.M.G.; Klein, R.; Cheng, C.-Y.; Wong, T.Y. Global Prevalence of Age-Related Macular Degeneration and Disease Burden Projection for 2020 and 2040: A Systematic Review and Meta-Analysis. Lancet Glob. Health 2014, 2, e106–e116. [Google Scholar] [CrossRef]
- Jonas, J.B.; Cheung, C.M.G.; Panda-Jonas, S. Updates on the Epidemiology of Age-Related Macular Degeneration. Asia-Pac. J. Ophthalmol. 2017, 6, 493–497. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Available online: https://www.who.int/en/ (accessed on 13 November 2024).
- Macular Degeneration Research|BrightFocus Foundation. Available online: https://www.brightfocus.org/macular (accessed on 22 November 2024).
- Ding, X.; Patel, M.; Chan, C.-C. Molecular Pathology of Age-Related Macular Degeneration. Prog. Retin. Eye Res. 2009, 28, 1–18. [Google Scholar] [CrossRef]
- Curcio, C.A. Basal Linear Deposit and Large Drusen Are Specific for Early Age-Related Maculopathy. Arch. Ophthalmol. 1999, 117, 329. [Google Scholar] [CrossRef]
- Romano, F.; Ding, X.; Yuan, M.; Vingopoulos, F.; Garg, I.; Choi, H.; Alvarez, R.; Tracy, J.H.; Finn, M.; Ravazi, P.; et al. Progressive Choriocapillaris Changes on Optical Coherence Tomography Angiography Correlate with Stage Progression in AMD. Investig. Ophthalmol. Vis. Sci. 2024, 65, 21. [Google Scholar] [CrossRef]
- Davis, M.D.; Gangnon, R.E.; Lee, L.Y.; Hubbard, L.D.; Klein, B.E.; Klein, R.; Ferris, F.L.; Bressler, S.B.; Milton, R.C.; Age-Related Eye Disease Study Group. The Age-Related Eye Disease Study Severity Scale for Age-Related Macular Degeneration. Arch. Ophthalmol. 2005, 123, 1484. [Google Scholar] [CrossRef]
- Agrón, E.; Domalpally, A.; Chen, Q.; Lu, Z.; Chew, E.Y.; Keenan, T.D.L.; AREDS and AREDS2 Research Groups. An Updated Simplified Severity Scale for Age-Related Macular Degeneration Incorporating Reticular Pseudodrusen: Age-Related Eye Disease Study Report Number 42. Ophthalmology 2024, 131, 1164–1174. [Google Scholar] [CrossRef]
- Agrón, E.; Domalpally, A.; Cukras, C.A.; Clemons, T.E.; Chen, Q.; Lu, Z.; Chew, E.Y.; Keenan, T.D.L.; AREDS and AREDS2 Research Groups. Reticular Pseudodrusen: The Third Macular Risk Feature for Progression to Late Age-Related Macular Degeneration: Age-Related Eye Disease Study 2 Report 30. Ophthalmology 2022, 129, 1107–1119. [Google Scholar] [CrossRef] [PubMed]
- Age-Related Eye Disease Study Research Group. The Age-Related Eye Disease Study (AREDS) System for Classifying Cataracts from Photographs: AREDS Report No. 4. Am. J. Ophthalmol. 2001, 131, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Sohal, R.S.; Allen, R.G. Oxidative Stress as a Causal Factor in Differentiation and Aging: A Unifying Hypothesis. Exp. Gerontol. 1990, 25, 499–522. [Google Scholar] [CrossRef] [PubMed]
- Sies, H.; Cadenas, E.; Symons, M.C.R.; Scott, G. Oxidative Stress: Damage to Intact Cells and Organs. Philos. Trans. R. Soc. London. B Biol. Sci. 1985, 311, 617–631. [Google Scholar] [CrossRef]
- Koopman, W.J.H.; Nijtmans, L.G.J.; Dieteren, C.E.J.; Roestenberg, P.; Valsecchi, F.; Smeitink, J.A.M.; Willems, P.H.G.M. Mammalian Mitochondrial Complex I: Biogenesis, Regulation, and Reactive Oxygen Species Generation. Antioxid. Redox Signal. 2010, 12, 1431–1470. [Google Scholar] [CrossRef]
- Beatty, S.; Koh, H.-H.; Phil, M.; Henson, D.; Boulton, M. The Role of Oxidative Stress in the Pathogenesis of Age-Related Macular Degeneration. Surv. Ophthalmol. 2000, 45, 115–134. [Google Scholar] [CrossRef]
- Miceli, M.V.; Liles, M.R.; Newsome, D.A. Evaluation of Oxidative Processes in Human Pigment Epithelial Cells Associated with Retinal Outer Segment Phagocytosis. Exp. Cell Res. 1994, 214, 242–249. [Google Scholar] [CrossRef]
- Incalza, M.A.; D’Oria, R.; Natalicchio, A.; Perrini, S.; Laviola, L.; Giorgino, F. Oxidative Stress and Reactive Oxygen Species in Endothelial Dysfunction Associated with Cardiovascular and Metabolic Diseases. Vasc. Pharmacol. 2018, 100, 1–19. [Google Scholar] [CrossRef]
- Jarrett, S.G.; Boulton, M.E. Consequences of Oxidative Stress in Age-Related Macular Degeneration. Mol. Asp. Med. 2012, 33, 399–417. [Google Scholar] [CrossRef]
- Klein, L.R.; MacLeish, P.R.; Wiesel, T.N. Immunolabelling by a Newt Retinal Pigment Epithelium Antibody during Retinal Development and Regeneration. J. Comp. Neurol. 1990, 293, 331–339. [Google Scholar] [CrossRef]
- Cai, J.; Nelson, K.C.; Wu, M.; Sternberg, P.; Jones, D.P. Oxidative Damage and Protection of the RPE. Prog. Retin. Eye Res. 2000, 19, 205–221. [Google Scholar] [CrossRef] [PubMed]
- Barone, V.; Surico, P.L.; Cutrupi, F.; Mori, T.; Gallo Afflitto, G.; Di Zazzo, A.; Coassin, M. The Role of Immune Cells and Signaling Pathways in Diabetic Eye Disease: A Comprehensive Review. Biomedicines 2024, 12, 2346. [Google Scholar] [CrossRef] [PubMed]
- Harman, D. Aging: A Theory Based on Free Radical and Radiation Chemistry. J. Gerontol. 1956, 11, 298–300. [Google Scholar] [CrossRef]
- Sohal, R.S.; Weindruch, R. Oxidative Stress, Caloric Restriction, and Aging. Science 1996, 273, 59–63. [Google Scholar] [CrossRef]
- Sohal, R.S.; Orr, W.C. The Redox Stress Hypothesis of Aging. Free Radic. Biol. Med. 2012, 52, 539–555. [Google Scholar] [CrossRef]
- Yu, D.-Y.; Cringle, S.J. Retinal Degeneration and Local Oxygen Metabolism. Exp. Eye Res. 2005, 80, 745–751. [Google Scholar] [CrossRef]
- Ruan, Y.; Jiang, S.; Gericke, A. Age-Related Macular Degeneration: Role of Oxidative Stress and Blood Vessels. Int. J. Mol. Sci. 2021, 22, 1296. [Google Scholar] [CrossRef]
- Handa, J.T. How Does the Macula Protect Itself from Oxidative Stress? Mol. Asp. Med. 2012, 33, 418–435. [Google Scholar] [CrossRef]
- Yu, D.-Y.; Cringle, S.J. Oxygen Distribution and Consumption within the Retina in Vascularised and Avascular Retinas and in Animal Models of Retinal Disease. Prog. Retin. Eye Res. 2001, 20, 175–208. [Google Scholar] [CrossRef]
- Zarbin, M.A. Age-Related Macular Degeneration: Review of Pathogenesis. Eur. J. Ophthalmol. 1998, 8, 199–206. [Google Scholar] [CrossRef]
- Di Gioia, M.; Zanoni, I. Dooming Phagocyte Responses: Inflammatory Effects of Endogenous Oxidized Phospholipids. Front. Endocrinol. 2021, 12, 626842. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, T.; Li, J.; Xia, M.; Li, Y.; Wang, X.; Liu, C.; Zheng, T.; Chen, R.; Kan, D.; et al. Oxidative Stress and 4-Hydroxy-2-Nonenal (4-HNE): Implications in the Pathogenesis and Treatment of Aging-Related Diseases. J. Immunol. Res. 2022, 2022, 1–12. [Google Scholar] [CrossRef]
- Sung, C.-H.; Chuang, J.-Z. The Cell Biology of Vision. J. Cell. Biol. 2010, 190, 953–963. [Google Scholar] [CrossRef]
- Alge, C.S.; Priglinger, S.G.; Neubauer, A.S.; Kampik, A.; Zillig, M.; Bloemendal, H.; Welge-Lussen, U. Retinal Pigment Epithelium Is Protected against Apoptosis by AlphaB-Crystallin. Investig. Ophthalmol. Vis. Sci. 2002, 43, 3575–3582. [Google Scholar]
- Delori, F.C.; Goger, D.G.; Dorey, C.K. Age-Related Accumulation and Spatial Distribution of Lipofuscin in RPE of Normal Subjects. Investig. Ophthalmol. Vis. Sci. 2001, 42, 1855–1866. [Google Scholar]
- Shamsi, F.A.; Boulton, M. Inhibition of RPE Lysosomal and Antioxidant Activity by the Age Pigment Lipofuscin. Investig. Ophthalmol. Vis. Sci. 2001, 42, 3041–3046. [Google Scholar]
- Wassell, J.; Davies, S.; Bardsley, W.; Boulton, M. The Photoreactivity of the Retinal Age Pigment Lipofuscin. J. Biol. Chem. 1999, 274, 23828–23832. [Google Scholar] [CrossRef]
- Strauss, O. The Retinal Pigment Epithelium in Visual Function. Physiol. Rev. 2005, 85, 845–881. [Google Scholar] [CrossRef]
- Crabb, J.W.; Miyagi, M.; Gu, X.; Shadrach, K.; West, K.A.; Sakaguchi, H.; Kamei, M.; Hasan, A.; Yan, L.; Rayborn, M.E.; et al. Drusen Proteome Analysis: An Approach to the Etiology of Age-Related Macular Degeneration. Proc. Natl. Acad. Sci. USA 2002, 99, 14682–14687. [Google Scholar] [CrossRef]
- Dentchev, T.; Milam, A.H.; Lee, V.M.-Y.; Trojanowski, J.Q.; Dunaief, J.L. Amyloid-Beta Is Found in Drusen from Some Age-Related Macular Degeneration Retinas, but Not in Drusen from Normal Retinas. Mol. Vis. 2003, 9, 184–190. [Google Scholar]
- Anderson, D.H.; Mullins, R.F.; Hageman, G.S.; Johnson, L.V. A Role for Local Inflammation in the Formation of Drusen in the Aging Eye. Am. J. Ophthalmol. 2002, 134, 411–431. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.H.; Talaga, K.C.; Rivest, A.J.; Barron, E.; Hageman, G.S.; Johnson, L.V. Characterization of β Amyloid Assemblies in Drusen: The Deposits Associated with Aging and Age-Related Macular Degeneration. Exp. Eye Res. 2004, 78, 243–256. [Google Scholar] [CrossRef]
- Johnson, L.V.; Ozaki, S.; Staples, M.K.; Erickson, P.A.; Anderson, D.H. A Potential Role for Immune Complex Pathogenesis in Drusen Formation. Exp. Eye Res. 2000, 70, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Bruban, J.; Glotin, A.; Dinet, V.; Chalour, N.; Sennlaub, F.; Jonet, L.; An, N.; Faussat, A.M.; Mascarelli, F. Amyloid-β(1-42) Alters Structure and Function of Retinal Pigmented Epithelial Cells. Aging Cell 2009, 8, 162–177. [Google Scholar] [CrossRef] [PubMed]
- Obulesu, M.; Lakshmi, M.J. Apoptosis in Alzheimer’s Disease: An Understanding of the Physiology, Pathology and Therapeutic Avenues. Neurochem. Res. 2014, 39, 2301–2312. [Google Scholar] [CrossRef]
- Wakx, A.; Dutot, M.; Massicot, F.; Mascarelli, F.; Limb, G.A.; Rat, P. Amyloid β Peptide Induces Apoptosis Through P2X7 Cell Death Receptor in Retinal Cells: Modulation by Marine Omega-3 Fatty Acid DHA and EPA. Appl. Biochem. Biotechnol. 2016, 178, 368–381. [Google Scholar] [CrossRef]
- Olivier, E.; Dutot, M.; Regazzetti, A.; Leguillier, T.; Dargère, D.; Auzeil, N.; Laprévote, O.; Rat, P. P2X7-Pannexin-1 and Amyloid β-Induced Oxysterol Input in Human Retinal Cell: Role in Age-Related Macular Degeneration? Biochimie 2016, 127, 70–78. [Google Scholar] [CrossRef]
- Rissiek, B.; Haag, F.; Boyer, O.; Koch-Nolte, F.; Adriouch, S. P2X7 on Mouse T Cells: One Channel, Many Functions. Front. Immunol. 2015, 6, 204. [Google Scholar] [CrossRef]
- Hu, S.J.; Calippe, B.; Lavalette, S.; Roubeix, C.; Montassar, F.; Housset, M.; Levy, O.; Delarasse, C.; Paques, M.; Sahel, J.-A.; et al. Upregulation of P2RX7 in Cx3cr1 -Deficient Mononuclear Phagocytes Leads to Increased Interleukin-1β Secretion and Photoreceptor Neurodegeneration. J. Neurosci. 2015, 35, 6987–6996. [Google Scholar] [CrossRef]
- Platania, C.B.M.; Drago, F.; Bucolo, C. The P2X7 Receptor as a New Pharmacological Target for Retinal Diseases. Biochem. Pharmacol. 2022, 198, 114942. [Google Scholar] [CrossRef]
- Cui, H.; Kong, Y.; Zhang, H. Oxidative Stress, Mitochondrial Dysfunction, and Aging. J. Signal Transduct. 2012, 2012, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Mikhed, Y.; Daiber, A.; Steven, S. Mitochondrial Oxidative Stress, Mitochondrial DNA Damage and Their Role in Age-Related Vascular Dysfunction. Int. J. Mol. Sci. 2015, 16, 15918–15953. [Google Scholar] [CrossRef] [PubMed]
- Jin, G.-F.; Hurst, J.S.; Godley, B.F. Rod Outer Segments Mediate Mitochondrial DNA Damage and Apoptosis in Human Retinal Pigment Epithelium. Curr. Eye Res. 2001, 23, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Ballinger, S.W.; Van Houten, B.; Conklin, C.A.; Jin, G.-F.; Godley, B.F. Hydrogen Peroxide Causes Significant Mitochondrial DNA Damage in Human RPE Cells. Exp. Eye Res. 1999, 68, 765–772. [Google Scholar] [CrossRef]
- Justilien, V.; Pang, J.-J.; Renganathan, K.; Zhan, X.; Crabb, J.W.; Kim, S.R.; Sparrow, J.R.; Hauswirth, W.W.; Lewin, A.S. SOD2 Knockdown Mouse Model of Early AMD. Investig. Opthalmol. Vis. Sci. 2007, 48, 4407. [Google Scholar] [CrossRef]
- Donoso, L.A.; Vrabec, T.; Kuivaniemi, H. The Role of Complement Factor H in Age-Related Macular Degeneration: A Review. Surv. Ophthalmol. 2010, 55, 227–246. [Google Scholar] [CrossRef]
- Ansari, M.; Mckeigue, P.M.; Skerka, C.; Hayward, C.; Rudan, I.; Vitart, V.; Polasek, O.; Armbrecht, A.-M.; Yates, J.R.W.; Vatavuk, Z.; et al. Genetic Influences on Plasma CFH and CFHR1 Concentrations and Their Role in Susceptibility to Age-Related Macular Degeneration. Hum. Mol. Genet. 2013, 22, 4857–4869. [Google Scholar] [CrossRef]
- Klein, R.J.; Zeiss, C.; Chew, E.Y.; Tsai, J.-Y.; Sackler, R.S.; Haynes, C.; Henning, A.K.; SanGiovanni, J.P.; Mane, S.M.; Mayne, S.T.; et al. Complement Factor H Polymorphism in Age-Related Macular Degeneration. Science 2005, 308, 385–389. [Google Scholar] [CrossRef]
- Rodriguezdecordoba, S.; Esparzagordillo, J.; Goicoecheadejorge, E.; Lopeztrascasa, M.; Sanchezcorral, P. The Human Complement Factor H: Functional Roles, Genetic Variations and Disease Associations. Mol. Immunol. 2004, 41, 355–367. [Google Scholar] [CrossRef]
- Schwartz, R.; Warwick, A.N.; Khawaja, A.P.; Luben, R.; Khalid, H.; Phatak, S.; Jhingan, M.; de Vente, C.; Valmaggia, P.; Liakopoulos, S.; et al. Genetic Distinctions Between Reticular Pseudodrusen and Drusen: Insights from a Genome-Wide Association Study. medRxiv 2024. [Google Scholar] [CrossRef]
- Hageman, G.S.; Anderson, D.H.; Johnson, L.V.; Hancox, L.S.; Taiber, A.J.; Hardisty, L.I.; Hageman, J.L.; Stockman, H.A.; Borchardt, J.D.; Gehrs, K.M.; et al. A Common Haplotype in the Complement Regulatory Gene Factor H ( HF1/CFH ) Predisposes Individuals to Age-Related Macular Degeneration. Proc. Natl. Acad. Sci. USA 2005, 102, 7227–7232. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, D.; Seddon, J.M. Phenotypic Characterization of Complement Factor H R1210C Rare Genetic Variant in Age-Related Macular Degeneration. JAMA Ophthalmol. 2015, 133, 785. [Google Scholar] [CrossRef] [PubMed]
- Heiba, I.M.; Elston, R.C.; Klein, B.E.K.; Klein, R. Sibling Correlations and Segregation Analysis of Age-related Maculopathy: The Beaver Dam Eye Study. Genet. Epidemiol. 1994, 11, 51–67. [Google Scholar] [CrossRef]
- Clemons, T.E.; Milton, R.C.; Klein, R.; Seddon, J.M.; Ferris, F.L.; Age-Related Eye Disease Study Research Group. Risk Factors for the Incidence of Advanced Age-Related Macular Degeneration in the Age-Related Eye Disease Study (AREDS)AREDS Report No. 19. Ophthalmology 2005, 112, 533–539.e1. [Google Scholar] [CrossRef] [PubMed]
- Wills, N.K.; Ramanujam, V.M.S.; Chang, J.; Kalariya, N.; Lewis, J.R.; Weng, T.-X.; van Kuijk, F.J.G.M. Cadmium Accumulation in the Human Retina: Effects of Age, Gender, and Cellular Toxicity. Exp. Eye Res. 2008, 86, 41–51. [Google Scholar] [CrossRef]
- Church, D.F.; Pryor, W.A. Free-Radical Chemistry of Cigarette Smoke and Its Toxicological Implications. Env. Health Perspect. 1985, 64, 111–126. [Google Scholar] [CrossRef]
- Pons, M.; Marin-Castaño, M.E. Nicotine Increases the VEGF/PEDF Ratio in Retinal Pigment Epithelium: A Possible Mechanism for CNV in Passive Smokers with AMD. Investig. Opthalmol. Vis. Sci. 2011, 52, 3842. [Google Scholar] [CrossRef]
- Mitchell, P. Smoking and the 5-Year Incidence of Age-Related Maculopathy. Arch. Ophthalmol. 2002, 120, 1357. [Google Scholar] [CrossRef]
- Sparrow, J.R.; Zhou, J.; Ben-Shabat, S.; Vollmer, H.; Itagaki, Y.; Nakanishi, K. Involvement of Oxidative Mechanisms in Blue-Light-Induced Damage to A2E-Laden RPE. Investig. Ophthalmol. Vis. Sci. 2002, 43, 1222–1227. [Google Scholar]
- Sparrow, J.R.; Zhou, J.; Cai, B. DNA Is a Target of the Photodynamic Effects Elicited in A2E-Laden RPE by Blue-Light Illumination. Investig. Opthalmol. Vis. Sci. 2003, 44, 2245. [Google Scholar] [CrossRef]
- Organisciak, D.T.; Darrow, R.M.; Barsalou, L.; Darrow, R.A.; Kutty, R.K.; Kutty, G.; Wiggert, B. Light History and Age-Related Changes in Retinal Light Damage. Investig. Ophthalmol. Vis. Sci. 1998, 39, 1107–1116. [Google Scholar] [PubMed]
- Carr, A.; Frei, B. Does Vitamin C Act as a Pro-oxidant under Physiological Conditions? FASEB J. 1999, 13, 1007–1024. [Google Scholar] [CrossRef]
- Padayatty, S.; Levine, M. Vitamin C: The Known and the Unknown and Goldilocks. Oral Dis. 2016, 22, 463–493. [Google Scholar] [CrossRef] [PubMed]
- Englard, S.; Seifter, S. The Biochemical Functions of Ascorbic Acid. Annu. Rev. Nutr. 1986, 6, 365–406. [Google Scholar] [CrossRef]
- Wong, R.S.; Radhakrishnan, A.K. Tocotrienol Research: Past into Present. Nutr. Rev. 2012, 70, 483–490. [Google Scholar] [CrossRef]
- Jiang, Q.; Christen, S.; Shigenaga, M.K.; Ames, B.N. γ-Tocopherol, the Major Form of Vitamin E in the US Diet, Deserves More Attention. Am. J. Clin. Nutr. 2001, 74, 714–722. [Google Scholar] [CrossRef]
- Jiang, Q.; Elson-Schwab, I.; Courtemanche, C.; Ames, B.N. γ-Tocopherol and Its Major Metabolite, in Contrast to α-Tocopherol, Inhibit Cyclooxygenase Activity in Macrophages and Epithelial Cells. Proc. Natl. Acad. Sci. USA 2000, 97, 11494–11499. [Google Scholar] [CrossRef]
- Johra, F.T.; Bepari, A.K.; Bristy, A.T.; Reza, H.M. A Mechanistic Review of β-Carotene, Lutein, and Zeaxanthin in Eye Health and Disease. Antioxidants 2020, 9, 1046. [Google Scholar] [CrossRef]
- Krasnovsky: Interaction of Singlet Oxygen with Carotenoid...—Google Scholar. Available online: https://scholar.google.com/scholar_lookup?title=Interaction%20of%20singlet%20oxygen%20with%20carotenoids%3A%20rate%20constants%20of%20physical%20and%20chemical%20quenching.&publication_year=1983&author=A%20A%20Krasnovskii&author=LJ%20Paramonava (accessed on 9 January 2025).
- Burton, G.W.; Ingold, K.U. β-Carotene: An Unusual Type of Lipid Antioxidant. Science 1984, 224, 569–573. [Google Scholar] [CrossRef]
- Age-Related Eye Disease Study Research Group. A Randomized, Placebo-Controlled, Clinical Trial of High-Dose Supplementation with Vitamins C and E, Beta Carotene, and Zinc for Age-Related Macular Degeneration and Vision Loss. Arch. Ophthalmol. 2001, 119, 1417. [Google Scholar] [CrossRef]
- Swerdel, M.R.; Cousins, R.J. Induction of Kidney Metallothionein and Metallothionein Messenger RNA by Zinc and Cadmium. J. Nutr. 1982, 112, 801–809. [Google Scholar] [CrossRef] [PubMed]
- McCormick, C.C.; Menard, M.P.; Cousins, R.J. Induction of Hepatic Metallothionein by Feeding Zinc to Rats of Depleted Zinc Status. Am. J. Physiol. -Endocrinol. Metab. 1981, 240, E414–E421. [Google Scholar] [CrossRef]
- Gibbs, P.N.B.; Gore, M.G.; Jordan, P.M. Investigation of the Effect of Metal Ions on the Reactivity of Thiol Groups in Human 5-Aminolaevulinate Dehydratase. Biochem. J. 1985, 225, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Korbashi, P.; Katzhendler, J.; Saltman, P.; Chevion, M. Zinc Protects Escherichia Coli against Copper-Mediated Paraquat-Induced Damage. J. Biol. Chem. 1989, 264, 8479–8482. [Google Scholar] [CrossRef] [PubMed]
- Ferns, G.A.A.; Lamb, D.J.; Taylor, A. The Possible Role of Copper Ions in Atherogenesis: The Blue Janus. Atherosclerosis 1997, 133, 139–152. [Google Scholar] [CrossRef]
- Soinio, M.; Marniemi, J.; Laakso, M.; Pyörälä, K.; Lehto, S.; Rönnemaa, T. Serum Zinc Level and Coronary Heart Disease Events in Patients with Type 2 Diabetes. Diabetes Care 2007, 30, 523–528. [Google Scholar] [CrossRef]
- Klotz, L.-O.; Kröncke, K.-D.; Buchczyk, D.P.; Sies, H. Role of Copper, Zinc, Selenium and Tellurium in the Cellular Defense against Oxidative and Nitrosative Stress. J. Nutr. 2003, 133, 1448S–1451S. [Google Scholar] [CrossRef]
- Cozzi, M.; Casaluci, M.; Ruggi, G.; Airaldi, M.; Romano, F.; Bertoni, A.; Green-Gomez, M.; Nolan, J.M.; Staurenghi, G.; Invernizzi, A. In Vivo Correlation Between Macular Pigment Optical Volume and Retinal Layers Thickness. Investig. Ophthalmol. Vis. Sci. 2024, 65, 23. [Google Scholar] [CrossRef]
- van Norren, D.; Vos, J.J. Light Damage to the Retina: An Historical Approach. Eye 2016, 30, 169–172. [Google Scholar] [CrossRef]
- Barker, F.M.; Snodderly, D.M.; Johnson, E.J.; Schalch, W.; Koepcke, W.; Gerss, J.; Neuringer, M. Nutritional Manipulation of Primate Retinas, V: Effects of Lutein, Zeaxanthin, and n –3 Fatty Acids on Retinal Sensitivity to Blue-Light–Induced Damage. Investig. Opthalmol. Vis. Sci. 2011, 52, 3934. [Google Scholar] [CrossRef]
- Duberley, K.E.; Heales, S.J.R.; Abramov, A.Y.; Chalasani, A.; Land, J.M.; Rahman, S.; Hargreaves, I.P. Effect of Coenzyme Q10 Supplementation on Mitochondrial Electron Transport Chain Activity and Mitochondrial Oxidative Stress in Coenzyme Q10 Deficient Human Neuronal Cells. Int. J. Biochem. Cell Biol. 2014, 50, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Lulli, M.; Witort, E.; Papucci, L.; Torre, E.; Schiavone, N.; Dal Monte, M.; Capaccioli, S. Coenzyme Q10 Protects Retinal Cells from Apoptosis Induced by Radiation in Vitro and in Vivo. J. Radiat. Res. 2012, 53, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Feher, J.; Papale, A.; Mannino, G.; Gualdi, L.; Balacco Gabrieli, C. Mitotropic Compounds for the Treatment of Age-Related Macular Degeneration. Ophthalmologica 2003, 217, 351–357. [Google Scholar] [CrossRef]
- Lee, D.; Shim, M.S.; Kim, K.-Y.; Noh, Y.H.; Kim, H.; Kim, S.Y.; Weinreb, R.N.; Ju, W.-K. Coenzyme Q10 Inhibits Glutamate Excitotoxicity and Oxidative Stress–Mediated Mitochondrial Alteration in a Mouse Model of Glaucoma. Investig. Opthalmol. Vis. Sci. 2014, 55, 993. [Google Scholar] [CrossRef]
- López-Cano, J.J.; Sigen, A.; Andrés-Guerrero, V.; Tai, H.; Bravo-Osuna, I.; Molina-Martínez, I.T.; Wang, W.; Herrero-Vanrell, R. Thermo-Responsive PLGA-PEG-PLGA Hydrogels as Novel Injectable Platforms for Neuroprotective Combined Therapies in the Treatment of Retinal Degenerative Diseases. Pharmaceutics 2021, 13, 234. [Google Scholar] [CrossRef]
- Oddone, F.; Rossetti, L.; Parravano, M.; Sbardella, D.; Coletta, M.; Ziccardi, L.; Roberti, G.; Carnevale, C.; Romano, D.; Manni, G.; et al. Citicoline in Ophthalmological Neurodegenerative Disease: A Comprehensive Review. Pharmaceuticals 2021, 14, 281. [Google Scholar] [CrossRef]
- Faiq, M.A.; Wollstein, G.; Schuman, J.S.; Chan, K.C. Cholinergic Nervous System and Glaucoma: From Basic Science to Clinical Applications. Prog. Retin. Eye Res. 2019, 72, 100767. [Google Scholar] [CrossRef]
- Nashine, S.; Kenney, M.C. Role of Citicoline in an in Vitro AMD Model. Aging 2020, 12, 9031–9040. [Google Scholar] [CrossRef]
- Parekh, N. Association Between Vitamin D and Age-Related Macular Degeneration in the Third National Health and Nutrition Examination Survey, 1988 Through 1994. Arch. Ophthalmol. 2007, 125, 661. [Google Scholar] [CrossRef]
- Annweiler, C.; Drouet, M.; Duval, G.T.; Paré, P.-Y.; Leruez, S.; Dinomais, M.; Milea, D. Circulating Vitamin D Concentration and Age-Related Macular Degeneration: Systematic Review and Meta-Analysis. Maturitas 2016, 88, 101–112. [Google Scholar] [CrossRef]
- Albert, D.M.; Scheef, E.A.; Wang, S.; Mehraein, F.; Darjatmoko, S.R.; Sorenson, C.M.; Sheibani, N. Calcitriol Is a Potent Inhibitor of Retinal Neovascularization. Investig. Opthalmol. Vis. Sci. 2007, 48, 2327. [Google Scholar] [CrossRef] [PubMed]
- Almeida Moreira Leal, L.K.; Lima, L.A.; Alexandre de Aquino, P.E.; Costa de Sousa, J.A.; Jataí Gadelha, C.V.; Felício Calou, I.B.; Pereira Lopes, M.J.; Viana Lima, F.A.; Tavares Neves, K.R.; Matos de Andrade, G.; et al. Vitamin D (VD3) Antioxidative and Anti-Inflammatory Activities: Peripheral and Central Effects. Eur. J. Pharmacol. 2020, 879, 173099. [Google Scholar] [CrossRef] [PubMed]
- Lazzara, F.; Conti, F.; Platania, C.B.M.; Eandi, C.M.; Drago, F.; Bucolo, C. Effects of Vitamin D3 and Meso-Zeaxanthin on Human Retinal Pigmented Epithelial Cells in Three Integrated in Vitro Paradigms of Age-Related Macular Degeneration. Front. Pharmacol. 2021, 12, 778165. [Google Scholar] [CrossRef]
- Klickovic, U.; Doberer, D.; Gouya, G.; Aschauer, S.; Weisshaar, S.; Storka, A.; Bilban, M.; Wolzt, M. Human Pharmacokinetics of High Dose Oral Curcumin and Its Effect on Heme Oxygenase-1 Expression in Healthy Male Subjects. Biomed. Res. Int. 2014, 2014, 1–7. [Google Scholar] [CrossRef]
- Bucolo, C.; Drago, F.; Maisto, R.; Romano, G.L.; D’Agata, V.; Maugeri, G.; Giunta, S. Curcumin Prevents High Glucose Damage in Retinal Pigment Epithelial Cells through ERK1/2-mediated Activation of the Nrf2/HO-1 Pathway. J. Cell. Physiol. 2019, 234, 17295–17304. [Google Scholar] [CrossRef]
- Burugula, B.; Ganesh, B.S.; Chintala, S.K. Curcumin Attenuates Staurosporine-Mediated Death of Retinal Ganglion Cells. Investig. Opthalmol. Vis. Sci. 2011, 52, 4263. [Google Scholar] [CrossRef]
- Alsoudi, A.F.; Wai, K.M.; Koo, E.; Mruthyunjaya, P.; Rahimy, E. Curcuma-Based Nutritional Supplements and Risk of Age-Related Macular Degeneration. JAMA Ophthalmol. 2024, 142, 1114. [Google Scholar] [CrossRef]
- Vavvas, D.G.; Daniels, A.B.; Kapsala, Z.G.; Goldfarb, J.W.; Ganotakis, E.; Loewenstein, J.I.; Young, L.H.; Gragoudas, E.S.; Eliott, D.; Kim, I.K.; et al. Regression of Some High-Risk Features of Age-Related Macular Degeneration (AMD) in Patients Receiving Intensive Statin Treatment. EBioMedicine 2016, 5, 198–203. [Google Scholar] [CrossRef]
- Ma, L.; Wang, Y.; Du, J.; Wang, M.; Zhang, R.; Fu, Y. The Association between Statin Use and Risk of Age-Related Macular Degeneration. Sci. Rep. 2015, 5, 18280. [Google Scholar] [CrossRef]
- Habeos, I.G.; Ziros, P.G.; Chartoumpekis, D.; Psyrogiannis, A.; Kyriazopoulou, V.; Papavassiliou, A.G. Simvastatin Activates Keap1/Nrf2 Signaling in Rat Liver. J. Mol. Med. 2008, 86, 1279–1285. [Google Scholar] [CrossRef]
- Davignon, J.; Jacob, R.F.; Mason, R.P. The Antioxidant Effects of Statins. Coron. Artery Dis. 2004, 15, 251–258. [Google Scholar] [CrossRef]
- The Age-Related Eye Disease Study (AREDS). The Age-Related Eye Disease Study (AREDS): Design Implications AREDS Report No. 1. Control. Clin. Trials 1999, 20, 573–600. [Google Scholar] [CrossRef] [PubMed]
- Clemons, T.E. National Eye Institute Visual Function Questionnaire in the Age-Related Eye Disease Study (AREDS). Arch. Ophthalmol. 2003, 121, 211. [Google Scholar] [CrossRef]
- Age-Related Eye Disease Study Research Group. A Randomized, Placebo-Controlled, Clinical Trial of High-Dose Supplementation with Vitamins C and E and Beta Carotene for Age-Related Cataract and Vision Loss. Arch. Ophthalmol. 2001, 119, 1439. [Google Scholar] [CrossRef] [PubMed]
- Keenan, T.D.L.; Agrón, E.; Keane, P.A.; Domalpally, A.; Chew, E.Y.; Age-Related Eye Disease Study Research Group. Age-Related Eye Disease Study 2 Research Group Oral Antioxidant and Lutein/Zeaxanthin Supplements Slow Geographic Atrophy Progression to the Fovea in Age-Related Macular Degeneration. Ophthalmology 2024, 132, 14–29. [Google Scholar] [CrossRef]
- Seddon, J.M.; Ajani, U.A.; Sperduto, R.D.; Hiller, R.; Blair, N.; Burton, T.C.; Farber, M.D.; Gragoudas, E.S.; Haller, J.; Miller, D.T. Dietary Carotenoids, Vitamins A, C, and E, and Advanced Age-Related Macular Degeneration. Eye Disease Case-Control Study Group. JAMA 1994, 272, 1413–1420. [Google Scholar] [CrossRef] [PubMed]
- Chew, E.Y.; Clemons, T.; SanGiovanni, J.P.; Danis, R.; Domalpally, A.; McBee, W.; Sperduto, R.; Ferris, F.L. The Age-Related Eye Disease Study 2 (AREDS2). Ophthalmology 2012, 119, 2282–2289. [Google Scholar] [CrossRef]
- Lotan, R. Lung Cancer Promotion by Beta-Carotene and Tobacco Smoke: Relationship to Suppression of Retinoic Acid Receptor-Beta and Increased Activator Protein-1? J. Natl Cancer Inst. 1999, 91, 7–9. [Google Scholar] [CrossRef]
- Chew, E.Y.; Clemons, T.E.; SanGiovanni, J.P.; Danis, R.P.; Ferris, F.L.; Elman, M.J.; Antoszyk, A.N.; Ruby, A.J.; Orth, D.; Bressler, S.B.; et al. Secondary Analyses of the Effects of Lutein/Zeaxanthin on Age-Related Macular Degeneration Progression. JAMA Ophthalmol. 2014, 132, 142. [Google Scholar] [CrossRef]
- The Legacy of AREDS. Available online: https://www.reviewofoptometry.com/article/the-legacy-of-areds (accessed on 13 November 2024).
- Meyers, K.J.; Mares, J.A.; Igo, R.P.; Truitt, B.; Liu, Z.; Millen, A.E.; Klein, M.; Johnson, E.J.; Engelman, C.D.; Karki, C.K.; et al. Genetic Evidence for Role of Carotenoids in Age-Related Macular Degeneration in the Carotenoids in Age-Related Eye Disease Study (CAREDS). Investig. Opthalmol. Vis. Sci. 2014, 55, 587. [Google Scholar] [CrossRef]
- Bernstein, P.S.; Ahmed, F.; Liu, A.; Allman, S.; Sheng, X.; Sharifzadeh, M.; Ermakov, I.; Gellermann, W. Macular Pigment Imaging in AREDS2 Participants: An Ancillary Study of AREDS2 Subjects Enrolled at the Moran Eye Center. Investig. Opthalmol. Vis. Sci. 2012, 53, 6178. [Google Scholar] [CrossRef] [PubMed]
- Hosoya, K.; Minamizono, A.; Katayama, K.; Terasaki, T.; Tomi, M. Vitamin C Transport in Oxidized Form across the Rat Blood–Retinal Barrier. Investig. Opthalmol. Vis. Sci. 2004, 45, 1232. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.C. Glutathione Synthesis. Biochim. Biophys. Acta BBA Gen. Subj. 2013, 1830, 3143–3153. [Google Scholar] [CrossRef]
- Niki, E. Role of Vitamin E as a Lipid-Soluble Peroxyl Radical Scavenger: In Vitro and in Vivo Evidence. Free Radic. Biol. Med. 2014, 66, 3–12. [Google Scholar] [CrossRef]
- Vriend, J.; Reiter, R.J. The Keap1-Nrf2-Antioxidant Response Element Pathway: A Review of Its Regulation by Melatonin and the Proteasome. Mol. Cell Endocrinol. 2015, 401, 213–220. [Google Scholar] [CrossRef]
- Batliwala, S.; Xavier, C.; Liu, Y.; Wu, H.; Pang, I.-H. Involvement of Nrf2 in Ocular Diseases. Oxid. Med. Cell. Longev. 2017, 2017, 1703810. [Google Scholar] [CrossRef]
- Wu, D.M.; Ji, X.; Ivanchenko, M.V.; Chung, M.; Piper, M.; Rana, P.; Wang, S.K.; Xue, Y.; West, E.; Zhao, S.R.; et al. Nrf2 Overexpression Rescues the RPE in Mouse Models of Retinitis Pigmentosa. JCI Insight 2021, 6, e145029. [Google Scholar] [CrossRef]
- Kamoshita, M.; Toda, E.; Osada, H.; Narimatsu, T.; Kobayashi, S.; Tsubota, K.; Ozawa, Y. Lutein Acts via Multiple Antioxidant Pathways in the Photo-Stressed Retina. Sci. Rep. 2016, 6, 30226. [Google Scholar] [CrossRef]
- Kong, L.; Tanito, M.; Huang, Z.; Li, F.; Zhou, X.; Zaharia, A.; Yodoi, J.; McGinnis, J.F.; Cao, W. Delay of Photoreceptor Degeneration in Tubby Mouse by Sulforaphane. J. Neurochem. 2007, 101, 1041–1052. [Google Scholar] [CrossRef]
- Bernstein, P.S.; Delori, F.C.; Richer, S.; van Kuijk, F.J.M.; Wenzel, A.J. The Value of Measurement of Macular Carotenoid Pigment Optical Densities and Distributions in Age-Related Macular Degeneration and Other Retinal Disorders. Vis. Res. 2010, 50, 716–728. [Google Scholar] [CrossRef]
- Nolan, J.M.; Stack, J.; O’ Donovan, O.; Loane, E.; Beatty, S. Risk Factors for Age-Related Maculopathy Are Associated with a Relative Lack of Macular Pigment. Exp. Eye Res. 2007, 84, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, P.S.; Zhao, D.-Y.; Wintch, S.W.; Ermakov, I.V.; McClane, R.W.; Gellermann, W. Resonance Raman Measurement of Macular Carotenoids in Normal Subjects and in Age-Related Macular Degeneration Patients. Ophthalmology 2002, 109, 1780–1787. [Google Scholar] [CrossRef] [PubMed]
- Cardinault, N. Short-Term Supplementation with Lutein Affects Biomarkers of Lutein Status Similarly in Young and Elderly Subjects. Exp. Gerontol. 2003, 38, 573–582. [Google Scholar] [CrossRef]
- Johnson, E.J.; Chung, H.-Y.; Caldarella, S.M.; Snodderly, D.M. The Influence of Supplemental Lutein and Docosahexaenoic Acid on Serum, Lipoproteins, and Macular Pigmentation. Am. J. Clin. Nutr. 2008, 87, 1521–1529. [Google Scholar] [CrossRef]
- Vishwanathan, R.; Goodrow-Kotyla, E.F.; Wooten, B.R.; Wilson, T.A.; Nicolosi, R.J. Consumption of 2 and 4 Egg Yolks/d for 5 Wk Increases Macular Pigment Concentrations in Older Adults with Low Macular Pigment Taking Cholesterol-Lowering Statins. Am. J. Clin. Nutr. 2009, 90, 1272–1279. [Google Scholar] [CrossRef]
- Rodriguez-Carmona, M.; Kvansakul, J.; Alister Harlow, J.; Köpcke, W.; Schalch, W.; Barbur, J.L. The Effects of Supplementation with Lutein and/or Zeaxanthin on Human Macular Pigment Density and Colour Vision. Ophthalmic Physiol. Opt. 2006, 26, 137–147. [Google Scholar] [CrossRef]
- Pierfrancesco, M.; Giuseppe, F.; Bruno, C. Protective Effects of Oral Antioxidants on Skin and Eye Function. SKINmed Dermatol. Clin. 2004, 3, 310–316. [Google Scholar] [CrossRef]
- Landrum, J.T.; Bone, R.A.; Joa, H.; Kilburn, M.D.; Moore, L.L.; Sprague, K.E. A One Year Study of the Macular Pigment: The Effect of 140 Days of a Lutein Supplement. Exp. Eye Res. 1997, 65, 57–62. [Google Scholar] [CrossRef]
- Bone, R.A.; Landrum, J.T.; Cao, Y.; Howard, A.N.; Alvarez-Calderon, F. Macular Pigment Response to a Supplement Containing Meso-Zeaxanthin, Lutein and Zeaxanthin. Nutr. Metab. 2007, 4, 12. [Google Scholar] [CrossRef]
- Wolf-Schnurrbusch, U.E.K.; Zinkernagel, M.S.; Munk, M.R.; Ebneter, A.; Wolf, S. Oral Lutein Supplementation Enhances Macular Pigment Density and Contrast Sensitivity but Not in Combination with Polyunsaturated Fatty Acids. Investig. Opthalmol. Vis. Sci. 2015, 56, 8069. [Google Scholar] [CrossRef]
- Hu, W.; Seah, V.; Huang, V.; Kim, J.E. Effect of Antioxidant Supplementation on Macular Pigment Optical Density and Visual Functions: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2024, 15, 100216. [Google Scholar] [CrossRef] [PubMed]
- Neroev, V.V.; Archipova, M.M.; Bakeeva, L.E.; Fursova, A.Z.; Grigorian, E.N.; Grishanova, A.Y.; Iomdina, E.N.; Ivashchenko, Z.N.; Katargina, L.A.; Khoroshilova-Maslova, I.P.; et al. Mitochondria-Targeted Plastoquinone Derivatives as Tools to Interrupt Execution of the Aging Program. 4. Age-Related Eye Disease. SkQ1 Returns Vision to Blind Animals. Biochemistry 2008, 73, 1317–1328. [Google Scholar] [CrossRef] [PubMed]
- Skulachev, V.P. A Biochemical Approach to the Problem of Aging: “Megaproject” on Membrane-Penetrating Ions. The First Results and Prospects. Biochemistry 2007, 72, 1385–1396. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Chiang, H.-H.; Luo, H.; Zheng, Z.; Qiao, Q.; Wang, L.; Tan, M.; Ohkubo, R.; Mu, W.-C.; Zhao, S.; et al. An Acetylation Switch of the NLRP3 Inflammasome Regulates Aging-Associated Chronic Inflammation and Insulin Resistance. Cell Metab. 2020, 31, 580–591.e5. [Google Scholar] [CrossRef]
- Murphy, M.P. Understanding and Preventing Mitochondrial Oxidative Damage. Biochem. Soc. Trans. 2016, 44, 1219–1226. [Google Scholar] [CrossRef]
- Skulachev, V.P.; Anisimov, V.N.; Antonenko, Y.N.; Bakeeva, L.E.; Chernyak, B.V.; Erichev, V.P.; Filenko, O.F.; Kalinina, N.I.; Kapelko, V.I.; Kolosova, N.G.; et al. An Attempt to Prevent Senescence: A Mitochondrial Approach. Biochim. Biophys. Acta BBA Bioenerg. 2009, 1787, 437–461. [Google Scholar] [CrossRef]
- Witmer, A.N.; Dai, J.; Weich, H.A.; Vrensen, G.F.J.M.; Schlingemann, R.O. Expression of Vascular Endothelial Growth Factor Receptors 1, 2, and 3 in Quiescent Endothelia. J. Histochem. Cytochem. 2002, 50, 767–777. [Google Scholar] [CrossRef]
- Zhou, X.; Wong, L.L.; Karakoti, A.S.; Seal, S.; McGinnis, J.F. Nanoceria Inhibit the Development and Promote the Regression of Pathologic Retinal Neovascularization in the Vldlr Knockout Mouse. PLoS ONE 2011, 6, e16733. [Google Scholar] [CrossRef]
- Alrobaian, M. Pegylated Nanoceria: A Versatile Nanomaterial for Noninvasive Treatment of Retinal Diseases. Saudi Pharm. J. 2023, 31, 101761. [Google Scholar] [CrossRef]
- Tisi, A.; Passacantando, M.; Lozzi, L.; Riccitelli, S.; Bisti, S.; Maccarone, R. Retinal Long Term Neuroprotection by Cerium Oxide Nanoparticles after an Acute Damage Induced by High Intensity Light Exposure. Exp. Eye Res. 2019, 182, 30–38. [Google Scholar] [CrossRef]
- Fiorani, L.; Passacantando, M.; Santucci, S.; Di Marco, S.; Bisti, S.; Maccarone, R. Cerium Oxide Nanoparticles Reduce Microglial Activation and Neurodegenerative Events in Light Damaged Retina. PLoS ONE 2015, 10, e0140387. [Google Scholar] [CrossRef] [PubMed]
- Kyosseva, S.V.; Chen, L.; Seal, S.; McGinnis, J.F. Nanoceria Inhibit Expression of Genes Associated with Inflammation and Angiogenesis in the Retina of Vldlr Null Mice. Exp. Eye Res. 2013, 116, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Tisi, A.; Flati, V.; Delle Monache, S.; Lozzi, L.; Passacantando, M.; Maccarone, R. Nanoceria Particles Are an Eligible Candidate to Prevent Age-Related Macular Degeneration by Inhibiting Retinal Pigment Epithelium Cell Death and Autophagy Alterations. Cells 2020, 9, 1617. [Google Scholar] [CrossRef]
- Wang, K.; Mitra, R.N.; Zheng, M.; Han, Z. Nanoceria-loaded Injectable Hydrogels for Potential Age-related Macular Degeneration Treatment. J. Biomed. Mater. Res. A 2018, 106, 2795–2804. [Google Scholar] [CrossRef]
- Wang, K.; Zheng, M.; Lester, K.L.; Han, Z. Light-Induced Nrf2−/− Mice as Atrophic Age-Related Macular Degeneration Model and Treatment with Nanoceria Laden Injectable Hydrogel. Sci. Rep. 2019, 9, 14573. [Google Scholar] [CrossRef]
- Khanani, A.M.; Thomas, M.J.; Aziz, A.A.; Weng, C.Y.; Danzig, C.J.; Yiu, G.; Kiss, S.; Waheed, N.K.; Kaiser, P.K. Review of Gene Therapies for Age-Related Macular Degeneration. Eye 2022, 36, 303–311. [Google Scholar] [CrossRef]
- Biswal, M.R.; Han, P.; Zhu, P.; Wang, Z.; Li, H.; Ildefonso, C.J.; Lewin, A.S. Timing of Antioxidant Gene Therapy: Implications for Treating Dry AMD. Investig. Ophthalmol. Vis. Sci. 2017, 58, 1237–1245. [Google Scholar] [CrossRef]
- Dreismann, A.K.; McClements, M.E.; Barnard, A.R.; Orhan, E.; Hughes, J.P.; Lachmann, P.J.; MacLaren, R.E. Functional Expression of Complement Factor I Following AAV-Mediated Gene Delivery in the Retina of Mice and Human Cells. Gene Ther. 2021, 28, 265–276. [Google Scholar] [CrossRef]
- Schnabolk, G.; Tomlinson, S.; Rohrer, B. The Complement Regulatory Protein CD59: Insights into Attenuation of Choroidal Neovascularization. In Retinal Degenerative Diseases: Mechanisms and Experimental Therapy; Springer: New York, NY, USA, 2014; pp. 435–440. [Google Scholar]
- Hammadi, S.; Tzoumas, N.; Ferrara, M.; Meschede, I.P.; Lo, K.; Harris, C.; Lako, M.; Steel, D.H. Bruch’s Membrane: A Key Consideration with Complement-Based Therapies for Age-Related Macular Degeneration. J. Clin. Med. 2023, 12, 2870. [Google Scholar] [CrossRef]
- Falsini, B.; Piccardi, M.; Minnella, A.; Savastano, C.; Capoluongo, E.; Fadda, A.; Balestrazzi, E.; Maccarone, R.; Bisti, S. Influence of Saffron Supplementation on Retinal Flicker Sensitivity in Early Age-Related Macular Degeneration. Investig. Opthalmol. Vis. Sci. 2010, 51, 6118. [Google Scholar] [CrossRef]
- Piccardi, M.; Marangoni, D.; Minnella, A.M.; Savastano, M.C.; Valentini, P.; Ambrosio, L.; Capoluongo, E.; Maccarone, R.; Bisti, S.; Falsini, B. A Longitudinal Follow-Up Study of Saffron Supplementation in Early Age-Related Macular Degeneration: Sustained Benefits to Central Retinal Function. Evid.-Based. Complement. Altern. Med. 2012, 2012, 429124. [Google Scholar] [CrossRef] [PubMed]
- Corso, L.; Cavallero, A.; Baroni, D.; Garbati, P.; Prestipino, G.; Bisti, S.; Nobile, M.; Picco, C. Saffron Reduces ATP-Induced Retinal Cytotoxicity by Targeting P2X7 Receptors. Purinergic Signal. 2016, 12, 161–174. [Google Scholar] [CrossRef] [PubMed]
- Cosín-Tomàs, M.; Senserrich, J.; Arumí-Planas, M.; Alquézar, C.; Pallàs, M.; Martín-Requero, Á.; Suñol, C.; Kaliman, P.; Sanfeliu, C. Role of Resveratrol and Selenium on Oxidative Stress and Expression of Antioxidant and Anti-Aging Genes in Immortalized Lymphocytes from Alzheimer’s Disease Patients. Nutrients 2019, 11, 1764. [Google Scholar] [CrossRef] [PubMed]
- Toth, P.; Tarantini, S.; Tucsek, Z.; Ashpole, N.M.; Sosnowska, D.; Gautam, T.; Ballabh, P.; Koller, A.; Sonntag, W.E.; Csiszar, A.; et al. Resveratrol Treatment Rescues Neurovascular Coupling in Aged Mice: Role of Improved Cerebromicrovascular Endothelial Function and Downregulation of NADPH Oxidase. Am. J. Physiol.-Heart. Circ. Physiol. 2014, 306, H299–H308. [Google Scholar] [CrossRef]
- Aguilar-Alonso, P.; Vera-López, O.; Brambila-Colombres, E.; Segura-Badilla, O.; Avalos-López, R.; Lazcano-Hernández, M.; Navarro-Cruz, A.R. Evaluation of Oxidative Stress in Cardiomyocytes during the Aging Process in Rats Treated with Resveratrol. Oxid. Med. Cell Longev. 2018, 2018, 1390483. [Google Scholar] [CrossRef]
- Ryan, M.J.; Jackson, J.R.; Hao, Y.; Williamson, C.L.; Dabkowski, E.R.; Hollander, J.M.; Alway, S.E. Suppression of Oxidative Stress by Resveratrol After Isometric Contractions in Gastrocnemius Muscles of Aged Mice. J. Gerontol. A Biol. Sci. Med. Sci. 2010, 65A, 815–831. [Google Scholar] [CrossRef]
- Csiszar, A.; Sosnowska, D.; Wang, M.; Lakatta, E.G.; Sonntag, W.E.; Ungvari, Z. Age-Associated Proinflammatory Secretory Phenotype in Vascular Smooth Muscle Cells From the Non-Human Primate Macaca Mulatta: Reversal by Resveratrol Treatment. J. Gerontol. A Biol. Sci. Med. Sci. 2012, 67, 811–820. [Google Scholar] [CrossRef]
- Awh, C.C.; Lane, A.-M.; Hawken, S.; Zanke, B.; Kim, I.K. CFH and ARMS2 Genetic Polymorphisms Predict Response to Antioxidants and Zinc in Patients with Age-Related Macular Degeneration. Ophthalmology 2013, 120, 2317–2323. [Google Scholar] [CrossRef]
- Awh, C.C.; Hawken, S.; Zanke, B.W. Treatment Response to Antioxidants and Zinc Based on CFH and ARMS2 Genetic Risk Allele Number in the Age-Related Eye Disease Study. Ophthalmology 2015, 122, 162–169. [Google Scholar] [CrossRef]
- Assel, M.J.; Li, F.; Wang, Y.; Allen, A.S.; Baggerly, K.A.; Vickers, A.J. Genetic Polymorphisms of CFH and ARMS2 Do Not Predict Response to Antioxidants and Zinc in Patients with Age-Related Macular Degeneration. Ophthalmology 2018, 125, 391–397. [Google Scholar] [CrossRef]
- Chew, E.Y.; Clemons, T.E.; Agrón, E.; Domalpally, A.; Keenan, T.D.L.; Vitale, S.; Weber, C.; Smith, D.C.; Christen, W.; SanGiovanni, J.P.; et al. Long-Term Outcomes of Adding Lutein/Zeaxanthin and ω-3 Fatty Acids to the AREDS Supplements on Age-Related Macular Degeneration Progression. JAMA Ophthalmol. 2022, 140, 692. [Google Scholar] [CrossRef] [PubMed]
- Omenn, G.S.; Goodman, G.E.; Thornquist, M.D.; Balmes, J.; Cullen, M.R.; Glass, A.; Keogh, J.P.; Meyskens, F.L.; Valanis, B.; Williams, J.H.; et al. Effects of a Combination of Beta Carotene and Vitamin A on Lung Cancer and Cardiovascular Disease. New Engl. J. Med. 1996, 334, 1150–1155. [Google Scholar] [CrossRef] [PubMed]
- Goodman, G.E.; Thornquist, M.D.; Balmes, J.; Cullen, M.R.; Meyskens, F.L.; Omenn, G.S.; Valanis, B.; Williams, J.H. The Beta-Carotene and Retinol Efficacy Trial: Incidence of Lung Cancer and Cardiovascular Disease Mortality During 6-Year Follow-up After Stopping -Carotene and Retinol Supplements. JNCI J. Natl. Cancer Inst. 2004, 96, 1743–1750. [Google Scholar] [CrossRef] [PubMed]
- Albanes, D.; Heinonen, O.P.; Taylor, P.R.; Virtamo, J.; Edwards, B.K.; Rautalahti, M.; Hartman, A.M.; Palmgren, J.; Freedman, L.S.; Haapakoski, J.; et al. Alpha--Tocopherol and Beta-Carotene Supplements and Lung Cancer Incidence in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study: Effects of Base-Line Characteristics and Study Compliance. JNCI J. Natl. Cancer Inst. 1996, 88, 1560–1570. [Google Scholar] [CrossRef]
- Miller, E.R.; Pastor-Barriuso, R.; Dalal, D.; Riemersma, R.A.; Appel, L.J.; Guallar, E. Meta-Analysis: High-Dosage Vitamin E Supplementation May Increase All-Cause Mortality. Ann. Intern Med. 2005, 142, 37. [Google Scholar] [CrossRef]
- Lippman, S.M.; Klein, E.A.; Goodman, P.J.; Lucia, M.S.; Thompson, I.M.; Ford, L.G.; Parnes, H.L.; Minasian, L.M.; Gaziano, J.M.; Hartline, J.A.; et al. Effect of Selenium and Vitamin E on Risk of Prostate Cancer and Other Cancers. JAMA 2009, 301, 39. [Google Scholar] [CrossRef]
- Rautiainen, S.; Lindblad, B.E.; Morgenstern, R.; Wolk, A. Vitamin C Supplements and the Risk of Age-Related Cataract: A Population-Based Prospective Cohort Study in Women. Am. J. Clin. Nutr. 2010, 91, 487–493. [Google Scholar] [CrossRef]
- Johnson, A.R.; Munoz, A.; Gottlieb, J.L.; Jarrard, D.F. High Dose Zinc Increases Hospital Admissions Due to Genitourinary Complications. J. Urol. 2007, 177, 639–643. [Google Scholar] [CrossRef]
- Gourgouli, D.-M.; Gourgouli, I.; Spai, S.; Gourgouli, K.; Tzorovili, E.; Skouroliakou, M.; Papakonstantinou, D.; Moschos, M.M. Effect of the Mediterranean Diet on Progression of Dry Form of Age-Related Macular Degeneration. In Vivo 2023, 37, 1809–1815. [Google Scholar] [CrossRef]
- Nunes, S.; Alves, D.; Barreto, P.; Raimundo, M.; da Luz Cachulo, M.; Farinha, C.; Laíns, I.; Rodrigues, J.; Almeida, C.; Ribeiro, L.; et al. Adherence to a Mediterranean Diet and Its Association with Age-Related Macular Degeneration. The Coimbra Eye Study-Report 4. Nutrition 2018, 51–52, 6–12. [Google Scholar] [CrossRef]
- Raimundo, M.; Mira, F.; Cachulo, M.d.L.; Barreto, P.; Ribeiro, L.; Farinha, C.; Laíns, I.; Nunes, S.; Alves, D.; Figueira, J.; et al. Adherence to a Mediterranean Diet, Lifestyle and Age-Related Macular Degeneration: The Coimbra Eye Study—Report 3. Acta Ophthalmol. 2018, 96, e926–e932. [Google Scholar] [CrossRef] [PubMed]
- Merle, B.M.J.; Colijn, J.M.; Cougnard-Grégoire, A.; de Koning-Backus, A.P.M.; Delyfer, M.-N.; Kiefte-de Jong, J.C.; Meester-Smoor, M.; Féart, C.; Verzijden, T.; Samieri, C.; et al. Mediterranean Diet and Incidence of Advanced Age-Related Macular Degeneration. Ophthalmology 2019, 126, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Kim, H.; Vijayakumar, A.; Kwon, O.; Chang, N. Associations between Fruit and Vegetable, and Antioxidant Nutrient Intake and Age-Related Macular Degeneration by Smoking Status in Elderly Korean Men. Nutr. J. 2017, 16, 77. [Google Scholar] [CrossRef] [PubMed]
- Fruit-Rich Mediterranean Diet with Antioxidants May Cut AMD Risk by More than a Third—American Academy of Ophthalmology. Available online: https://www.aao.org/newsroom/news-releases/detail/fruit-rich-mediterranean-diet-with-antioxidants (accessed on 22 November 2024).
- Munch, I.C.; Linneberg, A.; Larsen, M. Precursors of Age-Related Macular Degeneration: Associations with Physical Activity, Obesity, and Serum Lipids in the Inter99 Eye Study. Investig. Opthalmol. Vis. Sci. 2013, 54, 3932. [Google Scholar] [CrossRef]
- Subhi, Y.; Singh, A.; Falk, M.K.; Sørensen, T.L. In Patients with Neovascular Age-Related Macular Degeneration, Physical Activity May Influence C-Reactive Protein Levels. Clin. Ophthalmol. 2013, 8, 15–21. [Google Scholar] [CrossRef]
- Meyers, K.J.; Liu, Z.; Millen, A.E.; Iyengar, S.K.; Blodi, B.A.; Johnson, E.; Snodderly, D.M.; Klein, M.L.; Gehrs, K.M.; Tinker, L.; et al. Joint Associations of Diet, Lifestyle, and Genes with Age-Related Macular Degeneration. Ophthalmology 2015, 122, 2286–2294. [Google Scholar] [CrossRef]
- Rutz, J.K.; Borges, C.D.; Zambiazi, R.C.; da Rosa, C.G.; da Silva, M.M. Elaboration of Microparticles of Carotenoids from Natural and Synthetic Sources for Applications in Food. Food Chem. 2016, 202, 324–333. [Google Scholar] [CrossRef]
- Fresta, C.G.; Caruso, G.; Fidilio, A.; Platania, C.B.M.; Musso, N.; Caraci, F.; Drago, F.; Bucolo, C. Dihydrotanshinone, a Natural Diterpenoid, Preserves Blood-Retinal Barrier Integrity via P2X7 Receptor. Int. J. Mol. Sci. 2020, 21, 9305. [Google Scholar] [CrossRef]
- Zeppieri, M.; Gardini, L.; Culiersi, C.; Fontana, L.; Musa, M.; D’Esposito, F.; Surico, P.L.; Gagliano, C.; Sorrentino, F.S. Novel Approaches for the Early Detection of Glaucoma Using Artificial Intelligence. Life 2024, 14, 1386. [Google Scholar] [CrossRef]
- Sorrentino, F.S.; Gardini, L.; Fontana, L.; Musa, M.; Gabai, A.; Maniaci, A.; Lavalle, S.; D’Esposito, F.; Russo, A.; Longo, A.; et al. Novel Approaches for Early Detection of Retinal Diseases Using Artificial Intelligence. J. Pers. Med. 2024, 14, 690. [Google Scholar] [CrossRef]
- Pratap Singh Parmar, U.; Luigi Surico, P.; Bir Singh, R.; Romano, F.; Salati, C.; Spadea, L.; Musa, M.; Gagliano, C.; Mori, T.; Zeppieri, M. Artificial Intelligence (AI) for Early Diagnosis of Retinal Diseases. Medicina 2024, 60, 527. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parmar, U.P.S.; Surico, P.L.; Mori, T.; Singh, R.B.; Cutrupi, F.; Premkishore, P.; Gallo Afflitto, G.; Di Zazzo, A.; Coassin, M.; Romano, F. Antioxidants in Age-Related Macular Degeneration: Lights and Shadows. Antioxidants 2025, 14, 152. https://doi.org/10.3390/antiox14020152
Parmar UPS, Surico PL, Mori T, Singh RB, Cutrupi F, Premkishore P, Gallo Afflitto G, Di Zazzo A, Coassin M, Romano F. Antioxidants in Age-Related Macular Degeneration: Lights and Shadows. Antioxidants. 2025; 14(2):152. https://doi.org/10.3390/antiox14020152
Chicago/Turabian StyleParmar, Uday Pratap Singh, Pier Luigi Surico, Tommaso Mori, Rohan Bir Singh, Francesco Cutrupi, Pramila Premkishore, Gabriele Gallo Afflitto, Antonio Di Zazzo, Marco Coassin, and Francesco Romano. 2025. "Antioxidants in Age-Related Macular Degeneration: Lights and Shadows" Antioxidants 14, no. 2: 152. https://doi.org/10.3390/antiox14020152
APA StyleParmar, U. P. S., Surico, P. L., Mori, T., Singh, R. B., Cutrupi, F., Premkishore, P., Gallo Afflitto, G., Di Zazzo, A., Coassin, M., & Romano, F. (2025). Antioxidants in Age-Related Macular Degeneration: Lights and Shadows. Antioxidants, 14(2), 152. https://doi.org/10.3390/antiox14020152