Enhanced Extraction and Separation with HPLC-DAD of Phenolic and Flavonoid Antioxidants from Portulaca oleracea L. Leaves Using Tailored Terpenoid-Based NADES: Comparative Assessment of Antiradical and Antimicrobial Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of Natural Deep Eutectic Solvents (NADES)
2.3. Dried Powder Samples of Portulaca oleracea Leaves
2.4. Preparation of NADES and Ethanolic Extracts
2.5. Spectrophotometric Measurements
2.6. Bioactive Compounds Assay
2.6.1. Determination of Total Phenolic Content (TPC)
2.6.2. Determination of Total Flavonoids Content (TFC)
2.6.3. Determination of Condensed Tannins (CT)
2.7. Chromatographic Conditions for HPLC-DAD Separation Method
2.8. In Vitro Biological Activities
2.8.1. Antioxidant Activity Assessment with DPPH
2.8.2. Antimicrobial Activity Assessment
3. Results and Discussion
3.1. Determination of Extracted Bioactive Compounds
3.2. HPLC-DAD Separation Analysis
Method Validation
3.3. Biological Activities of NADES Extracts
3.3.1. Antioxidant Activity
3.3.2. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, Q.; Niu, Q.; Song, H.; Wei, S.; Wang, S.; Yao, L.; Li, Y.P. Polysaccharides from Portulaca oleracea L. regulated insulin secretion in INS-1 cells through voltage-gated Na channel. Biomed. Pharmacother. 2019, 109, 876–885. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Park, J.E.; Han, J.S. Portulaca oleracea L. extract reduces hyperglycemia via PI3k/Akt and AMPK pathways in the skeletal muscles of C57BL/Ksj-db/db mice. J. Ethnopharmacol. 2020, 260, 112973. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Zang, X.; Ma, J.; Xu, G. Anti-Diabetic Effect of Portulaca oleracea L. Polysaccharideandits Mechanism in Diabetic Rats. Int. J. Mol. Sci. 2016, 17, 1201. [Google Scholar] [CrossRef]
- Alirezaei, A.; Karimi Toudeshki, K.; Nouri, S.B.; Fazeli, S.A.; Hatami, F.; Miladipour, A.; Montazeri-Ghominezhad, S.P. The effects of Portulaca oleracea extract on 24-hour urine indices in patients with renal stone: A double-blind randomized placebo-controlled clinical trial. J. Ren. Inj. Prev. 2023, 12, e32240. [Google Scholar] [CrossRef]
- Jalali, J.; Ghasemzadeh Rahbardar, M. Ameliorative effects of Portulaca oleracea L. (purslane) and its active constituents on nervous system disorders: A review. Iran. J. Basic. Med. Sci. 2023, 26, 2–12. [Google Scholar]
- Dehghan, F.; Soori, R.; Gholami, K.; Abolmaesoomi, M.; Yusof, A.; Muniandy, S.; Heidarzadeh, S.; Farzanegi, P.; Azarbayjani, M.A. Purslane (Portulaca oleracea) Seed Consumption And Aerobic Training Improves Biomarkers Associated with Atherosclerosis in Women with Type 2 Diabetes (T2D). Sci. Rep. 2016, 6, 37819. [Google Scholar] [CrossRef]
- El-Newary, S.A. The hypolipidemic effect of Portulaca oleracea L. stem on hyperlipidemic Wister Albino rats. Ann. Agric. Sci. 2016, 61, 111–124. [Google Scholar] [CrossRef]
- Zidan, Y.; Bouderbala, S.; Djellouli, F.; Lacaille-Dubois, M.A.; Bouchenak, M. Portulaca oleracea reduces triglyceridemia, cholesterolemia, and improves lecithin: Cholesterol acyltransferase activity in rats fed enriched-cholesterol diet. Phytomedicine 2014, 21, 1504–1508. [Google Scholar] [CrossRef]
- Djellouli, F.; Krouf, D.; Lacaille-Dubois, M.A.; Bouchenak, M. Portulaca oleracea Reduces Lipemia, Glycemia, and Oxidative Stress in Streptozotocin-induced Diabetic Rats Fed Cholesterol-enriched Diet. J. Pharm. Res. Int. 2018, 23, 1–12. [Google Scholar] [CrossRef]
- Aoudeh, E.; Şat, İ.G.; Binici, H.İ. Chemical Properties and Antioxidant Activity of Different Extracts from Purslane (Portulaca Oleracea L.). Tekirdağ Ziraat Fakültesi Derg. 2024, 21, 81–93. [Google Scholar] [CrossRef]
- Silva, R.; Carvalho, I.S. In vitro antioxidant activity, phenolic compounds and protective effect against DNA damage provided by leaves, stems and flowers of Portulaca oleracea (Purslane). Nat. Prod. Commun. 2014, 9, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, W.; Ying, X.; Stien, D. New flavonoids from Portulaca oleracea L. and their activities. Fitoterapia 2018, 127, 257–262. [Google Scholar] [CrossRef]
- Duan, Y.; Ying, Z.; Zhang, M.; Ying, X.; Yang, G. Two new homoisoflavones from Portulaca oleracea L. and their activities. Nat. Prod. Res. 2022, 36, 1765–1773. [Google Scholar] [CrossRef]
- Nayaka, H.B.; Londonkar, R.L.; Umesh, M.K.; Tukappa, A. Antibacterial Attributes of Apigenin, Isolated from Portulaca Oleracea L. Int. J. Bacteriol. 2014, 2014, 175851. [Google Scholar] [CrossRef]
- Liu, X.-F.; Zheng, C.-G.; Shi, H.-G.; Tang, G.-S.; Wang, W.-Y.; Zhou, J.; Dong, L.-W. Ethanol extract from Portulaca oleracea L. attenuated acetaminophen-induced mice liver injury. Am. J. Transl. Res. 2015, 7, 309–318. [Google Scholar]
- Habibian, M.; Sadeghi, G.; Karimi, A. Phytochemicals and Antioxidant Properties of Solvent Extracts from Purslane (Portulaca oleracea L.): A Preliminary Study. Food Sci. Eng. 2020, 1, 1–12. [Google Scholar] [CrossRef]
- Gatea, F.; Dumitra Teodor, E.; Maria Seciu, A.; Nagodă, E.; Lucian Radu, G. Chemical constituents and bioactive potential of Portulaca pilosa L. vs. Portulaca oleracea L. Med. Chem. Res. 2017, 26, 1516–1527. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Vasilakoglou, I.B.; Petrotos, K.; Barros, L.; Ferreira, I.C.F.R. Nutritional Value, Chemical Composition and Cytotoxic Properties of Common Purslane (Portulaca oleracea L.) in Relation to Harvesting Stage and Plant Part. Antioxidants 2019, 8, 293. [Google Scholar] [CrossRef]
- Cui, Q.; Peng, X.; Yao, X.-H.; Wei, Z.-F.; Luo, M.; Wang, W.; Zhao, C.-J.; Fu, Y.-J.; Zu, Y.-G. Deep eutectic solvent-based microwave-assisted extraction of genistin, genistein and apigenin from pigeon pea roots. Sep. Purif. Technol. 2015, 150, 63–72. [Google Scholar] [CrossRef]
- Bakirtzi, C.; Triantafyllidou, K.; Makris, D.P. Novel lactic acid-based natural deep eutectic solvents: Efficiency in the ultrasound-assisted extraction of antioxidant polyphenols from common native Greek medicinal plants. J. Appl. Res. Med. Aromat. Plants 2016, 3, 120–127. [Google Scholar] [CrossRef]
- Dai, Y.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Natural Deep Eutectic Solvents as a New Extraction Media for Phenolic Metabolites in Carthamus tinctorius L. Anal. Chem. 2013, 85, 6272–6278. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wang, Y.; Xu, K.; Huang, Y.; Wen, Q.; Ding, X. Development of green betaine-based deep eutectic solvent aqueous two-phase system for the extraction of protein. Talanta 2016, 152, 23–32. [Google Scholar] [CrossRef]
- Wang, M.; Wang, J.; Zhang, Y.; Xia, Q.; Bi, W.; Yang, X.; Chen, D.D.Y. Fast environment-friendly ball mill-assisted deep eutectic solvent-based extraction of natural products. J. Chromatogr. A 2016, 1443, 262–266. [Google Scholar] [CrossRef]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef]
- Prabhune, A.; Dey, R. Green and sustainable solvents of the future: Deep eutectic solvents. J. Mol. Liq. 2023, 379, 121676. [Google Scholar] [CrossRef]
- Wikene, K.O.; Rukke, H.V.; Bruzell, E.; Tønnesen, H.H. Investigation of the antimicrobial effect of natural deep eutectic solvents (NADES) as solvents in antimicrobial photodynamic therapy. J. Photochem. Photobiol. B 2017, 171, 27–33. [Google Scholar] [CrossRef]
- Silva, J.M.; Silva, E.; Reis, R.L.; Duarte, A.R.C. A closer look in the antimicrobial properties of deep eutectic solvents based on fatty acids. Sustain. Chem. Pharm. 2019, 14, 100192. [Google Scholar] [CrossRef]
- Pereira, C.V.; Silva, J.M.; Rodrigues, L.; Reis, R.L.; Paiva, A.; Duarte, A.R.C.; Matias, A. Unveil the Anticancer Potential of Limomene Based Therapeutic Deep Eutectic Solvents. Sci. Rep. 2019, 9, 14926. [Google Scholar] [CrossRef]
- Silva, J.M.; Pereira, C.V.; Mano, F.; Silva, E.; Castro, V.I.; Sá-Nogueira, I.; Reis, R.L.; Paiva, A.; Matias, A.A.; ADuarte, R.C. Therapeutic Role of Deep Eutectic Solvents Based on Menthol and Saturated Fatty Acids on Wound Healing. ACS Appl. Bio Mater. 2019, 2, 4346–4355. [Google Scholar] [CrossRef]
- Silva, E.; Oliveira, F.; Silva, J.M.; Reis, R.L.; Duarte, A.R.C. Untangling the bioactive properties of therapeutic deep eutectic solvents based on natural terpenes. Curr. Res. Chem. Biol. 2021, 1, 100003. [Google Scholar] [CrossRef]
- Silva, E.; Oliveira, F.; Silva, J.M.; Matias, A.; Reis, R.L.; Duarte, A.R.C. Optimal Design of THEDES Based on Perillyl Alcohol and Ibuprofen. Pharmaceutics 2020, 12, 1121. [Google Scholar] [CrossRef]
- Liu, K.; Tan, J.-N.; Wei, Y.; Li, C.; Dou, Y.; Zhang, Z. Application of choline chloride-based deep eutectic solvents for the extraction of dopamine from purslane (Portulaca oleracea L.). Results Chem. 2022, 4, 100299. [Google Scholar] [CrossRef]
- Fan, C.; Sebbah, T.; Liu, Y.; Cao, X. Terpenoid-capric acid based natural deep eutectic solvent: Insight into the nature of low viscosity. Clean. Eng. Technol. 2021, 3, 100116. [Google Scholar] [CrossRef]
- Fan, C.; Liu, Y.; Sebbah, T.; Cao, X. A Theoretical Study on Terpene-Based Natural Deep Eutectic Solvent: Relationship between Viscosity and Hydrogen-Bonding Interactions. Glob. Chall. 2021, 5, 2000103. [Google Scholar] [CrossRef] [PubMed]
- Kupina, S.; Fields, C.; Roman, M.C.; Brunelle, S.L. Determination of Total Phenolic Content Using the Folin-C Assay: Single-Laboratory Validation, First Action 2017.13. J. AOAC Int. 2018, 101, 1466–1472. [Google Scholar] [CrossRef]
- Bhandari, L.; Rajbhandari, M. Isolation of quercetin from flower petals, estimation of total phenolic, total flavonoid and antioxidant activity of the different parts of rhododendron arboreum smith. Sci. World 2015, 12, 34–40. [Google Scholar] [CrossRef]
- Ali-Rachedi, F.; Meraghni, S.; Touaibia, N.; Mesbah, S. Analyse quantitative des composés phénoliques d’une endémique algérienne Scabiosa Atropurpurea sub. Maritima L. Bull. Société R. Sci. Liège 2018, 87, 13–21. [Google Scholar] [CrossRef]
- Nasri, M.; Bedjou, F.; Porras, D.; Martínez-Flórez, S. Antioxidant, anti-inflammatory, and analgesic activities of Citrus reticulata Blanco leaves extracts: An in vivo and in vitro study. Phytothérapie 2017. [Google Scholar] [CrossRef]
- Wu, L.; Chen, Z.; Li, S.; Wang, L.; Zhang, J. Eco-friendly and high-efficient extraction of natural antioxidants from Polygonum aviculare leaves using tailor-made deep eutectic solvents as extractants. Sep. Purif. Technol. 2021, 262, 118339. [Google Scholar] [CrossRef]
- EUCAST. Disk Diffusion Method for Antimicrobial Susceptibility Testing, Version 1.0; EUCAST: Växjö, Sweden, 2009. [Google Scholar]
- Haddouchi, F.; Chaouche, T.M.; Halla, N. Screening phytochimique, activités antioxydantes et pouvoir hémolytique de quatre plantes sahariennes d’Algérie. Phytothérapie 2016. [Google Scholar] [CrossRef]
- Kyriakoudi, A.; Tsiouras, A.; Mourtzinos, I. Extraction of Lycopene from Tomato Using Hydrophobic Natural Deep Eutectic Solvents Based on Terpenes and Fatty Acids. Foods 2022, 11, 2645. [Google Scholar] [CrossRef]
- Lalikoglu, M. Separation of butyric acid from aqueous media using menthol-based hydrophobic deep eutectic solvent and modeling by response surface methodology. Biomass Convers. Bioref. 2022, 12, 1331–1341. [Google Scholar] [CrossRef]
- Martins, M.A.R.; Crespo, E.A.; Pontes, P.V.A.; Silva, L.P.; Bülow, M.; Maximo, G.J.; Batista, E.A.C.; Held, C.; Pinho, S.P.; Coutinho, J.A.P. Tunable Hydrophobic Eutectic Solvents Based on Terpenes and Monocarboxylic Acids. ACS Sustain. Chem. Eng. 2018, 6, 8836–8846. [Google Scholar] [CrossRef]
- Wu, L.; Li, L.; Chen, S.; Wang, L.; Lin, X. Deep eutectic solvent-based ultrasonic-assisted extraction of phenolic compounds from Moringa oleifera L. leaves: Optimization, comparison and antioxidant activity. Sep. Purif. Technol. 2020, 247, 117014. [Google Scholar] [CrossRef]
- Yu, L.; Cao, L.; Chang, Y.-H.; Duan, C.-J.; Liu, C.; Zhao, X.-L.; Yue, G.-L.; Wang, X.-Q.; Fu, Y.-J. Enhanced extraction performance of iridoids, phenolic acids from Eucommia ulmoides leaves by tailor-made ternary deep eutectic solvent. Microchem. J. 2021, 161, 105788. [Google Scholar] [CrossRef]
- Xia, G.-H.; Li, X.-H.; Jiang, Y. Deep eutectic solvents as green media for flavonoids extraction from the rhizomes of Polygonatum odoratum. Alex. Eng. J. 2021, 60, 1991–2000. [Google Scholar] [CrossRef]
- Li, Y.; Pan, Z.; Wang, B.; Yu, W.; Song, S.; Feng, H.; Zhao, W.; Zhang, J. Ultrasound-assisted extraction of bioactive alkaloids from Phellodendri amurensis cortex using deep eutectic solvent aqueous solutions. New J. Chem. 2020, 44, 9172–9178. [Google Scholar] [CrossRef]
- Zhao, G.; Li, T.; Qu, X.; Zhang, N.; Lu, M.; Wang, J. Optimization of ultrasound-assisted extraction of indigo and indirubin from Isatis indigotica Fort. and their antioxidant capacities. Food Sci. Biotechnol. 2017, 26, 1313–1323. [Google Scholar] [CrossRef]
- Zhang, H.; Hao, F.; Yao, Z.; Zhu, J.; Jing, X.; Wang, X. Efficient extraction of flavonoids from Polygonatum sibiricum using a deep eutectic solvent as a green extraction solvent. Microchem. J. 2022, 175, 107168. [Google Scholar] [CrossRef]
- Choi, Y.H.; Verpoorte, R. Green solvents for the extraction of bioactive compounds from natural products using ionic liquids and deep eutectic solvents. Curr. Opin. Food Sci. 2019, 26, 87–93. [Google Scholar] [CrossRef]
- Samira, K.; Mohamed Seif Allah, K.; Hadjer, D.; Djellouli, A. Phenolic compounds and their antioxidant activities in Portulaca oleracea L. related to solvent extraction. Int. J. Biosci. (IJB) 2017, 11, 147–155. [Google Scholar]
- Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R.L.; Duarte, A.R.C. Natural Deep Eutectic Solvents—Solvents for the 21st Century. ACS Sustain. Chem. Eng. 2014, 2, 1063–1071. [Google Scholar] [CrossRef]
- Oliveira, G.; Marques, C.; de Oliveira, A.; de Almeida dos Santos, A.; do Amaral, W.; Ineu, R.P.; Leimann, F.V.; Peron, A.P.; Igarashi-Mafra, L.; Mafra, M.R. Extraction of bioactive compounds from Curcuma longa L. using deep eutectic solvents: In vitro and in vivo biological activities. Innov. Food Sci. Emerg. Technol. 2021, 70, 102697. [Google Scholar] [CrossRef]
- He, X.; Yang, J.; Huang, Y.; Zhang, Y.; Wan, H.; Li, C. Green and Efficient Ultrasonic-Assisted Extraction of Bioactive Components from Salvia miltiorrhiza by Natural Deep Eutectic Solvents. Molecules 2019, 25, 140. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; van Spronsen, J.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef]
- Zeng, G.; Xu, P.; Huang, D.; Liu, L.; Zhao, M.; Lai, C.; Liè, B. Enhanced antioxidant and antidiabetic properties of natural deep eutectic solvents-prepared Esculetin and its inclusion complex with hydroxypropyl-β-cyclodextrin. J. Pharm. Sci. 2018, 107, 1790–1800. [Google Scholar]
- Zhou, L.; Liao, T.; Liu, W.; Zou, L.; Liu, C.; Terefe, N.S. Inhibitory effects of organic acids on polyphenol oxidase: From model systems to food systems. Crit. Rev. Food Sci. Nutr. 2020, 60, 3594–3621. [Google Scholar] [CrossRef]
- Zhao, B.-Y.; Xu, P.; Yang, F.-X.; Wu, H.; Zong, M.-H.; Lou, W.-Y. Biocompatible Deep Eutectic Solvents Based on Choline Chloride: Characterization and Application to the Extraction of Rutin from Sophora japonica. ACS Sustain. Chem. Eng. 2015, 3, 2746–2755. [Google Scholar] [CrossRef]
- Radošević, K.; Čanak, I.; Panić, M.; Markov, K.; Bubalo, M.C.; Frece, J.; Srček, V.G.; Redovniković, I.R. Antimicrobial, cytotoxic and antioxidative evaluation of natural deep eutectic solvents. Environ. Sci. Pollut. Res. 2018, 25, 14188–14196. [Google Scholar] [CrossRef]
- Aguilar, J.A.; Zavala, A.N.; Díaz-Pérez, C.; Cervantes, C.; Díaz-Pérez, A.L.; Campos-García, J. The atu and liu Clusters Are Involved in the Catabolic Pathways for Acyclic Monoterpenes and Leucine in Pseudomonas aeruginosa. Appl. Environ. Microbiol. 2006, 72, 2070–2079. [Google Scholar] [CrossRef]
- García-Salinas, S.; Elizondo-Castillo, H.; Arruebo, M.; Mendoza, G.; Irusta, S. Evaluation of the Antimicrobial Activity and Cytotoxicity of Different Components of Natural Origin Present in Essential Oils. Molecules 2018, 23, 1399. [Google Scholar] [CrossRef]
- Cox, S.D.; Markham, J.L. Susceptibility and intrinsic tolerance of Pseudomonas aeruginosa to selected plant volatile compounds. J. Appl. Microbiol. 2007, 103, 930–936. [Google Scholar] [CrossRef]
- Vaara, M.; Nurminen, M. Outer Membrane Permeability Barrier in Escherichia coli Mutants That Are Defective in the Late Acyltransferases of Lipid A Biosynthesis. Antimicrob. Agents Chemother. 1999, 43, 1459–1462. [Google Scholar] [CrossRef] [PubMed]
- Wiener, M.C.; Horanyi, P.S. How hydrophobic molecules traverse the outer membranes of Gram-negative bacteria. Proc. Natl. Acad. Sci. USA 2011, 108, 10929–10930. [Google Scholar] [CrossRef] [PubMed]
- Al-Akayleh, F.; Khalid, R.M.; Hawash, D.; Al-Kaissi, E.; Al-Adham, I.S.I.; Al-Muhtaseb, N.; Jaber, N.; Al-Remawi, M.; Collier, P. Antimicrobial potential of natural deep eutectic solvents. Lett. Appl. Microbiol. 2022, 75, 607–615. [Google Scholar] [CrossRef]
- Glee, P.M.; Sundstrom, P.; Hazen, K.C. Expression of surface hydrophobic proteins by Candida albicans in vivo. Infect. Immun. 1995, 63, 1373–1379. [Google Scholar] [CrossRef]
- Hobden, C.; Teevan, C.; Jones, L.; O’Shea, P. Hydrophobic properties of the cell surface of Candida albicans: A role in aggregation. Microbiology 1995, 141, 1875–1881. [Google Scholar] [CrossRef]
- Huang, C.B.; Alimova, Y.; Myers, T.M.; Ebersole, J.L. Short- and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms. Arch. Oral Biol. 2011, 56, 650–654. [Google Scholar] [CrossRef]
- Clitherow, K.H.; Binaljadm, T.M.; Hansen, J.; Spain, S.G.; Hatton, P.V.; Murdoch, C. Medium-Chain Fatty Acids Released from Polymeric Electrospun Patches Inhibit Candida albicans Growth and Reduce the Biofilm Viability. ACS Biomater. Sci. Eng. 2020, 6, 4087–4095. [Google Scholar] [CrossRef]
NADES | NADES 1 | NADES 2 | NADES 3 |
---|---|---|---|
Composition | Menthol/Lactic acid | Menthol/β-Citronellol | β-Citronellol/Capric acid |
Abreviation | M/LA | M/βC | βC/CA |
Molar ratio | 1:1 | 1:1 | 1:1 |
pH | 2.0 | 3.04 | 3.13 |
μ25°C (mPa·s) | 75.30 | 23.30 | 11.9 |
μ40°C (mPa·s) | 32.30 | 17.70 | 10.2 |
ρ25°C (mPa·s) | 0.984 | 0.880 | 0.883 |
Analytes | Calibration Equation Y = mX + b | Determination Coefficient (R2) | LOD (µg L−1) | LOQ (µg L−1) | Repeatability (% RSD), n = 6 | Intermediate Precision (% RSD), n = 6 |
---|---|---|---|---|---|---|
Gallic acid | 367.3X − 0.07 | 0.9963 | 8.9 | 29.6 | 2.9 | 5.2 |
Caffic acid | 97.0X − 0.06 | 0.9951 | 9.5 | 31.6 | 2.7 | 5.1 |
Syringic acid | 20.9X − 0.01 | 0.9956 | 28.1 | 93.6 | 3.3 | 6.8 |
Coumaric acid | 337.1X − 0.41 | 0.9986 | 23.3 | 77.6 | 2.5 | 3.1 |
Ferulic acid | 402.7X − 0.38 | 0.9922 | 46.8 | 155.8 | 4.7 | 7.4 |
Rutin | 29.5X − 0.06 | 0.9870 | 48.1 | 160.2 | 5.8 | 8.3 |
Quercetin | 133.3X − 0.67 | 0.9875 | 39.2 | 130.5 | 5.3 | 7.5 |
Samples | NADES1 | NADES1-Ext | NADES2 | NADES2-Ext | NADES3 | NADES3-Ext | EtOH-Ext |
---|---|---|---|---|---|---|---|
Absorbance (nm) | 0.324 | 0.13233 | 0.579 | 0.34933 | 0.71 | 0.36866 | 1.325 |
TEACDPPH (μM TEq) | 4.33459916 | 5.14333333 | 3.25864979 | 4.22772152 | 2.70590717 | 4.14616034 | 0.11097046 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sebbah, T.; Yahla, I.; Cunha, E.; Riazi, A.; Amorim, C.G.; Rodriguez-Diaz, J.M.; Montenegro, M.C.B.S.M. Enhanced Extraction and Separation with HPLC-DAD of Phenolic and Flavonoid Antioxidants from Portulaca oleracea L. Leaves Using Tailored Terpenoid-Based NADES: Comparative Assessment of Antiradical and Antimicrobial Activities. Antioxidants 2025, 14, 132. https://doi.org/10.3390/antiox14020132
Sebbah T, Yahla I, Cunha E, Riazi A, Amorim CG, Rodriguez-Diaz JM, Montenegro MCBSM. Enhanced Extraction and Separation with HPLC-DAD of Phenolic and Flavonoid Antioxidants from Portulaca oleracea L. Leaves Using Tailored Terpenoid-Based NADES: Comparative Assessment of Antiradical and Antimicrobial Activities. Antioxidants. 2025; 14(2):132. https://doi.org/10.3390/antiox14020132
Chicago/Turabian StyleSebbah, Tarik, Imene Yahla, Edite Cunha, Ali Riazi, Célia G. Amorim, Joan Manuel Rodriguez-Diaz, and Maria C. B. S. M. Montenegro. 2025. "Enhanced Extraction and Separation with HPLC-DAD of Phenolic and Flavonoid Antioxidants from Portulaca oleracea L. Leaves Using Tailored Terpenoid-Based NADES: Comparative Assessment of Antiradical and Antimicrobial Activities" Antioxidants 14, no. 2: 132. https://doi.org/10.3390/antiox14020132
APA StyleSebbah, T., Yahla, I., Cunha, E., Riazi, A., Amorim, C. G., Rodriguez-Diaz, J. M., & Montenegro, M. C. B. S. M. (2025). Enhanced Extraction and Separation with HPLC-DAD of Phenolic and Flavonoid Antioxidants from Portulaca oleracea L. Leaves Using Tailored Terpenoid-Based NADES: Comparative Assessment of Antiradical and Antimicrobial Activities. Antioxidants, 14(2), 132. https://doi.org/10.3390/antiox14020132