Previous Issue
Volume 14, January
 
 

Antioxidants, Volume 14, Issue 2 (February 2025) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
27 pages, 1525 KiB  
Review
Inflammasomes in Alzheimer’s Progression: Nrf2 as a Preventive Target
by Rubén López-Hernández, María Magdalena de la Torre-Álamo, Belén García-Bueno, Alberto Baroja-Mazo, Francisco Jose Fenoy and Santiago Cuevas
Antioxidants 2025, 14(2), 121; https://doi.org/10.3390/antiox14020121 (registering DOI) - 21 Jan 2025
Viewed by 135
Abstract
Current knowledge about Alzheimer’s disease highlights the accumulation of β-amyloid plaques (Aβ1–42) and neurofibrillary tangles composed of hyperphosphorylated Tau, which lead to the loss of neuronal connections. Microglial activation and the release of inflammatory mediators play a significant role in the progression of [...] Read more.
Current knowledge about Alzheimer’s disease highlights the accumulation of β-amyloid plaques (Aβ1–42) and neurofibrillary tangles composed of hyperphosphorylated Tau, which lead to the loss of neuronal connections. Microglial activation and the release of inflammatory mediators play a significant role in the progression of Alzheimer’s pathology. Recent advances have identified the involvement of inflammasomes, particularly NOD-like receptor NLR family pyrin domain containing 3 (NLRP3), whose activation promotes the release of proinflammatory cytokines and triggers pyroptosis, exacerbating neuroinflammation. Aggregates of Aβ1–42 and hyperphosphorylated Tau have been shown to activate these inflammasomes, while the apoptosis-associated speck-like protein (ASC) components form aggregates that further accelerate Aβ aggregation. Defects in the autophagic clearance of inflammasomes have also been implicated in Alzheimer’s disease, contributing to sustained inflammation. This review explores strategies to counteract inflammation in Alzheimer’s, emphasizing the degradation of ASC specks and the inhibition of NLRP3 inflammasome activation. Notably, the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor emerges as a promising therapeutic target due to its dual role in mitigating oxidative stress and directly inhibiting NLRP3 inflammasome formation. By reducing inflammasome-driven inflammation, Nrf2 offers significant potential for addressing the neuroinflammatory aspects of Alzheimer’s disease. Full article
(This article belongs to the Special Issue Role of NRF2 Pathway in Neurodegenerative Diseases)
Show Figures

Figure 1

18 pages, 5051 KiB  
Article
Single Low-Dose Ionizing Radiation Transiently Enhances Rat RIN-m5F Cell Function via the ROS/p38 MAPK Pathway Without Inducing Cell Damage
by Jitai Zhang, Kaicen Dai, Ruike An, Chengying Wang, Xuanting Zhou, Zhujun Tian and Zhonglu Liao
Antioxidants 2025, 14(2), 120; https://doi.org/10.3390/antiox14020120 (registering DOI) - 21 Jan 2025
Viewed by 172
Abstract
High doses of ionizing radiation (HDIR) are known to induce cellular damage, whereas low-dose ionizing radiation (LDIR) may trigger protective biological responses. Recent studies have explored the potential benefits of LDIR in treating diabetes and its complications. However, the direct effects of LDIR [...] Read more.
High doses of ionizing radiation (HDIR) are known to induce cellular damage, whereas low-dose ionizing radiation (LDIR) may trigger protective biological responses. Recent studies have explored the potential benefits of LDIR in treating diabetes and its complications. However, the direct effects of LDIR on pancreatic β-cells and the underlying mechanisms remain to be elucidated. This study aimed to evaluate the effects of LDIR on pancreatic β-cell functionality and elucidate the underlying molecular mechanisms involved. Rat RIN-m5F cells were exposed to LDIR (25 mGy) or HDIR (2.5 Gy) to examine changes in insulin mRNA expression, secretion, DNA damage, and apoptosis. The roles of reactive oxygen species (ROS) and the p38 mitogen-activated protein kinase (MAPK) pathway were assessed via the use of antioxidants and pathway inhibitors. The findings indicated that LDIR transiently increased both insulin synthesis and secretion without inducing apoptosis or affecting cell proliferation. In contrast, HDIR induced a significant increase in apoptosis and a marked inhibition of proliferation. LDIR was observed to temporarily increase ROS production, activating the p38 MAPK pathway and facilitating insulin synthesis via the upregulation of PDX-1. Notably, LDIR did not induce DNA double-strand breaks or activate the ATM-dependent DNA repair pathways, unlike HDIR, which induced apoptosis through overactivation of the ROS/p38 MAPK pathway. In conclusion, LDIR enhanced pancreatic β-cell functionality via ROS-mediated activation of the p38 MAPK pathway, highlighting its potential therapeutic applications in diabetes management. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop