Research Progress on Hypoglycemic Effects and Molecular Mechanisms of Flavonoids: A Review
Abstract
:1. Introduction
2. Hypoglycemic Flavonoids Reported in In Vivo and In Vitro Studies
2.1. Flavones
2.2. Isoflavones
2.3. Flavonols
2.4. Flavanols
2.5. Flavanones
2.6. Flavanonols
2.7. Biflavonoids
2.8. Chalcones
2.9. Anthocyanins
2.10. Homoisoflavonoids
3. Clinical Trials Regarding the Hypoglycemic Effect of Flavonoids
4. Molecular Mechanisms Underlying the Hypoglycemic Effects of Flavonoids
4.1. Targets
4.1.1. Carbohydrate-Metabolizing Enzymes
- α-amylase
- α-glucosidase
- Gluconeogenic enzymes
- Other enzymes
4.1.2. Diabetic Kinome
4.1.3. Estrogen Receptors
4.1.4. Glucose Transporter
4.1.5. The Human Islet Amyloid Polypeptide (hIAPP)
4.1.6. Other Targets
4.2. Signal Pathways
4.2.1. IRS/PI3K/AKT
4.2.2. AMPK/GLUT4
4.2.3. ROS/JNK
4.2.4. PERK/eIF2α/ATF4/CHOP
4.2.5. miR-92b-3p/P38 MAPK/EGR1
4.3. Gut Microbiota
5. Synergistic Hypoglycemic Effects of Flavonoids
6. Limitations in the Application of Flavonoids
6.1. Absorption and Bioavailability of Flavonoids
6.2. Toxicity and Safety of Flavonoids
7. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
DM | diabetes mellitus |
T1DM | type 1 diabetes |
T2DM | type 2 diabetes |
IR | insulin resistance |
FBG | fasting blood glucose |
STZ | streptozocin |
HFD | high-fat diet |
PA | palmitic acid |
GSIS | glucose-stimulated insulin secretion |
EGCG | epigallocatechin gallate |
ROS | reactive oxygen species |
FINS | fasting insulin |
C3G | cyanidin-3-O-glucoside |
HbA1c | glycosylated hemoglobin |
AGE | advanced glycation end-product |
G6Pase | glucose-6-phosphatase |
PEPCK | phosphoenolpyruvate carboxykinase |
GCK | glucokinase |
GKRP | glucokinase regulatory protein |
DYRK1A | dual specificity tyrosine phosphorylation-regulated kinase 1 A |
DPP-IV | dipeptidyl peptidase IV |
Drak2 | death-associated protein kinase-related apoptosis-inducing kinase-2 |
mTOR | mammalian target of rapamycin |
PTP1B | protein tyrosine phosphatase 1B |
GIP | glucose-dependent insulinotropic polypeptide |
GLP-1 | glucagon-like peptide-1 |
ER | estrogen receptor |
SGLT | sodium-dependent glucose transporter |
GLUT | facilitative glucose transporter |
hIAPP | human islet amyloid polypeptide |
TNF-α | tumor necrosis factor-α |
IL-6 | interleukin 6 |
FFA | free fatty acids |
SCFAs | short-chain fatty acids |
References
- Care, D. Classification and Diagnosis of Diabetes. Diabetes Care 2015, 38, S8–S16. [Google Scholar]
- Katsarou, A.; Gudbjornsdottir, S.; Rawshani, A.; Dabelea, D.; Bonifacio, E.; Anderson, B.J.; Jacobsen, L.M.; Schatz, D.A.; Lernmark, A. Type 1 diabetes mellitus. Nat. Rev. Dis. Primers 2017, 3, 17016. [Google Scholar] [CrossRef] [PubMed]
- DeFronzo, R.A.; Ferrannini, E.; Groop, L.; Henry, R.R.; Herman, W.H.; Holst, J.J.; Hu, F.B.; Kahn, C.R.; Raz, I.; Shulman, G.I.; et al. Type 2 diabetes mellitus. Nat. Rev. Dis. Primers 2015, 1, 15019. [Google Scholar] [CrossRef]
- Liu, J.L.; Liu, M.; Chai, Z.L.; Li, C.; Wang, Y.A.; Shen, M.W.; Zhuang, G.H.; Zhang, L. Projected rapid growth in diabetes disease burden and economic burden in China: A spatio-temporal study from 2020 to 2030. Lancet Reg. Health West. Pac. 2023, 33, 100700. [Google Scholar] [CrossRef]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. Diabetes Care in the Hospital: Standards of Care in Diabetes-2023. Diabetes Care 2023, 46, S267–S278. [Google Scholar] [CrossRef]
- Kumar, R.; Kerins, D.M.; Walther, T. Cardiovascular safety of anti-diabetic drugs. Eur. Heart J. Cardiovasc. Pharmacother. 2016, 2, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, I.A.; Serafini, M.; Alves, I.A.; Lang, K.L.; Silva, F.; Aragon, D.M. Natural Products as Outstanding Alternatives in Diabetes Mellitus: A Patent Review. Pharmaceutics 2023, 15, 85. [Google Scholar] [CrossRef]
- Blahova, J.; Martiniakova, M.; Babikova, M.; Kovacova, V.; Mondockova, V.; Omelka, R. Pharmaceutical Drugs and Natural Therapeutic Products for the Treatment of Type 2 Diabetes Mellitus. Pharmaceuticals 2021, 14, 806. [Google Scholar] [CrossRef]
- Wu, C.; He, L.; Zhang, Y.; You, C.; Li, X.; Jiang, P.; Wang, F. Separation of flavonoids with significant biological activity from Acacia mearnsii leaves. RSC Adv. 2023, 13, 9119–9127. [Google Scholar]
- Wang, T.-y.; Li, Q.; Bi, K.-s. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharm. Sci. 2018, 13, 12–23. [Google Scholar] [PubMed]
- Priya, P.S.; Pavithra, V.; Vaishnavi, S.; Pachaiappan, R.; Kumar, T.T.A.; Rady, A.; Darwish, N.M.; Arokiyaraj, S.; Namasivayam, S.K.R.; Arockiaraj, J. Understanding the mechanisms and implications of acacetin in mitigating diabetic osteoporosis: Insights from a zebrafish model. Process Biochem. 2023, 134, 63–74. [Google Scholar]
- Wang, Y.; Liu, L.; Ge, M.; Cui, J.; Dong, X.; Shao, Y. Acacetin attenuates the pancreatic and hepatorenal dysfunction in type 2 diabetic rats induced by high-fat diet combined with streptozotocin. J. Nat. Med. 2023, 77, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Zhang, Y.; Peng, Y.; Li, X. The water extract of Radix scutellariae, its total flavonoids and baicalin inhibited CYP7A1 expression, improved bile acid, and glycolipid metabolism in T2DM mice. J. Ethnopharmacol. 2022, 293, 115238. [Google Scholar]
- Froldi, G.; Djeujo, F.M.; Bulf, N.; Caparelli, E.; Ragazzi, E. Comparative Evaluation of the Antiglycation and Anti-α-Glucosidase Activities of Baicalein, Baicalin (Baicalein 7-O-Glucuronide) and the Antidiabetic Drug Metformin. Pharmaceutics 2022, 14, 2141. [Google Scholar] [CrossRef]
- Wu, S.; Ai, W.; Nie, L.; Lu, X. Antidiabetic activity of eupafolin through peroxisome proliferator-activated receptor-gamma and PI3K/Akt signaling in Type 2 diabetic rats. J. Biochem. Mol. Toxicol. 2023, 37, e23463. [Google Scholar]
- Al-Masri, A.A.; Ameen, F.; Davella, R.; Mamidala, E. Antidiabetic effect of flavonoid from Rumex vesicarius on alloxan induced diabetes in Male Albino Wistar rats and its validation through in silico molecular docking and dynamic simulation studies. Biotechnol. Genet. Eng. Rev. 2023, 40, 4479–4494. [Google Scholar]
- Djeujo, F.M.; Stablum, V.; Pangrazzi, E.; Ragazzi, E.; Froldi, G. Luteolin and Vernodalol as Bioactive Compounds of Leaf and Root Vernonia amygdalina Extracts: Effects on α-Glucosidase, Glycation, ROS, Cell Viability, and In Silico ADMET Parameters. Pharmaceutics 2023, 15, 1541. [Google Scholar] [CrossRef]
- Han, M.; Lu, Y.; Tao, Y.; Zhang, X.; Dai, C.; Zhang, B.; Xu, H.; Li, J. Luteolin Protects Pancreatic β Cells against Apoptosis through Regulation of Autophagy and ROS Clearance. Pharmaceuticals 2023, 16, 975. [Google Scholar] [CrossRef]
- Faisal, S.; Tariq, M.H.; Ullah, R.; Zafar, S.; Rizwan, M.; Bibi, N.; Khattak, A.; Amir, N.; Abdullah. Exploring the antibacterial, antidiabetic, and anticancer potential of Mentha arvensis extract through in-silico and in-vitro analysis. BMC Complement. Med. Ther. 2023, 23, 267. [Google Scholar]
- Djeujo, F.M.; Ragazzi, E.; Urettini, M.; Sauro, B.; Cichero, E.; Tonelli, M.; Froldi, G. Magnolol and luteolin inhibition of α-glucosidase activity: Kinetics and type of interaction detected by in vitro and in silico studies. Pharmaceuticals 2022, 15, 205. [Google Scholar] [CrossRef]
- Alozieuwa, U.B.; Lawal, B.; Sani, S.; Onikanni, A.S.; Osuji, O.; Ibrahim, Y.O.; Babalola, S.B.; Mostafa-Hedeab, G.; Alsayegh, A.A.; Albogami, S.; et al. Luteolin-Rich Extract of Thespesia garckeana F. Hoffm. (Snot Apple) Contains Potential. Drug-Like Candidates and Modulates Glycemic and Oxidoinflammatory Aberrations in Experimental Animals. Oxidative Med. Cell. Longev. 2022, 2022, 1215097. [Google Scholar]
- Subash-Babu, P.; Abdulaziz AlSedairy, S.; Abdulaziz Binobead, M.; Alshatwi, A.A. Luteolin-7-O-rutinoside Protects RIN-5F Cells from High-Glucose-Induced Toxicity, Improves Glucose Homeostasis in L6 Myotubes, and Prevents Onset of Type 2 Diabetes. Metabolites 2023, 13, 269. [Google Scholar] [CrossRef]
- Sadeghi, M.; Shakouri Khomartash, M.; Taslimi, P. The Potential of C-Glycosylflavonoids as α-Glucosidase Inhibitors Determined by Virtual Screening, Molecular Docking, Molecular Dynamics, and IC50 Studies. ChemistrySelect 2023, 8, e202300847. [Google Scholar]
- Yuan, S.; Ye, Z.; Li, Y.; Zou, J.; Wu, M.; Wang, K.; Liao, W.; Shen, J. Hypoglycemic Effect of Nobiletin via Regulation of Islet beta-Cell Mitophagy and Gut Microbiota Homeostasis in Streptozocin-Challenged Mice. J. Agric. Food Chem. 2022, 70, 5805–5818. [Google Scholar]
- Zhang, J.; Wu, J.; Shi, X.; Li, D.; Yang, S.; Zhang, R.; Xia, B.; Yang, G. A Propolis-Derived Small Molecule Tectochrysin Ameliorates Type 2 Diabetes in Mice by Activating Insulin Receptor β. Mol. Nutr. Food Res. 2024, 68, e2300283. [Google Scholar]
- Feng, K.; Zhang, H.; Chen, C.; Ho, C.-T.; Kang, M.; Zhu, S.; Xu, J.; Deng, X.; Huang, Q.; Cao, Y. Heptamethoxyflavone Alleviates Metabolic Syndrome in High-Fat Diet-Fed Mice by Regulating the Composition, Function, and Metabolism of Gut Microbiota. J. Agric. Food Chem. 2023, 71, 10050–10064. [Google Scholar]
- Zhou, Q.Y.-J.; Liao, X.; Kuang, H.-M.; Li, J.-Y.; Zhang, S.-H. LC-MS Metabolite Profiling and the Hypoglycemic Activity of Morus alba L. Extracts. Molecules 2022, 27, 5360. [Google Scholar]
- Thi Ngoc Tram, N.; Thanh Duy, L.; Phuoc Long, N.; Duc Hanh, N.; Huynh Van Thi, N.; Tan Khanh, N.; Manh Hung, T.; Thi Hong Van, L. α-Glucosidase Inhibitory Activity and Quantitative Contribution of Phenolic Compounds from Vietnamese Aquilaria crassna Leaves. Nat. Product. Commun. 2022, 17, 1934578X221080326. [Google Scholar]
- Zhao, Y.; Li, T.; Kjaerulff, L.; Venter, H.; Coriani, S.; Moller, B.L.; Semple, S.; Staerk, D. Orthogonal Reversed-Phase C18 and Pentafluorophenyl HPLC Separation for Phytochemical Profiling of Serrulatanes in Eremophila denticulata. J. Nat. Prod. 2023, 86, 2638–2650. [Google Scholar]
- Wang, S.; Fan, Y.; Wang, M.; Tao, Y.; Lian, D.; Cui, J.; Li, L. Comparative analysis of the interaction of oroxylin A with two sources of α glucosidase and α amylase. J. Mol. Struct. 2023, 1292, 136176. [Google Scholar] [CrossRef]
- Sadeghi, M.; Miroliaei, M.; Rahimmalek, M.; Taslimi, P.; Szumny, A.; Sadeghian, N. Comparison of Flavonoid and Flavonoid Glycoside in the Inhibition of the Starch Hydrolyzing Enzymes and AGEs; A Virtual Approaches. J. Oleo Sci. 2023, 72, 787–797. [Google Scholar] [CrossRef] [PubMed]
- Kan, R.; Ren, P.; Wu, A.; Tang, Q.; Kong, B.; Xue, C. Identification and molecular docking study of sugarcane leaf-derived compounds as potent dipeptidyl peptidase IV, α-glucosidase, and α-amylase inhibitors. J. Sci. Food Agric. 2023, 103, 5388–5400. [Google Scholar] [CrossRef]
- Yu, S.; Caruso, F.; Belli, S.; Rossi, M. Scavenging of Superoxide in Aprotic Solvents of Four Isoflavones That Mimic Superoxide Dismutase. Int. J. Mol. Sci. 2023, 24, 3815. [Google Scholar] [CrossRef]
- Pudhupalayam, S.P.; Uddandrao, V.V.S.; Ponnusamy, C.; Singaravel, S.; Periyasamy, T.; Ponnusamy, P.; Sasikumar, V.; Begum, M.S.; Ganapathy, S. Biochanin A Attenuates Hyperglycemia in High-Fat Diet-Streptozotocin-Induced Diabetic Rats by Modulating the Activities of Carbohydrate-Metabolizing Enzymes in Vital Organs. Rev. Bras. Farmacogn. Braz. J. Pharmacogn. 2022, 32, 608–617. [Google Scholar] [CrossRef]
- Laddha, A.P.; Kulkarni, Y.A. Daidzein attenuates urinary bladder dysfunction in streptozotocin-induced diabetes in rats by NOX-4 and RAC-1 inhibition. Naunyn-Schmiedebergs Arch. Pharmacol. 2022, 395, 975–986. [Google Scholar] [CrossRef]
- Qnais, E.; Alqudah, A.; Wedyan, M.; Gammoh, O.; Alkhateeb, H.; Al-Noaimi, M. Formononetin suppresses hyperglycaemia through activation of GLUT4-AMPK pathway. Pharmacia 2023, 70, 527–536. [Google Scholar] [CrossRef]
- Chen, H.; Lou, Y.; Lin, S.; Tan, X.; Zheng, Y.; Yu, H.; Jiang, R.; Wei, Y.; Huang, H.; Qi, X.; et al. Formononetin, a bioactive isoflavonoid constituent from Astragalus membranaceus (Fisch.) Bunge, ameliorates type 1 diabetes mellitus via activation of Keap1/Nrf2 signaling pathway: An integrated study supported by network pharmacology and experimental validation. J. Ethnopharmacol. 2024, 322, 117576. [Google Scholar]
- Yang, M.; Xia, L.; Song, J.; Hu, H.; Zang, N.; Yang, J.; Zou, Y.; Wang, L.; Zheng, X.; He, Q.; et al. Puerarin ameliorates metabolic dysfunction-associated fatty liver disease by inhibiting ferroptosis and inflammation. Lipids Health Dis. 2023, 22, 1–16. [Google Scholar] [CrossRef]
- Deng, K.; Chen, L.; Yang, L.; Hu, Y.; Xu, G.; Zhang, Y.; Wang, Y.; Ni, Q. Preparation of Isoflavones from the Tuber of Apios americana Medik. and Their Protective Effects on RIN-m5F Cells from Oxidative Damage. Food Sci. 2022, 43, 200–207. [Google Scholar]
- Balogun, F.O.; Singh, K.; Rampadarath, A.; Akoonjee, A.; Naidoo, K.; Sabiu, S. Cheminformatics identification of modulators of key carbohydrate-metabolizing enzymes from C. cujete for type-2 diabetes mellitus intervention. J. Diabetes Metab. Disord. 2023, 22, 1299–1317. [Google Scholar]
- Zheng, Y.; Zhang, R.; Huang, F.; Cheng, L.-H.; Xu, L.; Jia, X. α-Glucosidase inhibitors derived from black soybean and their inhibitory mechanisms. Lwt-Food Sci. Technol. 2023, 189, 115502. [Google Scholar] [CrossRef]
- Rahmani, A.H.; Alsahli, M.A.A.; Khan, A.A.; Almatroodi, S.A.A. Quercetin, a Plant Flavonol Attenuates Diabetic Complications, Renal Tissue Damage, Renal Oxidative Stress and Inflammation in Streptozotocin-Induced Diabetic Rats. Metabolites 2023, 13, 130. [Google Scholar] [CrossRef] [PubMed]
- Nasrollahi, Z.; ShahaniPour, K.; Monajemi, R.; Ahadi, A.M. Abelmoschus esculentus (L.) Moench improved blood glucose, lipid, and down-regulated PPAR-alpha, PTP1B genes expression in diabetic rats. J. Food Biochem. 2022, 46, e14097. [Google Scholar]
- Ke, R.Q.; Wang, Y.; Hong, S.H.; Xiao, L.X. Anti-diabetic effect of quercetin in type 2 diabetes mellitus by regulating the microRNA-92B-3P/EGR1 axis. J. Physiol. Pharmacol. 2023, 74, 149–158. [Google Scholar]
- Yamashita, Y.; Jiang, H.; Okada, F.; Kitakaze, T.; Yoshioka, Y.; Ashida, H. Single oral administration of quercetin glycosides prevented acute hyperglycemia by promoting GLUT4 translocation in skeletal muscles through the activation of AMPK in mice. J. Clin. Biochem. Nutr. 2023, 74, 37. [Google Scholar]
- Zhou, J.-F.; Xu, H.-X.; Yin, Z.-P.; Chen, J.-G.; Zhang, Q.-F. The combination effects of quercetin on starch and digestive enzymes reduce postprandial blood glucose in rats. Eur. Food Res. Technol. 2024, 250, 1189–1199. [Google Scholar]
- Gozcu, S.; Ugan, R.A.; Ozbek, H.; Gundogdu, B.; Guvenalp, Z. Evaluation of antidiabetic and antioxidant effects of Polygonum cognatum Meisn. and phytochemical analysis of effective extracts. Biomed. Chromatogr. 2023, 38, e5809. [Google Scholar]
- Alruhaimi, R.S.; Mostafa-Hedeab, G.; Abduh, M.S.; Bin-Ammar, A.; Hassanein, E.H.M.; Kamel, E.M.; Mahmoud, A.M. DataSheet1_A flavonoid-rich fraction of Euphorbia peplus attenuates hyperglycemia, insulin resistance, and oxidative stress in a type 2 diabetes rat model. Front. Pharmacol. 2023, 14, 1204641. [Google Scholar]
- Putra, N.; Garmana, A.N.; Qomaladewi, N.P.; Amrianto; Al Muqarrabun, L.M.R.; Rosandy, A.R.; Chahyadi, A.; Insanu, M.; Elfahmi. Bioactivity-guided isolation of a bioactive compound with aglucosidase inhibitory activity from the leaves extract of Sauropus androgynus. Sustain. Chem. Pharm. 2023, 31, 100907. [Google Scholar]
- Zhang, F.; Yang, M.; Xu, J.; Hu, Y.; Gao, R.; Huang, K.; He, X. Coreopsis tinctoria and Its Flavonoids Ameliorate Hyperglycemia in Obese Mice Induced by High-Fat Diet. Nutrients 2022, 14, 1160. [Google Scholar] [CrossRef]
- Moore, W.T.; Luo, J.; Liu, D. Kaempferol improves glucose uptake in skeletal muscle via an AMPK-dependent mechanism. Food Sci. Human. Wellness 2023, 12, 2087–2094. [Google Scholar] [CrossRef]
- Li, N.; Yin, L.; Shang, J.; Liang, M.; Liu, Z.; Yang, H.; Qiang, G.; Du, G.; Yang, X. Kaempferol attenuates nonalcoholic fatty liver disease in type 2 diabetic mice via the Sirt1/AMPK signaling pathway. Biomed. Pharmacother. 2023, 165, 115113. [Google Scholar] [CrossRef]
- Kiziltas, H. Comprehensive evaluation of Reseda lutea L. (Wild Mignonette) and 7 isolated flavonol glycosides: Determination of antioxidant activity, anti-Alzheimer, antidiabetic and cytotoxic effects with in vitro and in silico methods. Turk. J. Chem. 2022, 46, 1185–1198. [Google Scholar]
- Calzada, F.; Valdes, M.; Martinez-Solis, J.; Velazquez, C.; Barbosa, E. Annona cherimola Miller and Its Flavonoids, an Important Source of Products for the Treatment of Diabetes Mellitus: In Vivo and In Silico Evaluations. Pharmaceuticals 2023, 16, 724. [Google Scholar] [CrossRef]
- Qian, J.; Zhang, J.; Chen, Y.; Dai, C.; Fan, J.; Guo, H. Hypoglycemic activity and mechanisms of myricetin. Nat. Prod. Res. 2022, 36, 6177–6180. [Google Scholar]
- Zhou, X.; Liu, Z.; Yang, X.; Feng, J.; Gins, M.S.; Yan, T.; Han, L.; Zhang, H. The Mechanism Underlying the Hypoglycemic Effect of Epimedin C on Mice with Type 2 Diabetes Mellitus Based on Proteomic Analysis. Nutrients 2024, 16, 25. [Google Scholar] [CrossRef]
- Zou, T.-F.; Liu, Z.-G.; Cao, P.-C.; Zheng, S.-H.; Guo, W.-T.; Wang, T.-X.; Chen, Y.-L.; Duan, Y.-J.; Li, Q.-S.; Liao, C.-Z.; et al. Fisetin treatment alleviates kidney injury in mice with diabetes-exacerbated atherosclerosis through inhibiting CD36/fibrosis pathway. Acta Pharmacol. Sin. 2023, 44, 2065–2074. [Google Scholar] [CrossRef]
- Bahramzadeh, A.; Samavarchi Tehrani, S.; Goodarzi, G.; Seyyedebrahimi, S.; Meshkani, R. Combination therapy of metformin and morin attenuates insulin resistance, inflammation, and oxidative stress in skeletal muscle of high-fat diet-fed mice. Phytother. Res. 2024, 38, 912–924. [Google Scholar] [CrossRef]
- Mazraesefidi, M.; Mahmoodi, M.; Hajizadeh, M. Effects of silibinin on apoptosis and insulin secretion in rat RINm5F pancreatic beta-cells. Biotech. Histochem. 2023, 98, 201–209. [Google Scholar] [CrossRef]
- Alqudah, A.; Qnais, E.Y.; Wedyan, M.A.; Altaber, S.; Bseiso, Y.; Oqal, M.; AbuDalo, R.; Alrosan, K.; Alrosan, A.Z.; Melhim, S.B.; et al. Isorhamnetin Reduces Glucose Level, Inflammation, and Oxidative Stress in High-Fat Diet/Streptozotocin Diabetic Mice Model. Molecules 2023, 28, 502. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Tao, Y.; Wang, S.; Wang, M.; Li, L. Inhibitory interaction of narcissoside on alpha-glucosidase from Aspergillus niger and Saccharomyces cerevisiae by spectral analysis and molecular docking. J. Mol. Struct. 2022, 1263, 133262. [Google Scholar] [CrossRef]
- Asmara, A.P.; Prasansuklab, A.; Chiabchalard, A.; Chen, H.; Ung, A.T. Antihyperglycemic Properties of Extracts and Isolated Compounds from Australian Acacia saligna on 3T3-L1 Adipocytes. Molecules 2023, 28, 4054. [Google Scholar] [CrossRef] [PubMed]
- Genovese, M.; Luti, S.; Pardella, E.; Vivoli-Vega, M.; Pazzagli, L.; Parri, M.; Caselli, A.; Cirri, P.; Paoli, P. Differential impact of cold and hot tea extracts on tyrosine phosphatases regulating insulin receptor activity: A focus on PTP1B and LMW-PTP. Eur. J. Nutr. 2022, 61, 1905–1918. [Google Scholar] [CrossRef]
- Ni, J.; Wen, X.; Wang, S.; Zhou, X.; Wang, H. Investigation of the inhibitory combined effect and mechanism of (-)-epigallocatechin gallate and chlorogenic acid on amylase: Evidence of synergistic interaction. Food Biosci. 2023, 56, 103406. [Google Scholar] [CrossRef]
- Le, T.T.; Ha, M.T.; Cao, T.Q.; Kim, J.A.; Choi, J.S.; Min, B.S. 1,5-Anhydro-D-glucitol derivative and galloylated flavonoids isolated from the leaves of Acer ginnala Maxim. as dual inhibitors of PTP1B and α-glucosidase enzymes: In vitro and in silico studies. Phytochemistry 2023, 213, 113769. [Google Scholar] [CrossRef]
- Wei, X.; Lin, L.; Yuan, Q.-q.; Wang, X.-y.; Zhang, Q.; Zhang, X.-m.; Tang, K.-c.; Guo, M.-y.; Dong, T.-y.; Han, W.; et al. Bavachin protects against diet-induced hepatic steatosis and obesity in mice. Acta Pharmacol. Sin. 2023, 44, 1416–1428. [Google Scholar] [CrossRef]
- Hu, K.; Sun, Y.; Wang, J.; Wu, S.; Ren, J.; Su, D.; Tang, L.; Gong, J.; Fang, H.; Xu, S.; et al. Integrating network analysis and experimental validation to reveal the mechanism of pinocembrin in alleviating high glucose and free fatty acid-induced lipid accumulation in HepG2 cells. J. Funct. Food. 2023, 110, 105879. [Google Scholar]
- Ahmed, O.M.; Saleh, A.S.; Ahmed, E.A.; Ghoneim, M.M.; Ebrahim, H.A.; Abdelgawad, M.A.; Abdel-Gabbar, M. Efficiency of Bone Marrow-Derived Mesenchymal Stem Cells and Hesperetin in the Treatment of Streptozotocin-Induced Type 1 Diabetes in Wistar Rats. Pharmaceuticals 2023, 16, 859. [Google Scholar] [CrossRef]
- Adebayo, M.A.; Kolawole, A.N.; Falese, B.A.; Kolawole, A.O. Spectroscopic and in silico evaluation of hesperetin, aglycone flavanone, as a prospective regulatory ligand for human salivary a-amylase. J. Biomol. Struct. Dyn. 2023, 42, 3177–3192. [Google Scholar]
- Aldemir, E.E.; Selmanoglu, G.; Karacaoglu, E. The Potential Protective Role of Neoeriocitrin in a Streptozotocin-Induced Diabetic Model in INS-1E Pancreatic ß-Cells. Braz. Arch. Biol. Technol. 2023, 66, e23220138. [Google Scholar]
- Kaliaperumal, K.; Zhang, L.; Gao, L.; Xiong, Q.; Liang, Y.; Jiang, Y.; Zhang, J. Insight into the Inhibitory Mechanisms of Hesperidin on α-Glucosidase through Kinetics, Fluorescence Quenching, and Molecular Docking Studies. Foods 2023, 12, 4142. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Sim, K.-S.; Hwangbo, Y.; Park, S.-J.; Kim, Y.-J.; Kim, J.-H. Naringenin and Phytoestrogen 8-Prenylnaringenin Protect against Islet Dysfunction and Inhibit Apoptotic Signaling in Insulin-Deficient Diabetic Mice. Molecules 2022, 27, 4227. [Google Scholar] [CrossRef]
- Khan, M.F.; Mathur, A.; Pandey, V.K.; Kakkar, P. Endoplasmic reticulum stress-dependent activation of TRB3-FoxO1 signaling pathway exacerbates hyperglycemic nephrotoxicity: Protection accorded by Naringenin. Eur. J. Pharmacol. 2022, 917, 174745. [Google Scholar] [CrossRef]
- Lin, P.; Zhang, X.; Zhu, B.; Gao, J.; Yin, D.; Zeng, J.; Kang, Z. Naringenin protects pancreatic β cells in diabetic rat through activation of estrogen receptor β. Eur. J. Pharmacol. 2023, 960, 176115. [Google Scholar]
- Maity, S.; Chakrabarti, P.; Chakraborti, A.S. Naringenin ameliorates palmitic acid-induced fatty acid stress in hepatocytes. Nat. Prod. J. 2022, 12, 2–8. [Google Scholar] [CrossRef]
- Jia, A.; Wang, L.; Jin, J.; Huang, C.; Hu, X. A new sanggenon-type flavanone from Morus nigra and its insulin-sensitizing activity. Chin. Tradit. Herbal. Drugs 2023, 54, 45–50. [Google Scholar]
- Yang, Y.; Qiu, W.; Xiao, J.; Sun, J.; Ren, X.; Jiang, L. Dihydromyricetin ameliorates hepatic steatosis and insulin resistance via AMPK/PGC-1alpha and PPARalpha-mediated autophagy pathway. J. Transl. Med. 2024, 22, 309. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, Y.; Chen, R.; Shen, J.; Zhang, S.; Gu, Y.; Shi, J.; Meng, G. Dihydromyricetin attenuates diabetic cardiomyopathy by inhibiting oxidative stress, inflammation and necroptosis via sirtuin 3 activation. Antioxidants 2023, 12, 200. [Google Scholar] [CrossRef]
- Shou, L.; Zhou, L.; Hu, J.; Zhu, Q.; Luo, H. Sanggenon C alleviates palmitic acid-induced insulin resistance in HepG2 cells via AMPK pathway. Trop. J. Pharm. Res. 2023, 22, 1361–1366. [Google Scholar] [CrossRef]
- Long, H.P.; Liu, J.; Xu, P.S.; Xu, K.P.; Li, J.; Tan, G.S. Hypoglycemic flavonoids from Selaginella tamariscina (P.Beauv.) Spring. Phytochemistry 2022, 195, 113073. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Wang, B.; Sun, M.; Li, S. Attenuation of glucolipotoxicity-evoked dysfunction and insulin resistance by amentoflavone involves in AMPK/Nrf2 signaling in cardiomyocytes. J. Biol. Regul. Homeost. Agents 2023, 37, 3333–3342. [Google Scholar]
- Xu, J.; Wang, Y.; Zheng, T.; Huo, Y.; Du, W. Biflavones inhibit the fibrillation and cytotoxicity of the human islet amyloid polypeptide. J. Mater. Chem. B 2022, 10, 4650–4661. [Google Scholar] [CrossRef]
- Li, H.; Yang, J.; Wang, M.; Ma, X.; Peng, X. Studies on the inhibition of a-glucosidase by biflavonoids and their interaction mechanisms. Food Chem. 2023, 420, 136113. [Google Scholar] [CrossRef]
- Sadeghi, M.; Miroliaei, M.; Ghanadian, M.; Szumny, A.; Rahimmalek, M. Exploring the inhibitory properties of biflavonoids on α-glucosidase; computational and experimental approaches. Int. J. Biol. Macromol. 2023, 253, 127380. [Google Scholar] [CrossRef]
- Rammohan, A.; Reddy, J.S.; Sravya, G.; Rao, C.N.; Zyryanov, G.V. Chalcone synthesis, properties and medicinal applications: A review. Environ. Chem. Lett. 2020, 18, 433–458. [Google Scholar] [CrossRef]
- Wang, D.; Yang, L.; Ding, W.; Chen, Z.; Yang, X.; Jiang, Y.; Liu, Y. Licochalcone A alleviates abnormal glucolipid metabolism and restores energy homeostasis in diet-induced diabetic mice. Phytother. Res. 2024, 38, 196–213. [Google Scholar] [CrossRef]
- Tao, F.; Wang, P.; Dai, Z.; Zhang, C.; Li, D.; Fan, H.; Qin, M.; Qi, C.; Hao, J. Neohesperidin dihydrochalcone improves hyperglycemia and insulin resistance in diabetic zebrafish. ACS Food Sci. Technol. 2023, 3, 1548–1558. [Google Scholar] [CrossRef]
- Bednarska, K.; Fecka, I. Aspalathin and other rooibos flavonoids trapped α-dicarbonyls and inhibited formation of advanced glycation end products in vitro. Int. J. Mol. Sci. 2022, 23, 14738. [Google Scholar] [CrossRef]
- Zhao, H.; Zhai, B.-W.; Zhang, M.Y.; Huang, H.; Zhu, H.L.; Yang, H.; Ni, H.-Y.; Fu, Y.-J. Phlorizin from Lithocarpus litseifolius Hance Chun ameliorates FFA-induced insulin resistance by regulating AMPK/PI3K/AKT signaling pathway. Phytomedicine 2024, 130, 155743. [Google Scholar] [CrossRef]
- Ye, X.; Chen, W.; Huang, X.-F.; Yan, F.-J.; Deng, S.-G.; Zheng, X.-D.; Shan, P.-F. Anti-diabetic effect of anthocyanin cyanidin-3-O-glucoside: Data from insulin resistant hepatocyte and diabetic mouse. Nutr. Diabetes 2024, 14, 7. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Chen, W.; Yan, F.-J.; Zheng, X.-D.; Tu, P.-C.; Shan, P.-F. Exploring the effects of cyanidin-3-O-glucoside on type 2 diabetes mellitus: Insights into gut microbiome modulation and potential antidiabetic benefits. J. Agric. Food Chem. 2023, 71, 20047–20061. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, X.; Su, L.; Hu, Q.; Li, W.; He, J.; Zhao, L. Cyanidin-3-O-glucoside ameliorates palmitic-acid-induced pancreatic β cell dysfunction by modulating CHOP-mediated endoplasmic reticulum stress pathways. Nutrients 2022, 14, 1835. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Tian, Y.; Wang, L.; Tan, J. Activity guided-assisted high-speed counter-current chromatography separation of active compound from blueberry and the interaction between the active compound and α-glucosidase. J. Chin. Inst. Food Sci. Technol. 2023, 23, 41–53. [Google Scholar]
- Biswas, D.; De Silva, A.B.K.H.; Mercer, A.; Sarkar, S.; Kienesberger, P.; Langille, M.; Rupasinghe, H.P.V.; Pulinilkunnil, T. Supplementation of cyanidin-3-O-β-glucoside-rich haskap (Lonicera caerulea L.) berry extract attenuates hepatic lipid dysregulation in diet-induced obese mice. J. Funct. Food. 2023, 108, 105635. [Google Scholar] [CrossRef]
- Kenneth, C.; Anugrah, D.S.B.; Julianus, J.; Junedi, S. Molecular insights into the inhibitory potential of anthocyanidins on glucokinase regulatory protein. PLoS ONE 2023, 18, e0288810. [Google Scholar] [CrossRef]
- Zhu, C.-w.; Lu, H.; Du, L.-l.; Li, J.; Chen, H.; Zhao, H.-f.; Wu, W.-l.; Chen, J.; Li, W.-l. Five blueberry anthocyanins and their antioxidant, hypoglycemic, and hypolipidemic effects in vitro. Front. Nutr. 2023, 10, 1172982. [Google Scholar] [CrossRef]
- Peng, J.; Liang, G.; Wen, W.; Huang, W.; Qiu, Y.; Xiao, G.; Wang, Q. Blueberry anthocyanins extract inhibits advanced glycation end-products (AGEs) production and AGEs-stimulated inflammation in RAW264.7 cells. J. Sci. Food Agric. 2024, 104, 75–82. [Google Scholar] [CrossRef]
- Lim, H.J.; Park, J.E.; Han, J.S. HM-chromanone alleviates hyperglycemia and inflammation in mice with endotoxin-induced insulin resistance. Toxicol. Res. 2023, 12, 665–674. [Google Scholar] [CrossRef]
- Yoo, J.; Park, J.E.; Han, J.S. HMC Ameliorates Hyperglycemia via Acting PI3K/AKT Pathway and Improving FOXO1 Pathway in ob/ob Mice. Nutrients 2023, 15, 2023. [Google Scholar] [CrossRef]
- Park, J.E.; Han, J.S. HM-chromanone isolated from Portulaca oleracea L. alleviates insulin resistance and inhibits gluconeogenesis by regulating palmitate-induced activation of ROS/JNK in HepG2 cells. Toxicol. Res. 2023, 12, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Awotuya, I.O.; Fakola, E.G.; Olusola, A.J.; Olanudun, E.A.; Bello, O.I.; Ogunremi, B.I.; Gboyero, F.O.; Adesida, S.A.; Faloye, K.O. Exploring the Protein Tyrosine Phosphatase 1B Inhibitory Potentials of Naturally Occurring Brazilin-Type Homoisoflavonoids: A Computational Approach. Chem. Afr. 2022, 5, 1493–1502. [Google Scholar]
- Osama, H.; Hamed, E.O.; Mahmoud, M.A.; Abdelrahim, M.E.A. The Effect of Hesperidin and Diosmin Individually or in Combination on Metabolic Profile and Neuropathy among Diabetic Patients with Metabolic Syndrome: A Randomized Controlled Trial. J. Diet. Suppl. 2023, 20, 749–762. [Google Scholar] [CrossRef] [PubMed]
- Bazyar, H.; Moradi, L.; Zaman, F.; Zare Javid, A. The effects of rutin flavonoid supplement on glycemic status, lipid profile, atherogenic index of plasma, brain-derived neurotrophic factor (BDNF), some serum inflammatory, and oxidative stress factors in patients with type 2 diabetes mellitus: A double-blind, placebo-controlled trial. Phytother. Res. 2023, 37, 271–284. [Google Scholar]
- Ferdowsi, S.; Shidfar, F.; Heidari, I.; Kashi, M.; Sohouli, M.H.; Sarrafi Zadeh, S. Effect of silymarin on lipid profile and glycemic control in patients with type 2 diabetes mellitus. Phytother. Res. 2024, 38, 4667–4674. [Google Scholar] [CrossRef]
- Curtis, P.J.; Berends, L.; van der Velpen, V.; Jennings, A.; Haag, L.; Chandra, P.; Kay, C.D.; Rimm, E.B.; Cassidy, A. Blueberry anthocyanin intake attenuates the postprandial cardiometabolic effect of an energy-dense food challenge: Results from a double blind, randomized controlled trial in metabolic syndrome participants. Clin. Nutr. 2022, 41, 165–176. [Google Scholar]
- Cesar, T.B.; Ramos, F.M.M.; Ribeiro, C.B. Nutraceutical Eriocitrin (Eriomin) Reduces Hyperglycemia by Increasing Glucagon-Like Peptide 1 and Downregulates Systemic Inflammation: A Crossover-Randomized Clinical Trial. J. Med. Food 2022, 25, 1050–1058. [Google Scholar]
- Ramos, F.M.M.; Ribeiro, C.B.; Cesar, T.B.; Milenkovic, D.; Cabral, L.; Noronha, M.F.; Sivieri, K. Lemon flavonoids nutraceutical (Eriomin®) attenuates prediabetes intestinal dysbiosis: A double-blind randomized controlled trial. Food Sci. Nutr. 2023, 11, 7283–7295. [Google Scholar] [CrossRef]
- Cremonini, E.; Daveri, E.; Iglesias, D.E.; Kang, J.; Wang, Z.; Gray, R.; Mastaloudis, A.; Kay, C.D.; Hester, S.N.; Wood, S.M.; et al. A randomized placebo-controlled cross-over study on the effects of anthocyanins on inflammatory and metabolic responses to a high-fat meal in healthy subjects. Redox Biol. 2022, 51, 102273. [Google Scholar]
- Teets, C.; Ghanem, N.; Ma, G.; Minj, J.; Perkins-Veazie, P.; Johnson, S.A.; Etter, A.J.; Carbonero, F.G.; Solverson, P.M. A One-Week Elderberry Juice Intervention Augments the Fecal Microbiota and Suggests Improvement in Glucose Tolerance and Fat Oxidation in a Randomized Controlled Trial. Nutrients 2024, 16, 3555. [Google Scholar] [CrossRef]
- Wang, X.; Yang, J.; Li, H.; Shi, S.; Peng, X. Mechanistic study and synergistic effect on inhibition of α-amylase by structurally similar flavonoids. J. Mol. Liq. 2022, 360, 119485. [Google Scholar]
- Qin, Y.; Wang, P.; Chen, X.; Xu, F.; Zhu, K.; Zhang, Y.; Tan, L. Inhibition Mechanism of Three Flavonoids on alpha-Amylase. J. Food Sci. Technol. 2023, 41, 110–122. [Google Scholar]
- Akinnusi, P.A.; Olubode, S.O.; Alade, A.A.; Ashimi, A.A.; Onawola, O.L.; Agbolade, A.O.; Emeka, A.P.; Shodehinde, S.A.; Adeniran, O.Y. Potential Inhibitory Biomolecular Interactions of Natural Compounds with Different Molecular Targets of Diabetes. Bioinform. Biol. Insights 2023, 17, 11779322231167970. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, G.A.A.; Omar, A.M.M.; El-Araby, M.E.E.; Mass, S.; Ibrahim, S.R.M. Assessments of Alpha-Amylase Inhibitory Potential of Tagetes Flavonoids through In Vitro, Molecular Docking, and Molecular Dynamics Simulation Studies. Int. J. Mol. Sci. 2023, 24, 10195. [Google Scholar] [CrossRef]
- Guo, F.; An, J.; Wang, M.; Zhang, W.; Chen, C.; Mao, X.; Liu, S.; Wang, P.; Ren, F. Inhibitory Mechanism of Quercimeritrin as a Novel α-Glucosidase Selective Inhibitor. Foods 2023, 12, 3415. [Google Scholar] [CrossRef]
- Lo Piparo, E.; Scheib, H.; Frei, N.; Williamson, G.; Grigorov, M.; Chou, C.J. Flavonoids for controlling starch digestion: Structural requirements for inhibiting human α-amylase. J. Med. Chem. 2008, 51, 3555–3561. [Google Scholar] [CrossRef]
- Tonsic, B.R.; Correa, V.G.; Garcia-Manieri, J.A.A.; Bracht, A.; Peralta, R.M. An in vivo approach to the reported effects of phenolic acids and flavonoids on the pancreatic α-amylase activity. Food Biosci. 2023, 51, 102357. [Google Scholar] [CrossRef]
- Yang, J.C.; Wang, X.L.; Zhang, C.Y.; Ma, L.; Wei, T.; Zhao, Y.J.; Peng, X. Comparative study of inhibition mechanisms of structurally different flavonoid compounds on α-glucosidase and synergistic effect with acarbose. Food Chem. 2021, 347, 129056. [Google Scholar]
- Zhao, L.; Pei, Y.; Zhang, G.; Li, J.; Zhu, Y.; Xia, M.; Yan, K.; Mu, W.; Han, J.; Zhang, S.; et al. Efficient Synthesis and In Vitro Hypoglycemic Activity of Rare Apigenin Glycosylation Derivatives. Molecules 2023, 28, 533. [Google Scholar] [CrossRef]
- Proenca, C.; Freitas, M.; Ribeiro, D.; Oliveira, E.F.T.; Sousa, J.L.C.; Tome, S.M.; Ramos, M.J.; Silva, A.M.S.; Fernandes, P.A.; Fernandes, E. α-Glucosidase inhibition by flavonoids: An in vitro and in silico structure-activity relationship study. J. Enzym. Inhib. Med. Chem. 2017, 32, 1216–1228. [Google Scholar]
- Rani, J.; Jagta, N.; Deswal, G.; Chopra, B.; Dhingra, A.K.; Guarve, K.; Grewal, A.S. Molecular docking-guided screening of phytoconstituents from Artemisia princeps as Allosteric Glucokinase Activators. Chem. Biol. Lett. 2023, 10, 547. [Google Scholar]
- Pustelny, K.; Grygier, P.; Barzowska, A.; Pucelik, B.; Matsuda, A.; Mrowiec, K.; Slugocka, E.; Popowicz, G.M.; Dubin, G.; Czarna, A. Binding mechanism and biological effects of flavone DYRK1A inhibitors for the design of new antidiabetics. Sci. Rep. 2023, 13, 18114. [Google Scholar] [CrossRef] [PubMed]
- Xiao, T.; Zhi, Y.; Tian, F.; Huang, F.; Cheng, X.; Wu, A.; Tao, L.; Guo, Z.; Shen, X. Ameliorative effect of black raspberry anthocyanins on diabetes retinopathy by inhibiting axis protein tyrosine phosphatase 1B-endoplasmic reticulum stress. J. Funct. Food. 2023, 107, 105696. [Google Scholar] [CrossRef]
- Liang, C.; Zang, J.; Ndi, C.; Semple, S.J.; Buirchell, B.; Coriani, S.; Moller, B.L.; Staerk, D. Identification of new PTP1B-inhibiting decipiene diterpenoid esters from Eremophila clarkei by high-resolution PTP1B inhibition profiling, enzyme kinetics analysis, and molecular docking. Bioorg. Chem. 2023, 139, 106744. [Google Scholar] [CrossRef]
- Zhao, W.; Cui, H.; Liu, K.; Yang, X.; Xing, S.; Li, W. Unveiling Anti-Diabetic Potential of Baicalin and Baicalein from Baikal Skullcap: LC-MS, In Silico, and In Vitro Studies. Int. J. Mol. Sci. 2024, 25, 3654. [Google Scholar] [CrossRef]
- Shi, X.Y.; Chu, C.; Li, X.; Zhang, L.X.; Zhang, X.R.; Chen, N.; Liu, W.W.; Jiao, Z.X.; Ikejima, T.; Xu, F.X. Silibinin protects GLUTag cells from PA-induced injury via suppressing endoplasmic reticulum stress. Cyta J. Food 2023, 21, 442–450. [Google Scholar] [CrossRef]
- Zeng, X.; Na, R.; Yang, L.; Zhao, X.; Huang, X. Inhibition mechanism understanding from molecular dynamics simulation of the interactions between several flavonoids and proton-dependent glucose transporter. J. Biomol. Struct. Dyn. 2023, 43, 1278–1289. [Google Scholar] [CrossRef]
- Farzana, M.; Hossain, M.J.; El-Shehawi, A.M.; Sikder, M.A.A.; Rahman, M.S.; Al-Mansur, M.A.; Albogami, S.; Elseehy, M.M.; Roy, A.; Uddin, M.A.; et al. Phenolic Constituents from Wendlandia tinctoria var. grandis (Roxb.) DC. Stem Deciphering Pharmacological Potentials against Oxidation, Hyperglycemia, and Diarrhea: Phyto-Pharmacological and Computational Approaches. Molecules 2022, 27, 5957. [Google Scholar] [CrossRef]
- Ollinger, N.; Neuhauser, C.; Schwarzinger, B.; Wallner, M.; Schwarzinger, C.; Blank-Landeshammer, B.; Hager, R.; Sadova, N.; Drotarova, I.; Mathmann, K.; et al. Anti-Hyperglycemic Effects of Oils and Extracts Derived from Sea Buckthorn—A Comprehensive Analysis Utilizing In Vitro and In Vivo Models. Mol. Nutr. Food Res. 2022, 66, e2101133. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, T.; Wei, J.; Yin, X.; Gao, Z.; Li, H. Inhibitory activities of flavonoids from Scutellaria baicalensis Georgi on amyloid aggregation related to type 2 diabetes and the possible structural requirements for polyphenol in inhibiting the nucleation phase of hIAPP aggregation. Int. J. Biol. Macromol. 2022, 215, 531–540. [Google Scholar] [CrossRef]
- King, K.M.; Bevan, D.R.; Brown, A.M. Molecular Dynamics Simulations Indicate Aromaticity as a Key Factor in the Inhibition of IAPP((20–29)) Aggregation. Acs Chem. Neurosci. 2022, 13, 1615–1626. [Google Scholar] [CrossRef] [PubMed]
- Lv, Q.; Wu, X.; Guan, Y.; Lin, J.; Sun, Y.; Hu, M.; Xiao, P.; He, C.; Jiang, B. Integration of network pharmacology, transcriptomics and molecular docking reveals two novel hypoglycemic components in snow chrysanthemum. Biomed. Pharmacother. 2023, 163, 114818. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.-L.; Tseng, Y.-H.; Cheng, P.-W.; Hao, C.-L.; Tu, Y.-C.; Yeh, B.-C.; Shen, K.-P. Content Analysis of Chenopodium formosanum (Djulis) Collected from Two Production Areas and Evaluation of Their Ability to Improve Insulin Resistance. Nat. Product. Commun. 2023, 18, 1934578X231179416. [Google Scholar] [CrossRef]
- Yu, W.; Zhong, J.Q.; Zhang, Z.Y.; Ge, S.X. Leptin-adiponectin ratio: A reliable indicator in metabolic health. Chin. Bull. Life Sci. 2024, 36, 658–668. [Google Scholar]
- Tang, Y.; Zhou, J.; Mo, Y.; Zhu, P.; Yang, Q.; Li, X.; Li, L. Effect of Total Flavonoids from Melastoma dodecandrum L. on Lipid Metabolism of Nonalcoholic Fatty Liver Rats. induced by High-fat Diet. Chin. Anim. Husb. Vet. Med. 2023, 50, 3438–3447. [Google Scholar]
- Dwivedi, P.S.R.; Rasal, V.P.; Chavan, R.S.; Khanal, P.; Gaonkar, V.P. Insulin sensitization by Feronia elephantum in fructose-induced hyperinsulinemic rats: Insights from computational and experimental pharmacology. J. Ethnopharmacol. 2023, 316, 116686. [Google Scholar] [CrossRef]
- Guo, S.D. Insulin signaling, resistance, and metabolic syndrome: Insights from mouse models into disease mechanisms. J. Endocrinol. 2014, 220, T1–T23. [Google Scholar] [CrossRef]
- Miao, L.; Zhang, H.; Cheong, M.S.; Zhong, R.; Garcia-oliveira, P.; Prieto, M.A.; Cheng, K.-w.; Wang, M.; Cao, H.; Nie, S.; et al. Anti-diabetic potential of apigenin, luteolin, and baicalein via partially activating PI3K/Akt/GLUT-4 signaling pathways in insulin-resistant HepG2 cells. Food Sci. Human. Wellness 2023, 12, 1991–2000. [Google Scholar] [CrossRef]
- Jin, D.-X.; He, J.-F. PI3K/AKT Signaling Pathway-Mediated Three Flavonoids’ Modulation on Glucose Metabolism. Rev. Bras. De Farmacogn. Braz. J. Pharmacogn. 2022, 32, 834–839. [Google Scholar] [CrossRef]
- Tang, P.; Tang, Y.; Liu, Y.; He, B.; Shen, X.; Zhang, Z.-J.; Qin, D.-L.; Tian, J. Quercetin-3-O-α-L-arabinopyranosyl-(1→2)-β-D-glucopyranoside Isolated from Eucommia ulmoides Leaf Relieves Insulin Resistance in HepG2 Cells via the IRS-1/PI3K/Akt/GSK-3β Pathway. Biol. Pharm. Bull. 2023, 46, 219–229. [Google Scholar] [CrossRef]
- Taylor, E.B.; An, D.; Kramer, H.F.; Yu, H.; Fujii, N.L.; Roeckl, K.S.C.; Bowles, N.; Hirshman, M.F.; Xie, J.; Feener, E.P.; et al. Discovery of TBC1D1 as an Insulin-, AICAR-, and Contraction-stimulated Signaling Nexus in Mouse Skeletal Muscle. J. Biol. Chem. 2008, 283, 9787–9796. [Google Scholar] [PubMed]
- Long, Y.C.; Cheng, Z.; Copps, K.D.; White, M.F. Insulin Receptor Substrates Irs1 and Irs2 Coordinate Skeletal Muscle Growth and Metabolism via the Akt and AMPK Pathways. Mol. Cell. Biol. 2023, 31, 430–441. [Google Scholar]
- Pandey, V.K.; Mathur, A.; Khan, M.F.; Kakkar, P. Endoplasmic reticulum stress induces degradation of glucose transporter proteins during hyperglycemic hepatotoxicity: Role of PERK-eIF2 alpha-ATF4 axis. Eur. J. Pharmacol. 2022, 926, 175012. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.-H.; Lin, S.-Y.; Chen, L.-L.; Ouyang, K.-H.; Wang, W.-J. The Interaction between Flavonoids and Intestinal Microbes: A Review. Foods 2023, 12, 320. [Google Scholar] [CrossRef]
- Li, Z.; Ren, Z.; Zhao, L.; Chen, L.; Yu, Y.; Wang, D.; Mao, X.; Cao, G.; Zhao, Z.; Yang, H. Unique roles in health promotion of dietary flavonoids through gut microbiota regulation: Current understanding and future perspectives. Food Chem. 2023, 399, 133959. [Google Scholar]
- Watanabe, S.; Namba, F.; Suzuki, T.; Kosaka, H.; Toda, T. Agent or Additive Used for e.g., Improving Intestinal Flora for Improving Decrease in Diversity of Intestinal Flora, and Reducing Secondary Bile Acid Production, and Increasing Primary Bile Acid Production, Comprises Soy Isoflavone. JP2023080372-A, 27 April 2023. [Google Scholar]
- Wang, P.; Tao, F.; Dai, Z.; Wang, T.; Zhang, C.; Fan, H.; Qin, M.; Qi, C.; Li, Y.; Hao, J. Neohesperidin dihydrochalcone can improve intestinal structure and microflora composition of diabetic zebrafish. J. Funct. Food. 2024, 115, 106118. [Google Scholar]
- Qiao, Y.; Zhang, Z.; Zhai, Y.; Yan, X.; Zhou, W.; Liu, H.; Guan, L.; Peng, L. Apigenin Alleviates Obesity-Associated Metabolic Syndrome by Regulating the Composition of the Gut Microbiome. Front. Microbiol. 2022, 12, 805827. [Google Scholar]
- Watanabe, Y.; Fujisaka, S.; Morinaga, Y.; Watanabe, S.; Nawaz, A.; Hatta, H.; Kado, T.; Nishimura, A.; Bilal, M.; Aslam, M.R.; et al. Isoxanthohumol improves obesity and glucose metabolism via inhibiting intestinal lipid absorption with a bloom of Akkermansia muciniphila in mice. Mol. Metab. 2023, 77, 101797. [Google Scholar] [CrossRef]
- Yuan, M.; Sun, T.; Zhang, Y.; Guo, C.; Wang, F.; Yao, Z.; Yu, L. Quercetin Alleviates Insulin Resistance and Repairs Intestinal Barrier in db/db Mice by Modulating Gut Microbiota. Nutrients 2024, 16, 1870. [Google Scholar] [CrossRef]
- Wang, C.; Sun, Y.; Liu, W.; Liu, Y.; Afzal, S.; Grover, J.; Chang, D.; Munch, G.; Li, C.G.; Lin, S.; et al. Protective effect of the curcumin-baicalein combination against macrovascular changes in diabetic angiopathy. Front. Endocrinol. 2022, 13, 953305. [Google Scholar] [CrossRef]
- Koh, Y.Q.; Sin, Y.A.D.; Rong, H.J.; Chua, T.H.S.; Ho, S.-H.S.; Ho, H.K. Evaluation of anthoxanthins and their actions on digestive enzyme inhibition when used independently and in combination. Heliyon 2022, 8, e10131. [Google Scholar] [CrossRef] [PubMed]
- Scarpa, E.-S.; Giordani, C.; Antonelli, A.; Petrelli, M.; Balercia, G.; Silvetti, F.; Pieroni, A.; Sabbatinelli, J.; Rippo, M.R.; Olivieri, F.; et al. The Combination of Natural Molecules Naringenin, Hesperetin, Curcumin, Polydatin and Quercetin Synergistically Decreases SEMA3E Expression Levels and DPPIV Activity in In Vitro Models of Insulin Resistance. Int. J. Mol. Sci. 2023, 24, 8071. [Google Scholar] [CrossRef] [PubMed]
- Al-Abbasi, F.A.; Kazmi, I. Therapeutic role of kaempferol and myricetin in streptozotocin-induced diabetes synergistically via modulation in pancreatic amylase, glycogen storage and insulin secretion. Mol. Cell. Biochem. 2023, 478, 1927–1937. [Google Scholar] [CrossRef] [PubMed]
- Kandemir, K.; Tomas, M.; McClements, D.J.; Capanoglu, E. Recent advances on the improvement of quercetin bioavailability. Trends Food Sci. Technol. 2022, 119, 192–200. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, J.; Xie, Y. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: An overview. Int. J. Pharm. 2019, 570, 118642. [Google Scholar] [CrossRef]
- Sabet, S.; Rashidinejad, A.; Melton, L.D.; McGillivray, D.J. Recent advances to improve curcumin oral bioavailability. Trends Food Sci. Technol. 2021, 110, 253–266. [Google Scholar] [CrossRef]
- Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Chemistry, Pharmacology and Health Benefits of Anthocyanins. Phytother. Res. 2016, 30, 1265–1286. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, C. In Silico, In Vitro, and In Vivo Evaluation of the Developmental Toxicity, Estrogenic Activity, and Mutagenicity of Four Natural Phenolic Flavonoids at Low Exposure Levels. ACS Omega 2022, 7, 4757–4768. [Google Scholar] [CrossRef]
- Sarasquete, C.; Ubeda-Manzanaro, M.; Ortiz-Delgado, J.B. Toxicity and non-harmful effects of the soya isoflavones, genistein and daidzein, in embryos of the zebrafish, Danio rerio. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2018, 211, 57–67. [Google Scholar] [CrossRef]
- Siblini, H.; Al-Hendy, A.; Segars, J.; Gonzalez, F.; Taylor, H.S.; Singh, B.; Flaminia, A.; Flores, V.A.; Christman, G.M.; Huang, H.; et al. Assessing the Hepatic Safety of Epigallocatechin Gallate (EGCG) in Reproductive-Aged Women. Nutrients 2023, 15, 320. [Google Scholar] [CrossRef]
- Jamir, A.; Longkumer, S.; Punj, P.P. Acute Toxicity of Epigallocatechin Gallate and C-Phycocyanin in Zebrafish (Danio rerio): Behavioral and Histopathological Studies. India J. Pharm. Sci. 2023, 86, 546–555. [Google Scholar]
- Zhou, G.; Zhang, M.; Sun, X.; Huang, T.; Hou, K.; Zhou, S.; Yin, J.; Guan, L. EGCG induces degradation of active folate in serum via H2O2 generation, while L-ascorbic acid effectively reverses this effect. Biochem. Biophys. Rep. 2024, 38, 101719. [Google Scholar]
- Ramli, S.; Eshak, Z.; Ayub, N.; Halim, H. Morphological changes of MCF7 cells incubated with quercetin. Res. J. Biotechnol. 2022, 17, 58–62. [Google Scholar]
- Li, Y.-Y.; Lu, X.-Y.; Sun, J.-L.; Wang, Q.-Q.; Zhang, Y.-D.; Zhang, J.-B.; Fan, X.-H. Potential hepatic and renal toxicity induced by the biflavonoids from Ginkgo biloba. Chin. J. Nat. Med. 2019, 17, 672–681. [Google Scholar] [CrossRef]
- Pavasutti, V.; Sinthuvanich, C.; Tayana, N.; Kongkiatpaiboon, S.; Sae-tan, S. Mung bean seed coat water extract restores insulin sensitivity via upregulation of antioxidant defense system and downregulation of inflammation in insulin-resistant HepG2 cells. NFS J. 2023, 32, 100145. [Google Scholar]
- Madubuike, K.G.; Nnadi, C.O.; Anaga, A.O.; Asuzu, I.U. Bioactivity-guided isolation of the antidiabetic principle in Pterocarpus Santalinoides leaf extract. Braz. J. Pharm. Sci. 2023, 59, e21726. [Google Scholar]
- Nguyen Minh, T.; Le Ba, V.; Nguyen Van, T.; Nguyen Viet, P. Inhibition of PTP1B by isosinensetin, a polymethoxylated flavone isolated from trifoliate orange peel: Kinetic studies, molecular docking, and molecular dynamics simulation. Chem. Pap. 2022, 77, 1751–1757. [Google Scholar]
- Maradesha, T.; Patil, S.M.; Phanindra, B.; Achar, R.R.; Silina, E.; Stupin, V.; Ramu, R. Multiprotein Inhibitory Effect of Dietary Polyphenol Rutin from Whole Green Jackfruit Flour Targeting Different Stages of Diabetes Mellitus: Defining a Bio-Computational Stratagem. Separations 2022, 9, 262. [Google Scholar] [CrossRef]
- Bazyar, H.; Javid, A.Z.; Ahangarpour, A.; Zaman, F.; Hosseini, S.A.; Zohoori, V.; Aghamohammadi, V.; Yazdanfar, S.; Cheshmeh, M.G.D. The effects of rutin supplement on blood pressure markers, some serum antioxidant enzymes, and quality of life in patients with type 2 diabetes mellitus compared with placebo. Front. Nutr. 2023, 10, 1214420. [Google Scholar]
Flavonoids | IC50 | Interacted Amino Acid Residues | Intermolecular Interactions |
---|---|---|---|
apigenin [111] | 21.66 ± 0.96 μM | Trp396, Lys457, Ala489, His491, Glu493 | hydrogen bonds, hydrophobic interactions, π-interactions |
scutellarein [111] | 14.99 ± 0.62 μM | Trp151, Lys200, His201, Glu233, Ile235, Glu240 | hydrogen bonds, π-interactions |
nepetin [111] | 10.83 ± 0.49 μM | Gln63, Asp197 | hydrogen bonds, π-interactions |
hispidulin [111] | 30.08 ± 1.12 μM | Trp59, Tyr62, Gln63, Asp197, Asp300 | hydrogen bonds, π-interactions |
delphinidin 3,5-O-diglucoside [113] | / | Trp59, Gln63, Asp300, His305, Asp356 | hydrogen bonds, π-cation interaction |
malvin [113] | / | Trp59, Gln63, Tyr151, Glu233, Asp300, His305 | hydrogen bonds, π-cation interaction |
nasunin [113] | / | Trp59, Gln63, Asp147, Asp300, His305 | hydrogen bonds, π-cation interaction |
cyanidin-3-(6-acetylglucoside) [113] | / | Trp59 Gln63, Glu233, His305, Asp300, Asp 336 | hydrogen bonds, π-cation interaction |
cyanidin 3-O-xylosyl-rutinoside [113] | / | Trp59, Gln63, Thr163, Glu233, His305, Asp356 | hydrogen bonds, π-cation interaction |
EGCG [65] | 0.548 ± 0.029 mg/mL | Arg195, Ala198, His201, Glu233, His299, Tyr62, Leu165, His10 | hydrogen bonds, hydrophobic interactions, salt bridges |
swertisin [32] | / | Phe280, Phe321, His325 | hydrogen bonds, carbon–hydrogen bonds |
Flavonoids | IC50 | Interacted Amino Acid Residues | Intermolecular Interactions |
---|---|---|---|
luteolin [21] | 32.3 μM | N283, T287, Y286 | van der Waals forces, hydrogen bonds, π−π stacking |
scutellarein [118] | 2.4 ± 0.2 μM | Lys156, Ser241, Ser311, Asp307, Arg315, Lys213, His280 | hydrogen bonds, π-interactions |
nepetin [118] | 11.8 ±0.2 μM | Lys156, Gly161, Asp233, Asn235, Phe314, Asn317, Ala418, Glu422, His423 | hydrogen bonds, π-interactions |
apigenin [118] | 14.3 ± 0.2 μM | Gly-161, Asp-233, Asn-235, Ala-418, Ile-419, Glu-422, His-423 | hydrogen bonds, hydrophobic interactions, π-interactions |
hispidulin [118] | 32.1 ± 0.3 μM | Lys156, Gly161, Phe314, Asn317, Ala418, Ile419, Glu422, His423, Glu429 | hydrogen bonds, hydrophobic interactions, π-interactions |
strychnobiflavone [85] | / | Arg315, Phe303 | cation-π and π–π stacking, |
hesperidin [72] | 18.52 μM | Arg422, Asn424, Arg467, Trp709, | five hydrogen bonds, hydrophobic interactions |
apigenin [119] | 0.525 mM | THR141, RG430, PRO466, ARG513, ILE517, ALA518 | hydrogen bonds, electrostatic interaction, hydrophobic interactions |
cyanidin-3-O-glucoside [94] | / | Leu313, Ser157, Tyr158, Phe314, Arg315, Asp307 | hydrogen bonds, hydrophobic interaction |
lutexin [24] | 0.13 mg/mL | Asp69, Arg315, His351, Asp215, Glu277, Phe303, Asp352, Glu411, Arg442, Arg446 | carbon–hydrogen bond, hydrogen bonds |
swertisin [32] | / | Tyr63, Asp98, Asn258, Phe280, Glu323; Arg197, Asp326; Phe321, His325 | hydrogen bonds, π–cation interactions, carbon–hydrogen bonds, van der Waals interactions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Liu, C.; Zhaxi, P.; Kou, X.; Liu, Y.; Xue, Z. Research Progress on Hypoglycemic Effects and Molecular Mechanisms of Flavonoids: A Review. Antioxidants 2025, 14, 378. https://doi.org/10.3390/antiox14040378
Liu M, Liu C, Zhaxi P, Kou X, Liu Y, Xue Z. Research Progress on Hypoglycemic Effects and Molecular Mechanisms of Flavonoids: A Review. Antioxidants. 2025; 14(4):378. https://doi.org/10.3390/antiox14040378
Chicago/Turabian StyleLiu, Mengyi, Chunlong Liu, Puba Zhaxi, Xiaohong Kou, Yazhou Liu, and Zhaohui Xue. 2025. "Research Progress on Hypoglycemic Effects and Molecular Mechanisms of Flavonoids: A Review" Antioxidants 14, no. 4: 378. https://doi.org/10.3390/antiox14040378
APA StyleLiu, M., Liu, C., Zhaxi, P., Kou, X., Liu, Y., & Xue, Z. (2025). Research Progress on Hypoglycemic Effects and Molecular Mechanisms of Flavonoids: A Review. Antioxidants, 14(4), 378. https://doi.org/10.3390/antiox14040378