Dietary Flavonoid Intake and Anemia Risk in Children and Adolescents: Insights from National Health and Nutrition Examination Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Outcome Ascertainment
2.3. Assessment of Flavonoids
2.4. Covariates
2.5. Statistical Analysis
3. Results
3.1. Participant Characteristics at Baseline
3.2. Distributions and Concentrations of Dietary Flavonoid Intake
3.3. Association Between Dietary Flavonoid Intake and the Prevalence of Anemia in U.S. Children and Adolesents
3.4. Subgroup Analysis of Participants Based on Dietary Total Flavonoids and Flavan-3-Ol Intake Levels
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NHANES | The National Health and Nutrition Examination Survey |
ROS | Reactive oxygen species |
RCS | Restricted cubic spline |
FNDDs | The US Department of Agriculture’s Food and Nutrient Database for Dietary Studies |
PIR | Poverty Income Ratio |
References
- Safiri, S.; Kolahi, A.-A.; Noori, M.; Nejadghaderi, S.A.; Karamzad, N.; Bragazzi, N.L.; Sullman, M.J.M.; Abdollahi, M.; Collins, G.S.; Kaufman, J.S.; et al. Burden of Anemia and Its Underlying Causes in 204 Countries and Territories, 1990–2019: Results from the Global Burden of Disease Study 2019. J. Hematol. Oncol. 2021, 14, 185. [Google Scholar]
- Kassebaum, N.J.; Jasrasaria, R.; Naghavi, M.; Wulf, S.K.; Johns, N.; Lozano, R.; Regan, M.; Weatherall, D.; Chou, D.P.; Eisele, T.P.; et al. A Systematic Analysis of Global Anemia Burden from 1990 to 2010. Blood 2014, 123, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Chaparro, C.M.; Suchdev, P.S. Anemia Epidemiology, Pathophysiology, and Etiology in Low- and Middle-income Countries. Ann. N. Y. Acad. Sci. 2019, 1450, 15–31. [Google Scholar] [PubMed]
- Carter, R.C.; Jacobson, J.L.; Burden, M.J.; Armony-Sivan, R.; Dodge, N.C.; Angelilli, M.L.; Lozoff, B.; Jacobson, S.W. Iron Deficiency Anemia and Cognitive Function in Infancy. Pediatrics 2010, 126, e427–e434. [Google Scholar]
- Pasricha, S.-R.; Tye-Din, J.; Muckenthaler, M.U.; Swinkels, D.W. Iron Deficiency. Lancet 2021, 397, 233–248. [Google Scholar] [PubMed]
- Al-Khayri, J.M.; Sahana, G.R.; Nagella, P.; Joseph, B.V.; Alessa, F.M.; Al-Mssallem, M.Q. Flavonoids as Potential Anti-Inflammatory Molecules: A Review. Molecules 2022, 27, 2901. [Google Scholar] [CrossRef]
- Sebastian, R.S.; Wilkinson Enns, C.; Goldman, J.D.; Steinfeldt, L.C.; Martin, C.L.; Moshfegh, A.J. Flavonoid Values for USDA Survey Foods and Beverages 2007–2010; U.S. Department of Agriculture, Agricultural Research Service, Food Surveys Research Group: Beltsville, MD, USA, 2016. Available online: www.ars.usda.gov/nea/bhnrc/fsrg (accessed on 5 January 2025).
- Sebastian, R.S.; Goldman, J.D.; Martin, C.L.; Steinfeldt, L.C.; Wilkinson Enns, C.; Moshfegh, A.J. Flavonoid Values for USDA Survey Foods and Beverages 2007–2008; 2014 (Slightly Revised Dec. 2015); U.S. Department of Agriculture, Agricultural Research Service, Food Surveys Research Group: Beltsville, MD, USA, 2014. Available online: www.ars.usda.gov/nea/bhnrc/fsrg (accessed on 5 January 2025).
- U.S. Department of Agriculture, Agricultural Research Service. Flavonoid Values for USDA Survey Foods and Beverages 2017–2018; Food Surveys Research Group Home Page. 2022. Available online: www.ars.usda.gov/nea/bhnrc/fsrg (accessed on 5 January 2025).
- de Franceschi, L.; Turrini, F.; Honczarenko, M.; Ayi, K.; Rivera, A.; Fleming, M.D.; Law, T.; Mannu, F.; Kuypers, F.A.; Bast, A.; et al. In Vivo Reduction of Erythrocyte Oxidant Stress in a Murine Model of Beta-Thalassemia. Haematologica 2004, 89, 1287–1298. [Google Scholar]
- Sen, G.; Mandal, S.; Saha Roy, S.; Mukhopadhyay, S.; Biswas, T. Therapeutic Use of Quercetin in the Control of Infection and Anemia Associated with Visceral Leishmaniasis. Free Radic. Biol. Med. 2005, 38, 1257–1264. [Google Scholar]
- Koonyosying, P.; Kongkarnka, S.; Uthaipibull, C.; Svasti, S.; Fucharoen, S.; Srichairatanakool, S. Green Tea Extract Modulates Oxidative Tissue Injury in Beta-Thalassemic Mice by Chelation of Redox Iron and Inhibition of Lipid Peroxidation. Biomed. Pharmacother. 2018, 108, 1694–1702. [Google Scholar]
- WHO. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity; Vitamin and Mineral Nutrition Information System; World Health Organization: Geneva, Switzerland, 2011; (WHO/NMH/NHD/MNM/11.1). [Google Scholar]
- Sebastian, R.S.; Wilkinson Enns, C.; Goldman, J.D.; Martin, C.L.; Steinfeldt, L.C.; Murayi, T.; Moshfegh, A.J. A New Database Facilitates Characterization of Flavonoid Intake, Sources, and Positive Associations with Diet Quality among US Adults. J. Nutr. 2015, 145, 1239–1248. [Google Scholar]
- Huang, Q.; Braffett, B.H.; Simmens, S.J.; Young, H.A.; Ogden, C.L. Dietary Polyphenol Intake in US Adults and 10-Year Trends: 2007–2016. J. Acad. Nutr. Diet. 2020, 120, 1821–1833. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.-W.; Zhang, X.-L.; Yan, X.-T.; Qi, C.; Jiang, G.-J. Association between Depression and Endometriosis Using Data from NHANES 2005–2006. Sci. Rep. 2023, 13, 18708. [Google Scholar] [CrossRef] [PubMed]
- Serafini, M.; Peluso, I.; Raguzzini, A. Flavonoids as Anti-Inflammatory Agents. Proc. Nutr. Soc. 2010, 69, 273–278. [Google Scholar] [CrossRef]
- Kejík, Z.; Kaplánek, R.; Masařík, M.; Babula, P.; Matkowski, A.; Filipenský, P.; Veselá, K.; Gburek, J.; Sýkora, D.; Martásek, P.; et al. Iron Complexes of Flavonoids-Antioxidant Capacity and Beyond. Int. J. Mol. Sci. 2021, 22, 646. [Google Scholar] [CrossRef]
- Kogawa, T.; Kashiwakura, I. Relationship between Obesity and Serum Reactive Oxygen Metabolites in Adolescents. Environ. Health Prev. Med. 2013, 18, 451–457. [Google Scholar] [CrossRef]
- Bissinger, R.; Bhuyan, A.A.M.; Qadri, S.M.; Lang, F. Oxidative Stress, Eryptosis and Anemia: A Pivotal Mechanistic Nexus in Systemic Diseases. FEBS J. 2019, 286, 826–854. [Google Scholar] [CrossRef]
- Fibach, E.; Rachmilewitz, E. The Role of Oxidative Stress in Hemolytic Anemia. Curr. Mol. Med. 2008, 8, 609–619. [Google Scholar] [CrossRef]
- Verga Falzacappa, M.V.; Vujic Spasic, M.; Kessler, R.; Stolte, J.; Hentze, M.W.; Muckenthaler, M.U. STAT3 Mediates Hepatic Hepcidin Expression and Its Inflammatory Stimulation. Blood 2007, 109, 353–358. [Google Scholar] [CrossRef]
- Sakamori, R.; Takehara, T.; Tatsumi, T.; Shigekawa, M.; Hikita, H.; Hiramatsu, N.; Kanto, T.; Hayashi, N. STAT3 Signaling within Hepatocytes Is Required for Anemia of Inflammation in Vivo. J. Gastroenterol. 2010, 45, 244–248. [Google Scholar] [CrossRef]
- Cheng, H.L.; Amatoury, M.; Steinbeck, K. Energy Expenditure and Intake during Puberty in Healthy Nonobese Adolescents: A Systematic Review. Am. J. Clin. Nutr. 2016, 104, 1061–1074. [Google Scholar] [CrossRef]
- Liu, H.; Wang, S.; Wang, J.; Guo, X.; Song, Y.; Fu, K.; Gao, Z.; Liu, D.; He, W.; Yang, L.-L. Energy Metabolism in Health and Diseases. Signal Transduct. Target. Ther. 2025, 10, 69. [Google Scholar]
- Filgueiras, M.S.; Rocha, N.P.; Novaes, J.F.; Bressan, J. Vitamin D Status, Oxidative Stress, and Inflammation in Children and Adolescents: A Systematic Review. Crit. Rev. Food Sci. Nutr. 2020, 60, 660–669. [Google Scholar] [CrossRef] [PubMed]
- Hertiš Petek, T.; Homšak, E.; Svetej, M.; Marčun Varda, N. Metabolic Syndrome, Inflammation, Oxidative Stress, and Vitamin D Levels in Children and Adolescents with Obesity. Int. J. Mol. Sci. 2024, 25, 10599. [Google Scholar] [CrossRef] [PubMed]
- Holt, E.M.; Steffen, L.M.; Moran, A.; Basu, S.; Steinberger, J.; Ross, J.A.; Hong, C.-P.; Sinaiko, A.R. Fruit and Vegetable Consumption and Its Relation to Markers of Inflammation and Oxidative Stress in Adolescents. J. Am. Diet. Assoc. 2009, 109, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Rupérez, A.I.; Mesa, M.D.; Anguita-Ruiz, A.; González-Gil, E.M.; Vázquez-Cobela, R.; Moreno, L.A.; Gil, Á.; Gil-Campos, M.; Leis, R.; Bueno, G.; et al. Antioxidants and Oxidative Stress in Children: Influence of Puberty and Metabolically Unhealthy Status. Antioxidants 2020, 9, 618. [Google Scholar] [CrossRef]
- Niveditha, S.; Deepashree, S.; Ramesh, S.R.; Shivanandappa, T. Sex Differences in Oxidative Stress Resistance in Relation to Longevity in Drosophila Melanogaster. J. Comp. Physiol. B 2017, 187, 899–909. [Google Scholar] [CrossRef]
- Yuan, R.; Tsaih, S.-W.; Petkova, S.B.; Marin de Evsikova, C.; Xing, S.; Marion, M.A.; Bogue, M.A.; Mills, K.D.; Peters, L.L.; Bult, C.J.; et al. Aging in Inbred Strains of Mice: Study Design and Interim Report on Median Lifespans and Circulating IGF1 Levels. Aging Cell 2009, 8, 277–287. [Google Scholar] [CrossRef]
- Kander, M.C.; Cui, Y.; Liu, Z. Gender Difference in Oxidative Stress: A New Look at the Mechanisms for Cardiovascular Diseases. J. Cell. Mol. Med. 2017, 21, 1024–1032. [Google Scholar] [CrossRef]
- Li, L.; Boehn, S.N.; Yu, X.; Zhang, Q.; Kenzelmann, M.; Techel, D.; Mohamed, S.A.; Jakob, P.; Kraenzlin, B.; Hoffmann, S.; et al. Faster Rates of Post-Puberty Kidney Deterioration in Males Is Correlated with Elevated Oxidative Stress in Males vs Females at Early Puberty. BMC Genom. 2007, 8, 221. [Google Scholar] [CrossRef]
- Martínez de Toda, I.; González-Sánchez, M.; Díaz-Del Cerro, E.; Valera, G.; Carracedo, J.; Guerra-Pérez, N. Sex Differences in Markers of Oxidation and Inflammation. Implications for Ageing. Mech. Ageing Dev. 2023, 211, 111797. [Google Scholar] [CrossRef]
- Li, X.; Xie, E.; Sun, S.; Shen, J.; Ding, Y.; Wang, J.; Peng, X.; Zheng, R.; Farag, M.A.; Xiao, J. Flavonoids for Gastrointestinal Tract Local and Associated Systemic Effects: A Review of Clinical Trials and Future Perspectives. J. Adv. Res. 2025. [Google Scholar] [CrossRef]
- Ren, J.; Meng, S.; Lekka, C.E.; Kaxiras, E. Complexation of Flavonoids with Iron: Structure and Optical Signatures. J. Phys. Chem. B 2008, 112, 1845–1850. [Google Scholar] [CrossRef] [PubMed]
- Beck, K.L.; Conlon, C.A.; Kruger, R.; Coad, J. Dietary Determinants of and Possible Solutions to Iron Deficiency for Young Women Living in Industrialized Countries: A Review. Nutrients 2014, 6, 3747–3776. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Agriculture, Agricultural Research Service. Nutrient Intakes from Food and Beverages: Mean Amounts Consumed per Individual, by Gender and Age, What We Eat in America, NHANES 2011–2012, 2014.
- Aron, P.M.; Kennedy, J.A. Flavan-3-Ols: Nature, Occurrence and Biological Activity. Mol. Nutr. Food Res. 2008, 52, 79–104. [Google Scholar]
- Bors, W.; Michel, C.; Stettmaier, K. Electron Paramagnetic Resonance Studies of Radical Species of Proanthocyanidins and Gallate Esters. Arch. Biochem. Biophys. 2000, 374, 347–355. [Google Scholar]
- Skibola, C.F.; Smith, M.T. Potential Health Impacts of Excessive Flavonoid Intake. Free Radic. Biol. Med. 2000, 29, 375–383. [Google Scholar]
Charasteristics | All Subjects (N = 6815) | Non-Anemia (N = 6505) | Anemia (N = 310) | pa |
---|---|---|---|---|
Age | <0.001 | |||
1–6 | 2049 (23.69) | 1975 (23.84) | 74 (19.85) | |
7–12 | 2177 (29.26) | 2108 (29.70) | 69 (18.26) | |
13–20 | 2589 (47.05) | 2422 (46.46) | 167 (61.89) | |
Sex | <0.001 | |||
Female | 3336 (49.0) | 3116 (48) | 220 (74.06) | |
Male | 3479 (51.0) | 3389 (52) | 90 (25.94) | |
Energy intake(kcal) | 1788.50 (1409.00, 2258.50) | 1791.50 (1414.00, 2263.50) | 1694.00 (1314.50, 2161.00) | 0.05 |
Vitamin C(mg) | 77.49(74.48, 80.49) | 77.55(74.44, 80.65) | 76.02(68.47, 83.57) | 0.71 |
Vitamin E(mg) | 6.58(6.39, 6.76) | 6.59(6.40, 6.77) | 6.33(5.83, 6.83) | 0.36 |
Vitamin B12(μg) | 4.29 (2.81, 6.19) | 4.32 (2.83, 6.24) | 3.80 (2.42, 4.91) | <0.001 |
Vitamin B6(mg) | 1.55 (1.13, 2.13) | 1.56 (1.14, 2.15) | 1.37 (1.01, 1.91) | <0.001 |
Total folate(μg) | 327.50 (237.50, 455.50) | 328.00 (238.00, 456.50) | 290.00 (204.50, 406.50) | <0.001 |
Iron(mg) | 12.60 (9.28, 17.24) | 12.65 (9.31, 17.33) | 11.21 (8.36, 15.11) | <0.001 |
Total sum of all 29 flavonoids(mg) | 40.10 (18.41, 87.10) | 40.41 (18.53, 87.56) | 32.95 (14.52, 82.44) | 0.03 |
BMI | <0.001 | |||
Normal weight | 5071 (75.08) | 4868 (78.71) | 203 (71.95) | |
Overweight | 736 (12.20) | 702 (12.80) | 34 (11.36) | |
Obese | 555 (8.42) | 509 (8.49) | 46 (16.68) | |
Ethnicity | <0.001 | |||
White | 2220 (55.84) | 2175 (56.72) | 45 (33.73) | |
Black | 1494 (13.45) | 1329 (12.40) | 165 (39.67) | |
Other | 3101 (30.71) | 3001 (30.88) | 100 (26.51) | |
PIR | 0.06 | |||
≤1.35 | 2965 (32.69) | 2817 (32.33) | 148 (41.60) | |
1.36–3 | 1781 (25.90) | 1706 (26.05) | 75 (22.10) | |
>3 | 1548 (35.20) | 1482 (35.34) | 66 (31.64) | |
Unknown | 521 (6.22) | 500 (6.28) | 21 (4.67) |
Flavonoid Class | Low-Intake (Ref) | Median-Intake | High-Intake | p-Trend |
---|---|---|---|---|
Isoflavones | ||||
Crude | 1.00 | 1.164 (0.794,1.706) | 0.933 (0.684, 1.273) | 0.425 |
Model 1 | 1.00 | 1.188 (0.799, 1.768) | 0.936 (0.684, 1.283) | 0.412 |
Model 2 | 1.00 | 1.253 (0.803, 1.955) | 1.005 (0.701, 1.442) | 0.68 |
Model 3 | 1.00 | 1.266 (0.791, 2.026) | 1.007 (0.712, 1.423) | 0.69 |
Anthocyanidins | ||||
Crude | 1.00 | 0.785 (0.544, 1.134) | 0.642 (0.449, 0.917) | 0.035 |
Model 1 | 1.00 | 0.829 (0.563, 1.223) | 0.626 (0.428, 0.917) | 0.026 |
Model 2 | 1.00 | 0.771 (0.513, 1.158) | 0.708 (0.486, 1.031) | 0.154 |
Model 3 | 1.00 | 0.724 (0.494, 1.060) | 0.992 (0.932, 1.055) | 0.179 |
Flavan-3-ols | ||||
Crude | 1.00 | 0.709 (0.478, 1.052) | 0.586 (0.430, 0.797) | 0.004 |
Model 1 | 1.00 | 0.731 (0.492, 1.085) | 0.580 (0.424, 0.793) | 0.003 |
Model 2 | 1.00 | 0.806 (0.514, 1.264) | 0.624 (0.414, 0.940) | 0.03 |
Model 3 | 1.00 | 0.816 (0.517, 1.289) | 0.612 (0.406, 0.921) | 0.023 |
Flavanones | ||||
Crude | 1.00 | 0.713 (0.531, 0.955) | 0.835 (0.643, 1.084) | 0.724 |
Model 1 | 1.00 | 0.680 (0.511, 0.905) | 0.820 (0.632, 1.065) | 0.746 |
Model 2 | 1.00 | 0.668 (0.497, 0.898) | 0.720 (0.509, 1.017) | 0.345 |
Model 3 | 1.00 | 0.664 (0.496, 0.890) | 0.747 (0.505, 1.105) | 0.493 |
Flavones | ||||
Crude | 1.00 | 0.785 (0.551, 1.117) | 0.865 (0.615, 1.217) | 0.578 |
Model 1 | 1.00 | 0.759 (0.527, 1.093) | 0.807 (0.566, 1.150) | 0.364 |
Model 2 | 1.00 | 0.668 (0.497, 0.898) | 0.720 (0.509, 1.017) | 0.932 |
Model 3 | 1.00 | 0.999 (0.687, 1.455) | 0.990 (0.931, 1.053) | 0.752 |
Flavonols | ||||
Crude | 1.00 | 1.069 (0.767, 1.491) | 0.790 (0.561, 1.114) | 0.01 |
Model 1 | 1.00 | 1.035 (0.739, 1.449) | 0.720 (0.519, 0.999) | 0.06 |
Model 2 | 1.00 | 1.056 (0.698, 1.597) | 0.790 (0.516, 1.209) | 0.29 |
Model 3 | 1.00 | 1.064 (0.697, 1.625) | 0.813 (0.522, 1.267) | 0.24 |
Total flavonoids | ||||
Crude | 1.00 | 0.682 (0.485, 0.959) | 0.684 (0.511, 0.915) | 0.035 |
Model 1 | 1.00 | 0.688 (0.479, 0.986) | 0.642 (0.483, 0.853) | 0.008 |
Model 2 | 1.00 | 0.662 (0.438, 0.999) | 0.657 (0.465, 0.929) | 0.045 |
Model 3 | 1.00 | 0.655 (0.428, 1.003) | 0.641 (0.439, 0.935) | 0.044 |
Low-Intake (Ref) | Median-Intake | High-Intake | p for Trend | p for Interaction | |
---|---|---|---|---|---|
Age | 0.919 | ||||
1–6 | 1.00 | 0.905 (0.480, 1.703) | 0.712 (0.363, 1.395) | 0.307 | |
7–12 | 1.00 | 0.577 (0.303, 1.100) | 0.637 (0.332, 1.221) | 0.149 | |
13–20 | 1.00 | 0.711 (0.411, 1.230) | 0.664 (0.440, 0.997) | 0.048 | |
Sex | 0.002 | ||||
Female | 1.00 | 0.475 (0.297, 0.760) | 0.668 (0.475, 0.939) | 0.025 | |
Male | 1.00 | 1.426 (0.835, 2.436) | 0.616 (0.345, 1.101) | 0.113 | |
Ethnicity | 0.35 | ||||
White | 1.00 | 0.573 (0.251, 1.308) | 0.897 (0.488, 1.649) | 0.701 | |
Black | 1.00 | 0.736 (0.465, 1.166) | 0.721 (0.508, 1.024) | 0.069 | |
Other | 1.00 | 0.636 (0.364, 1.110) | 0.436 (0.266, 0.714) | 0.002 | |
PIR | 0.363 | ||||
>3 | 1.00 | 0.739 (0.372, 1.469) | 1.027 (0.563, 1.872) | 0.915 | |
1.36–3 | 1.00 | 0.574 (0.285, 1.155) | 0.374 (0.168, 0.835) | 0.019 | |
≤1.35 | 1.00 | 0.752 (0.485, 1.166) | 0.713 (0.446, 1.142) | 0.158 | |
Unknown | 1.00 | 0.417 (0.106, 1.650) | 0.418 (0.120, 1.464) | 0.171 | |
BMI | 0.122 | ||||
Normal weight | 1.00 | 0.612 (0.394, 0.951) | 0.745 (0.524, 1.060) | 0.098 | |
Obese | 1.00 | 0.606 (0.258, 1.423) | 0.366 (0.161, 0.835) | 0.016 | |
Overweight | 1.00 | 1.709 (0.564, 5.178) | 0.709 (0.234, 2.144) | 0.57 |
Low-Intake (Ref) | Median-Intake | High-Intake | p for Trend | p for Interaction | |
---|---|---|---|---|---|
Age | 0.454 | ||||
1–6 | 1.00 | 1.055 (0.506, 2.199) | 0.771 (0.440, 1.352) | 0.211 | |
7–12 | 1.00 | 0.500 (0.237, 1.055) | 0.578 (0.293, 1.141) | 0.255 | |
13–20 | 1.00 | 0.842 (0.530, 1.339) | 0.563 (0.346, 0.916) | 0.023 | |
Sex | 0.5 | ||||
Female | 1.00 | 0.613 (0.396, 0.948) | 0.555 (0.390, 0.789) | 0.01 | |
Male | 1.00 | 0.932 (0.458, 1.899) | 0.650 (0.322, 1.312) | 0.181 | |
Ethnicity | 0.367 | ||||
White | 1.00 | 0.644 (0.233, 1.779) | 0.591 (0.258, 1.353) | 0.292 | |
Black | 1.00 | 1.147 (0.767, 1.716) | 0.861 (0.616, 1.204) | 0.219 | |
Other | 1.00 | 0.582 (0.358, 0.944) | 0.397 (0.224, 0.700) | 0.008 | |
PIR | 0.497 | ||||
>3 | 1.00 | 0.894 (0.382, 2.092) | 0.714 (0.331, 1.541) | 0.366 | |
1.36–3 | 1.00 | 0.471 (0.238, 0.933) | 0.347 (0.166, 0.727) | 0.018 | |
≤1.35 | 1.00 | 0.822 (0.520, 1.299) | 0.696 (0.432, 1.123) | 0.183 | |
Unknown | 1.00 | 0.302 (0.080, 1.148) | 0.533 (0.171, 1.657) | 0.458 | |
BMI | 0.351 | ||||
Normal weight | 1.00 | 0.653 (0.400, 1.067) | 0.544 (0.356, 0.831) | 0.019 | |
Obese | 1.00 | 0.733 (0.376, 1.427) | 0.478 (0.190, 1.201) | 0.158 | |
Overweight | 1.00 | 1.840 (0.723, 4.681) | 1.163 (0.402, 3.368) | 0.933 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Wang, Z.; Yu, Z.; Niu, T. Dietary Flavonoid Intake and Anemia Risk in Children and Adolescents: Insights from National Health and Nutrition Examination Survey. Antioxidants 2025, 14, 395. https://doi.org/10.3390/antiox14040395
Li L, Wang Z, Yu Z, Niu T. Dietary Flavonoid Intake and Anemia Risk in Children and Adolescents: Insights from National Health and Nutrition Examination Survey. Antioxidants. 2025; 14(4):395. https://doi.org/10.3390/antiox14040395
Chicago/Turabian StyleLi, Linfeng, Zhongwang Wang, Zhengyu Yu, and Ting Niu. 2025. "Dietary Flavonoid Intake and Anemia Risk in Children and Adolescents: Insights from National Health and Nutrition Examination Survey" Antioxidants 14, no. 4: 395. https://doi.org/10.3390/antiox14040395
APA StyleLi, L., Wang, Z., Yu, Z., & Niu, T. (2025). Dietary Flavonoid Intake and Anemia Risk in Children and Adolescents: Insights from National Health and Nutrition Examination Survey. Antioxidants, 14(4), 395. https://doi.org/10.3390/antiox14040395