Oxidative Stress and Salivary Physicochemical Characteristics Relative to Dental Caries and Restorative Treatment in Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Participants
2.3. Saliva Sampling
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fejerskov, O.; Nyvad, B.; Kidd, E. Dental Caries: The Disease and Its Clinical Management, 3rd ed.; Wiley Blackwell: Oxford, UK, 2015; pp. 7–8. [Google Scholar]
- Takahashi, N.; Nyvad, B. The Role of Bacteria in the Caries Process: Ecological Perspectives. J. Dent. Res. 2011, 90, 294–303. [Google Scholar]
- Lenander-Lumikari, M.; Loimaranta, V. Saliva and dental caries. Adv. Dent. Res. 2000, 14, 40–47. [Google Scholar]
- Bagherian, A.; Asadikaram, G. Comparison of some salivary characteristics between children with and without early childhood caries. Indian J. Dent. Res. 2012, 23, 628–632. [Google Scholar] [PubMed]
- Gao, X.l.; Jiang, S.; Koh, D.; Hsu, C.Y.S. Salivary biomarkers for dental caries. Periodontol. 2000 2016, 70, 128–141. [Google Scholar] [CrossRef] [PubMed]
- Javaid, M.A.; Ahmed, A.S.; Durand, R.; Tran, S.D. Saliva as a diagnostic tool for oral and systemic diseases. J. Oral Biol. Craniofacial Res. 2016, 6, 66–75. [Google Scholar]
- Ahmadi-Motamayel, F.; Goodarzi, M.T.; Mahdavinezhad, A.; Jamshidi, Z.; Darvishi, M.C. Salivary and Serum Antioxidant and Oxidative Stress Markers in Dental Caries. Caries Res. 2018, 52, 565–569. [Google Scholar]
- Pyati, S.A.; Kumar, N.R.; Vinod Kumar, V.; Kumar, P.N.H.; Reddy, K.M.P. Salivary Flow Rate, pH, Buffering Capacity, Total Protein, Oxidative Stress and Antioxidant Capacity in Children with and without Dental Caries. J. Clin. Pediatr. Dent. 2018, 42, 445–449. [Google Scholar]
- Araujo, H.C.; Nakamune, A.C.M.S.; Garcia, W.G.; Pessan, J.P.; Antoniali, C. Carious Lesion Severity Induces Higher Antioxidant System Activity and Consequently Reduces Oxidative Damage in Children’s Saliva. Oxid. Med. Cell Longev. 2020, 2020, 3695683. [Google Scholar]
- Silva, P.V.D.; Troiano, J.A.; Nakamune, A.C.M.S.; Pessan, J.P.; Antoniali, C. Increased activity of the antioxidants systems modulate the oxidative stress in saliva of toddlers with early childhood caries. Arch. Oral Biol. 2016, 70, 62–66. [Google Scholar]
- Meera, S.; Sarangarajan, R.; Rajkumar, K. 8-Isoprostane: A salivary oxidative stress biomarker for oral submucous fibrosis and oral squamous cell carcinoma. J. Oral Maxillofac. Pathol. 2020, 24, 279–284. [Google Scholar] [CrossRef]
- Dinesan, A.S.; Ravindran, R. Evaluation of Salivary 8-Isoprostane in Oral Lichen Planus: Case Control Study. J. Orofac. Sci. 2020, 12, 113–118. [Google Scholar]
- Koregol, A.C.; Kalburgi, N.B.; Kanniappa Sadasivan, S.; Warad, S.; Kamat Wagh, A.; Thomas, T.; Sinha, P. 8-Isoprostane in chronic periodontitis and type II diabetes: Exploring the link. J. Dent. Res. Dent. Clin. Dent. Prospect. 2018, 12, 252–257. [Google Scholar]
- Jayanthi, P.; Kavitha, E.G.; Ameena, M. Comparative evaluation of salivary F2-isoprostane in type II Diabetic patients with non-diabetic individuals. JIDA 2021, 15, 23–28. [Google Scholar]
- Tulunoglu, O.; Demirtas, S.; Tulunoglu, I. Total antioxidant levels of saliva in children related to caries, age and gender. Int. J. Paediatr. Dent. 2006, 16, 186–191. [Google Scholar] [PubMed]
- Ahmadi-Motamayel, F.; Goodarzi, M.T.; Hendi, S.S.; Kasraei, S.; Moghimbeigi, A. Total antioxidant capacity of saliva and dental caries. Med. Oral Patol. Oral Cir. Bucal 2013, 18, 553–556. [Google Scholar]
- Amrollahi, N.; Enshaei, Z.; Kavousi, F. Salivary Malondialdehyde Level as a Lipid Peroxidation Marker in Early Childhood Caries. Iran. J. Pediatr. 2021, 31, e113824. [Google Scholar]
- World Health Organization. Oral Health Surveys: Basic Methods, 4th ed.; World Health Organization: Geneva, Switzerland, 1997.
- Tóthová, L.; Celecová, V.; Celec, P. Salivary markers of oxidative stress and their relation to periodontal and dental status in children. Dis. Markers 2013, 34, 9–15. [Google Scholar] [CrossRef]
- Hardt, M.; Witkowska, H.E.; Webb, S.; Thomas, L.R.; Dixon, S.E.; Hall, S.C.; Fisher, S.J. Assessing the effects of diurnal variation on the composition of human parotid saliva: Quantitative analysis of native peptides using iTRAQ reagents. Anal. Chem. 2005, 77, 494754. [Google Scholar]
- Brand, H.S.; Bruins, M.L.; Veerman, E.C.; Nieuw Amerongen, A.V. Secretion rate and amylase concentration of whole saliva after consumption of beer. Int. J. Dent. Hyg. 2006, 4, 160–161. [Google Scholar]
- Ericsson, Y. Clinical investigation of the salivary buffering action. Acta Odontol. Scand. 1959, 17, 131–165. [Google Scholar]
- Field, A.P. Discovering Statistics Using IBM SPSS Statistics, 5th ed.; Sage: Newbury Park, CA, USA, 2018. [Google Scholar]
- Mehta, C.R.; Patel, N.R. Exact permutational inference for categorical and nonparametric data. In Statistical Strategies for Small Sample Research; Hoyle, R.H., Ed.; Sage Publications: Thousand Oaks, CA, USA, 1999; pp. 133–166. [Google Scholar]
- Jacoby, W.G. Loess. A nonparametric, graphical tool for depicting relationships between variables. Elect. Stud. 2000, 19, 577–613. [Google Scholar] [CrossRef]
- Hegde, A.; Rai, K.; Padmanabhan, V. Total antioxidant capacity of saliva and its relation with early childhood caries and rampant caries. J. Clin. Pediatr. Dent. 2009, 33, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Preethi, B.P.; Reshma, D.; Anand, P. Evaluation of flow rate, pH, buffering capacity, calcium, total proteins and total antioxidant capacity levels of saliva in caries free and caries active children: An in vivo study. Indian J. Clin. Biochem. 2010, 25, 425–428. [Google Scholar] [CrossRef]
- Dodwad, R.; Betigeri, A.V.; Preeti, B.P. Estimation of total antioxidant capacity levels in saliva of caries-free and caries-active children. Contemp. Clin. Dent. 2011, 2, 17–20. [Google Scholar] [CrossRef]
- Krawczyk, D.; Sikorska-Jaroszynska, M.H.J.; Mielnik-Błaszczak, M.; Pasternak, K.; Kapec, E.; Sztanke, M. Dental caries and total antioxidant status of unstimulated mixed whole saliva in patients aged 16–23 years. Adv. Med. Sci. 2012, 57, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Subramanyam, D.; Gurunathan, D.; Gaayathri, R.; Vishnu Priya, V. Comparative evaluation of salivary malondialdehyde levels as a marker of lipid peroxidation in early childhood caries. Eur. J. Dent. 2018, 12, 67–70. [Google Scholar] [CrossRef]
- Cracowski, J.L.; Durand, T.; Bessard, G. Isoprostanes as a biomarker of lipid peroxidation in humans: Physiology, pharmacology and clinical implications. Trends Pharmacol. Sci. 2002, 23, 360–366. [Google Scholar] [CrossRef]
- Basu, S. F2-Isoprostanes in Human Health and Diseases: From Molecular Mechanisms to Clinical Implications. Antioxid. Redox Signal. 2008, 10, 1405–1434. [Google Scholar] [CrossRef]
- Ito, F.; Sono, Y.; Ito, T. Measurement and Clinical Significance of Lipid Peroxidation as a Biomarker of Oxidative Stress: Oxidative Stress in Diabetes, Atherosclerosis, and Chronic Inflammation. Antioxidants 2019, 8, 72. [Google Scholar] [CrossRef]
- Niki, E.; Yoshida, Y.; Saito, Y.; Noguchi, N. Lipid peroxidation: Mechanisms, inhibition, and biological effects. Biochem. Biophys. Res. Commun. 2005, 338, 668–676. [Google Scholar] [CrossRef]
- Catalá, A. Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem. Phys. Lipids 2009, 157, 1–11. [Google Scholar]
- Gào, X.; Brenner, H.; Holleczek, B.; Cuk, K.; Zhang, Y.; Anusruti, A.; Schöttker, B. Urinary 8-isoprostane levels and occurrence of lung, colorectal, prostate, breast and overall cancer: Results from a large, population-based cohort study with 14 years of follow-up. Free Radic. Biol. Med. 2018, 123, 20–26. [Google Scholar] [PubMed]
- Eita, A.A.B.; Zaki, A.M.; Mahmoud, S.A. Serum 8-isoprostane levels in patients with resistant oral lichen planus before and after treatment with lycopene: A randomized clinical trial. BMC Oral Health 2021, 21, 343. [Google Scholar] [CrossRef] [PubMed]
- Roy, B.; Ghosh, S.; Abdulcader Riyaz, S.M.; Patidar, M.; Mehta, U.; Agarwal, P.; Gupta, P. Early diagnosis of oral submucous fibrosis using salivary 8-OHDG and 8-Isoprostane. Bioinformation 2024, 20, 1042–1045. [Google Scholar] [PubMed]
- Marsh, P.D.; Lewis, M.A.O.; Rogers, H.; Williams, D.; Wilson, M. Oral Microbiology, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Pradeep, A.R.; Rao, N.S.; Bajaj, P.; Agarwal, E. 8-Isoprostane: A lipid peroxidation product in gingival crevicular fluid in healthy, gingivitis and chronic periodontitis subjects. Arch. Oral Biol. 2013, 58, 500–504. [Google Scholar]
- Graille, M.; Wild, P.; Sauvain, J.J.; Hemmendinger, M.; Guseva, C.I.; Hopf, N.B. Urinary 8-isoprostane as a biomarker for oxidative stress. A systematic review and meta-analysis. Toxicol. Lett. 2020, 328, 19–27. [Google Scholar] [CrossRef]
- Alanazi, G.S.; Pani, S.C.; AlKabbaz, H.J. Salivary antioxidant capacity of children with severe early childhood caries before and after complete dental rehabilitation. Arch. Oral Biol. 2018, 95, 165–169. [Google Scholar]
- Sivaranjani, S.; Annasamy, R.; James, A.; Krishnan, R.; Mahalingam, R.; Arunachalam, P. Evaluating the role of salivary oxidative stress marker malondialdehyde in dental caries–A comparative study. J. Indian Acad. Oral Med. Radiol. 2022, 34, 390–393. [Google Scholar]
- Mathew, M.G.; Jeevanandan, G. Comparison of Total Salivary Antioxidant Capacity of Children with and without Severe Early Childhood Caries before and after Complete Dental Rehabilitation. Int. J. Clin. Pediatr. Dent. 2023, 16, 474–477. [Google Scholar]
- Zarban, A.; Ebrahimipour, S.; Sharifzadeh, G.R.; Rashed-Mohassel, A.; Barkooi, M. Comparison of salivary antioxidants in children with primary tooth abscesses before and after treatment in comparison with healthy subjects. Asian Pac. J. Cancer Prev. 2017, 18, 3315–3318. [Google Scholar]
- Yawary, R.; Anthonappa, R.P.; Ekambaram, M.; McGrath, C.; King, N.M. Changes in the oral health-related quality of life in children following comprehensive oral rehabilitation under general anaesthesia. Int. J. Paediatr. Dent. 2016, 26, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Vetrani, C.; Costabil, G.; Di Marino, L.; Rivellese, A.A. Nutrition and oxidative stress: A systematic review of human studies. Int. J. Food Sci. Nutr. 2013, 64, 312–326. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Block, G.; Norkus, E.P.; Morrow, J.D.; Dietrich, M.; Hudeset, M. Relations of glycemic index and glycemic load with plasma oxidative stress markers. Am. J. Clin. Nutr. 2006, 84, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Kim, O.Y.; Yoe, H.Y.; Kim, H.J.; Park, J.Y.; Kim, J.Y.; Lee, S.H.; Lee, J.H.; Lee, K.P.; Jang, Y.; Lee, J.H. Independent inverse relationship between serum lycopene concentration and arterial stiffness. Atherosclerosis 2010, 208, 581–586. [Google Scholar]
- Tayab, T.; Rai, K.; Kumari, A.V. Evaluating the physicochemical properties and inorganic elements of saliva in caries-free and caries-active children. An in vivo study. Eur. J. Paediatr. Dent. 2012, 13, 107–112. [Google Scholar]
- Thaweboon, S.; Thaweboon, B.; Nakornchai, S.; Jitmaitree, S. Salivary secretory IgA, pH, flow rates, mutans streptococci and Candida in children with rampant caries. Southeast Asian J. Trop. Med. Public Health 2008, 39, 893–899. [Google Scholar]
- Dos Santos Letieri, A.; Siqueira, W.L.; Solon-de-Mello, M.; Masterson, D.; Freitas-Fernandes, L.B.; Valente, A.P.; Ribeiro de Souza, I.P.; da Silva Fidalgo, T.K.; Maia, L.C. A critical review on the association of hyposalivation and dental caries in children and adolescents. Arch. Oral Biol. 2022, 144, 105545. [Google Scholar]
- Chen, C.H.; Lu, Y.P.; Lee, A.T.; Tung, C.W.; Tsai, Y.H.; Tsay, H.P.; Lin, C.T.; Yang, J.T. A Portable Biodevice to Monitor Salivary Conductivity for the Rapid Assessment of Fluid Status. J. Pers. Med. 2021, 11, 577. [Google Scholar] [CrossRef]
- Seethalakshmi, C.; Reddy, R.C.; Asifa, N.; Prabhu, S. Correlation of Salivary pH, Incidence of Dental Caries and Periodontal Status in Diabetes Mellitus Patients: A Cross-sectional Study. J. Clin. Diagn. Res. 2016, 10, 12–14. [Google Scholar]
- Ferdose, J.; Shamsuzzaman, A.M.; Alom, M.S.; Tasnim, A.; Rahman, N. Correlation Between pH of Saliva and Dental Caries among Children of Rajshahi City. TAJ J. Teach. Assoc. 2020, 33, 31–34. [Google Scholar]
- Akleyin, E.; Sarıyıldız, C.O.; Yavuz, I.; Toptanc, I. Saliva analysis in children with active caries before and after dental treatment. Dent. J. 2022, 55, 120–124. [Google Scholar] [CrossRef]
- Aminabadi, N.A.; Najafpour, E.; Rohani, Z.R.; Deljavan, A.S.; Ghojazadeh, M.; Jamali, Z. Linear reciprocal interaction between dental caries and salivary characteristics. J. Oral Sci. 2013, 55, 337–342. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Group | |
---|---|---|
Caries-Active | Caries-Free | |
Age (months) | 91.9 ± 22.6 | 93.9 ± 26.9 |
Males [number, (%)] | 13 (50) | 12 (60) |
DMFT/dmft index | 8.9 ± 4.2 | 0.0 ± 0.0 |
DT index | 2.1 ± 1.9 | 0.0 ± 0.0 |
dt index | 6.9 ± 3.7 | 0.0 ± 0.0 |
DT + dt index | 9.1 ± 4 | 0.0 ± 0.0 |
Characteristics | Group | p-Value + | Effect Size | |||
---|---|---|---|---|---|---|
Caries-Active | Caries-Free | |||||
Mean ± SD | Median (Min–Max) | Mean ± SD | Median (Min–Max) | |||
Flow rate (mL/min) | 0.54 ± 0.23 | 0.50 (0.22–1.00) | 0.58 ± 0.37 | 0.50 (0.20–1.70) | 0.840 | r = 0.031 |
Conductivity (μS/cm) | 2255.38 ± 565.09 | 2140.00 (1200.00–4000.00) | 2700.00 ± 655.34 | 2665.00 (1560.00–4380.00) | 0.018 * | d = 0.734 |
pH | 7.29 ± 0.52 | 7.30 (6.10–8.00) | 7.85 ± 0.53 | 7.85 (7.10–9.00) | 0.001 * | d = 1.071 |
Buffer capacity (pH) | 6.59 ± 0.95 | 6.70 (3.80–8.00) | 7.13 ± 0.83 | 7.10 (5.20–8.60) | 0.070 | r = 0.267 |
8-isoprostane (pg/mL) | 189.10 ± 186.17 | 116.25 (5.90–662.00) | 205.76 ± 140.96 | 180.70 (44.90–517.20) | 0.311 | r = 0.163 |
Characteristics | Group | |
---|---|---|
Caries-Active 95% C.I. | Caries-Free 95% C.I. | |
Flow rate (mL/min) | 0.45–0.64 | 0.41–0.75 |
Conductivity (μS/cm) | 2027.14–2483.63 | 2393.29–3006.71 |
pH | 7.08–7.50 | 7.60–8.10 |
Buffer capacity (pH) | 6.20–6.97 | 6.74–7.51 |
8-isoprostane (pg/mL) | 101.97–276.23 | 139.78–271.73 |
Characteristics | Treatment | p-Value + | Effect Size | |||
---|---|---|---|---|---|---|
Before | After | |||||
Mean ± SD | Median (Min–Max) | Mean ± SD | Median (Min–Max) | |||
Flow rate (mL/min) | 0.54 ± 0.23 | 0.50 (0.22–1.00) | 0.52 ± 0.15 | 0.48 (0.30–1.00) | 0.779 | d = 0.059 |
Conductivity (μS/cm) | 2255.38 ± 565.09 | 2140.00 (1200.00–4000.00) | 2753.48 ± 784.22 | 2730.00 (1440.00–4300.00) | 0.008 * | d = 0.606 |
pH | 7.29 ± 0.52 | 7.30 (6.10–8.00) | 7.57 ± 0.60 | 7.50 (6.50–8.80) | 0.074 | d = 0.392 |
Buffer capacity (pH) | 6.59 ± 0.95 | 6.70 (3.80–8.00) | 7.49 ± 0.69 | 7.50 (5.20–8.90) | <0.001 * | r = 0.597 |
8-isoprostane (pg/mL) | 189.10 ± 186.17 | 116.25 (5.90–662.00) | 98.70 ± 78.81 | 76.30 (4.10–290.69) | 0.030 * | r = 0.336 |
Characteristics | Treatment | |
---|---|---|
Before 95% C.I. | After 95% C.I. | |
Flow rate (mL/min) | 0.45–0.64 | 0.46–0.59 |
Conductivity (μS/cm) | 2027.14–2483.63 | 2414.35–3092.60 |
pH | 7.08–7.50 | 7.31–7.82 |
Buffer capacity (pH) | 6.20–6.97 | 7.19–7.79 |
8-isoprostane (pg/mL) | 101.97–276.23 | 61.82–135.58 |
Characteristics | Caries Activity | |||
---|---|---|---|---|
Pearson’s r Correlation Coefficient | Spearman’s rho | |||
r | p-Value | rho | p-Value | |
Flow rate (mL/min) | −0.146 | 0.338 | −0.24 | 0.874 |
Conductivity (μS/cm) | −0.390 | 0.008 * | −0.398 | 0.007 * |
pH | −0.437 | 0.003 * | −0.467 | 0.001 * |
Buffer capacity (pH) | −0.238 | 0.115 | −0.208 | 0.170 |
8-isoprostane (pg/mL) | −0.204 | 0.206 | −0.279 | 0.081 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poimenidou, A.A.; Geraki, P.; Davidopoulou, S.; Kalfas, S.; Arhakis, A. Oxidative Stress and Salivary Physicochemical Characteristics Relative to Dental Caries and Restorative Treatment in Children. Antioxidants 2025, 14, 405. https://doi.org/10.3390/antiox14040405
Poimenidou AA, Geraki P, Davidopoulou S, Kalfas S, Arhakis A. Oxidative Stress and Salivary Physicochemical Characteristics Relative to Dental Caries and Restorative Treatment in Children. Antioxidants. 2025; 14(4):405. https://doi.org/10.3390/antiox14040405
Chicago/Turabian StylePoimenidou, Anastasia A., Panagiota Geraki, Sotiria Davidopoulou, Sotirios Kalfas, and Aristidis Arhakis. 2025. "Oxidative Stress and Salivary Physicochemical Characteristics Relative to Dental Caries and Restorative Treatment in Children" Antioxidants 14, no. 4: 405. https://doi.org/10.3390/antiox14040405
APA StylePoimenidou, A. A., Geraki, P., Davidopoulou, S., Kalfas, S., & Arhakis, A. (2025). Oxidative Stress and Salivary Physicochemical Characteristics Relative to Dental Caries and Restorative Treatment in Children. Antioxidants, 14(4), 405. https://doi.org/10.3390/antiox14040405