Meta-Analysis of Dietary Curcumin Supplementation in Broiler Chickens: Growth Performance, Antioxidant Status, Intestinal Morphology, and Meat Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Exclusion and Inclusion Criteria
2.3. Data Extraction
2.4. Calculations, Statistical Analysis, Heterogeneity, and Publication Bias
2.5. Meta-Regression and Subgroup Analysis
3. Results
3.1. Growth Performance
3.2. Antioxidant Status in Blood Serum
3.3. Intestinal Morphology
3.4. Carcass Yield and Meat Quality
3.5. Publication Bias and Meta-Regression
3.6. Subgroup Analysis
4. Discussion
4.1. Growth Performance
4.2. Antioxidant Status
4.3. Intestinal Morphology
4.4. Carcass Yield and Meat Quality
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Uzundumlu, A.S.; Dilli, M. Estimating chicken meat productions of leader countries for 2019–2025 years. Cienc. Rural. 2023, 53, e20210477. [Google Scholar] [CrossRef]
- Kim, H.W.; Kwon, C.H.; Lee, J.H.; Kang, M.S.; Kil, D.Y. Effect of dietary β-mannanase supplementation on growth performance, intestinal morphology, digesta viscosity, and nutrient utilization in broiler chickens: Meta-analysis and meta-regression. Anim. Biosci. 2024, 37, 2113–2125. [Google Scholar] [CrossRef]
- Pu, X.; Liang, Y.; Lian, J.; Xu, M.; Yong, Y.; Zhang, H.; Zhang, L.; Zhang, J. Effects of dietary dihydroartemisinin on growth performance, meat quality, and antioxidant capacity in broiler chickens. Poult. Sci. 2025, 104, 104523. [Google Scholar] [CrossRef] [PubMed]
- Ogbuewu, I.; Mokolopi, B.; Mbajiorgu, C. Meta-analysis of growth performance indices of broiler chickens in response to turmeric (Curcuma longa L.) supplementation. Anim. Feed. Sci. Technol. 2022, 283, 115155. [Google Scholar] [CrossRef]
- Geevarghese, A.V.; Kasmani, F.B.; Dolatyabi, S. Curcumin and curcumin nanoparticles counteract the biological and managemental stressors in poultry production: An updated review. Res. Veter. Sci. 2023, 162, 104958. [Google Scholar] [CrossRef]
- Godoy, G.L.; Rodrigues, B.N.; Agilar, J.C.; Biselo, V.; Brutti, D.D.; Maysonnave, G.S.; Stefanello, C. Effects of Acacia mearnsii tannins on growth performance, footpad dermatitis, nutrient digestibility, intestinal permeability, and meat quality of broiler chickens. Anim. Feed. Sci. Technol. 2024, 308, 115875. [Google Scholar] [CrossRef]
- Galli, G.M.; Griss, L.G.; Boiago, M.M.; Petrolli, T.G.; Glombowsky, P.; Bissacotti, B.F.; Copetti, P.M.; Schetinger, M.R.; Sareta, L.; Mendes, R.E.; et al. Effects of curcumin and yucca extract addition in feed of broilers on microorganism control (anticoccidial and antibacterial), health, performance and meat quality. Res. Veter. Sci. 2020, 132, 156–166. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, R.; Jin, S.; Feng, X. Curcumin, a plant polyphenol with multiple physiological functions of improving antioxidation, anti-inflammation, immunomodulation and its application in poultry production. J. Anim. Physiol. Anim. Nutr. 2024, 108, 1890–1905. [Google Scholar] [CrossRef]
- Sureshbabu, A.; Smirnova, E.; Karthikeyan, A.; Moniruzzaman, M.; Kalaiselvi, S.; Nam, K.; Le Goff, G.; Min, T. The impact of curcumin on livestock and poultry animal’s performance and management of insect pests. Front. Veter Sci. 2023, 10, 1048067. [Google Scholar] [CrossRef]
- Salah, A.S.; Mahmoud, M.A.; Ahmed-Farid, O.A.; El-Tarabany, M.S. Effects of dietary curcumin and acetylsalicylic acid supplements on performance, muscle amino acid and fatty acid profiles, antioxidant biomarkers and blood chemistry of heat-stressed broiler chickens. J. Therm. Biol. 2019, 84, 259–265. [Google Scholar] [CrossRef]
- Xie, Z.; Shen, G.; Wang, Y.; Wu, C. Curcumin supplementation regulates lipid metabolism in broiler chickens. Poult. Sci. 2019, 98, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Wang, X.; Shi, W.; Bao, Y. Lonicera flos and Curcuma longa L. extracts improve growth performance, antioxidant capacity and immune response in broiler chickens. Front. Veter. Sci. 2024, 11, 1388632. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Hu, J.; Ai, S.; Li, L.; Ding, B.; Zhao, D.; Wang, L.; Hou, Y. Effects of Pueraria extract and curcumin on growth performance, antioxidant status and intestinal integrity of broiler chickens. Animals 2023, 13, 1276. [Google Scholar] [CrossRef] [PubMed]
- Fathi, M.; Rezaee, V.; Zarrinkavyani, K.; Mardani, P. The impact of curcumin nanoparticles (CurNPs) on growth performance, antioxidant indices, blood biochemistry, gut morphology and cecal microbial profile of broiler chickens. Acta Agric. Scand. Sect. A Anim. Sci. 2024, 73, 10–21. [Google Scholar] [CrossRef]
- Gumus, R.; Ozbilgin, A.; Urcar, G.; Kara, K. Effects of Dietary Resveratrol and Curcumin Supplements on Meat Quality and Storage Time in Broilers. Braz. J. Poult. Sci. 2023, 25, 1–14. [Google Scholar] [CrossRef]
- Pornanek, P.; Phoemchalard, C. Feed added curcumin with increased solubility on plasma lipoprotein, meat quality, and fat content in broiler chicks. Trop. Anim. Health Prod. 2020, 52, 647–652. [Google Scholar] [CrossRef]
- Pan, S.; Yan, J.; Xu, X.; Chen, Y.; Chen, X.; Li, F.; Xing, H. Current development and future application prospects of plants-derived polyphenol bioactive substance curcumin as a novel feed additive in livestock and poultry. Int. J. Mol. Sci. 2022, 23, 11905. [Google Scholar] [CrossRef]
- Tawfik, G.M.; Dila, K.A.S.; Mohamed, M.Y.F.; Tam, D.N.H.; Kien, N.D.; Ahmed, A.M.; Huy, N.T. A step by step guide for conducting a systematic review and meta-analysis with simulation data. Trop. Med. Health 2019, 47, 46. [Google Scholar] [CrossRef]
- Paul, J.; Barari, M. Meta-analysis and traditional systematic literature reviews—What, why, when, where, and how? Psychol. Mark. 2022, 39, 1099–1115. [Google Scholar] [CrossRef]
- Nishikawa-Pacher, A. Research questions with PICO: A universal mnemonic. Publications 2022, 10, 21. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef] [PubMed]
- Yibar, A.; Uzabaci, E. Meta-analysis to predict the effects of probiotics on meat quality of broiler. J. Anim. Physiol. Anim. Nutr. 2024, 108, 1616–1623. [Google Scholar] [CrossRef]
- Drevon, D.; Fursa, S.R.; Malcolm, A.L. Intercoder reliability and validity of WebPlotDigitizer in extracting graphed data. Behav. Modif. 2017, 41, 323–339. [Google Scholar] [CrossRef]
- Lucio-Ruíz, F.; Godina-Rodríguez, J.E.; Granados-Rivera, L.D.; Orzuna-Orzuna, J.F.; Joaquín-Cancino, S.; Hernández-García, P.A. Meta-analysis of dietary supplementation with flavonoids in small ruminants: Growth performance, antioxidant status, nutrient digestibility, ruminal fermentation, and meat quality. Small Rumin. Res. 2024, 241, 107401. [Google Scholar] [CrossRef]
- Orzuna-Orzuna, J.F.; Granados-Rivera, L.D. Growth performance, antioxidant status, intestinal morphology, and body composition of Nile tilapia (Oreochromis niloticus) supplemented with essential oils: A meta-analysis. Res. Veter. Sci. 2024, 176, 105353. [Google Scholar] [CrossRef]
- El-Hack, M.E.A.; Alaidaroos, B.A.; Farsi, R.M.; Abou-Kassem, D.E.; El-Saadony, M.T.; Saad, A.M.; Shafi, M.E.; Albaqami, N.M.; Taha, A.E.; Ashour, E.A. Impacts of supplementing broiler diets with biological curcumin, zinc nanoparticles and Bacillus licheniformis on growth, carcass traits, blood indices, meat quality and cecal microbial load. Animals 2021, 11, 1878. [Google Scholar] [CrossRef]
- Badran, A.M.; Basuony, H.A.; Elsayed, M.A.; Abdel-Moneim, A.M.E. Effect of dietary curcumin and curcumin nanoparticles supplementation on growth performance, immune response and antioxidant of broilers chickens. Egypt. Poult. Sci. J. 2020, 40, 325–343. [Google Scholar] [CrossRef]
- Chen, X.; Li, F.; Xu, X.; Wang, L.; Yu, Y.; Yan, J.; Shan, X.; Zhang, R.; Xing, H.; Zhang, T.; et al. Dietary curcumin supplementation enhances growth performance and anti-inflammatory functions by modulating gut microbiota, microbiota-derived metabolites, and expression of inflammation-related genes in broilers. J. Anim. Sci. 2024, 102, skae296. [Google Scholar] [CrossRef]
- Eleiwa, N.Z.; El-Shabrawi, A.A.; Ibrahim, D.; Abdelwarith, A.A.; Younis, E.M.; Davies, S.J.; Metwally, M.M.M.; Abu-Zeid, E.H. Dietary curcumin modulating effect on performance, antioxidant status, and immune-related response of broiler chickens exposed to imidacloprid insecticide. Animals 2023, 13, 3650. [Google Scholar] [CrossRef]
- Galli, G.M.; Gerbet, R.R.; Griss, L.G.; Fortuoso, B.F.; Petrolli, T.G.; Boiago, M.M.; Souza, C.F.; Baldissera, M.D.; Mesadri, J.; Wagner, R.; et al. Combination of herbal components (curcumin, carvacrol, thymol, cinnamaldehyde) in broiler chicken feed: Impacts on response parameters, performance, fatty acid profiles, meat quality and control of coccidia and bacteria. Microb. Pathog. 2020, 139, 103916. [Google Scholar] [CrossRef]
- Gumus, R.; Ercan, N.; Özbilgin, A.; Moğulkoç, M.; Imik, H. The effect of dietary supplementation with natural antioxidants on growth performance, antioxidant capacity and intestinal microbial counts of broiler. J. Hell. Veter. Med. Soc. 2024, 75, 7441–7450. [Google Scholar] [CrossRef]
- Hafez, M.H.; El-Kazaz, S.E.; Alharthi, B.; Ghamry, H.I.; Alshehri, M.A.; Sayed, S.; Shukry, M.; El-Sayed, Y.S. The impact of curcumin on growth performance, growth-related gene expression, oxidative stress, and immunological biomarkers in broiler chickens at different stocking densities. Animals 2022, 12, 958. [Google Scholar] [CrossRef] [PubMed]
- Nm, J.; Joseph, A.; Maliakel, B.; Im, K. Dietary addition of a standardized extract of turmeric (TurmaFEEDTM) improves growth performance and carcass quality of broilers. J. Anim. Sci. Technol. 2018, 60, 8. [Google Scholar] [CrossRef]
- Rahmani, M.; Golian, A.; Kermanshahi, H.; Bassami, M.R. Effects of curcumin and nanocurcumin on growth performance, blood gas indices and ascites mortalities of broiler chickens reared under normal and cold stress conditions. Ital. J. Anim. Sci. 2017, 16, 438–446. [Google Scholar] [CrossRef]
- Rahmani, M.; Golian, A.; Kermanshahi, H.; Bassami, M.R. Effects of curcumin or nanocurcumin on blood biochemical parameters, intestinal morphology and microbial population of broiler chickens reared under normal and cold stress conditions. J. Appl. Anim. Res. 2018, 46, 200–209. [Google Scholar] [CrossRef]
- Rajput, N.; Naeem, M.; Ali, S.; Zhang, J.F.; Zhang, L.; Wang, T. The effect of dietary supplementation with the natural carotenoids curcumin and lutein on broiler pigmentation and immunity. Poult. Sci. 2013, 92, 1177–1185. [Google Scholar] [CrossRef]
- Rajput, N.; Muhammad, N.; Yan, R.; Zhong, X.; Wang, T. Effect of dietary supplementation of curcumin on growth performance, intestinal morphology and nutrients utilization of broiler chicks. J. Poult. Sci. 2013, 50, 44–52. [Google Scholar] [CrossRef]
- Salah, A.S.; Ahmed-Farid, O.A.; Nassan, M.A.; El-Tarabany, M.S. Dietary curcumin improves energy metabolism, brain monoamines, carcass traits, muscle oxidative stability and fatty acid profile in heat-stressed broiler chickens. Antioxidants 2021, 10, 1265. [Google Scholar] [CrossRef]
- Shan, X.; Xu, X.; Wang, L.; Lu, Y.; Chen, X.; Li, F.; Du, M.; Xing, H.; Pan, S. Dietary curcumin supplementation attenuates hepatic damage and function abnormality in a chronic corticosterone-induced stress model in broilers. J. Steroid Biochem. Mol. Biol. 2024, 243, 106579. [Google Scholar] [CrossRef]
- Yadav, S.; Teng, P.-Y.; dos Santos, T.S.; Gould, R.L.; Craig, S.W.; Fuller, A.L.; Pazdro, R.; Kim, W.K. The effects of different doses of curcumin compound on growth performance, antioxidant status, and gut health of broiler chickens challenged with Eimeria species. Poult. Sci. 2020, 99, 5936–5945. [Google Scholar] [CrossRef]
- Zhang, J.F.; Hu, Z.P.; Lu, C.H.; Yang, M.X.; Zhang, L.L.; Wang, T. Dietary curcumin supplementation protects against heat-stress-impaired growth performance of broilers possibly through a mitochondrial pathway1. J. Anim. Sci. 2015, 93, 1656–1665. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hu, Z.; Lu, C.; Bai, K.; Zhang, L.; Wang, T. Effect of various levels of dietary curcumin on meat quality and antioxidant profile of breast muscle in broilers. J. Agric. Food Chem. 2015, 63, 3880–3886. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Bai, K.W.; He, J.; Niu, Y.; Lu, Y.; Zhang, L.; Wang, T. Curcumin attenuates hepatic mitochondrial dysfunction through the maintenance of thiol pool, inhibition of mtDNA damage, and stimulation of the mitochondrial thioredoxin system in heat-stressed broilers. J. Anim. Sci. 2018, 96, 867–879. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Bai, K.; Su, W.; Wang, A.; Zhang, L.; Huang, K.; Wang, T. Curcumin attenuates heat-stress-induced oxidant damage by simultaneous activation of GSH-related antioxidant enzymes and Nrf2-mediated phase II detoxifying enzyme systems in broiler chickens. Poult. Sci. 2018, 97, 1209–1219. [Google Scholar] [CrossRef]
- Zhang, J.; Han, H.; Shen, M.; Zhang, L.; Wang, T. Comparative studies on the antioxidant profiles of curcumin and bisdemet-hoxycurcumin in erythrocytes and broiler chickens. Animals 2019, 9, 953. [Google Scholar] [CrossRef]
- Viechtbauer, W. Conducting Meta-Analyses in R with the metaphor package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef]
- Koricheva, J.; Gurevitch, J.; Mengersen, K. Handbook of Meta-Analysis in Ecology and Evolution; Princeton University Press: Princeton, NJ, USA, 2013. [Google Scholar]
- Begg, C.B.; Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994, 50, 1088–1101. [Google Scholar] [CrossRef]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629. [Google Scholar] [CrossRef]
- Reda, F.M.; El-Saadony, M.T.; Elnesr, S.S.; Alagawany, M.; Tufarelli, V. Effect of dietary supplementation of biological curcumin nanoparticles on growth and carcass traits, antioxidant status, immunity and caecal microbiota of japanese quails. Animals 2020, 10, 754. [Google Scholar] [CrossRef]
- Ruan, D.; Wang, W.C.; Lin, C.X.; Fouad, A.M.; Chen, W.; Xia, W.G.; Wang, S.; Luo, X.; Zhang, W.H.; Yan, S.J.; et al. Effects of curcumin on performance, antioxidation, intestinal barrier and mitochondrial function in ducks fed corn contaminated with ochratoxin A. Animal 2019, 13, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Kipper, M.; Andretta, I.; Lehnen, C.R.; Lovatto, P.A.; Monteiro, S.G. Meta-analysis of the performance variation in broilers experimentally challenged by Eimeria spp. Veter. Parasitol. 2013, 196, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, E.R.; Li, H.; Emmerson, D.A.; Webb, K.E., Jr.; Wong, E.A. Developmental regulation of nutrient transporter and enzyme mRNA abundance in the small intestine of broilers. Poult. Sci. 2007, 86, 1739–1753. [Google Scholar] [CrossRef]
- Surai, P.; Fisinin, V. Vitagenes in poultry production: Part 1. Technological and environmental stresses. World’s Poult. Sci. J. 2016, 72, 721–734. [Google Scholar] [CrossRef]
- Surai, P.; Fisinin, V. Vitagenes in poultry production: Part 2. Nutritional and internal stresses. World’s Poult. Sci. J. 2016, 72, 761–772. [Google Scholar] [CrossRef]
- Surai, P.F.; Kochish, I.I.; Fisinin, V.I.; Kidd, M.T. Antioxidant defence systems and oxidative stress in poultry Biology: An update. Antioxidants 2019, 8, 235. [Google Scholar] [CrossRef]
- Ncho, C.M.; Gupta, V.; Choi, Y.-H. Effects of dietary glutamine supplementation on heat-induced oxidative stress in broiler chickens: A systematic review and meta-analysis. Antioxidants 2023, 12, 570. [Google Scholar] [CrossRef]
- Oke, O.; Akosile, O.; Oni, A.; Opowoye, I.; Ishola, C.; Adebiyi, J.; Odeyemi, A.; Adjei-Mensah, B.; Uyanga, V.; Abioja, M. Oxidative stress in poultry production. Poult. Sci. 2024, 103, 104003. [Google Scholar] [CrossRef]
- Tang, X.; Xiong, K.; Wassie, T.; Wu, X. Curcumin and Intestinal Oxidative Stress of Pigs with Intrauterine Growth Retardation: A Review. Front. Nutr. 2022, 9, 847673. [Google Scholar] [CrossRef]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef]
- Hung, Y.; Hanson, A.; Shurson, G.; Urriola, P. Peroxidized lipids reduce growth performance of poultry and swine: A meta-analysis. Anim. Feed. Sci. Technol. 2017, 231, 47–58. [Google Scholar] [CrossRef]
- Xu, Z.; Zhu, W.; Xu, D.; Amevor, F.K.; Wu, Y.; Ma, D.; Cao, X.; Wei, S.; Shu, G.; Zhao, X. Supplementation of curcumin promotes the intestinal structure, immune barrier function and cecal microbiota composition of laying hens in early laying period. Poult. Sci. 2024, 103, 104355. [Google Scholar] [CrossRef] [PubMed]
- Ashayerizadeh, O.; Dastar, B.; Shargh, M.S.; Soumeh, E.A.; Jazi, V. Effects of black pepper and turmeric powder on growth performance, gut health, meat quality, and fatty acid profile of Japanese quail. Front. Physiol. 2023, 14, 1218850. [Google Scholar] [CrossRef]
- Baéza, E.; Guillier, L.; Petracci, M. Review: Production factors affecting poultry carcass and meat quality attributes. Animal 2022, 16, 100331. [Google Scholar] [CrossRef]
- Mir, N.A.; Rafiq, A.; Kumar, F.; Singh, V.; Shukla, V. Determinants of broiler chicken meat quality and factors affecting them: A review. J. Food Sci. Technol. 2017, 54, 2997–3009. [Google Scholar] [CrossRef]
- Su, L.; Zhao, Z.; Xia, J.; Xia, J.; Nian, Y.; Shan, K.; Zhao, D.; He, H.; Li, C. Protecting meat color: The interplay of betanin red and myoglobin through antioxidation and coloration. Food Chem. 2024, 442, 138410. [Google Scholar] [CrossRef]
- Zhang, M.; Yan, W.; Wang, D.; Xu, W. Effect of myoglobin, hemin, and ferric iron on quality of chicken breast meat. Anim. Biosci. 2021, 34, 1382–1391. [Google Scholar] [CrossRef]
- Hayat, M.N.; Ismail-Fitry, M.R.; Kaka, U.; Rukayadi, Y.; Ab Kadir, M.Z.A.; Radzi, M.A.M.; Kumar, P.; Nurulmahbub, N.A.; Sazili, A.Q. Assessing meat quality and textural properties of broiler chickens: The impact of voltage and frequency in reversible electrical water-bath stunning. Poult. Sci. 2024, 103, 103764. [Google Scholar] [CrossRef]
- Przybylski, W.; Jaworska, D.; Kajak-Siemaszko, K.; Sałek, P.; Pakuła, K. Effect of heat treatment by the sous-vide method on the quality of poultry meat. Foods 2021, 10, 1610. [Google Scholar] [CrossRef]
- Estévez, M. Protein carbonyls in meat systems: A review. Meat Sci. 2011, 89, 259–279. [Google Scholar] [CrossRef]
- Suzuki, S.; Kobayashi, M.; Murai, A.; Tsudzuki, M.; Ishikawa, A. Characterization of growth, fat deposition, and lipid metabolism-related gene expression in lean and obese meat-type chickens. J. Poult. Sci. 2019, 56, 101–111. [Google Scholar] [CrossRef]
- Faustman, C.; Sun, Q.; Mancini, R.; Suman, S.P. Myoglobin and lipid oxidation interactions: Mechanistic bases and control. Meat Sci. 2010, 86, 86–94. [Google Scholar] [CrossRef]
Reference | Breed | Supplementation Period | Dose (mg/kg Feed) | Curcumin Type |
---|---|---|---|---|
Abd El-Hack et al. [26] | Not reported | 21, 34 | 5000 | Nanoparticles |
Badran et al. [27] | Ross 308 | 35 | 25, 50, 100 | Standard, nanoparticles |
Chen et al. [28] | Not reported | 52 | 200 | Standard |
Eleiwa et al. [29] | Ross 308 | 42 | 450 | Standard |
Fathi et al. [14] | Ross 308 | 42 | 25, 50, 100, 200 | Nanoparticles |
Galli et al. [7] | Ross 308 | 42 | 100 | Standard |
Galli et al. [30] | Cobb 500 | 44 | 50 | Standard |
Gumus et al. [15] | Ross 308 | 42 | 250, 500 | Standard |
Gümüş et al. [31] | Ross 308 | 42 | 250, 500 | Standard |
Guo et al. [13] | Ross 308 | 28 | 200 | Standard |
Hafez et al. [32] | Cobb 500 | 42 | 100, 200 | Standard |
Johannah et al. [33] | Not reported | 42 | 500, 1000 | Standard |
Pornanek y Phoemchalard [16] | Arbor Acres | 42 | 200, 400, 600, 800 | Standard |
Rahmani et al. [34] | Ross 308 | 42 | 200, 400 | Standard, nanoparticles |
Rahmani et al. [35] | Ross 308 | 42 | 200, 400 | Standard, nanoparticles |
Rajput et al. [36] | Arbor Acres | 42 | 100, 150, 200 | Standard |
Rajput et al. [37] | Arbor Acres | 42 | 200 | Standard |
Salah et al. [10] | Ross 308 | 42 | 100 | Standard |
Salah et al. [38] | Ross 308 | 42 | 100 | Standard |
Shan et al. [39] | Not reported | 52 | 200 | Standard |
Xie et al. [11] | Ross 308 | 49 | 500, 1000, 2000 | Standard |
Xu et al. [12] | Not reported | 35 | 10 | Standard |
Yadav et al. [40] | Cobb 500 | 20 | 100, 200 | Standard |
Zhang et al. [41] | Arbor Acres | 21 | 50, 100, 200 | Standard |
Zhang et al. [42] | Arbor Acres | 42 | 50, 100, 200 | Standard |
Zhang et al. [43] | Arbor Acres | 21 | 50, 100, 200 | Standard |
Zhang et al. [44] | Arbor Acres | 21 | 50, 100, 200 | Standard |
Zhang et al. [45] | Arbor Acres | 42 | 150 | Standard |
Item | N (NC) | Control Means (SD) | WMD (95% CI) | p-Value | Heterogeneity | Begg Test 2 | Egger Test 3 | |
---|---|---|---|---|---|---|---|---|
I2 (%) | p-Value 1 | p-Value | p-Value | |||||
ADFI, g/d | 22 (52) | 103.92 (27.12) | 0.333 (−0.678; 1.343) | 0.519 | 82.95 | <0.001 | 0.548 | 0.176 |
DWG, g/d | 21 (51) | 55.76 (13.05) | 2.55 (1.250; 3.849) | <0.001 | 98.29 | <0.001 | 0.572 | 0.079 |
FCR, g/g | 20 (49) | 1.86 (0.23) | −0.086 (−0.128; −0.043) | <0.001 | 97.77 | <0.001 | 0.468 | 0.399 |
Item | N (NC) | Control Means (SD) | WMD (95% CI) | p-Value | Heterogeneity | Begg Test 2 | Egger Test 3 | |
---|---|---|---|---|---|---|---|---|
I2 (%) | p-Value 1 | p-Value | p-Value | |||||
SOD, U/mL | 7 (16) | 232.95 (68.65) | 29.043 (11.710; 46.376) | 0.001 | 99.28 | <0.001 | 0.608 | 0.639 |
CAT, U/mL | 5 (9) | 76.90 (18.95) | 10.728 (3.056; 18.401) | 0.006 | 92.76 | <0.001 | 0.262 | 0.581 |
GSH-Px, U/mL | 6 (15) | 127.40 (37.52) | 31.605 (22.022; 41.187) | <0.001 | 91.33 | <0.001 | 0.381 | 0.877 |
T-AOC, U/mL | 4 (4) | 1.01 (0.33) | 0.088 (0.038; 0.139) | <0.001 | 40.16 | 0.102 | 0.276 | 0.279 |
MDA, nmol/mL | 8 (24) | 1.87 (0.60) | −0.290 (−0.375; −0.206) | <0.001 | 47.84 | 0.072 | 0.126 | 0.535 |
Item | N (NC) | Control Means (SD) | WMD (95% CI) | p-Value | Heterogeneity | Begg Test 2 | Egger Test 3 | |
---|---|---|---|---|---|---|---|---|
I2 (%) | p-Value 1 | p-Value | p-Value | |||||
VH, µm | 6 (18) | 1268.29 (203.94) | 236.891 (164.338; 309.443) | <0.001 | 89.51 | <0.001 | 0.166 | 0.260 |
CD, µm | 6 (18) | 218.66 (35.12) | −17.233 (−26.113; −8.354) | <0.001 | 85.76 | <0.001 | 0.102 | 0.519 |
VH/CD ratio | 6 (18) | 6.37 (1.14) | 1.591 (1.023; 2.159) | <0.001 | 85.53 | <0.001 | 0.578 | 0.335 |
Item | N (NC) | Control Means (SD) | WMD (95% CI) | p-Value | Heterogeneity | Begg Test 2 | Egger Test 3 | |
---|---|---|---|---|---|---|---|---|
I2 (%) | p-Value 1 | p-Value | p-Value | |||||
Carcass yield, % | 5 (16) | 72.47 (2.83) | 1.043 (0.389; 1.697) | 0.002 | 89.92 | <0.001 | 0.296 | 0.193 |
Meat pH | 7 (18) | 6.04 (0.32) | −0.089 (−0.196; 0.019) | 0.106 | 39.61 | 0.303 | 0.606 | 0.852 |
Lightness (L*) | 7 (17) | 50.10 (5.79) | 0.447 (−0.028; 0.922) | 0.065 | 37.90 | 0.245 | 0.761 | 0.428 |
Redness (a*) | 7 (17) | 4.57 (1.23) | 0.356 (0.095; 0.617) | 0.007 | 47.14 | 0.150 | 0.953 | 0.713 |
Yellowness (b*) | 7 (17) | 5.07 (1.06) | 0.393 (0.020; 0.767) | 0.039 | 35.71 | 0.074 | 0.600 | 0.153 |
CL, % | 3 (6) | 14.23 (2.75) | −0.996 (−1.663; −0.330) | 0.003 | 42.33 | 0.210 | 0.206 | 0.622 |
ShF, kgf/cm2 | 3 (9) | 1.39 (0.11) | 0.013 (−0.026; 0.052) | 0.518 | 0.00 | 0.998 | 0.113 | 0.104 |
Meat composition g/100 g | ||||||||
Fat | 3 (9) | 2.28 (0.67) | −0.256 (−0.361; −0.152) | <0.001 | 91.03 | <0.001 | 0.482 | 0.439 |
Protein | 3 (9) | 22.08 (1.04) | 0.261 (−0.253; 0.776) | 0.319 | 41.83 | 0.442 | 0.267 | 0.241 |
MDA, mg/kg | 3 (5) | 1.13 (0.56) | −0.253 (−0.390; −0.117) | <0.001 | 88.40 | <0.001 | 0.247 | 0.405 |
Outcomes | Covariates | QM | Df | p-Value | R2 (%) |
---|---|---|---|---|---|
Average daily feed intake (ADFI) | Breed | 0.596 | 3 | 0.378 | 1.56 |
Supplementation period | 6.092 | 1 | 0.014 | 11.45 | |
Curcumin dose | 3.702 | 2 | 0.157 | 0.00 | |
Curcumin type | 1.775 | 1 | 0.510 | 1.83 | |
Daily weight gain (DWG) | Breed | 2.829 | 3 | 0.816 | 0.71 |
Supplementation period | 6.482 | 1 | 0.011 | 12.04 | |
Curcumin dose | 7.081 | 2 | 0.029 | 10.79 | |
Curcumin type | 0.160 | 1 | 0.198 | 1.93 | |
Feed conversion ratio (FCR) | Breed | 2.912 | 3 | 0.491 | 0.81 |
Supplementation period | 0.365 | 1 | 0.546 | 0.00 | |
Curcumin dose | 6.273 | 2 | 0.043 | 9.16 | |
Curcumin type | 0.135 | 1 | 0.714 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-García, P.A.; Granados-Rivera, L.D.; Orzuna-Orzuna, J.F.; Vázquez-Silva, G.; Díaz-Galván, C.; Razo-Ortíz, P.B. Meta-Analysis of Dietary Curcumin Supplementation in Broiler Chickens: Growth Performance, Antioxidant Status, Intestinal Morphology, and Meat Quality. Antioxidants 2025, 14, 460. https://doi.org/10.3390/antiox14040460
Hernández-García PA, Granados-Rivera LD, Orzuna-Orzuna JF, Vázquez-Silva G, Díaz-Galván C, Razo-Ortíz PB. Meta-Analysis of Dietary Curcumin Supplementation in Broiler Chickens: Growth Performance, Antioxidant Status, Intestinal Morphology, and Meat Quality. Antioxidants. 2025; 14(4):460. https://doi.org/10.3390/antiox14040460
Chicago/Turabian StyleHernández-García, Pedro Abel, Lorenzo Danilo Granados-Rivera, José Felipe Orzuna-Orzuna, Gabriela Vázquez-Silva, Cesar Díaz-Galván, and Pablo Benjamín Razo-Ortíz. 2025. "Meta-Analysis of Dietary Curcumin Supplementation in Broiler Chickens: Growth Performance, Antioxidant Status, Intestinal Morphology, and Meat Quality" Antioxidants 14, no. 4: 460. https://doi.org/10.3390/antiox14040460
APA StyleHernández-García, P. A., Granados-Rivera, L. D., Orzuna-Orzuna, J. F., Vázquez-Silva, G., Díaz-Galván, C., & Razo-Ortíz, P. B. (2025). Meta-Analysis of Dietary Curcumin Supplementation in Broiler Chickens: Growth Performance, Antioxidant Status, Intestinal Morphology, and Meat Quality. Antioxidants, 14(4), 460. https://doi.org/10.3390/antiox14040460