Hydroxy-Selenomethionine Supplementation During Gestation and Lactation Improve Reproduction of Sows by Enhancing the Antioxidant Capacity and Immunity Under Heat Stress Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Treatments, and Sample Collection
2.2. Milk Composition and Redox Parameter Analysis
2.3. Serum Biochemical, Immunoglobulin, and Histological Analyses
2.4. Histological Analyses
2.5. Real-Time q-PCR and Western Blot Analyses
2.6. Statistical Analysisher
3. Results
3.1. Growth Performance
3.2. Redox Status in Sows and Piglets
3.3. Glucose- and Lipids-Related Index in Serum of Sows and Milk Composition
3.4. Immune Status of Sows and Piglets
3.5. Small Intestine Morphology of the Piglets
3.6. Expression of Selenoprotein, Tight Junction, Host Defense Peptide-Related, Cytokines, and Apoptosis Genes at mRNA Levels in the Jejunum of Piglets
3.7. Production of Selenoproteins and Tight Junction, Cytokine, and Apoptosis Proteins in the Jejunum of Piglets
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, K.-X.; Deng, Z.-C.; Liu, M.; Huang, Y.-X.; Yang, J.-C.; Sun, L.-H. Heat Stress Impairs Male Reproductive System with Potential Disruption of Retinol Metabolism and Microbial Balance in the Testis of Mice. J. Nutr. 2023, 153, 3373–3381. [Google Scholar] [CrossRef]
- Sejian, V.; Bhatta, R.; Gaughan, J.B.; Dunshea, F.R.; Lacetera, N. Review: Adaptation of animals to heat stress. Animal 2018, 12, s431–s444. [Google Scholar] [CrossRef] [PubMed]
- Mayorga, E.J.; Renaudeau, D.; Ramirez, B.C.; Ross, J.W.; Baumgard, L.H. Heat stress adaptations in pigs. Anim. Front. 2019, 9, 54–61. [Google Scholar] [CrossRef]
- Lucy, M.C.; Safranski, T.J. Heat stress in pregnant sows: Thermal responses and subsequent performance of sows and their offspring. Mol. Reprod. Dev. 2017, 84, 946–956. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.C.; Yang, J.C.; Huang, Y.X.; Zhao, L.; Zheng, J.; Xu, Q.B.; Guan, L.; Sun, L.H. Translocation of gut microbes to epididymal white adipose tissue drives lipid metabolism disorder under heat stress. Sci. China Life Sci. 2023, 66, 2877–2895. [Google Scholar] [CrossRef] [PubMed]
- Lagoda, M.E.; Marchewka, J.; O’Driscoll, K.; Boyle, L.A. Risk Factors for Chronic Stress in Sows Housed in Groups, and Associated Risks of Prenatal Stress in Their Offspring. Front. Vet. Sci. 2022, 9, 883154. [Google Scholar] [CrossRef]
- Berchieri-Ronchi, C.B.; Kim, S.W.; Zhao, Y.; Correa, C.R.; Yeum, K.J.; Ferreira, A.L.A. Oxidative stress status of highly prolific sows during gestation and lactation. Animal 2011, 5, 1774–1779. [Google Scholar] [CrossRef]
- Baumgard, L.H.; Keating, A.; Ross, J.W.; Rhoads, R.P. Effects of heat stress on the immune system, metabolism and nutrient partitioning: Implications on reproductive success. Rev. Bras. Reprod. Anim. 2015, 39, 173–183. [Google Scholar]
- Yang, J.-C.; Huang, Y.-X.; Sun, H.; Liu, M.; Zhao, L.; Sun, L.-H. Selenium Deficiency Dysregulates One-Carbon Metabolism in Nutritional Muscular Dystrophy of Chicks. J. Nutr. 2023, 153, 47–55. [Google Scholar] [CrossRef]
- Lei, X.G.; Combs, G.F.; Sunde, R.A.; Caton, J.S.; Arthington, J.D.; Vatamaniuk, M.Z. Dietary Selenium Across Species. Annu. Rev. Nutr. 2022, 42, 337–375. [Google Scholar] [CrossRef]
- Hostetler, C.E.; Kincaid, R.L. Gestational changes in concentrations of selenium and zinc in the porcine fetus and the effects of maternal intake of selenium. Biol. Trace Elem. Res. 2004, 97, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, F.; Guan, W.; Song, H.; Tian, M.; Cheng, L.; Shi, K.; Song, J.; Chen, F.; Zhang, S.; et al. Increasing selenium supply for heat-stressed or actively cooled sows improves piglet preweaning survival, colostrum and milk composition, as well as maternal selenium, antioxidant status and immunoglobulin transfer. J. Trace Elem. Med. Biol. 2019, 52, 89–99. [Google Scholar] [CrossRef]
- Mou, D.; Ding, D.; Yan, H.; Qin, B.; Dong, Y.; Li, Z.; Che, L.; Fang, Z.; Xu, S.; Lin, Y.; et al. Maternal supplementation of organic selenium during gestation improves sows and offspring antioxidant capacity and inflammatory status and promotes embryo survival. Food Funct. 2020, 11, 7748–7761. [Google Scholar] [CrossRef]
- Falk, M.; Bernhoft, A.; Reinoso-Maset, E.; Salbu, B.; Lebed, P.; Framstad, T.; Fuhrmann, H.; Oropeza-Moe, M. Beneficial antioxidant status of piglets from sows fed selenomethionine compared with piglets from sows fed sodium selenite. J. Trace Elem. Med. Biol. 2020, 58, 126439. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Liu, M.; Sun, H.; Yang, J.-C.; Huang, Y.-X.; Huang, J.-Q.; Lei, X.; Sun, L.-H. Selenium deficiency-induced multiple tissue damage with dysregulation of immune and redox homeostasis in broiler chicks under heat stress. Sci. China Life Sci. 2023, 66, 2056–2069. [Google Scholar] [CrossRef] [PubMed]
- Surai, P.F.; Kochish, I.I.; Fisinin, V.I.; Velichko, O.A. Selenium in Poultry Nutrition: From Sodium Selenite to Organic Selenium Sources. J. Poult. Sci. 2018, 55, 79–93. [Google Scholar] [CrossRef]
- Zhao, L.; Sun, L.-H.; Huang, J.-Q.; Briens, M.; Qi, D.-S.; Xu, S.-W.; Lei, X.G. A Novel Organic Selenium Compound Exerts Unique Regulation of Selenium Speciation, Selenogenome, and Selenoproteins in Broiler Chicks. J. Nutr. 2017, 147, 789–797. [Google Scholar] [CrossRef]
- Sun, H.; Zhao, L.; Xu, Z.-J.; De Marco, M.; Briens, M.; Yan, X.-H.; Sun, L.-H. Hydroxy-Selenomethionine Improves the Selenium Status and Helps to Maintain Broiler Performances under a High Stocking Density and Heat Stress Conditions through a Better Redox and Immune Response. Antioxidants 2021, 10, 1542. [Google Scholar] [CrossRef]
- De Marco, M.; Conjat, A.-S.; Briens, M.; Hachemi, M.A.; Geraert, P.-A. Bio-efficacy of organic selenium compounds in broiler chickens. Ital. J. Anim. Sci. 2021, 20, 514–525. [Google Scholar] [CrossRef]
- Surai, P.F.; Kochish, I.I. Nutritional modulation of the antioxidant capacities in poultry: The case of selenium. Poult. Sci. 2019, 98, 4231–4239. [Google Scholar] [CrossRef]
- Angaïts, A.; Bierla, K.; Szpunar, J.; Lobinski, R. Extraction recovery and speciation of selenium in Se-enriched yeast. Anal. Bioanal. Chem. 2024, 416, 5111–5120. [Google Scholar] [CrossRef]
- Hachemi, M.A.; Cardoso, D.; De Marco, M.; Geraert, P.-A.; Briens, M. Inorganic and organic selenium speciation of seleno-yeasts used as feed additives: New insights from elemental selenium determination. Biol. Trace Elem. Res. 2023, 201, 5839–5847. [Google Scholar] [CrossRef]
- Vacchina, V.; Foix, D.; Menta, M.; Martinez, H.; Séby, F. Optimization of elemental selenium (Se (0)) determination in yeasts by anion-exchange HPLC-ICP-MS. Analytical and Bioanalytical Chemistry 2021, 413, 1809–1816. [Google Scholar] [CrossRef] [PubMed]
- Additives, E.P.o.; Feed, P.o.S.u.i.A.; Bampidis, V.; Azimonti, G.; Bastos, M.d.L.; Christensen, H.; Dusemund, B.; Kouba, M.; Kos Durjava, M.; López-Alonso, M.; et al. Assessment of the application for renewal of authorisation of selenomethionine produced by Saccharomyces cerevisiae NCYC R397 for all animal species. EFSA J. 2019, 17, e05539. [Google Scholar] [CrossRef]
- Additives, E.P.o.; Feed, P.o.S.u.i.A.; Bampidis, V.; Azimonti, G.; Bastos, M.d.L.; Christensen, H.; Dusemund, B.; Kouba, M.; Kos Durjava, M.; López-Alonso, M.; et al. Assessment of the application for renewal of authorisation of selenomethionine produced by Saccharomyces cerevisiae CNCM I-3060 (selenised yeast inactivated) for all animal species. EFSA J. 2018, 16, e05386. [Google Scholar] [CrossRef]
- Additives, E.P.o.; Feed, P.o.S.u.i.A. Scientific Opinion on safety and efficacy of hydroxy-analogue of selenomethionine as feed additive for all species. EFSA J. 2013, 11, 3046. [Google Scholar] [CrossRef]
- Authority, E.F.S. Safety and efficacy of SELSAF (Selenium enriched yeast from Saccharomyces cerevisiae CNCM I-3399) as feed additive for all species. EFSA J. 2009, 7, 992. [Google Scholar] [CrossRef]
- Zheng, Y.; He, T.; Xie, T.; Wang, J.; Yang, Z.; Sun, X.; Wang, W.; Li, S. Hydroxy-selenomethionine supplementation promotes the in vitro rumen fermentation of dairy cows by altering the relative abundance of rumen microorganisms. J. Appl. Microbiol. 2022, 132, 2583–2593. [Google Scholar] [CrossRef] [PubMed]
- Juniper, D.T.; Rymer, C.; Briens, M. Bioefficacy of hydroxy-selenomethionine as a selenium supplement in pregnant dairy heifers and on the selenium status of their calves. J. Dairy Sci. 2019, 102, 7000–7010. [Google Scholar] [CrossRef]
- Jlali, M.; Briens, M.; Rouffineau, F.; Mercerand, F.; Geraert, P.-A.; Mercier, Y. Effect of 2-hydroxy-4-methylselenobutanoic acid as a dietary selenium supplement to improve the selenium concentration of table eggs. J. Anim. Sci. 2013, 91, 1745–1752. [Google Scholar] [CrossRef]
- Tufarelli, V.; Ceci, E.; Laudadio, V. 2-Hydroxy-4-methylselenobutanoic acid as new organic selenium dietary supplement to produce selenium-enriched eggs. Biol. Trace Elem. Res. 2016, 171, 453–458. [Google Scholar] [CrossRef]
- Briens, M.; Mercier, Y.; Rouffineau, F.; Mercerand, F.; Geraert, P.-A. 2-Hydroxy-4-methylselenobutanoic acid induces additional tissue selenium enrichment in broiler chickens compared with other selenium sources. Poult. Sci. 2014, 93, 85–93. [Google Scholar] [CrossRef]
- Jlali, M.; Briens, M.; Rouffineau, F.; Geraert, P.-A.; Mercier, Y. Evaluation of the efficacy of 2-hydroxy-4-methylselenobutanoic acid on growth performance and tissue selenium retention in growing pigs. J. Anim. Sci. 2014, 92, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Jing, J.; Xiang, X.; Tang, J.; Wang, L.; Jia, G.; Liu, G.; Chen, X.; Tian, G.; Cai, J.; Kang, B.; et al. Hydroxy Selenomethionine Exert Different Protective Effects Against Dietary Oxidative Stress-Induced Inflammatory Responses in Spleen and Thymus of Pigs. Biol. Trace Elem. Res. 2024, 202, 3107–3118. [Google Scholar] [CrossRef]
- Labunskyy, V.M.; Hatfield, D.L.; Gladyshev, V.N. Selenoproteins: Molecular pathways and physiological roles. Physiol. Rev. 2014, 94, 739–777. [Google Scholar] [CrossRef]
- Sun, L.-H.; Huang, J.-Q.; Deng, J.; Lei, X.G. Avian selenogenome: Response to dietary Se and vitamin E deficiency and supplementation. Poult. Sci. 2019, 98, 4247–4254. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Q.; Peng, Z.; Sun, H.; Han, Y.M.; Zhang, B.; Pineda, L.; Boerboom, G.; Sun, L.H.; Liu, Y.; Deng, Z.C. Evaluating the Impact of an Organic Trace Mineral mix on the Redox Homeostasis, Immunity, and Performance of Sows and their Offspring. Biol. Trace Elem. Res. 2025, 203, 1798–1807. [Google Scholar] [CrossRef] [PubMed]
- Peltoniemi, O.A.; Oliviero, C.; Hälli, O.; Heinonen, M. Feeding affects reproductive performance and reproductive endocrinology in the gilt and sow. Acta Vet. Scand. 2007, 49, S6. [Google Scholar] [CrossRef]
- Carrión-López, M.J.; Orengo, J.; Madrid, J.; Vargas, A.; Martínez-Miró, S. Effect of Sow Body Weight at First Service on Body Status and Performance during First Parity and Lifetime. Animals 2022, 12, 3399. [Google Scholar] [CrossRef]
- Balthazar, C.F.; Santillo, A.; Guimarães, J.T.; Bevilacqua, A.; Corbo, M.R.; Caroprese, M.; Marino, R.; Esmerino, E.A.; Silva, M.C.; Raices, R.S.L.; et al. Ultrasound processing of fresh and frozen semi-skimmed sheep milk and its effects on microbiological and physical-chemical quality. Ultrason. Sonochem. 2019, 51, 241–248. [Google Scholar] [CrossRef]
- Deng, J.; Yang, J.C.; Feng, Y.; Xu, Z.J.; Kuča, K.; Liu, M.; Sun, L.H. AP-1 and SP1 trans-activate the expression of hepatic CYP1A1 and CYP2A6 in the bioactivation of AFB(1) in chicken. Sci. China Life Sci. 2024, 67, 1468–1478. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Zhang, F.; Yang, K.; Han, S.; Jian, S.; Deng, B. Dihydromyricetin alleviates intestinal inflammation by changing intestinal microbial metabolites and inhibiting the expression of the MyD88/NF-κB signaling pathway. Anim. Res. One Health 2023, 1, 219–232. [Google Scholar] [CrossRef]
- Yan, Y.-Q.; Liu, M.; Xu, Z.-J.; Xu, Z.-J.; Huang, Y.-X.; Li, X.-M.; Chen, C.-J.; Zuo, G.; Yang, J.-C.; Lei, X.G.; et al. Optimum Doses and Forms of Selenium Maintaining Reproductive Health via Regulating Homeostasis of Gut Microbiota and Testicular Redox, Inflammation, Cell Proliferation, and Apoptosis in Roosters. J. Nutr. 2024, 154, 369–380. [Google Scholar] [CrossRef]
- Cui, S.; Wang, Y.; Chen, S.; Fang, L.; Jiang, Y.; Pang, Z.; Jiang, Y.; Guo, X.; Zhu, H.; Jia, H. African swine fever virus E120R inhibited cGAS-STING-mediated IFN-β and NF-κB pathways. Anim. Res. One Health 2024, 2, 39–49. [Google Scholar] [CrossRef]
- Surai, P.; Fisinin, V. Selenium in sow nutrition. Anim. Feed. Sci. Technol. 2016, 211, 18–30. [Google Scholar] [CrossRef]
- Roman, M.; Jitaru, P.; Barbante, C. Selenium biochemistry and its role for human health. Met. Integr. Biometal. Sci. 2014, 6, 25–54. [Google Scholar] [CrossRef] [PubMed]
- Barchielli, G.; Capperucci, A.; Tanini, D. The Role of Selenium in Pathologies: An Updated Review. Antioxidants 2022, 11, 251. [Google Scholar] [CrossRef]
- Zakeri, N.; Asbaghi, O.; Naeini, F.; Afsharfar, M.; Mirzadeh, E.; kasra Naserizadeh, S. Selenium supplementation and oxidative stress: A review. PharmaNutrition 2021, 17, 100263. [Google Scholar] [CrossRef]
- Wijesiriwardana, U.A.; Craig, J.R.; Cottrell, J.J.; Dunshea, F.R.; Pluske, J.R. Animal board invited review: Factors affecting the early growth and development of gilt progeny compared to sow progeny. Animal 2022, 16, 100596. [Google Scholar] [CrossRef]
- Liao, X.; Lu, L.; Li, S.; Liu, S.; Zhang, L.; Wang, G.; Li, A.; Luo, X. Effects of selenium source and level on growth performance, tissue selenium concentrations, antioxidation, and immune functions of heat-stressed broilers. Biol. Trace Elem. Res. 2012, 150, 158–165. [Google Scholar] [CrossRef]
- Zheng, Y.; Xie, T.; Li, S.; Wang, W.; Wang, Y.; Cao, Z.; Yang, H. Effects of selenium as a dietary source on performance, inflammation, cell damage, and reproduction of livestock induced by heat stress: A review. Front Immunol. 2022, 12, 820853. [Google Scholar] [CrossRef]
- de Brito, A.N.E.F.; Kaneko, I.N.; Cavalcante, D.T.; Cardoso, A.S.; Fagundes, N.S.; Fontinhas-Netto, G.; de Lima, M.R.; da Silva, J.H.V.; Givisiez, P.E.N.; Costa, F.G.P. Hydroxy-selenomethionine enhances the productivity and egg quality of 50-to 70-week-old semi-heavy laying hens under heat stress. Poult. Sci. 2023, 102, 102320. [Google Scholar] [CrossRef]
- Rao, Z.-X.; Tokach, M.D.; Woodworth, J.C.; DeRouchey, J.M.; Goodband, R.D.; Gebhardt, J.T. Evaluation of selenium source on nursery pig growth performance, serum and tissue selenium concentrations, and serum antioxidant status. Transl. Anim. Sci. 2023, 7, txad049. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yin, S.; Tang, J.; Liu, Y.; Jia, G.; Liu, G.; Tian, G.; Chen, X.; Cai, J.; Kang, B. Hydroxy selenomethionine improves meat quality through optimal skeletal metabolism and functions of selenoproteins of pigs under chronic heat stress. Antioxidants 2021, 10, 1558. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.; Gevezova, M.; Sarafian, V.; Maes, M. Redox regulation of the immune response. Cell Mol. Immunol. 2022, 19, 1079–1101. [Google Scholar] [CrossRef]
- Campo-Sabariz, J.; García-Vara, A.; Moral-Anter, D.; Briens, M.; Hachemi, M.A.; Pinloche, E.; Ferrer, R.; Martín-Venegas, R. Hydroxy-selenomethionine, an organic selenium source, increases selenoprotein expression and positively modulates the inflammatory response of LPS-stimulated macrophages. Antioxidants 2022, 11, 1876. [Google Scholar] [CrossRef]
- Xia, B.; Wu, W.; Fang, W.; Wen, X.; Xie, J.; Zhang, H. Heat stress-induced mucosal barrier dysfunction is potentially associated with gut microbiota dysbiosis in pigs. Anim. Nutr. 2022, 8, 289–299. [Google Scholar] [CrossRef]
- Ebrahimzadeh, S.; Farhoomand, P.; Noori, K. Immune response of broiler chickens fed diets supplemented with different level of chromium methionine under heat stress conditions. Asian-Australas. J. Anim. Sci. 2012, 25, 256. [Google Scholar] [CrossRef] [PubMed]
- Sadler, R.A.; Mallard, B.A.; Shandilya, U.K.; Hachemi, M.A.; Karrow, N.A. The immunomodulatory effects of selenium: A journey from the environment to the human immune system. Nutrients 2024, 16, 3324. [Google Scholar] [CrossRef]
- Fang, X.; Miao, R.; Wei, J.; Wu, H.; Tian, J. Advances in multi-omics study of biomarkers of glycolipid metabolism disorder. Comput. Struct. Biotechnol. J. 2022, 20, 5935–5951. [Google Scholar] [CrossRef]
- Jing, J.; Yin, S.; Liu, Y.; Liu, Y.; Wang, L.; Tang, J.; Jia, G.; Liu, G.; Tian, G.; Chen, X.; et al. Hydroxy Selenomethionine Alleviates Hepatic Lipid Metabolism Disorder of Pigs Induced by Dietary Oxidative Stress via Relieving the Endoplasmic Reticulum Stress. Antioxidants 2022, 11, 552. [Google Scholar] [CrossRef] [PubMed]
- Jing, J.; Zeng, H.; Shao, Q.; Tang, J.; Wang, L.; Jia, G.; Liu, G.; Chen, X.; Tian, G.; Cai, J.; et al. Selenomethionine alleviates environmental heat stress induced hepatic lipid accumulation and glycogen infiltration of broilers via maintaining mitochondrial and endoplasmic reticulum homeostasis. Redox. Biol. 2023, 67, 102912. [Google Scholar] [CrossRef]
- Pere, M.-C.; Etienne, M.; Dourmad, J.-Y. Adaptations of glucose metabolism in multiparous sows: Effects of pregnancy and feeding level. J. Anim. Sci. 2000, 78, 2933–2941. [Google Scholar] [CrossRef] [PubMed]
- Bin, P.; Azad, M.A.K.; Liu, G.; Zhu, D.; Kim, S.W.; Yin, Y. Effects of different levels of methionine on sow health and plasma metabolomics during late gestation. Food. Funct. 2018, 9, 4979–4988. [Google Scholar] [CrossRef] [PubMed]
- Valckx, S.D.; Van Hoeck, V.; Arias-Alvarez, M.; Maillo, V.; Lopez-Cardona, A.P.; Gutierrez-Adan, A.; Berth, M.; Cortvrindt, R.; Bols, P.E.; Leroy, J.L. Elevated non-esterified fatty acid concentrations during in vitro murine follicle growth alter follicular physiology and reduce oocyte developmental competence. Fertil. Steril. 2014, 102, 1769–1776. [Google Scholar] [CrossRef]
- Deng, Z.-C.; Wang, J.; Wang, J.; Yan, Y.-Q.; Huang, Y.-X.; Chen, C.-Q.; Sun, L.-h.; Liu, M. Tannic acid extracted from gallnut improves intestinal health with regulation of redox homeostasis and gut microbiota of weaned piglets. Anim. Res. One Health 2024, 2, 16–27. [Google Scholar] [CrossRef]
- Cheng, C.; Wu, X.; Zhang, X.; Zhang, X.; Peng, J. Obesity of Sows at Late Pregnancy Aggravates Metabolic Disorder of Perinatal Sows and Affects Performance and Intestinal Health of Piglets. Animals 2019, 10, 49. [Google Scholar] [CrossRef]
- Shang, Q.; Liu, H.; Liu, S.; He, T.; Piao, X. Effects of dietary fiber sources during late gestation and lactation on sow performance, milk quality, and intestinal health in piglets. J. Anim. Sci. 2019, 97, 4922–4933. [Google Scholar] [CrossRef]
- Zheng, Y.; Guan, H.; Yang, J.; Cai, J.; Liu, Q.; Zhang, Z. Calcium overload and reactive oxygen species accumulation induced by selenium deficiency promote autophagy in swine small intestine. Anim. Nutr. 2021, 7, 997–1008. [Google Scholar] [CrossRef]
- Conway, E.; Sweeney, T.; Dowley, A.; Vigors, S.; Ryan, M.; Yadav, S.; Wilson, J.; O’Doherty, J.V. Selenium-Enriched Mushroom Powder Enhances Intestinal Health and Growth Performance in the Absence of Zinc Oxide in Post-Weaned Pig Diets. Animals 2022, 12, 1503. [Google Scholar] [CrossRef]
- Cui, T.; Theuns, S.; Desmarets, L.M.B.; Xie, J.; De Gryse, G.M.A.; Yang, B.; Van den Broeck, W.; Nauwynck, H.J. Establishment of porcine enterocyte/myofibroblast co-cultures for the growth of porcine rota- and coronaviruses. Sci. Rep. 2018, 8, 15195. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.N.D.; Le, H.N.; Eva, P.; Alberto, F.; Le, T.H. Relationship between the ratio of villous height: Crypt depth and gut bacteria counts as well production parameters in broiler chickens. J. Agric. Dev. 2021, 20, 1–10. [Google Scholar] [CrossRef]
- Rao, R. Oxidative stress-induced disruption of epithelial and endothelial tight junctions. Front. Biosci. 2008, 13, 7210. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhang, X.; Zhang, Q.; Zheng, T.; Li, Q.; Yang, S.; Shao, J.; Guan, W.; Zhang, S. Nutritional strategies to reduce intestinal cell apoptosis by alleviating oxidative stress. Nutr. Rev. 2024, 83, nuae023. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Zhang, X.; Lu, Y.; Chen, H. New insights in intestinal oxidative stress damage and the health intervention effects of nutrients: A review. J. Funct. Foods. 2020, 75, 104248. [Google Scholar] [CrossRef]
- Prasad, S.V.; Fiedoruk, K.; Daniluk, T.; Piktel, E.; Bucki, R. Expression and function of host defense peptides at inflammation sites. Int. J. Mol. Sci. 2019, 21, 104. [Google Scholar] [CrossRef]
Item | SeNa | SeY | OH-SeMet | p-Value |
---|---|---|---|---|
Sows | ||||
Body weight, kg | ||||
Gestation day 0 | 224.1 ± 8.9 | 231.5 ± 6.2 | 231.9 ± 4.6 | 0.658 |
Gestation day 85 | 257.7 ± 7.0 | 261.5 ± 4.5 | 263.1 ± 4.1 | 0.776 |
Gestation day 107 | 278.5+6.8 | 282.1 ± 4.6 | 287.0 ± 4.9 | 0.574 |
Lactation day 21 | 252.3 ± 6.6 | 255.2 ± 4.3 | 256.7 ± 4.8 | 0.846 |
Backfat thickness, mm | ||||
Gestation day 0 | 18.7 ± 0.6 | 19.3 ± 0.7 | 19.4 ± 0.7 | 0.660 |
Gestation day 85 | 19.9 ± 0.9 | 20.5 ± 0.9 | 22.6 ± 1.3 | 0.177 |
Gestation day 107 | 20.5 ± 0.9 | 21.1 ± 1.2 | 22.8 ± 1.2 | 0.314 |
Lactation day 0 | 20.5 ± 1.0 | 21.1 ± 1.2 | 22.6 ± 1.3 | 0.444 |
Lactation day 21 | 18.3 ± 0.9 | 19.1 ± 0.9 | 19.7 ± 1.0 | 0.603 |
Changes of lactation days 0–21 | −2.2 ± 0.4 | −2.0 ± 0.7 | −2.5 ± 0.5 | 0.784 |
Weaning-to-estrus interval, day | 3.6 ± 0.3 | 3.3 ± 0.3 | 3.3 ± 0.4 | 0.735 |
Piglets | ||||
Litter size at birth | ||||
Born alive, n | 12.3 ± 0.5 AB | 11.1 ± 0.6 B | 12.7 ± 0.5 A | 0.095 |
Stillborn, n | 0.5 ± 0.2 | 0.5 ± 0.1 | 0.7 ± 0.2 | 0.293 |
Mummies, n | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.789 |
Alive at day 21, n | 10.9 ± 0.4 ab | 10.2 ± 0.4 b | 11.5 ± 0.3 a | 0.056 |
Mortality day 0–21, % | 10.48 ± 1.3 | 9.58 ± 1.3 | 8.62 ± 1.5 | 0.635 |
Diarrhea rate day 0–21, % | 3.99 ± 0.7 ab | 5.18 ± 0.6 a | 3.34 ± 0.5 b | 0.050 |
Piglet’s body weight, kg | ||||
Litter birth weight | 18.1 ± 0.9 | 16.2 ± 0.8 | 17.4 ± 0.5 | 0.264 |
Litter weight at day 21 | 64.15 ± 3.2 b | 62.21 ± 3.4 b | 77.65 ± 3.4 a | 0.004 |
Litter body weight gain during days 1–21 | 46.08 ± 2.7 b | 45.53 ± 3.3 b | 59.54 ± 3.0 a | 0.003 |
Birth weight/piglet | 1.54 ± 0.1 | 1.48 ± 0.1 | 1.44 ± 0.1 | 0.389 |
Body weight/piglet at day 21 | 6.18 ± 0.2 | 6.14 ± 0.3 | 6.72 ± 0.2 | 0.138 |
Body weight gain/piglet during days 1–21 | 4.63 ± 0.2 | 4.65 ± 0.3 | 5.29 ± 0.2 | 0.124 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Sun, H.; Peng, Z.; Wang, S.-Q.; Yan, Y.-Q.; Luo, W.-C.; Yang, R.-G.; Bei, W.-C.; Sun, L.-H.; Yang, J.-C. Hydroxy-Selenomethionine Supplementation During Gestation and Lactation Improve Reproduction of Sows by Enhancing the Antioxidant Capacity and Immunity Under Heat Stress Conditions. Antioxidants 2025, 14, 525. https://doi.org/10.3390/antiox14050525
Wang J, Sun H, Peng Z, Wang S-Q, Yan Y-Q, Luo W-C, Yang R-G, Bei W-C, Sun L-H, Yang J-C. Hydroxy-Selenomethionine Supplementation During Gestation and Lactation Improve Reproduction of Sows by Enhancing the Antioxidant Capacity and Immunity Under Heat Stress Conditions. Antioxidants. 2025; 14(5):525. https://doi.org/10.3390/antiox14050525
Chicago/Turabian StyleWang, Juan, Hua Sun, Zhe Peng, Shao-Qing Wang, Yi-Qin Yan, Wei-Cai Luo, Ren-Gui Yang, Wei-Cheng Bei, Lv-Hui Sun, and Jia-Cheng Yang. 2025. "Hydroxy-Selenomethionine Supplementation During Gestation and Lactation Improve Reproduction of Sows by Enhancing the Antioxidant Capacity and Immunity Under Heat Stress Conditions" Antioxidants 14, no. 5: 525. https://doi.org/10.3390/antiox14050525
APA StyleWang, J., Sun, H., Peng, Z., Wang, S.-Q., Yan, Y.-Q., Luo, W.-C., Yang, R.-G., Bei, W.-C., Sun, L.-H., & Yang, J.-C. (2025). Hydroxy-Selenomethionine Supplementation During Gestation and Lactation Improve Reproduction of Sows by Enhancing the Antioxidant Capacity and Immunity Under Heat Stress Conditions. Antioxidants, 14(5), 525. https://doi.org/10.3390/antiox14050525