Composition and Antioxidant Status of Vegan Milk—Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Vegan and Control Groups
2.2. Determination of the Basic Composition of Breast Milk
2.3. Determination of Leptin Concentration
2.4. Determination of Adiponectin Concentration
2.5. Determination of Cortisol Concentration
2.6. TAS Marking
2.7. Determination of the Antioxidant Activity of Human Milk Using the DPPH• (2,2-Diphenyl-1-picrylhydrazyl) Radical
- Preparation of the calibration curve
2.8. Determination of the Ability of Human Milk to Reduce Fe (III) Ions
- Labeling in human milk rolls
- (a)
- 300 mM acetate buffer, pH 3.6;
- (b)
- 10 mM TPTZ (2,4,6-Tri(2-pyridyl)-s-triazine, Sigma-Aldrich, Darmstadt, Germany) in 40 mM HCl;
- (c)
- 20 mM FeCl3 × 6H2O. (Chempur, Piekary Śląskie, Poland).
- Preparation of the calibration curve
2.9. Determination of the Content of the Total Sum of Polyphenols
- Determination of human milk samples
- Preparation of the calibration curve
2.10. Determination of Paraoxonase 1 (PON1) Concentration
2.11. Determination of Iron Concentration
2.12. Determination of Magnesium, Calcium, and Phosphorus Concentration
2.13. Determination of Vitamin D Concentration
2.14. Determination of Vitamin B6
2.15. Statistical Analysis
3. Results
3.1. Basic Composition of Human Milk
3.2. Hormones in Human Milk
3.3. Antioxidant Status of Human Milk
3.4. Content of Vitamins, Micro-, and Macroelements in Human Milk Samples
3.5. Analysis of the Influence of Different Predictors on the Tested Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ALA | alpha-lipoic acid |
BMI | Body Mass Index |
DHA | docosahexaenoic acid |
DPPH | 2,2-diphenyl-1-picrylhydrazyl radical reduction method |
FRAP | iron ion reduction ability |
GAE | gallic acid |
HBD | hebdomas graviditatis |
LA | lipoic acid |
Me | median |
Min–Max | minimum and maximum values |
n | abundance |
p | level of statistical significance |
PON1 | paraoxonase 1 |
TAS | total antioxidant status |
TE | trolox |
WHR | waist-to-hip ratio |
References
- Nasser, R.; Stephen, A.M.; Goh, Y.K.; Clandinin, M.T. The effect of a controlled manipulation of maternal dietary fat intake on medium and long chain fatty acids in human breast milk in Saskatoon, Canada. Int. Breastfeed. J. 2010, 5, 3. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Innis, S.M. Maternal Nutrition, Genetics, and Human Milk Lipids. Curr. Nutr. Rep. 2013, 2, 151–158. [Google Scholar] [CrossRef]
- Huang, G.; Li, N.; Wu, X.; Zheng, N.; Zhao, S.; Zhang, Y.; Wang, J. Nutrition, production, and processing of virgin omega-3 polyunsaturated fatty acids in dairy: An integrative review. Heliyon 2024, 10, e39810. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bravi, F.; Wiens, F.; Decarli, A.; Dal Pont, A.; Agostoni, C.; Ferraroni, M. Impact of maternal nutrition on breast-milk composition: A systematic review. Am. J. Clin. Nutr. 2016, 104, 646–662. [Google Scholar] [CrossRef] [PubMed]
- Karcz, K.; Królak-Olejnik, B. Vegan or vegetarian diet and breast milk composition—A systematic review. Crit. Rev. Food Sci. Nutr. 2021, 61, 1081–1098. [Google Scholar] [CrossRef] [PubMed]
- Gandino, S.; Bzikowska-Jura, A.; Karcz, K.; Cassidy, T.; Wesolowska, A.; Królak-Olejnik, B.; Klotz, D.; Arslanoglu, S.; Picaud, J.C.; Boquien, C.Y.; et al. Vegan/vegetarian diet and human milk donation: An EMBA survey across European milk banks. Matern. Child Nutr. 2024, 20, e13564. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Allès, B.; Baudry, J.; Méjean, C.; Touvier, M.; Péneau, S.; Hercberg, S.; Kesse-Guyot, E. Comparison of Sociodemographic and Nutritional Characteristics between Self-Reported Vegetarians, Vegans, and Meat-Eaters from the NutriNet-Santé Study. Nutrients 2017, 9, 1023. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wilson, D. Revealed: Countries with the Most Vegetarians in the World. 2024. Available online: https://ceoworld.biz/2024/01/21/revealed-countries-with-the-most-vegetarians-in-the-world-2024/ (accessed on 22 February 2025).
- Perrin, M.T.; Pawlak, R.; Dean, L.L.; Christis, A.; Friend, L. A cross-sectional study of fatty acids and brain-derived neurotrophic factor (BDNF) in human milk from lactating women following vegan, vegetarian, and omnivore diets. Eur. J. Nutr. 2019, 58, 2401–2410. [Google Scholar] [CrossRef] [PubMed]
- Melina, V.; Craig, W.; Levin, S. Position of the Academy of Nutrition and Dietetics: Vegetarian Diets. J. Acad. Nutr. Diet. 2016, 116, 1970–1980. [Google Scholar] [CrossRef] [PubMed]
- Federal Commission for Nutrition (FCN). Vegan Diets: Review of Nutritional Benefits and Risks. Expert Report of the FCN; Federal Food Safety and Veterinary Office: Bern, Switzerland, 2018; Volume 28–34, pp. 61–62.
- Richter, M.; Boeing, H.; Grünewald-Funk, D.; Heseker, H.; Kroke, A.; Leschik-Bonnet, E.; Oberritter, H.; Strohm, D.; Watzl, B. The German Nutrition Society (DGE). Vegan Diet Position of the German Nutrition Society (DGE). Ernahr. Umsch. Int. 2016, 4, 92–102. [Google Scholar] [CrossRef]
- Weaver, G.; Bertino, E.; Gebauer, C.; Grovslien, A.; Mileusnic-Milenovic, R.; Arslanoglu, S.; Barnett, D.; Boquien, C.Y.; Buffin, R.; Gaya, A.; et al. Recommendations for the Establishment and Operation of Human Milk Banks in Europe: A Consensus Statement From the European Milk Bank Association (EMBA). Front. Pediatr. 2019, 7, 53. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- EFCNI. The European Foundation for the Care of Newborn Infants Position Paper. Recommendations for Promoting Human Milk Banks in Germany, Austria, and Switzerland. Available online: https://www.efcni.org/activities/projects/milk-banks/ (accessed on 26 February 2025).
- Wesołowska, A.; Pawlus, B.; Bernatowicz-Łojko, U.; Borszewska-Kornacka, M.K. Operating of human milk banks in Poland—Practical recommendations. Postępy Neonatol. 2018, 1, 59–64. [Google Scholar] [CrossRef]
- Guo, M. Chemical composition of human milk. In Human Milk Biochemistry and Infant Formula Manufacturing Technology; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2014; pp. 19–32. ISBN 9781845697242. [Google Scholar] [CrossRef]
- György, P.; Norris, R.F.; Rose, C.S. Bifidus factor I. A variant of Lactobacillus bifidus requiring a special growth factor. Arch. Biochem. Biophys. 1954, 48, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Mosca, F.; Giannì, M.L. Human milk: Composition and health benefits. Pediatr. Medica Chir. 2017, 39, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Demmelmair, H.; Koletzko, B. Importance of fatty acids in the perinatal period. World Rev. Nutr. Diet. 2015, 112, 31–47. [Google Scholar] [CrossRef] [PubMed]
- Hart, S.; Boylan, L.M.; Border, B.; Carroll, S.R.; Mcgunegle, D.; Lampe, R.M. Breast milk levels of cortisol and secretory Immunoglobulin A (SIgA) differ with maternal mood and infant neuro-behavioral functioning. Infant Behav. Dev. 2004, 27, 101–106. [Google Scholar] [CrossRef]
- Gila-Diaz, A.; Arribas, S.M.; Algara, A.; Martín-Cabrejas, M.A.; de Pablo, A.L.; de Pipaón, M.S.; Ramiro-Cortijo, D. A review of bioactive factors in human breastmilk: A focus on prematurity. Nutrients 2019, 11, 1307. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boix-Amoros, A.; Collado, M.; Mira, A. Relationship between milk microbiota, bacterial load, macronutrients, and human cells during lactation. Front. Microbiol. 2016, 7, 492. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lis, J.; Orczyk-Pawiłowicz, M.; Kątnik-Prastowska, I. Proteins of human milk involved in immunological processes. Postep. Hig. Med. Dosw. 2013, 67, 529–547. (In Polish) [Google Scholar] [CrossRef] [PubMed]
- Picciano, M.F. Nutrient composition of human milk. Breastfeeding 2001, 48, 53–67. [Google Scholar] [CrossRef] [PubMed]
- Savino, F.; Liguori, S.A.; Fissore, M.F.; Ogger, R. Breast Milk Hormonesand Their Protective Effecton Obesity. Int. J. Pediatr. Endocrinol. 2009, 2009, 327505. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Badillo-Suárez, P.A.; Rodríguez-Cruz, M.; Nieves-Morale, X. Impact of metabolic hormones secreted in human breast milkon nutritional programming in childhood obesity. J. Mammary Gland. Biol. Neoplasia 2017, 22, 171–191. [Google Scholar] [CrossRef] [PubMed]
- Ford, J.E.; Zechalko, A.; Murphy, J.; Brooke, O.G. Comparison of the B vitamin composition of milk from mothers of preterm and term babies. Arch. Dis. Child. 1983, 58, 367–372. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Koreti, S.; Prasad, N. Micronutrient content of breast milk. J. Evol. Med. Dent. Sci. 2014, 3, 1633–1638. [Google Scholar] [CrossRef]
- Wack, R.P.; Lien, E.L.; Taft, D.; Roscelli, J.D. Electrolyte composition of human breast milk beyond the early postpartum period. Nutrition 1997, 13, 774–777. [Google Scholar] [CrossRef] [PubMed]
- Bae, Y.J.; Kratzsch, J. Vitamin D and calcium in the human breast milk. Best Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Atanassova, M.; Georgieva, S.; Ivancheva, K. Total Phenolic And Total Flavonoid Contents, Antioxidant Capacity And Biological Contaminants. J. Univ. Chem. Technol. Metall. 2011, 46, 81–88. [Google Scholar]
- Benzie, I.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Vazquez, M.I.; Catalan-Dibene, J.; Zlotnik, A. B cells responses and cytokine production are regulated by their immune microenvironment. Cytokine 2015, 74, 318–326. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kleinman, R.E. Pediatric Nutrition Handbook, 6th ed.; American Academy of Pediatrics: Elk Grove Village, IL, USA, 2009. [Google Scholar]
- Sanders, T.A.; Ellis, F.R.; Dickerson, J.W. Studies of vegans: The fatty acid composition of plasma choline phosphoglycerides, erythrocytes, adipose tissue, and breast milk, and some indicators of susceptibility to ischemic heart disease in vegans and omnivore controls. Am. J. Clin. Nutr. 1978, 31, 805–813. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.D.; Lovelady, C.A. Vitamin B12 status of East Indian vegetarian lactating women living in the United States. Nutr. Res. 1998, 18, 1839–1846. [Google Scholar] [CrossRef]
- Sanders, T.A.; Reddy, S. The influence of a vegetarian diet on the fatty acid composition of human milk and the essential fatty acid status of the infant. J. Pediatr. 1992, 120, S71–S77. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.K.; Sanders, T.A. Taurine concentrations in the diet, plasma, urine and breast milk of vegans compared with omnivores. Br. J. Nutr. 1986, 56, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Alexy, U.; Fischer, M.; Weder, S.; Längler, A.; Michalsen, A.; Sputtek, A.; Keller, M. Nutrient Intake and Status of German Children and Adolescents Consuming Vegetarian, Vegan or Omnivore Diets: Results of the VeChi Youth Study. Nutrients 2021, 13, 1707. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Specker, B.L.; Black, A.; Allen, L.; Morrow, F. Vitamin B-12: Low milk concentrations are related to low serum concentrations in vegetarian women and to methylmalonic aciduria in their infants. Am. J. Clin. Nutr. 1990, 52, 1073–1076. [Google Scholar] [CrossRef] [PubMed]
- Pawlak, R.; Vos, P.; Shahab-Ferdows, S.; Hampel, D.; Allen, L.H.; Perrin, M.T. Vitamin B-12 content in breast milk of vegan, vegetarian, and nonvegetarian lactating women in the United States. Am. J. Clin. Nutr. 2018, 108, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Atamasirikul, K.; Kajanachumpol, S.; Wilairat, P.; Tantibhedhyangkul, P. Clinical usefulness of a HPLC method for simultaneous quantitation of plasma homocysteine and cysteine. J. Med. Assoc. Thail. 2008, 91, 338–344. [Google Scholar] [PubMed]
- Schüpbach, R.; Wegmüller, R.; Berguerand, C.; Bui, M.; Herter-Aeberli, I. Micronutrient status and intake in omnivores, vegetarians and vegans in Switzerland. Eur. J. Nutr. 2017, 56, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Hashim, A.; Wang, L.; Juneja, K.; Ye, Y.; Zhao, Y.; Ming, L.J. Vitamin B6s inhibit oxidative stress caused by Alzheimer’s disease-related Cu(II)-β-amyloid complexes-cooperative action of phospho-moiety. Bioorg. Med. Chem. Lett. 2011, 21, 6430–6432. [Google Scholar] [CrossRef] [PubMed]
- Yokochi, N.; Morita, T.; Yagi, T. Inhibition of diphenolase activity of tyrosinase by vitamin b(6) compounds. J. Agric. Food Chem. 2003, 51, 2733–2736. [Google Scholar] [CrossRef] [PubMed]
Reagent Test | Human Milk Samples | Pattern | |
---|---|---|---|
R1 reagent | 750 μL | 750 μL | 750 μL |
Standard/Sample | - | 75 μL | 75 μL |
Distilled water | 75 μL | - | - |
The samples were thoroughly mixed, incubated for 5 min at 37 °C, centrifuged for several seconds at the highest speed, and then the absorbance A1 was read against the reagent test at a wavelength of 590 nm. | |||
R2 Reagent | 75 μL | 75 μL | 75 μL |
The samples were mixed, incubated at 37 °C for 5 min, after which time the samples were centrifuged for several minutes at the highest speed, and then the A2 absorbance was read against the reagent test at a wavelength of 590 nm. |
Reagent Test | Human Milk Samples | Pattern | |
---|---|---|---|
R1 reagent | 750 μL | 750 μL | 750 μL |
Standard/Sample | - | 75 μL | 75 μL |
Distilled water | 75 μL | - | - |
The samples were thoroughly mixed, incubated for 5 min at 37 °C, centrifuged for several seconds at the highest speed, and then the absorbance A1 was read against the reagent test at a wavelength of 590 nm. | |||
R2 Reagent | 75 μL | 75 μL | 75 μL |
The samples were mixed, incubated at 37 °C for 5 min, after which time the samples were centrifuged for several minutes at the highest speed, and then the A2 absorbance was read against the reagent test at a wavelength of 590 nm. |
Vegans n = 17 | Control Group n = 27 | p | |
---|---|---|---|
Age (years) | 29.23 ± 4.29 | 30.74 ± 2.68 | 0.049 |
BMI (kg/m2) (Me; Min–Max) | 21.26; 17.31–27.14 | 23.05; 17.93–29.30 | 0.066 |
HBD (week) (Me, Min–Max) | 40.00; 35.00–42.00 | 40.00; 35.00–41.00 | 0.425 |
WHR (Me, Min–Max) | 0.78; 0.71–0.85 | 0.81; 0.72–1.06 | 0.039 |
Variable | Study Group: Vegans n = 17 Me (Min–Max) | Control Group: Women Not Following Diets n = 27 Me (Min–Max) | p |
---|---|---|---|
Fat [g/100 mL] | 3.40 (1.30–6.90) | 3.30 (0.80–7.300) | 0.847 |
Total protein [g/100 mL] | 1.20 (0.40–1.60) | 1.20 (0.70–1.50) | 0.615 |
Carbohydrates [g/100 mL] | 7.90 (6.60–8.30) | 7.80 (6.20–8.30) | 0.734 |
Total solids [g/100 mL] | 12.60 (10.10–16.30) | 12.20 (10–16.00) | 0.847 |
Energy value [g/100 mL] | 68 (47–101) | 65 (44–100) | 0.426 |
Crude protein [g/100 mL] | 1.00 (0.30–1.30) | 0.90 (0.50–1.20) | 0.419 |
Variable | Study Group: Vegans n = 17 Me (Min–Max) | Control Group: Women Not Following Diets n = 27 Me (Min–Max) | p |
---|---|---|---|
Adiponectin [pg/mL] | 3233 (540–5230) | 2900 (335–7891) | 0.735 |
Leptin [ng/mL] | 1.52 (1.04–10.46) | 1.65 (1.10–9.06) | 0.628 |
Cortisol [ng/mL] | 9.36 (3.97–48.02) | 5.81 (1.48–16.29) | 0.022 |
Variable | Study Group: Vegans n = 17 Me (Min–Max) | Control Group: Women Not Following Diets n = 27 Me (Min–Max) | p |
---|---|---|---|
TAS [μM] | 200.13 (156.60–272.99) | 298.03 (170.99–403.96) | <0.001 |
DPPH [% Inhibition] | 47.35 (4.37–76.30) | 53.24 (24.95–74.91) | 0.419 |
DPPH [μM TE/L] | 208.50 (68.60–302.76) | 227.67 (135.59–298.21) | 0.419 |
FRAP [μM] | 482.97 (65.10–887.21) | 666.16 (155.94–2272.51) | 0.049 |
PON1 [ng/mL] | 1.10 (0.46–2.12) | 1.55 (0.46–4.46) | 0.021 |
Polyphenols [mg GAE/L] | 10.33 (7.40–23.98) | 11.63 (7.08–102.064) | 0.039 |
Variable | Study Group: Vegans n = 17 Me (Min–Max) | Control Group: Women Not Following Diets n = 27 Me (Min–Max) | p |
---|---|---|---|
Iron [μg/dL] | 8.52 (1.38–21.63) | 14.66 (1.98–65.01) | p = 0.037 |
Phosphorus [mg/dL] | 6.26 (2.25–12.64) | 5.16 (2.57–7.45) | p = 0.231 |
Magnesium [mg/dL] | 4.02 (2.74–8.73) | 4.02 (2.51–5.94) | p = 0.774 |
Calcium [mg/dL] | 14.06 (8.29–32.82) | 13.90 (6.79–21.88) | p = 0.703 |
Vitamin D [pg/mL] | 138.60 (62.05–804.87) | 162.10 (44.38–354.40) | p = 0.398 |
Vitamin B6 [ng/mL] | 273.20 (1.05–296.80) | 283.10 (155.50–350.89) | p = 0.024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chrustek, A.; Dombrowska-Pali, A.; Olszewska-Słonina, D. Composition and Antioxidant Status of Vegan Milk—Pilot Study. Antioxidants 2025, 14, 505. https://doi.org/10.3390/antiox14050505
Chrustek A, Dombrowska-Pali A, Olszewska-Słonina D. Composition and Antioxidant Status of Vegan Milk—Pilot Study. Antioxidants. 2025; 14(5):505. https://doi.org/10.3390/antiox14050505
Chicago/Turabian StyleChrustek, Agnieszka, Agnieszka Dombrowska-Pali, and Dorota Olszewska-Słonina. 2025. "Composition and Antioxidant Status of Vegan Milk—Pilot Study" Antioxidants 14, no. 5: 505. https://doi.org/10.3390/antiox14050505
APA StyleChrustek, A., Dombrowska-Pali, A., & Olszewska-Słonina, D. (2025). Composition and Antioxidant Status of Vegan Milk—Pilot Study. Antioxidants, 14(5), 505. https://doi.org/10.3390/antiox14050505