Ganoderma lucidum—From Ancient Remedies to Modern Applications: Chemistry, Benefits, and Safety
Abstract
:1. Introduction
No | Color /Taste | Name of Species | Common Name | Medicinal Uses |
---|---|---|---|---|
1. | Black/Salty | Ganoderma neojaponicum | Imazeki or Black lingshi | Improves lung function, ethnomedicinal potential, cytotoxic effects |
2. | White/Hot | Ganoderma applanatum | Bear bread or artist’s bread | Protects kidney; skin-whitening and anti-wrinkle potential (anti-tyrosinase, anti-collagenase, anti-elastase). |
3. | Red/Bitter | Ganoderma lucidum | Lingzhi or Reishi | Acids internal organs and improve memory |
4. | Yellow/Sweet | Ganoderma Curtisii | Golden reishi | Strengthens spleen function |
5. | Purple/Violaceous/Sweet | Ganoderma sinense | Zizhi | It enhances the function of eyes, and joints, and helps the complexion |
2. Extraction
Source | Extraction Methods | Parameters | Bioactive Compound (Yields) | References |
---|---|---|---|---|
Ganoderma lucidum fruiting bodies | Microwave-assisted extraction | 300–600 W, 70% ethanol, 10–30 min | Polysaccharides: 13.08% Triterpenoids: 9.15% | [25] |
Ganoderma lucidum mycelium | Ultrasonic-assisted extraction | 140–245 W, 50% ethanol, 30 min | Polysaccharides: 6.1% Phenolic compounds: 1.8% | [26] |
Ganoderma lucidum fruiting bodies | Hot water extraction/ethanol maceration | 70–100 °C, 2–6 h, 96% ethanol | Polysaccharides: 4–8% Triterpenoids: 1.2–1.5% | [20,27] |
Ganoderma lucidum spores | Ultrasonic/Microwave-assisted extraction | 50 W, 40 kHz, 284 W, Water, 11.7 min | Polysaccharides: 3.27% | [22] |
Ganoderma lucidum fruiting bodies | Ultrasonic-assisted co-extraction | 210 W, 40 kHz, 50% ethanol, 25 min | Polysaccharides: 6.0% Triperpenoids: 2.5% | [20] |
Ganoderma lucidum fruiting bodies | Supercritical CO2 extraction | 43 MPa, 54.8 °C CO2: 7 mL/min | Triterpenoids: 1.56 mg/100 g | [28] |
Ganoderma lucidum fruiting bodies | Alkaline extraction | 60 °C, 77.3 min, 5.1% NaOH | Polysaccharides: 8.2% | [29] |
Ganoderma lucidum fruiting bodies | Subcritical water extraction | 180 °C, 7 MPa, 1 mL/min | Triterpenoids and Phenolic compounds: 58.42% | [30] |
3. Bioactive Compounds
3.1. Polysaccharides
3.2. Triterpenoids
3.3. Phenolic Compounds
3.4. Sterols
3.5. Proteins and Peptides
3.6. Minerals
- Potassium (K): An essential mineral that is critical for maintaining the balance of fluids within cells and tissues, as well as for nerve transmission and muscle contraction. Potassium is crucial for maintaining fluid balance, nerve transmission, and muscle contraction. G. lucidum contains approximately 432 mg of potassium per 100 g of the mushroom [53,54].
- Magnesium (Mg): An essential mineral in immune function, influencing processes such as immune cell adhesion, the production of immunoglobulins, the interaction between lymphocytes and Immunoglobulin M (IgM), antibody-mediated cytolysis, and the response of macrophages to lymphokines. G. lucidum contains 7.95 mg of magnesium per 100 g [53,54].
3.7. Lipids and Fatty Acids
3.8. Vitamins
4. Applications of G. lucidum
4.1. Therapeutic Applications
4.1.1. Immunomodulatory Properties
4.1.2. Anti-Inflammatory Properties
4.1.3. Antioxidant Properties
4.1.4. Hepatoprotective Effects
4.1.5. Anti-Cancer Potential
4.2. Pharmaceutical Applications
4.2.1. Anti-Diabetic Potential
4.2.2. Cardiovascular Benefits
4.2.3. Anti-Viral Properties
4.3. Cosmetic Applications
4.3.1. Anti-Aging Effect
4.3.2. Skin Brightening and Reassuring Properties
4.4. Food Applications
5. Safety Evaluation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sanodiya, B.S.; Thakur, G.S.; Baghel, R.K.; Prasad, G.B.; Bisen, P.S. Ganoderma lucidum: A potent pharmacological macrofungus. Curr. Pharm. Biotechnol. 2009, 10, 717–742. [Google Scholar] [CrossRef] [PubMed]
- Khatian, N.; Aslam, M. A review of Ganoderma lucidum (Reishi): A miraculous medicinal mushroom. Inven. Rapid: Ethnopharmacol. 2018, 4, 1–6. [Google Scholar]
- Wachtel-Galor, S.; Yuen, J.; Buswell, J.A.; Benzie, I.F. Ganoderma lucidum (Lingzhi or Reishi): A medicinal mushroom. In Herbal Medicine: Biomolecular and Clinical Aspects, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Xu, C.; Caserta, S.; Gangemi, S.; Pioggia, G.; Allegra, A. Preparing Ganoderma lucidum slices by improved steam explosion enhances their apparent, functional and structural properties. Innov. Food Sci. Emerg. Technol. 2024, 97, 103835. [Google Scholar] [CrossRef]
- Cancemi, G.; Caserta, S.; Gangemi, S.; Pioggia, G.; Allegra, A. Exploring the Therapeutic Potential of Ganoderma lucidum in Cancer. J. Clin. Med. 2024, 13, 1153. [Google Scholar] [CrossRef] [PubMed]
- Blundell, R.; Camilleri, E.; Baral, B.; Karpiński, T.M.; Neza, E.; Atrooz, O.M. The Phytochemistry of Ganoderma Species and their Medicinal Potentials. Am. J. Chin. Med. 2023, 51, 859–882. [Google Scholar] [CrossRef]
- Lau, M.F.; Phan, C.W.; Sabaratnam, V.; Kuppusamy, U.R. Bibliometric, taxonomic, and medicinal perspectives of Ganoderma neo-japonicum Imazeki: A mini review. Mycology 2024, 15, 360–373. [Google Scholar] [CrossRef]
- Freepik. 2024. Available online: https://www.freepik.com/premium-photo/colorful-shelf-mushrooms_250732101.htm#fromView=search&page=1&position=48&uuid=c835a792-df01-433b-99e7-274527938045 (accessed on 20 November 2024).
- Zhou, L.-W.; Cao, Y.; Wu, S.-H.; Vlasák, J.; Li, D.-W.; Li, M.-J.; Dai, Y.-C. Global diversity of the Ganoderma lucidum complex (Ganodermataceae, Polyporales) inferred from morphology and multilocus phylogeny. Phytochemistry 2015, 114, 7–15. [Google Scholar] [CrossRef]
- Hennicke, F.; Cheikh-Ali, Z.; Liebisch, T.; Maciá-Vicente, J.G.; Bode, H.B.; Piepenbring, M. Distinguishing commercially grown Ganoderma lucidum from Ganoderma lingzhi from Europe and East Asia on the basis of morphology, molecular phylogeny, and triterpenic acid profiles. Phytochemistry 2016, 127, 29–37. [Google Scholar] [CrossRef]
- He, X.; Chen, Y.; Li, Z.; Fang, L.; Chen, H.; Liang, Z.; Abozeid, A.; Yang, Z.; Yang, D. Germplasm resources and secondary metabolism regulation in Reishi mushroom (Ganoderma lucidum). Chin. Herb. Med. 2023, 15, 376–382. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, B.; Wang, L.; Li, S.; Long, Q.; Xiao, X. Bioactive components, pharmacological properties and underlying mechanism of Ganoderma lucidum spore oil: A review. Chin. Herb. Med. 2024, 16, 375–391. [Google Scholar] [CrossRef]
- McMeekin, D. The perception of Ganoderma lucidum in Chinese and Western culture. Mycologist 2004, 18, 165–169. [Google Scholar] [CrossRef]
- Sharma, C.; Bhardwaj, N.; Sharma, A.; Tuli, H.S.; Batra, P.; Beniwal, V.; Gupta, G.K.; Sharma, A.K. Bioactive metabolites of Ganoderma lucidum: Factors, mechanism and broad spectrum therapeutic potential. J. Herb. Med. 2019, 17–18, 100268. [Google Scholar] [CrossRef]
- Ahmad, M.F.; Alsayegh, A.; Ahmad, F.A.; Akhtar, M.S.; Alavudeen, S.S.; Bantun, F.; Wahab, S.; Ahmed, A.; Ali, M.; Elbendary, E.Y.; et al. Ganoderma lucidum: Insight into antimicrobial and antioxidant properties with development of secondary metabolites. Heliyon 2024, 10, e25607. [Google Scholar] [CrossRef]
- Tong, A.; Wu, W.; Chen, Z.; Wen, J.; Jia, R.; Liu, B.; Cao, H.; Zhao, C. Modulation of gut microbiota and lipid metabolism in rats fed high-fat diets by Ganoderma lucidum triterpenoids. Curr. Res. Food Sci. 2023, 6, 100427. [Google Scholar] [CrossRef]
- Gao, Y.-Y.; Zhou, Y.-H.; Liu, X.-P.; Di, B.; He, J.-Y.; Wang, Y.-T.; Guo, P.-T.; Zhang, J.; Wang, C.-K.; Jin, L. Ganoderma lucidum polysaccharide promotes broiler health by regulating lipid metabolism, antioxidants, and intestinal microflora. Int. J. Biol. Macromol. 2024, 280, 135918. [Google Scholar] [CrossRef]
- Li, M.; Yu, L.; Zhao, J.; Zhang, H.; Chen, W.; Zhai, Q.; Tian, F. Role of dietary edible mushrooms in the modulation of gut microbiota. J. Funct. Foods 2021, 83, 104538. [Google Scholar] [CrossRef]
- Wu, P.; Zhang, C.; Yin, Y.; Zhang, X.; Li, Q.; Yuan, L.; Sun, Y.; Zhou, S.; Ying, S.; Wu, J. Bioactivities and industrial standardization status of Ganoderma lucidum: A comprehensive review. Heliyon 2024, 10, e36987. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Zhang, W.; Liu, S. Optimization of ultrasonic-assisted extraction of polysaccharides and triterpenoids from the medicinal mushroom Ganoderma lucidum and evaluation of their in vitro antioxidant capacities. PLoS ONE 2021, 15, e0244749. [Google Scholar] [CrossRef] [PubMed]
- Do, D.T.; Lam, D.H.; Nguyen, T.; Phuong Mai, T.T.; Phan, L.T.M.; Vuong, H.T.; Nguyen, D.V.; Linh, N.T.T.; Hoang, M.N.; Mai, T.P.; et al. Utilization of Response Surface Methodology in Optimization of Polysaccharides Extraction from Vietnamese Red Ganoderma lucidum by Ultrasound-Assisted Enzymatic Method and Examination of Bioactivities of the Extract. Sci. World J. 2021, 2021, 7594092. [Google Scholar] [CrossRef]
- Huang, S.-Q.; Ning, Z.-X. Extraction of polysaccharide from Ganoderma lucidum and its immune enhancement activity. Int. J. Biol. Macromol. 2010, 47, 336–341. [Google Scholar] [CrossRef]
- Bhadange, Y.A.; Carpenter, J.; Saharan, V.K. A Comprehensive Review on Advanced Extraction Techniques for Retrieving Bioactive Components from Natural Sources. ACS Omega 2024, 9, 31274–31297. [Google Scholar] [CrossRef] [PubMed]
- Usman, I.; Hussain, M.; Imran, A.; Afzaal, M.; Saeed, F.; Javed, M.; Afzal, A.; Ashfaq, I.; Al Jbawi, E.; Saewan, S. Traditional and innovative approaches for the extraction of bioactive compounds. Int. J. Food Prop. 2022, 25, 1215–1233. [Google Scholar] [CrossRef]
- Chuensun, T.; Chewonarin, T.; Laopajon, W.; Kawee-ai, A.; Pinpart, P.; Utama-ang, N. Comparative evaluation of physicochemical properties of Lingzhi (Ganoderma lucidum) as affected by drying conditions and extraction methods. Int. J. Food Sci. Technol. 2021, 56, 2751–2759. [Google Scholar] [CrossRef]
- Oludemi, T.; Barros, L.; Prieto, M.A.; Heleno, S.A.; Barreiro, M.F.; Ferreira, I.C.F.R. Extraction of triterpenoids and phenolic compounds from Ganoderma lucidum: Optimization study using the response surface methodology. Food Funct. 2018, 9, 209–226. [Google Scholar] [CrossRef]
- Parepalli, Y.; Pamanji, S.; Singh, M. Ganoderma-lucidum-polysaccharides-extraction-yields-and-its-biological-applications. Electron. J. Biol. 2020, 16, 108–120. [Google Scholar]
- Tran, D.D.; Pham Thi, H.H.; Phan, V.M. Effects of Supercritical Carbon Dioxide Extraction (SC-CO2) on the Content of Triterpenoids in the Extracts from Ganoderma lucidum. Appl. Sci. Eng. Prog. 2022, 16, 5619. [Google Scholar] [CrossRef]
- Huang, S.-Q.; Li, J.-W.; Wang, Z.; Pan, H.-X.; Chen, J.-X.; Ning, Z.-X. Optimization of Alkaline Extraction of Polysaccharides from Ganoderma lucidum and Their Effect on Immune Function in Mice. Molecules 2010, 15, 3694–3708. [Google Scholar] [CrossRef] [PubMed]
- Fesa Putra, K.; Siti, M.; Sugeng, W.; Wahyudiono; Motonobu, G. Yield and Extraction Rate Analysis of Phytochemical Compounds from Eucheuma cottonii, Ganoderma lucidum, and Gracilaria sp. using Subcritical Water Extraction. ASEAN J. Chem. Eng. 2021, 21, 27–37. [Google Scholar]
- Kao, C.; Jesuthasan, A.C.; Bishop, K.S.; Glucina, M.P.; Ferguson, L.R. Anti-cancer activities of Ganoderma lucidum: Active ingredients and pathways. Funct. Foods Health Dis. 2013, 3, 48–65. [Google Scholar] [CrossRef]
- Azi, F.; Wang, Z.; Chen, W.; Lin, D.; Xu, P. Developing Ganoderma lucidum as a next-generation cell factory for food and nutraceuticals. Trends Biotechnol. 2024, 42, 197–211. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Liu, Y.; Tang, C. Recent Advances in the Preparation, Structure, and Biological Activities of β-Glucan from Ganoderma Species: A Review. Foods 2023, 12, 2975. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-N.; Nan, F.H.; Liu, M.W.; Yang, M.F.; Chang, Y.C.; Chen, S. Evaluation of Immune Modulation by β-1,3; 1,6 D-Glucan Derived from Ganoderma lucidum in Healthy Adult Volunteers, A Randomized Controlled Trial. Foods 2023, 12, 659. [Google Scholar] [CrossRef]
- Gao, X.; Homayoonfal, M. Exploring the anti-cancer potential of Ganoderma lucidum polysaccharides (GLPs) and their versatile role in enhancing drug delivery systems: A multifaceted approach to combat cancer. Cancer Cell Int. 2023, 23, 324. [Google Scholar] [CrossRef]
- Chen, S.; Nan, F.-H.; Liu, M.-W.; Yang, M.-F.; Chang, Y.-C.; Chen, S. Cytotoxic lanostane-type triterpenoids from the fruiting bodies of Ganoderma lucidum and their structure–activity relationships. Oncotarget 2016, 8, 10071–10084. [Google Scholar] [CrossRef]
- Galappaththi, M.C.A.; Patabendige, N.M.; Premarathne, B.M.; Hapuarachchi, K.K.; Tibpromma, S.; Dai, D.Q.; Suwannarach, N.; Rapior, S.; Karunarathna, S.C. A Review of Ganoderma Triterpenoids and Their Bioactivities. Biomolecules 2022, 13, 24. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Rangsinth, P.; Shiu, P.H.T.; Wang, W.; Li, R.; Li, J.; Kwan, Y.W.; Leung, G.P.H. A Review on the Sources, Structures, and Pharmacological Activities of Lucidenic Acids. Molecules 2023, 28, 1756. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.; Zhang, H.; Sun, X.; Zhao, H.; Wu, L.; Zhu, D.; Yang, G.; Shao, Y.; Zhang, X.; Mao, X.; et al. A Comprehensive Review of the Structure Elucidation and Biological Activity of Triterpenoids from Ganoderma spp. Molecules 2014, 19, 17478–17535. [Google Scholar] [CrossRef]
- Dat, T.D.; Viet, N.D.; Thanh, V.H.; Linh, N.T.T.; Ngan, N.T.K.; Nam, H.M.; Phong, M.T.; Hieu, N.H. Optimization of Triterpenoid Extraction from Ganoderma lucidum by Ethanol-Modified Supercritical Carbon Dioxide and the Biological Properties of the Extract. ChemistrySelect 2022, 7, e202103444. [Google Scholar] [CrossRef]
- Raza, S.H.A.; Zhong, R.; Li, X.; Pant, S.D.; Shen, X.; BinMowyna, M.N.; Luo, L.; Lei, H. Ganoderma lucidum triterpenoids investigating their role in medicinal applications and genomic protection. J. Pharm. Pharmacol. 2024, 76, 1535–1551. [Google Scholar] [CrossRef]
- Sova, M.; Saso, L. Natural Sources, Pharmacokinetics, Biological Activities and Health Benefits of Hydroxycinnamic Acids and Their Metabolites. Nutrients 2020, 12, 2190. [Google Scholar] [CrossRef]
- Masjedi, M.; Nateghi, L.; Berenjy, S.; Eshaghi, M.R. Determination of Antioxidant and Antimicrobial Compounds of Ganoderma lucidum Extract in Laboratory Different Conditions. Chem. Methodol. 2022, 6, 212–227. [Google Scholar]
- Valanciene, E.; Jonuskiene, I.; Syrpas, M.; Augustiniene, E.; Matulis, P.; Simonavicius, A.; Malys, N. Advances and Prospects of Phenolic Acids Production, Biorefinery and Analysis. Biomolecules 2020, 10, 874. [Google Scholar] [CrossRef] [PubMed]
- Mizzi, L.; Chatzitzika, C.; Gatt, R.; Valdramidis, V. HPLC Analysis of Phenolic Compounds and Flavonoids with Overlapping Peaks. Food Technol. Biotechnol. 2020, 58, 12–19. [Google Scholar] [CrossRef]
- Rangsinth, P.; Sharika, R.; Pattarachotanant, N.; Duangjan, C.; Wongwan, C.; Sillapachaiyaporn, C.; Nilkhet, S.; Wongsirojkul, N.; Prasansuklab, A.; Tencomnao, T.; et al. Potential Beneficial Effects and Pharmacological Properties of Ergosterol, a Common Bioactive Compound in Edible Mushrooms. Foods 2023, 12, 2529. [Google Scholar] [CrossRef]
- Obodai, M.; Mensah, D.L.; Fernandes, Â.; Kortei, N.K.; Dzomeku, M.; Teegarden, M.; Schwartz, S.J.; Barros, L.; Prempeh, J.; Takli, R.K.; et al. Chemical Characterization and Antioxidant Potential of Wild Ganoderma Species from Ghana. Molecules 2017, 22, 196. [Google Scholar] [CrossRef] [PubMed]
- Papoutsis, K.; Grasso, S.; Menon, A.; Brunton, N.P.; Lyng, J.G.; Jacquier, J.-C.; Bhuyan, D.J. Recovery of ergosterol and vitamin D2 from mushroom waste-Potential valorization by food and pharmaceutical industries. Trends Food Sci. Technol. 2020, 99, 351–366. [Google Scholar] [CrossRef]
- Lei, X.; Zhi, C.; Huang, W.; Sun, X.; Gao, W.; Yin, X.; Zhang, X.; Liang, C.; Zhang, H.; Sun, F. Recombinant Ganoderma lucidum Immunomodulatory Protein Improves the Treatment for Chemotherapy-Induced Neutropenia. Front. Pharmacol. 2020, 11, 956. [Google Scholar] [CrossRef]
- Yeh, C.-H.; Chen, H.-C.; Yang, J.-J.; Chuang, W.-I.; Sheu, F. Polysaccharides PS-G and Protein LZ-8 from Reishi (Ganoderma lucidum) Exhibit Diverse Functions in Regulating Murine Macrophages and T Lymphocytes. J. Agric. Food Chem. 2010, 58, 8535–8544. [Google Scholar] [CrossRef]
- Lin, H.-J.; Chang, Y.-S.; Lin, L.-H.; Haung, C.-F.; Wu, C.-Y.; Ou, K.-L. An Immunomodulatory Protein (Ling Zhi-8) from a Ganoderma lucidum Induced Acceleration of Wound Healing in Rat Liver Tissues after Monopolar Electrosurgery. Evid.-Based Complement. Altern. Med. 2014, 2014, 916531. [Google Scholar] [CrossRef]
- Drzewiecka, B.; Wessely-Szponder, J.; Świeca, M.; Espinal, P.; Fusté, E.; Fernández-De La Cruz, E. Bioactive Peptides and Other Immunomodulators of Mushroom Origin. Biomedicines 2024, 12, 1483. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, M.; Bedi, O.; Gupta, M.; Kumar, S.; Jaiswal, G.; Rahi, V.; Yedke, N.G.; Bijalwan, A.; Sharma, S.; et al. Role of vitamins and minerals as immunity boosters in COVID-19. Inflammopharmacology 2021, 29, 1001–1016. [Google Scholar] [CrossRef] [PubMed]
- El Sheikha, A.F. Nutritional Profile and Health Benefits of Ganoderma lucidum “Lingzhi, Reishi, or Mannentake” as Functional Foods: Current Scenario and Future Perspectives. Foods 2022, 11, 1030. [Google Scholar] [CrossRef] [PubMed]
- Ogbe, A.; Obeka, A. Proximate, mineral and anti-nutrient composition of wild Ganoderma lucidum: Implication on its utilization in poultry production. Iran. J. Appl. Anim. Sci. 2013, 3, 161–166. [Google Scholar]
- Senila, M.; Senila, L.; Resz, M.-A. Chemical composition and nutritional characteristics of popular wild edible mushroom species collected from North-Western Romania. J. Food Compos. Anal. 2024, 134, 106504. [Google Scholar] [CrossRef]
- Akinyeye, R.; Oluwadunsin, A.; Omoyeni Akinwunmi, O. Proximate, Mineral, Anti-Nutrients, Phyto-Chemical Screening and Amino Acid Compositions of the Leaves of Pterocarpus Mildbraedi Harms. Electron. J. Environ. Agric. Food Chem. 2010, 9, 1322–1333. [Google Scholar]
- Muhammad, A.; Dangoggo, S.M.; Tsafe, A.; Adams, I.; Atiku, F. Proximate, Minerals and Anti-nutritional Factors of Gardenia aqualla (Gauden dutse) Fruit Pulp. J. Nutr. Asian Netw. Sci. Inf. 2011, 10, 577–581. [Google Scholar] [CrossRef]
- Brown, H.A.; Marnett, L.J. Introduction to Lipid Biochemistry, Metabolism, and Signaling. Chem. Rev. 2011, 111, 5817–5820. [Google Scholar] [CrossRef]
- Vani Raju, M.; Kaniyur Chandrasekaran, M.; Muthaiyan Ahalliya, R.; Velliyur Kanniappan, G. Reconnoitering the role of Lipid Metabolites in Ferroptosis. Adv. Redox Res. 2025, 14, 100117. [Google Scholar] [CrossRef]
- Salvatore, M.M.; Elvetico, A.; Gallo, M.; Salvatore, F.; DellaGreca, M.; Naviglio, D.; Andolfi, A. Fatty Acids from Ganoderma lucidum Spores: Extraction, Identification and Quantification. Appl. Sci. 2020, 10, 3907. [Google Scholar] [CrossRef]
- Kang, Q.; Chen, S.; Li, S.; Wang, B.; Liu, X.; Hao, L.; Lu, J. Comparison on characterization and antioxidant activity of polysaccharides from Ganoderma lucidum by ultrasound and conventional extraction. Int. J. Biol. Macromol. 2019, 124, 1137–1144. [Google Scholar] [CrossRef]
- The Nutritional Profile of Reishi Mushroom: Health Benefits + History. 2019. Peak and Valley. Available online: https://peakandvalley.co/blogs/wellness-library/the-nutritional-profile-of-reishi-mushroom-health-benefits-history?srsltid=AfmBOoq1xhpwYGoYBLEjxaUMErGdpOuWGxhaBCG2jxmi5l9qPH8mC9R7 (accessed on 20 December 2024).
- Nosewicz, J.; Spaccarelli, N.; Roberts, K.M.; Hart, P.A.; Kaffenberger, J.A.; Trinidad, J.C.; Kaffenberger, B.H. The epidemiology, impact, and diagnosis of micronutrient nutritional dermatoses. Part 2: B-complex vitamins. J. Am. Acad. Dermatol. 2022, 86, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Gharib, M.A.-A.; Elhassaneen, Y.A.E.E.; Radwan, H. Nutrients and Nutraceuticals Content and In Vitro Biological Activities of Reishi Mushroom (Ganoderma lucidum) Fruiting Bodies. Alex. Sci. Exch. J. 2022, 43, 301–316. [Google Scholar] [CrossRef]
- Saghiri, M.A.; Asatourian, A.; Ershadifar, S.; Moghadam, M.M.; Sheibani, N. Vitamins and regulation of angiogenesis: [A, B1, B2, B3, B6, B9, B12, C, D, E, K]. J. Funct. Foods 2017, 38, 180–196. [Google Scholar] [CrossRef]
- Artusa, P.; White, J.H. Vitamin D and Its Analogues in Immune System Regulation. Pharmacol. Rev. 2024, 77, 100032. [Google Scholar] [CrossRef]
- See, X.Z.; Yeo, W.S.; Saptoro, A. A comprehensive review and recent advances of vitamin C: Overview, functions, sources, applications, market survey and processes. Chem. Eng. Res. Des. 2024, 206, 108–129. [Google Scholar] [CrossRef]
- Eggersdorfer, M.; Schmidt, K.; Péter, S.; Richards, J.; Winklhofer-Roob, B.; Hahn, A.; Obermüller-Jevic, U. Vamin E: Not only a single stereoisomer. Free Radic. Biol. Med. 2024, 215, 106–111. [Google Scholar] [CrossRef]
- Kozarski, M.; Klaus, A.; Špirović Trifunović, B.; Miletić, S.; Lazić, V.; Žižak, Ž.; Vunduk, J. Identifying the biological potential of Western Balkan Polypore mushroom species to mitigate the negative effects of global mushroom cultivation. Preprints 2023, 2023111765. [Google Scholar]
- Unlu, A.; Nayir, E.; Kirca, O.; Ozdogan, M. Ganoderma lucidum (Reishi Mushroom) and cancer. J. Buon 2016, 21, 792–798. [Google Scholar]
- Ahmad, M.F.; Ahmad, F.A.; Khan, M.I.; Alsayegh, A.A.; Wahab, S.; Alam, M.I.; Ahmed, F. Ganoderma lucidum: A potential source to surmount viral infections through β-glucans immunomodulatory and triterpenoids antiviral properties. Int. J. Biol. Macromol. 2021, 187, 769–779. [Google Scholar] [CrossRef]
- Bettelli, E.; Korn, T.; Kuchroo, V.K. Th17: The third member of the effector T cell trilogy. Curr. Opin. Immunol. 2007, 19, 652–657. [Google Scholar] [CrossRef]
- Zhao, R.; Chen, Q.; He, Y.-m. The effect of Ganoderma lucidum extract on immunological function and identify its anti-tumor immunostimulatory activity based on the biological network. Sci. Rep. 2018, 8, 12680. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Sliva, D. Ganoderma lucidum for Cancer Treatment: We Are Close but Still Not There. Integr. Cancer Ther. 2015, 14, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Han, J.; Wang, K.; Han, H.; Hu, Y.; Li, H.; Wu, S.; Zhang, L. Research progress of Ganoderma lucidum polysaccharide in prevention and treatment of Atherosclerosis. Heliyon 2024, 10, e33307. [Google Scholar] [CrossRef] [PubMed]
- Meng, M.; Wang, L.; Yao, Y.; Lin, D.; Wang, C.; Yao, J.; Sun, H.; Liu, M. Ganoderma lucidum polysaccharide peptide (GLPP) attenuates rheumatic arthritis in rats through inactivating NF-κB and MAPK signaling pathways. Phytomedicine 2023, 119, 155010. [Google Scholar] [CrossRef]
- Rowaiye, A.; Wilfred, O.I.; Onuh, O.A.; Bur, D.; Oni, S.; Nwonu, E.J.; Ibeanu, G.; Oli, A.N.; Wood, T.T. Modulatory Effects of Mushrooms on the Inflammatory Signaling Pathways and Pro-inflammatory Mediators. Clin. Complement. Med. Pharmacol. 2022, 2, 100037. [Google Scholar] [CrossRef]
- Hapuarachchi, K.; Wen, T.; Jeewon, R.; Wu, X.; Kang, J. Mycosphere Essays 15. Ganoderma lucidum-are the beneficial medical properties substantiated? Mycosphere 2016, 7, 687–715. [Google Scholar] [CrossRef]
- Adeyi, A.O.; Awosanya, S.A.; Adeyi, O.E.; James, A.S.; Adenipekun, C.O. Ganoderma lucidum ethanol extract abrogates metabolic syndrome in rats: In vivo evaluation of hypoglycemic, hypolipidemic, hypotensive and antioxidant properties. Obes. Med. 2021, 22, 100320. [Google Scholar] [CrossRef]
- Liu, Y.-J.; Du, J.-L.; Cao, L.-P.; Jia, R.; Shen, Y.-J.; Zhao, C.-Y.; Xu, P.; Yin, G.-J. Anti-inflammatory and hepatoprotective effects of Ganoderma lucidum polysaccharides on carbon tetrachloride-induced hepatocyte damage in common carp (Cyprinus carpio L.). Int. Immunopharmacol. 2015, 25, 112–120. [Google Scholar] [CrossRef]
- Ding, L.; Shangguan, H.; Wang, X.; Liu, J.; Shi, Y.; Xu, X.; Xie, Y. Extraction, purification, structural characterization, biological activity, mechanism of action and application of polysaccharides from Ganoderma lucidum: A review. Int. J. Biol. Macromol. 2025, 288, 138575. [Google Scholar] [CrossRef]
- Jung, S.; Son, H.; Hwang, C.E.; Cho, K.M.; Park, S.W.; Kim, H.J. Ganoderma lucidum Ameliorates Non-Alcoholic Steatosis by Upregulating Energy Metabolizing Enzymes in the Liver. J. Clin. Med. 2018, 7, 152. [Google Scholar] [CrossRef]
- Shi, Y.; Sun, J.; He, H.; Guo, H.; Zhang, S. Hepatoprotective effects of Ganoderma lucidum peptides against d-galactosamine-induced liver injury in mice. J. Ethnopharmacol. 2008, 117, 415–419. [Google Scholar] [CrossRef]
- Zhang, X.-t.; Ji, C.-l.; Fu, Y.-j.; Yang, Y.; Xu, G.-y. Screening of active components of Ganoderma lucidum and decipher its molecular mechanism to improve learning and memory disorders. Biosci. Rep. 2024, 44, BSR20232068. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, W.; Cui, X.; Zhu, P.; Li, S.; Yuan, S.; Peng, D.; Peng, C. Ganoderma lucidum ethanol extracts ameliorate hepatic fibrosis and promote the communication between metabolites and gut microbiota g_Ruminococcus through the NF-κB and TGF-β1/Smads pathways. J. Ethnopharmacol. 2024, 322, 117656. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zheng, S.; Liu, Y.; Ji, Y.; Liu, X.; Wang, F.; Li, C. A nanozyme multifunctional platform based on iron doped carbon dots derived from Tibetan Ganoderma lucidum waste for glucose sensing, anti-counterfeiting applications, and anticancer cell effect. Talanta 2024, 276, 126262. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Luo, X.; Xue, Z.; Wu, M.; Chen, Q.; Jin, L. Exploring the anti-lung cancer mechanism of Ganoderma lucidum and its relationship with the level of immune cell infiltration based on network pharmacology and molecular docking. Oncologie 2024, 26, 831–843. [Google Scholar] [CrossRef]
- Zhong, J.; Fang, L.; Chen, R.; Xu, J.; Guo, D.; Guo, C.; Guo, C.; Chen, J.; Chen, C.; Wang, X. Polysaccharides from sporoderm-removed spores of Ganoderma lucidum induce apoptosis in human gastric cancer cells via disruption of autophagic flux. Oncol. Lett. 2021, 21, 425. [Google Scholar] [CrossRef]
- YouGuo, C.; ZongJi, S.; XiaoPing, C. Modulatory effect of Ganoderma lucidum polysaccharides on serum antioxidant enzymes activities in ovarian cancer rats. Carbohydr. Polym. 2009, 78, 258–262. [Google Scholar] [CrossRef]
- Jin, H.; Song, C.; Zhao, Z.; Zhou, G. Ganoderma lucidum Polysaccharide, an Extract from Ganoderma lucidum, Exerts Suppressive Effect on Cervical Cancer Cell Malignancy through Mitigating Epithelial-Mesenchymal and JAK/STAT5 Signaling Pathway. Pharmacology 2020, 105, 461–470. [Google Scholar] [CrossRef]
- Nandi, P.; Mitra, S.; Mitra, D.M.; Paira, D.M.K.; Nandi, D.D.K. Effect of Ganoderma lucidum on physiological indices and gut microflora: A review. Meas. Food 2023, 12, 100116. [Google Scholar] [CrossRef]
- Ahmad, M.F.; Ahmad, F.A.; Hasan, N.; Alsayegh, A.A.; Hakami, O.; Bantun, F.; Tasneem, S.; Alamier, W.M.; Babalghith, A.O.; Aldairi, A.F.; et al. Ganoderma lucidum: Multifaceted mechanisms to combat diabetes through polysaccharides and triterpenoids: A comprehensive review. Int. J. Biol. Macromol. 2024, 268, 131644. [Google Scholar] [CrossRef]
- Xiao, C.; Wu, Q.; Zhang, J.; Xie, Y.; Cai, W.; Tan, J. Antidiabetic activity of Ganoderma lucidum polysaccharides F31 down-regulated hepatic glucose regulatory enzymes in diabetic mice. J. Ethnopharmacol. 2017, 196, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Yu, L.; Cao, Z.; Wang, Y.; Zhu, C.; Li, Y.; Yin, J.; Ma, Z.; He, X.; Zhang, Y.; et al. Integrating transcriptomics, metabolomics, and network pharmacology to investigate multi-target effects of Sporoderm-broken spores of Ganoderma lucidum on improving HFD-induced diabetic nephropathy rats. J. Pharm. Anal. 2024, 14, 101105. [Google Scholar] [CrossRef] [PubMed]
- Prasopthum, A.; Insawek, T.; Pouyfung, P. Herbal medicine use in Thai patients with type 2 diabetes mellitus and its association with glycemic control: A cross-sectional evaluation. Heliyon 2022, 8, e10790. [Google Scholar] [CrossRef]
- Ahmad, M.F.; Wahab, S.; Ahmad, F.A.; Ashraf, S.A.; Abullais, S.S.; Saad, H.H. Ganoderma lucidum: A potential pleiotropic approach of ganoderic acids in health reinforcement and factors influencing their production. Fungal Biol. Rev. 2022, 39, 100–125. [Google Scholar] [CrossRef]
- Tran, H.-B.; Yamamoto, A.; Matsumoto, S.; Ito, H.; Igami, K.; Miyazaki, T.; Kondo, R.; Shimizu, K. Hypotensive Effects and Angiotensin-Converting Enzyme Inhibitory Peptides of Reishi (Ganoderma lingzhi) Auto-Digested Extract. Molecules 2014, 19, 13473–13485. [Google Scholar] [CrossRef] [PubMed]
- Sharif Swallah, M.; Bondzie-Quaye, P.; Wang, H.; Shao, C.-S.; Hua, P.; Alrasheed Bashir, M.; Benjamin Holman, J.; Sossah, F.L.; Huang, Q. Potentialities of Ganoderma lucidum extracts as functional ingredients in food formulation. Food Res. Int. 2023, 172, 113161. [Google Scholar] [CrossRef]
- Ryu, D.H.; Cho, J.Y.; Sadiq, N.B.; Kim, J.-C.; Lee, B.; Hamayun, M.; Lee, T.S.; Kim, H.S.; Park, S.H.; Nho, C.W.; et al. Optimization of antioxidant, anti-diabetic, and anti-inflammatory activities and ganoderic acid content of differentially dried Ganoderma lucidum using response surface methodology. Food Chem. 2021, 335, 127645. [Google Scholar] [CrossRef]
- Hafiane, A.; Pisaturo, A.; Favari, E.; Bortnick, A.E. Atherosclerosis, calcific aortic valve disease and mitral annular calcification: Same or different? Int. J. Cardiol. 2025, 420, 132741. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, X.; Yan, X.-H.; Zhang, J.-L.; Wang, L.-Y.; Xue, H.; Jiang, G.-C.; Ma, X.-T.; Liu, X.-J. Characterization, hypolipidemic and antioxidant activities of degraded polysaccharides from Ganoderma lucidum. Int. J. Biol. Macromol. 2019, 135, 706–716. [Google Scholar] [CrossRef]
- Arunachalam, K.; Sasidharan, S.P.; Yang, X. A concise review of mushrooms antiviral and immunomodulatory properties that may combat against COVID-19. Food Chem. Adv. 2022, 1, 100023. [Google Scholar] [CrossRef]
- Cör Andrejč, D.; Knez, Ž.; Knez Marevci, M. Antioxidant, antibacterial, antitumor, antifungal, antiviral, anti-inflammatory, and nevro-protective activity of Ganoderma lucidum: An overview. Front. Pharmacol. 2022, 13, 934982. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Tang, W.; Gao, H.; Chan, E.; Lan, J.; Li, X.; Zhou, S. Antimicrobial Activity of the Medicinal Mushroom Ganoderma. Food Rev. Int. 2005, 21, 211–229. [Google Scholar] [CrossRef]
- Lu, W.; Kong, C.; Cheng, S.; Xu, X.; Zhang, J. Succinoglycan riclin relieves UVB-induced skin injury with anti-oxidant and anti-inflammatory properties. Int. J. Biol. Macromol. 2023, 235, 123717. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, Y.; Shao, Y.; Wu, Y.; Hsu, W.; Cheng, K.; Yu, C.; Chou, C.; Hsieh, C. Physicochemical properties and protective effects on UVA-induced photoaging in Hs68 cells of Pleurotus ostreatus polysaccharides by fractional precipitation. Int. J. Biol. Macromol. 2023, 228, 537–547. [Google Scholar] [CrossRef]
- Chen, H.; Wu, Y.; Wang, B.; Kui, M.; Xu, J.; Ma, H.; Li, J.; Zeng, J.; Gao, W.; Chen, K. Skin healthcare protection with antioxidant and anti-melanogenesis activity of polysaccharide purification from Bletilla striata. Int. J. Biol. Macromol. 2024, 262, 130016. [Google Scholar] [CrossRef] [PubMed]
- Anil Kumar, N.V.; Quispe, C.; Herrera-Bravo, J.; Herrera Belén, L.; Loren, P.; Salazar, L.A.; Silva, V.; Erdogan Orhan, I.; Senol Deniz, F.S.; Nemli, E.; et al. Potential of Mushrooms Bioactive for the Treatment of Skin Diseases and Disorders. J. Food Biochem. 2023, 2023, 5915769. [Google Scholar] [CrossRef]
- Jiao, C.; Xie, Y.; Yun, H.; Liang, H.; He, C.; Jiang, A.; Wu, Q.; Yang, B.B. The effect of Ganodermalucidum spore oil in early skin wound healing: Interactions of skin microbiota and inflammation. Aging Albany NY 2020, 12, 14125–14140. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Beta Glucans Derived from Ganoderma lucidum Mycelium; FDA: Silver Spring, MD, USA, 2012.
- European Commission. EU Novel Food status Catalogue—Ganoderma lucidum. 2025. Available online: https://ec.europa.eu/food/food-feed-portal/screen/novel-food-catalogue/search (accessed on 8 April 2025). (search Ganoderma lucidum).
- Klupp, N.L.; Kiat, H.; Bensoussan, A.; Steiner, G.Z.; Chang, D.H. A double-blind, randomised, placebo-controlled trial of Ganoderma lucidum for the treatment of cardiovascular risk factors of metabolic syndrome. Sci. Rep. 2016, 2016, 29540. [Google Scholar] [CrossRef]
- Xu, J.; Li, P. Researches and Application of Ganoderma Spores Powder. In Ganoderma and Health: Biology, Chemistry and Industry; Lin, Z., Yang, B., Eds.; Springer: Singapore, 2019; pp. 157–186. [Google Scholar]
- Lin Hua, L.H.; Jin LongZhe, J.L.; Che Cheng Lai, C.C.; Wang Xia, W.X.; Wang YuHui, W.Y.; Wang XinYu, W.X. Toxicological safety evaluation of sporoderm-broken spore powders of organic Ganoderma lucidum of Changbai mountain. J. Food Saf. Qual. 2017, 8, 662–668. [Google Scholar]
- Ahmad, R.; Riaz, M.; Khan, A.; Aljamea, A.; Algheryafi, M.; Sewaket, D.; Alqathama, A. Ganoderma lucidum (Reishi) an edible mushroom; a comprehensive and critical review of its nutritional, cosmeceutical, mycochemical, pharmacological, clinical, and toxicological properties. Phytother. Res. 2021, 35, 6030–6062. [Google Scholar] [CrossRef]
- Arsov, A.; Tsigoriyna, L.; Batovska, D.; Armenova, N.; Mu, W.; Zhang, W.; Petrov, K.; Petrova, P. Bacterial Degradation of Antinutrients in Foods: The Genomic Insight. Foods 2024, 13, 2408. [Google Scholar] [CrossRef]
- Sharma, R.; Garg, P.; Kumar, P.; Bhatia, S.K.; Kulshrestha, S. Microbial Fermentation and Its Role in Quality Improvement of Fermented Foods. Fermentation 2020, 6, 106. [Google Scholar] [CrossRef]
- Zhang, R.; Cen, Q.; Hu, W.; Chen, H.; Hui, F.; Li, J.; Zeng, X.; Qin, L. Metabolite profiling, antioxidant and anti-glycemic activities of Tartary buckwheat processed by solid-state fermentation (SSF)with Ganoderma lucidum. Food Chem. X 2024, 22, 101376. [Google Scholar] [CrossRef]
- Guo, J.; Tang, C.; Liu, Y.; Shi, J.; Vunduk, J.; Tang, C.; Feng, J.; Zhang, J. Innovative submerged directed fermentation: Producing high molecular weight polysaccharides from Ganoderma lucidum. Food Chem. 2025, 471, 142759. [Google Scholar] [CrossRef] [PubMed]
- Paterson, R.R.M. Ganoderma—A therapeutic fungal biofactory. Phytochemistry 2006, 67, 1985–2001. [Google Scholar] [CrossRef] [PubMed]
- Nie, S.; Zhang, H.; Li, W.; Xie, M. Current development of polysaccharides from Ganoderma: Isolation, structure and bioactivities. Bioact. Carbohydr. Diet. Fibre 2013, 1, 10–20. [Google Scholar] [CrossRef]
- Kumar, A. Ganoderma lucidum: A traditional chinese medicine used for curing tumors. Int. J. Pharm. Pharm. Sci. 2021, 13, 1–13. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plosca, M.-P.; Chiș, M.S.; Fărcaș, A.C.; Păucean, A. Ganoderma lucidum—From Ancient Remedies to Modern Applications: Chemistry, Benefits, and Safety. Antioxidants 2025, 14, 513. https://doi.org/10.3390/antiox14050513
Plosca M-P, Chiș MS, Fărcaș AC, Păucean A. Ganoderma lucidum—From Ancient Remedies to Modern Applications: Chemistry, Benefits, and Safety. Antioxidants. 2025; 14(5):513. https://doi.org/10.3390/antiox14050513
Chicago/Turabian StylePlosca, Mădălina-Paula, Maria Simona Chiș, Anca Corina Fărcaș, and Adriana Păucean. 2025. "Ganoderma lucidum—From Ancient Remedies to Modern Applications: Chemistry, Benefits, and Safety" Antioxidants 14, no. 5: 513. https://doi.org/10.3390/antiox14050513
APA StylePlosca, M.-P., Chiș, M. S., Fărcaș, A. C., & Păucean, A. (2025). Ganoderma lucidum—From Ancient Remedies to Modern Applications: Chemistry, Benefits, and Safety. Antioxidants, 14(5), 513. https://doi.org/10.3390/antiox14050513