Feedback Loops Shape Oxidative and Immune Interactions in Hepatic Ischemia–Reperfusion Injury
Abstract
1. Introduction
2. Oxidant Mechanisms That Contribute to ROS in Hepatic IRI
2.1. Major Sources of ROS
2.2. Key Hepatic and Immune Cell Players
3. Immune–Hepatic Crosstalk in Response to Oxidative Stress
3.1. Innate Immune Responses
3.2. Adaptive Immune Involvement
3.3. Feedback Loops Between ROS and Immune Activation
4. Recent Antioxidant Efforts to Mitigate ROS in Hepatic IRI
4.1. Targeted Delivery Systems
4.2. Enzyme-Based Nano-Therapies
4.3. Redox Signaling Modulators Targeting Hepatic IRI Using Nanomedicine
5. Challenges and Future Directions
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dery, K.J.; Kaldas, F.; Kupiec-Weglinski, J.W. Targeting Ischemia-reperfusion injury in liver transplant rejuvenation. Transplant. Rep. 2025, 10, 100176. [Google Scholar] [CrossRef]
- Mansouri, A.; Gattolliat, C.H.; Asselah, T. Mitochondrial Dysfunction and Signaling in Chronic Liver Diseases. Gastroenterology 2018, 155, 629–647. [Google Scholar] [CrossRef] [PubMed]
- Dery, K.J.; Yao, S.; Cheng, B.; Kupiec-Weglinski, J.W. New therapeutic concepts against ischemia-reperfusion injury in organ transplantation. Expert Rev. Clin. Immunol. 2023, 19, 1205–1224. [Google Scholar] [CrossRef]
- Dery, K.J.; Kupiec-Weglinski, J.W. New insights into ischemia-reperfusion injury signaling pathways in organ transplantation. Curr. Opin. Organ Transpl. 2022, 27, 424–433. [Google Scholar] [CrossRef]
- Dery, K.J.; Kojima, H.; Kageyama, S.; Kadono, K.; Hirao, H.; Cheng, B.; Zhai, Y.; Farmer, D.G.; Kaldas, F.M.; Yuan, X.; et al. Alternative splicing of CEACAM1 by hypoxia-inducible factor-1α enhances tolerance to hepatic ischemia in mice and humans. Sci. Transl. Med. 2023, 15, eadf2059. [Google Scholar] [CrossRef] [PubMed]
- Che, Z.; Zhou, Z.; Li, S.Q.; Gao, L.; Xiao, J.; Wong, N.K. ROS/RNS as molecular signatures of chronic liver diseases. Trends Mol. Med. 2023, 29, 951–967. [Google Scholar] [CrossRef] [PubMed]
- Shields, H.J.; Traa, A.; Van Raamsdonk, J.M. Beneficial and Detrimental Effects of Reactive Oxygen Species on Lifespan: A Comprehensive Review of Comparative and Experimental Studies. Front. Cell Dev. Biol. 2021, 9, 628157. [Google Scholar] [CrossRef]
- Ben-Mahdi, M.H.; Dang, P.M.; Gougerot-Pocidalo, M.A.; O’Dowd, Y.; El-Benna, J.; Pasquier, C. Xanthine Oxidase-Derived ROS Display a Biphasic Effect on Endothelial Cells Adhesion and FAK Phosphorylation. Oxid. Med. Cell Longev. 2016, 2016, 9346242. [Google Scholar] [CrossRef]
- Wei, Y.; Jia, S.; Ding, Y.; Xia, S.; Giunta, S. Balanced basal-levels of ROS (redox-biology), and very-low-levels of pro-inflammatory cytokines (cold-inflammaging), as signaling molecules can prevent or slow-down overt-inflammaging, and the aging-associated decline of adaptive-homeostasis. Exp. Gerontol. 2023, 172, 112067. [Google Scholar] [CrossRef]
- Palma, F.R.; Gantner, B.N.; Sakiyama, M.J.; Kayzuka, C.; Shukla, S.; Lacchini, R.; Cunniff, B.; Bonini, M.G. ROS production by mitochondria: Function or dysfunction? Oncogene 2024, 43, 295–303. [Google Scholar] [CrossRef]
- Lu, J.; Liu, J.; Li, A. Roles of neutrophil reactive oxygen species (ROS) generation in organ function impairment in sepsis. J. Zhejiang Univ. Sci. B 2022, 23, 437–450. [Google Scholar] [CrossRef]
- Yang, L.; Shi, F.; Cao, F.; Wang, L.; She, J.; He, B.; Xu, X.; Kong, L.; Cai, B. Neutrophils in Tissue Injury and Repair: Molecular Mechanisms and Therapeutic Targets. MedComm 2025, 6, e70184. [Google Scholar] [CrossRef]
- Fang, S.; Jiang, M.; Jiao, J.; Zhao, H.; Liu, D.; Gao, D.; Wang, T.; Yang, Z.; Yuan, H. Unraveling the ROS-Inflammation-Immune Balance: A New Perspective on Aging and Disease. Aging Dis. 2025, 17, 1–21. [Google Scholar] [CrossRef]
- Kupiec-Weglinski, J.W. Grand Challenges in Organ Transplantation. Front. Transpl. 2022, 1, 897679. [Google Scholar] [CrossRef]
- Dery, K.J.; Najjar, S.M.; Beauchemin, N.; Shively, J.E.; Kupiec-Weglinski, J.W. Mechanism and function of CEACAM1 splice isoforms. Eur. J. Clin. Investig. 2024, 54 (Suppl. S2), e14350. [Google Scholar] [CrossRef]
- Sies, H.; Belousov, V.V.; Chandel, N.S.; Davies, M.J.; Jones, D.P.; Mann, G.E.; Murphy, M.P.; Yamamoto, M.; Winterbourn, C. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 2022, 23, 499–515. [Google Scholar] [CrossRef]
- Li, S.; Tan, H.Y.; Wang, N.; Zhang, Z.J.; Lao, L.; Wong, C.W.; Feng, Y. The Role of Oxidative Stress and Antioxidants in Liver Diseases. Int. J. Mol. Sci. 2015, 16, 26087–26124. [Google Scholar] [CrossRef]
- Allameh, A.; Niayesh-Mehr, R.; Aliarab, A.; Sebastiani, G.; Pantopoulos, K. Oxidative Stress in Liver Pathophysiology and Disease. Antioxidants 2023, 12, 1653. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Li, W.; Cheng, Q.; Weng, Z.; Huang, Z.; Zhu, L.; Ding, T.; Ding, B. Ellagic acid alleviates iron overload-induced liver damage by mitigating ferroptosis through modulation of the TGFβ/Smad signaling pathway. Food Res. Int. 2025, 214, 116590. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Bai, H.; Su, Y.; Gao, Y.; Fang, H.; Li, D.; Yu, Y.; Lu, X.; Xia, D.; Mao, D.; et al. Fecal microbiota transplantation from Helicobacter pylori carriers following bismuth quadruple therapy exacerbates alcohol-related liver disease in mice via LPS-induced activation of hepatic TLR4/NF-κB/NLRP3 signaling. J. Transl. Med. 2025, 23, 627. [Google Scholar] [CrossRef]
- Dong, T.; Zhang, C.; Wu, Z.; Shuai, L.; Fu, N.; Zhang, Y.; Zhang, L.; Xiong, X. A biomimetic nanomedicine alleviates liver transplant-related biliary injury by sequentially inhibiting oxidative stress and regulating macrophage polarization via Nrf-2/HO-1 and JNK pathways. Mater. Today Bio 2025, 32, 101797. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.S.; He, M.Q.; An, M.Y.; Zhao, Q.H.; Zhang, Z.H.; Deng, K.Y.; Ai, Y.; Xin, H.B. Ultra-Small Copper-Based Multienzyme-Like Nanoparticles Protect Against Hepatic Ischemia-Reperfusion Injury Through Scavenging Reactive Oxygen Species in Mice. Small 2024, 20, e2403313. [Google Scholar] [CrossRef] [PubMed]
- Hui, B.; Zhang, X.; Wang, S.; Shu, Y.; Li, R.; Yang, Z. Crocetin preconditioning attenuates ischemia reperfusion-induced hepatic injury by disrupting Keap1/Nrf2 interaction and activating Nrf2/HO-1 pathway. Tissue Cell 2024, 88, 102411. [Google Scholar] [CrossRef]
- Yang, F.; Gao, H.; Niu, Z.; Ni, Q.; Zhu, H.; Wang, J.; Lu, J. Puerarin protects the fatty liver from ischemia-reperfusion injury by regulating the PI3K/AKT signaling pathway. Braz. J. Med. Biol. Res. 2024, 57, e13229. [Google Scholar] [CrossRef] [PubMed]
- Rajabi, S.; Mohammadi, Y.; Kabiri-Rad, H.; Rajabi-Moghaddam, M.; Farimani, A.R. Comparative Effects of Crocin and Losartan on RAGE, TGF-β, TNF-α Gene Expression and Histopathological Changes of the Liver Tissue in Rats With Diabetes. Endocrinol. Diabetes Metab. 2025, 8, e70016. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Chen, J.; Wang, M.; He, K.; Lin, C.; Cao, X.; Lai, J.; Zeng, B.; Guo, X. Ultrasound-driven ROS-scavenging nanobubbles for synergistic NASH treatment via FXR activation. Ultrason. Sonochem. 2025, 118, 107352. [Google Scholar] [CrossRef]
- Chen, Q.; Lin, H.; Huang, X.; Yu, W. Codonopsis pilosula polysaccharides attenuate lipid accumulation and inflammatory response in the NAFLD mouse by regulating AMPK/ACC/SREBP1 signaling pathway. Tissue Cell 2025, 96, 102984. [Google Scholar] [CrossRef]
- Lu, D.; Huang, A.; Tong, X.; Zhang, X.; Li, S.; Yu, X. Nobiletin protects against alcohol-induced mitochondrial dysfunction and liver injury by regulating the hepatic NRF1-TFAM signaling pathway. Redox Rep. 2024, 29, 2395779. [Google Scholar] [CrossRef]
- Huda, N.; Kusumanchi, P.; Jiang, Y.; Gao, H.; Thoudam, T.; Zeng, G.; Skill, N.J.; Sun, Z.; Liangpunsakul, S.; Ma, J.; et al. Silencing FAF2 mitigates alcohol-induced hepatic steatosis by modulating lipolysis and PCSK9 pathway. Hepatol. Commun. 2025, 9, e0641. [Google Scholar] [CrossRef]
- Cheng, Y.; Song, T.; Yao, J.; Wang, Q.; Meng, C.; Feng, F. Study on the mechanism of hsa_circ_0074763 regulating the miR-3667-3P/ACSL4 axis in liver fibrosis. Sci. Rep. 2025, 15, 10548. [Google Scholar] [CrossRef]
- Liang, L.; Dong, Z.; Shen, Z.; Zang, Y.; Yang, W.; Wu, L.; Bao, L. Inhibitory effects of umbelliferone on carbon tetrachloride-induced hepatic fibrosis in rats through the TGF-β1-Smad signaling pathway. Mol. Med. Rep. 2025, 32, 171. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Tai, Y.; Lan, T.; Zhao, C.; Gao, J.H.; Tang, C.W.; Tong, H. Inhibition of Cyclooxygenase-2 Upregulates the Nuclear Factor Erythroid 2-related Factor 2 Signaling Pathway to Mitigate Hepatocyte Ferroptosis in Chronic Liver Injury. J. Clin. Transl. Hepatol. 2025, 13, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Ding, P.; Song, Y.; Zhou, J.; Chen, X.; Peng, C.; Liu, S. FDX1 downregulation activates mitophagy and the PI3K/AKT signaling pathway to promote hepatocellular carcinoma progression by inducing ROS production. Redox Biol. 2024, 75, 103302. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Wang, J.; Wang, X.; Chen, L.; Han, T.; Lian, H.; Gan, M.; Wang, J. Fangchinoline suppresses hepatocellular carcinoma by regulating ROS accumulation via the TRIM7/Nrf2 signaling pathway. Phytomedicine 2024, 135, 156143. [Google Scholar] [CrossRef]
- Niu, Z.; Zhao, Q.; Cao, H.; Yang, B.; Wang, S. Hypoxia-activated oxidative stress mediates SHP2/PI3K signaling pathway to promote hepatocellular carcinoma growth and metastasis. Sci. Rep. 2025, 15, 4847. [Google Scholar] [CrossRef]
- Duan, J.; Huang, Z.; Qin, S.; Li, B.; Zhang, Z.; Liu, R.; Wang, K.; Nice, E.C.; Jiang, J.; Huang, C. Oxidative stress induces extracellular vesicle release by upregulation of HEXB to facilitate tumour growth in experimental hepatocellular carcinoma. J. Extracell. Vesicles 2024, 13, e12468. [Google Scholar] [CrossRef]
- Chouchani, E.T.; Kazak, L.; Jedrychowski, M.P.; Lu, G.Z.; Erickson, B.K.; Szpyt, J.; Pierce, K.A.; Laznik-Bogoslavski, D.; Vetrivelan, R.; Clish, C.B.; et al. Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1. Nature 2016, 532, 112–116. [Google Scholar] [CrossRef]
- Zhao, R.Z.; Jiang, S.; Zhang, L.; Yu, Z.B. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int. J. Mol. Med. 2019, 44, 3–15. [Google Scholar] [CrossRef]
- Liao, F.H.; Chen, S.P.; Yao, C.N.; Wu, T.H.; Liu, M.T.; Hsu, C.S.; Chen, H.M.; Lin, S.Y. Oxygen-Binding Sites of Enriched Gold Nanoclusters for Capturing Mitochondrial Reverse Electrons. Nano Lett. 2024, 24, 11202–11209. [Google Scholar] [CrossRef]
- Balnis, J.; Jackson, E.L.; Drake, L.A.; Vincent, C.E.; Hwajeong, L.; Singer, H.A.; Jaitovich, A. Chronic succinate exposure does not cause liver injury. Am. J. Physiol. Endocrinol. Metab. 2025, 329, E39–E45. [Google Scholar] [CrossRef] [PubMed]
- LaMoia, T.E.; Hubbard, B.T.; Guerra, M.T.; Nasiri, A.; Sakuma, I.; Kahn, M.; Zhang, D.; Goodman, R.P.; Nathanson, M.H.; Sancak, Y.; et al. Cytosolic calcium regulates hepatic mitochondrial oxidation, intrahepatic lipolysis, and gluconeogenesis via CAMKII activation. Cell Metab. 2024, 36, 2329–2340.e4. [Google Scholar] [CrossRef]
- Tang, S.P.; Mao, X.L.; Chen, Y.H.; Yan, L.L.; Ye, L.P.; Li, S.W. Reactive Oxygen Species Induce Fatty Liver and Ischemia-Reperfusion Injury by Promoting Inflammation and Cell Death. Front. Immunol. 2022, 13, 870239. [Google Scholar] [CrossRef]
- Matuz-Mares, D.; Vázquez-Meza, H.; Vilchis-Landeros, M.M. NOX as a Therapeutic Target in Liver Disease. Antioxidants 2022, 11, 2038. [Google Scholar] [CrossRef]
- Kang, S.W.; Ban, J.Y.; Park, M.S. Protective Role of Rapamycin in Fibrotic Liver Ischemia/Reperfusion Injury (C57bl/6 Mouse). Transpl. Proc. 2024, 56, 672–677. [Google Scholar] [CrossRef]
- An, X.; Yu, W.; Liu, J.; Tang, D.; Yang, L.; Chen, X. Oxidative cell death in cancer: Mechanisms and therapeutic opportunities. Cell Death Dis. 2024, 15, 556. [Google Scholar] [CrossRef]
- Zhang, S.; Feng, Z.; Gao, W.; Duan, Y.; Fan, G.; Geng, X.; Wu, B.; Li, K.; Liu, K.; Peng, C. Aucubin Attenuates Liver Ischemia-Reperfusion Injury by Inhibiting the HMGB1/TLR-4/NF-κB Signaling Pathway, Oxidative Stress, and Apoptosis. Front. Pharmacol. 2020, 11, 544124. [Google Scholar] [CrossRef] [PubMed]
- Yue, P.; Lv, X.; You, J.; Zou, Y.; Luo, J.; Lu, Z.; Cao, H.; Liu, Z.; Fan, X.; Ye, Q. Hypothermic oxygenated perfusion attenuates DCD liver ischemia-reperfusion injury by activating the JAK2/STAT3/HAX1 pathway to regulate endoplasmic reticulum stress. Cell Mol. Biol. Lett. 2023, 28, 55. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Luo, R.; Zhang, Y.; Li, X. Current status and perspective on molecular targets and therapeutic intervention strategy in hepatic ischemia-reperfusion injury. Clin. Mol. Hepatol. 2024, 30, 585–619. [Google Scholar] [CrossRef]
- Zhou, Z.; Xu, M.-J.; Gao, B. Hepatocytes: A key cell type for innate immunity. Cell. Mol. Immunol. 2016, 13, 301–315. [Google Scholar] [CrossRef]
- Yabe, Y.; Koyama, Y.; Nishikawa, M.; Takakura, Y.; Hashida, M. Hepatocyte-specific distribution of catalase and its inhibitory effect on hepatic ischemia/reperfusion injury in mice. Free Radic. Res. 1999, 30, 265–274. [Google Scholar] [CrossRef]
- Gan, L.; Wang, W.; Jiang, J.; Tian, K.; Liu, W.; Cao, Z. Dual role of Nrf2 signaling in hepatocellular carcinoma: Promoting development, immune evasion, and therapeutic challenges. Front. Immunol. 2024, 15, 1429836. [Google Scholar] [CrossRef] [PubMed]
- Ong, A.J.S.; Bladen, C.E.; Tigani, T.A.; Karamalakis, A.P.; Evason, K.J.; Brown, K.K.; Cox, A.G. The KEAP1-NRF2 pathway regulates TFEB/TFE3-dependent lysosomal biogenesis. Proc. Natl. Acad. Sci. USA 2023, 120, e2217425120. [Google Scholar] [CrossRef] [PubMed]
- Hirao, H.; Dery, K.J.; Kageyama, S.; Nakamura, K.; Kupiec-Weglinski, J.W. Heme Oxygenase-1 in liver transplant ischemia-reperfusion injury: From bench-to-bedside. Free Radic. Biol. Med. 2020, 157, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Fuertes-Agudo, M.; Luque-Tévar, M.; Cucarella, C.; Martín-Sanz, P.; Casado, M. Advances in Understanding the Role of NRF2 in Liver Pathophysiology and Its Relationship with Hepatic-Specific Cyclooxygenase-2 Expression. Antioxidants 2023, 12, 1491. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.W.; Wang, F.; Turk, A.; Park, J.S.; Ma, H.; Ma, Y.; Noh, H.R.; Sui, G.; Shin, D.S.; Lee, M.K.; et al. Zaluzanin C Alleviates Inflammation and Lipid Accumulation in Kupffer Cells and Hepatocytes by Regulating Mitochondrial ROS. Molecules 2023, 28, 7484. [Google Scholar] [CrossRef]
- Michalska, K.; Szneler, E.; Kisiel, W. Sesquiterpene lactones from Lactuca canadensis and their chemotaxonomic significance. Phytochemistry 2013, 90, 90–94. [Google Scholar] [CrossRef]
- Yang, M.; Wei, X.; Yi, X.; Jiang, D.-S. Mitophagy-related regulated cell death: Molecular mechanisms and disease implications. Cell Death Dis. 2024, 15, 505. [Google Scholar] [CrossRef]
- Ha, Y.S.; Kim, T.K.; Heo, J.; Oh, J.; Kim, S.K.; Kim, J.; Lee, J.; Yang, S.R.; Hwang, S.; Kim, S.J. Rocaglamide-A mitigates LPS-induced hepatic inflammation by modulating JNK/AP-1 signaling cascade and ROS production in hepatocytes. Toxicol. Res. 2025, 41, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Dai, Q.; Ain, Q.; Seth, N.; Rooney, M.; Zipprich, A. Liver sinusoidal endothelial cells: Friend or foe in metabolic dysfunction- associated steatotic liver disease/metabolic dysfunction-associated steatohepatitis. Dig. Liver Dis. 2025, 57, 943–953. [Google Scholar] [CrossRef]
- He, Q.; He, W.; Dong, H.; Guo, Y.; Yuan, G.; Shi, X.; Wang, D.; Lu, F. Role of liver sinusoidal endothelial cell in metabolic dysfunction-associated fatty liver disease. Cell Commun. Signal. 2024, 22, 346. [Google Scholar] [CrossRef]
- Yinzhi, D.; Jianhua, H.; Hesheng, L. The roles of liver sinusoidal endothelial cells in liver ischemia/reperfusion injury. J. Gastroenterol. Hepatol. 2024, 39, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Huang, T.; Chen, X.; Li, Q.; Liao, M.; Fu, L.; Huang, J.; Yuan, K.; Wang, Z.; Zeng, Y. Molecular mechanisms in liver repair and regeneration: From physiology to therapeutics. Signal Transduct. Target. Ther. 2025, 10, 63. [Google Scholar] [CrossRef]
- Czuba, L.C.; Wu, X.; Huang, W.; Hollingshead, N.; Roberto, J.B.; Kenerson, H.L.; Yeung, R.S.; Crispe, I.N.; Isoherranen, N. Altered vitamin A metabolism in human liver slices corresponds to fibrogenesis. Clin. Transl. Sci. 2021, 14, 976–989. [Google Scholar] [CrossRef]
- Kisseleva, T.; Ganguly, S.; Murad, R.; Wang, A.; Brenner, D.A. Regulation of Hepatic Stellate Cell Phenotypes in Metabolic Dysfunction–Associated Steatohepatitis. Gastroenterology 2025, 20, S0016-5085(25)00528-1. [Google Scholar] [CrossRef]
- Sun, C.; Li, L.; Li, D.; Wang, Z. Discovery of Endothelial-Monocyte Crosstalk in Ischemic-Reperfusion Injury Following Liver Transplantation Based on Integration of Single-Cell RNA and Transcriptome RNA Sequencing. J. Cell Mol. Med. 2025, 29, e70336. [Google Scholar] [CrossRef]
- Rejas, C.; Junger, H. Cholangiocyte Organoids in Liver Transplantation; a Comprehensive Review. Transpl. Int. 2024, 37, 12708. [Google Scholar] [CrossRef] [PubMed]
- Richards, J.A.; Wigmore, S.J.; Anderton, S.M.; Howie, S.E.M. NKT cells are important mediators of hepatic ischemia-reperfusion injury. Transpl. Immunol. 2017, 45, 15–21. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; Yang, B.; Peng, C.; Zhou, J.; Ren, S.; Hu, Z. The effect of TIM1(+) Breg cells in liver ischemia-reperfusion injury. Cell Death Dis. 2025, 16, 171. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; He, S.; Liu, Y.; Chen, H.; He, S.; Yin, M.; Zou, D.; Chen, S.; Luo, T.; et al. Resolving the graft ischemia-reperfusion injury during liver transplantation at the single cell resolution. Cell Death Dis. 2021, 12, 589. [Google Scholar] [CrossRef] [PubMed]
- Efremova, M.; Vento-Tormo, M.; Teichmann, S.A.; Vento-Tormo, R. CellPhoneDB: Inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat. Protoc. 2020, 15, 1484–1506. [Google Scholar] [CrossRef]
- Dixon, L.J.; Barnes, M.; Tang, H.; Pritchard, M.T.; Nagy, L.E. Kupffer cells in the liver. Compr. Physiol. 2013, 3, 785–797. [Google Scholar] [CrossRef]
- Kaltenmeier, C.; Wang, R.; Popp, B.; Geller, D.; Tohme, S.; Yazdani, H.O. Role of Immuno-Inflammatory Signals in Liver Ischemia-Reperfusion Injury. Cells 2022, 11, 2222. [Google Scholar] [CrossRef]
- Zhao, M.; Huang, H.; He, F.; Fu, X. Current insights into the hepatic microenvironment and advances in immunotherapy for hepatocellular carcinoma. Front. Immunol. 2023, 14, 1188277. [Google Scholar] [CrossRef]
- Zhou, M.; Lv, J.; Chen, X.; Shi, Y.; Chao, G.; Zhang, S. From gut to liver: Exploring the crosstalk between gut-liver axis and oxidative stress in metabolic dysfunction-associated steatotic liver disease. Ann. Hepatol. 2025, 30, 101777. [Google Scholar] [CrossRef] [PubMed]
- Asgharzadeh, F.; Memarzia, A.; Alikhani, V.; Beigoli, S.; Boskabady, M.H. Peroxisome proliferator-activated receptors: Key regulators of tumor progression and growth. Transl. Oncol. 2024, 47, 102039. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.X.; Wu, Y.P.; Zhang, Y.; Ji, P.X.; Hua, J. Modulation of Lipid Metabolism and Keap1-Nrf2 Pathway Activation in Macrophages by Targeting PPARγ Affects NAFLD Progression. J. Gastroenterol. Hepatol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Hirao, H.; Kojima, H.; Dery, K.J.; Nakamura, K.; Kadono, K.; Zhai, Y.; Farmer, D.G.; Kaldas, F.M.; Kupiec-Weglinski, J.W. Neutrophil CEACAM1 determines susceptibility to NETosis by regulating the S1PR2/S1PR3 axis in liver transplantation. J. Clin. Investig. 2023, 133, e162940. [Google Scholar] [CrossRef]
- Dery, K.J.; Wong, Z.; Wei, M.; Kupiec-Weglinski, J.W. Mechanistic Insights into Alternative Gene Splicing in Oxidative Stress and Tissue Injury. Antioxid. Redox Signal. 2023, 41, 890–909. [Google Scholar] [CrossRef]
- Dery, K.J.; Silver, C.; Yang, L.; Shively, J.E. Interferon regulatory factor 1 and a variant of heterogeneous nuclear ribonucleoprotein L coordinately silence the gene for adhesion protein CEACAM1. J. Biol. Chem. 2018, 293, 9277–9291. [Google Scholar] [CrossRef]
- Dery, K.J.; Gaur, S.; Gencheva, M.; Yen, Y.; Shively, J.E.; Gaur, R.K. Mechanistic control of carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1) splice isoforms by the heterogeneous nuclear ribonuclear proteins hnRNP L, hnRNP A1, and hnRNP M. J. Biol. Chem. 2011, 286, 16039–16051. [Google Scholar] [CrossRef]
- Xie, M.; He, Z.; Bin, B.; Wen, N.; Wu, J.; Cai, X.; Sun, X. Bulk and single-cell RNA sequencing analysis with 101 machine learning combinations reveal neutrophil extracellular trap involvement in hepatic ischemia-reperfusion injury and early allograft dysfunction. Int. Immunopharmacol. 2024, 131, 111874. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, C.; Chen, M.; Li, X.; Yu, W.; Qiu, A.; Sun, L.; Pu, L.; Shi, Y. SYK promotes the formation of neutrophil extracellular traps by inducing PKM2 nuclear translocation and promoting STAT3 phosphorylation to exacerbate hepatic ischemia-reperfusion injury and tumor recurrence. Mol. Med. 2024, 30, 146. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, S.; Liu, S.; Ye, W.; Chen, W.-d. Kupffer cells, the limelight in the liver regeneration. Int. Immunopharmacol. 2025, 146, 113808. [Google Scholar] [CrossRef]
- Duan, Y.; Yang, Y.; Zhao, S.; Bai, Y.; Yao, W.; Gao, X.; Yin, J. Crosstalk in extrahepatic and hepatic system in NAFLD/NASH. Liver Int. 2024, 44, 1856–1871. [Google Scholar] [CrossRef]
- Tsung, A.; Klune, J.R.; Zhang, X.; Jeyabalan, G.; Cao, Z.; Peng, X.; Stolz, D.B.; Geller, D.A.; Rosengart, M.R.; Billiar, T.R. HMGB1 release induced by liver ischemia involves Toll-like receptor 4 dependent reactive oxygen species production and calcium-mediated signaling. J. Exp. Med. 2007, 204, 2913–2923. [Google Scholar] [CrossRef] [PubMed]
- Wynn, T.A.; Vannella, K.M. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity 2016, 44, 450–462. [Google Scholar] [CrossRef] [PubMed]
- Hirao, H.; Kageyama, S.; Nakamura, K.; Kadono, K.; Kojima, H.; Siyuan, Y.; Farmer, D.G.; Kaldas, F.M.; Dery, K.J.; Kupiec-Weglinski, J.W. Recipient TIM4 signaling regulates ischemia reperfusion-induced ER stress and metabolic responses in liver transplantation: From mouse-to-human. Front. Transpl. 2023, 2, 1176384. [Google Scholar] [CrossRef]
- Bosch, M.; Kallin, N.; Donakonda, S.; Zhang, J.D.; Wintersteller, H.; Hegenbarth, S.; Heim, K.; Ramirez, C.; Fürst, A.; Lattouf, E.I.; et al. A liver immune rheostat regulates CD8 T cell immunity in chronic HBV infection. Nature 2024, 631, 867–875. [Google Scholar] [CrossRef] [PubMed]
- Elgosbi, M.; Kurt, A.S.; Londoño, M.C.; Caballero-Marcos, A.; Lim, T.Y.; Lozano, J.J.; Dave, M.; Heaton, N.; Sánchez-Fueyo, A.; Cortes-Cerisuelo, M. Hypothermic oxygenated machine perfusion influences the immunogenicity of donor livers in humans. Liver Transpl. 2025, 31, 311–322. [Google Scholar] [CrossRef]
- Sun, Q.; Gong, J.; Wu, J.; Hu, Z.; Zhang, Q.; Zhu, X. SNHG1-miR-186-5p-YY1 feedback loop alleviates hepatic ischemia/reperfusion injury. Cell Cycle 2022, 21, 1267–1279. [Google Scholar] [CrossRef]
- Esser, H.; Kilpatrick, A.M.; Man, T.Y.; Aird, R.; Rodrigo-Torres, D.; Buch, M.L.; Boulter, L.; Walmsley, S.; Oniscu, G.C.; Schneeberger, S.; et al. Primary cilia as a targetable node between biliary injury, senescence and regeneration in liver transplantation. J. Hepatol. 2024, 81, 1005–1022. [Google Scholar] [CrossRef] [PubMed]
- Bai, C.; Jiang, Z.; Jiang, H.; Yu, S.; Li, M.; Chu, F.; Sheng, Y.; Li, J.; Jiang, J.; Li, W. Ac2-26 alleviates hepatic ischemia-reperfusion injury based on inhibiting the positive feedback loop of HMGB1/TLR4/NF-κB/neutrophils. Exp. Ther. Med. 2022, 24, 673. [Google Scholar] [CrossRef]
- Padmanaban, S.; Pully, D.; Samrot, A.V.; Gosu, V.; Sadasivam, N.; Park, I.K.; Radhakrishnan, K.; Kim, D.K. Rising Influence of Nanotechnology in Addressing Oxidative Stress-Related Liver Disorders. Antioxidants 2023, 12, 1405. [Google Scholar] [CrossRef]
- Pasut, G.; Panisello, A.; Folch-Puy, E.; Lopez, A.; Castro-Benítez, C.; Calvo, M.; Carbonell, T.; García-Gil, A.; Adam, R.; Roselló-Catafau, J. Polyethylene glycols: An effective strategy for limiting liver ischemia reperfusion injury. World, J. Gastroenterol. 2016, 22, 6501–6508. [Google Scholar] [CrossRef]
- Xin, X.; Li, J.; Wu, W.; Zhao, P.; Yang, Y.; Zhu, Y.; Ren, L.; Qin, C.; Yin, L. ROS-scavenging nanomedicine for “multiple crosstalk” modulation in non-alcoholic fatty liver disease. Biomater. Sci. 2023, 11, 3709–3725. [Google Scholar] [CrossRef]
- Li, S.D.; Huang, L. Nanoparticles evading the reticuloendothelial system: Role of the supported bilayer. Biochim. Biophys. Acta 2009, 1788, 2259–2266. [Google Scholar] [CrossRef]
- Gao, S.; Li, F.; Wu, D.; Ma, R.; Li, Y.; Zhang, Y.; Han, Z.; He, Q.; Li, J.; Liu, C.; et al. Poly(Ethylene Glycol)-Modified Catalase Blocking Reactive Oxygen Species for the Treatment of Hepatic Ischemia. Macromol. Rapid Commun. 2025, e2500367. [Google Scholar] [CrossRef]
- Lu, X.; Hu, H.; Zhou, Y.; Zhang, H.; Xie, C.; Sun, Y.; Shao, Z.; Tang, L.; Ren, Y.; Chen, J.; et al. One-step engineered mesenchymal stem cell-derived exosomes against hepatic ischemia-reperfusion injury. Int. J. Pharm. 2025, 672, 125292. [Google Scholar] [CrossRef]
- Xu, D.; Qu, X.; Tian, Y.; Jie, Z.; Xi, Z.; Xue, F.; Ma, X.; Zhu, J.; Xia, Q. Macrophage Notch1 inhibits TAK1 function and RIPK3-mediated hepatocyte necroptosis through activation of β-catenin signaling in liver ischemia and reperfusion injury. Cell Commun. Signal. 2022, 20, 144. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Hu, J.; Becker, K.V.; Engle, J.W.; Ni, D.; Cai, W.; Wu, D.; Qu, S. Antioxidant and C5a-blocking strategy for hepatic ischemia-reperfusion injury repair. J. Nanobiotechnol. 2021, 19, 107. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Cao, Y.; Xu, B.; Zhang, H.; Zhang, S.; Sun, J.; Tang, Y.; Wang, Y. An antioxidant nanodrug protects against hepatic ischemia-reperfusion injury by attenuating oxidative stress and inflammation. J. Mater. Chem. B 2022, 10, 7563–7569. [Google Scholar] [CrossRef] [PubMed]
- Gobut, H.; Erel, S.; Ozdemir, C.; Mortas, T.; Arslan, M.; Kucuk, A.; Kasapbasi, E.; Kavutcu, M. Effects of cerium oxide on liver tissue in liver ischemia-reperfusion injury in rats undergoing sevoflurane anesthesia. Exp. Ther. Med. 2023, 25, 164. [Google Scholar] [CrossRef] [PubMed]
- Mo, D.; Cui, W.; Chen, L.; Meng, J.; Sun, Y.; Cai, K.; Zhang, J.; Zhang, J.; Wang, K.; Luo, X. Activation of the PPARγ/NF-κB pathway by A-MPDA@Fe(3)O(4)@PVP via scavenging reactive oxygen species to alleviate hepatic ischemia-reperfusion injury. J. Mater. Chem. B 2024, 12, 5722–5733. [Google Scholar] [CrossRef] [PubMed]
- Duarte, A.; Silveira, G.G.; Soave, D.F.; Costa, J.P.O.; Silva, A.R. The Role of the LY294002—A Non-Selective Inhibitor of Phosphatidylinositol 3-Kinase (PI3K) Pathway- in Cell Survival and Proliferation in Cell Line SCC-25. Asian Pac. J. Cancer Prev. 2019, 20, 3377–3383. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.T.; Ma, W.; Xie, X.; Huang, Q. Oridonin: A Review of Its Pharmacology, Pharmacokinetics and Toxicity. Front. Pharmacol. 2021, 12, 645824. [Google Scholar] [CrossRef]
- Pashkina, E.; Bykova, M.; Berishvili, M.; Lazarev, Y.; Kozlov, V. Hyaluronic Acid-Based Drug Delivery Systems for Cancer Therapy. Cells 2025, 14, 61. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, G.; Wang, T.; Chen, Y.; Wang, J.; Li, P.; Wang, R.; Su, J. Understanding Cytochrome P450 Enzyme Substrate Inhibition and Prospects for Elimination Strategies. Chembiochem 2024, 25, e202400297. [Google Scholar] [CrossRef]
- Liao, J.; Meng, C.; Cheng, J.; Liu, B.; Shao, Y. HSYA from safflower mitigates oxidative stress, inflammation, and apoptosis in liver ischemia-reperfusion injury. Xenobiotica 2025, 55, 239–245. [Google Scholar] [CrossRef]
- Kasiewicz, L.N.; Biswas, S.; Beach, A.; Ren, H.; Dutta, C.; Mazzola, A.M.; Rohde, E.; Chadwick, A.; Cheng, C.; Garcia, S.P.; et al. GalNAc-Lipid nanoparticles enable non-LDLR dependent hepatic delivery of a CRISPR base editing therapy. Nat. Commun. 2023, 14, 2776. [Google Scholar] [CrossRef]
- He, H.; Yuan, Q.; Bie, J.; Wallace, R.L.; Yannie, P.J.; Wang, J.; Lancina, M.G., 3rd; Zolotarskaya, O.Y.; Korzun, W.; Yang, H.; et al. Development of mannose functionalized dendrimeric nanoparticles for targeted delivery to macrophages: Use of this platform to modulate atherosclerosis. Transl. Res. 2018, 193, 13–30. [Google Scholar] [CrossRef]
- Nimjee, S.M.; White, R.R.; Becker, R.C.; Sullenger, B.A. Aptamers as Therapeutics. Annu. Rev. Pharmacol. Toxicol. 2017, 57, 61–79. [Google Scholar] [CrossRef]
- Rabiee, N.; Chen, S.; Ahmadi, S.; Veedu, R.N. Aptamer-engineered (nano)materials for theranostic applications. Theranostics 2023, 13, 5183–5206. [Google Scholar] [CrossRef]
- Deng, G.; Zha, H.; Luo, H.; Zhou, Y. Aptamer-conjugated gold nanoparticles and their diagnostic and therapeutic roles in cancer. Front. Bioeng. Biotechnol. 2023, 11, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kojima, H.; Nakamura, K.; Kupiec-Weglinski, J.W. Therapeutic targets for liver regeneration after acute severe injury: A preclinical overview. Expert Opin. Ther. Targets 2020, 24, 13–24. [Google Scholar] [CrossRef]
- Hohmann, N.; Schröder, F.; Moreira, B.; Teng, H.; Burhenne, J.; Bruckner, T.; Mueller, S.; Haefeli, W.E.; Seitz, H.K. Effect of Clomethiazole Vs. Clorazepate on Hepatic Fat and Serum Transaminase Activities in Alcohol-Associated Liver Disease: Results from a Randomized, Controlled Phase II Clinical Trial. Alcohol. Alcohol. 2023, 58, 134–141. [Google Scholar] [CrossRef]
- Cui, X.; Mi, T.; Xiao, X.; Zhang, H.; Dong, Y.; Huang, N.; Gao, P.; Lee, J.; Guelakis, M.; Gu, X. Topical glutathione amino acid precursors protect skin against environmental and oxidative stress. J. Eur. Acad. Dermatol. Venereol. 2024, 38 (Suppl. S3), 3–11. [Google Scholar] [CrossRef] [PubMed]
- Carlisle, C.; Polley, K.; Panda, C.; Barron, K.; Hamrock, M.; Dominique, A.; Metzger, B.; Le Brun-Blashka, S.; Komarnytsky, S. Alleviation of Pain, PAIN Interference, and Oxidative Stress by a Novel Combination of Hemp Oil, Calamari Oil, and Broccoli: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2023, 15, 2654. [Google Scholar] [CrossRef]
- Mehta, P.A.; Nelson, A.; Loveless, S.; Lane, A.; Fukuda, T.; Teusink-Cross, A.; Elder, D.; Lagory, D.; Miller, E.; Cancelas, J.A.; et al. Phase 1 study of quercetin, a natural antioxidant for children and young adults with Fanconi anemia. Blood Adv. 2025, 9, 1927–1939. [Google Scholar] [CrossRef]
- Pan, W.; Zhou, G.; Hu, M.; Li, G.; Zhang, M.; Yang, H.; Li, K.; Li, J.; Liu, T.; Wang, Y.; et al. Coenzyme Q10 mitigates macrophage mediated inflammation in heart following myocardial infarction via the NLRP3/IL1β pathway. BMC Cardiovasc. Disord. 2024, 24, 76. [Google Scholar]
- Postel-Vinay, S.; Lam, V.K.; Ros, W.; Bauer, T.M.; Hansen, A.R.; Cho, D.C.; Stephen Hodi, F.; Schellens, J.H.M.; Litton, J.K.; Aspeslagh, S.; et al. First-in-human phase I study of the OX40 agonist GSK3174998 with or without pembrolizumab in patients with selected advanced solid tumors (ENGAGE-1). J. Immunother. Cancer 2023, 11, e005301. [Google Scholar] [CrossRef]
- Burgos-Santamaría, A.; Rodríguez-Rodríguez, P.; Arnalich-Montiel, A.; Arribas, S.M.; Fernández-Riveira, C.; Barrio-Pérez, I.M.; Río, J.; Ligero, J.M.; Quintana-Villamandos, B. OXY-SCORE and Volatile Anesthetics: A New Perspective of Oxidative Stress in EndoVascular Aneurysm Repair-A Randomized Clinical Trial. Int. J. Mol. Sci. 2024, 25, 10770. [Google Scholar] [CrossRef] [PubMed]
- Kakavand, H.; Saadatagah, S.; Naderian, M.; Aghakouchakzadeh, M.; Jalali, A.; Sadri, F.; Amoli, A.I.; Hosseini, S.H.; Jenab, Y.; Pourhosseini, H.; et al. Evaluating the role of intravenous pentoxifylline administration on primary percutaneous coronary intervention success rate in patients with ST-elevation myocardial infarction (PENTOS-PCI). Naunyn Schmiedebergs Arch. Pharmacol. 2023, 396, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Guo, L.; Wang, D.; Yang, Y.; Wang, J. Research on Mechanism of miR-106a Nanoparticles Carrying Dexmedetomidine in Regulating Recovery and Metabolism of Nerve Cells in Hypoxia-Reoxygenation Injury. J. Biomed. Nanotechnol. 2022, 18, 343–351. [Google Scholar] [CrossRef] [PubMed]
Liver Disease | Gene/Pathway | Key Findings | Ref. |
---|---|---|---|
Iron Overload-Induced Liver Damage | TGF-β/Smad | Ellagic acid mitigates ferroptosis, alleviating liver damage. | [19] |
Alcohol-Related Liver Disease (ALD) | TLR4/NF-κB/NLRP3 | H. pylori FMT exacerbates ALD via LPS-induced pathway activation. | [20] |
Liver Transplant-Related Biliary Injury | Nrf-2/HO-1, JNK | Nanomedicine inhibits ROS and modulates macrophages via Nrf-2/HO-1. | [21] |
Hepatic Ischemia–Reperfusion Injury | ROS scavenging enzymes | Copper-based nanozymes scavenge ROS and protect liver. | [22] |
Hepatic Ischemia–Reperfusion Injury | Keap1/Nrf2/HO-1 | Crocetin preconditioning activates Nrf2/HO-1 by disrupting Keap1. | [23] |
Fatty Liver and Ischemia–Reperfusion Injury | PI3K/AKT | Puerarin regulates PI3K/AKT to reduce liver IR injury. | [24] |
Diabetic Liver Disease | RAGE, TGF-β, TNF-α | Crocin and losartan reduce fibrosis-related gene expression. | [25] |
NASH | FXR | ROS-scavenging nanobubbles treat NASH via FXR activation. | [26] |
NALFD | AMPK/ACC/SREBP1 | Codonopsis polysaccharides reduce lipid accumulation and inflammation. | [27] |
Alcoholic Liver Injury | NRF1-TFAM | Nobiletin preserves mitochondria via NRF1-TFAM signaling. | [28] |
Alcoholic Steatosis | PCSK9 | FAF2 silencing modulates PCSK9 to reduce steatosis. | [29] |
Liver Fibrosis | miR-3667-3P/ACSL4 | circ_0074763 regulates ACSL4 via miRNA axis in fibrosis. | [30] |
CCl4-Induced Fibrosis | TGF-β1-Smad | Umbelliferone inhibits fibrosis through TGF-β1-Smad. | [31] |
Chronic Liver Injury | Nrf2 | COX-2 inhibition upregulates Nrf2 to reduce ferroptosis. | [32] |
Hepatocarcinoma | PI3K/AKT, ROS | FDX1 downregulation activates mitophagy, promotes HCC. | [33] |
Hepatocarcinoma | TRIM7/Nrf2 | Fangchinoline inhibits HCC by regulating ROS via TRIM7/Nrf2. | [34] |
Hepatocarcinoma | SHP2/PI3K | Hypoxia-induced ROS promotes HCC growth via SHP2/PI3K. | [35] |
Hepatocarcinoma | HEXB | ROS induces EV release by up-regulating HEXB to promote HCC. | [36] |
Antioxidant | Structure/Category | Mechanism | Clinical Applications | Ref. |
---|---|---|---|---|
Targeted Delivery | ||||
(PEG)ylation | Hydrophilic Polymer | Promotes particle circulation and therapeutic effects. | Use of PEGylated catalase (CAT-PEG) reduced hepatic IRI. | [97,98] |
GalNAc | Amino Disaccharide | Binding with hepatocyte ASGPR enables nanoparticle targeting to liver cells. | Enhanced CRISPR gene editing therapy with specificity to the liver. | [109] |
Mannose | Monosaccharide | Modifications taken up by Kupffer cells to reduce ROS. | Mannose-conjugated RIPK3 siRNA delivery improves treatment of atherosclerosis. | [99,110] |
Aptamers | Single-stranded nucleic acid sequences | High-affinity aptamer sequences guide nanoparticles to desired location. | Aptamer conjugation to gold nanoparticles (AuNPs) as a targeted treatment for cancer. | [111,112,113] |
Enzyme-Based | ||||
Ultrasmall Cerium (CE)–Manganese Nanoclusters | Nanozyme | Displayed (SOD)- and (CAT)-mimetic activity promoted ROS scavenging activity. | Use of CE–Manganese nanoclusters reduced oxidative stress in a murine hepatic injury model. | [101] |
Cerium Oxide | Metal Oxide | Reduces lipid peroxidation; increases catalase and GST activity; acts as a potent ROS scavenger. | Administration of cerium oxide via laparotomy prior to IRI improved outcomes in rat model. | [102] |
Redox Signaling Modulators | ||||
A-MPDA@Fe3O4@PVP | Polydopamine Nanodrug | Prevents Fe3O4 accumulation; mimics CAT and SOD activity; activates PPARγ/NF-κB pathway to reduce oxidative stress. | When administered under hepatic IRI conditions, promoted ROS scavenging, immunomodulation, and liver function. | [103] |
RLLs + LY294002 and Oridonin | Liposomal Nanocarrier | LY294002 inhibits PI3Ks; Oridonin provides antioxidant and anti-inflammatory effects; RLLs enhance liver delivery via CD44 targeting and stabilize CYP450, reducing inflammation and injury. | The use of this combination treatment improved insulin sensitivity and lowered inflammation and fibrosis in NAFLD mouse. | [95] |
Flavonoid Compounds | Polyphenol | Reduces hepatic IRI and OxS through nanoparticle scavenging and suppression of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. | Hydroxysafflor yellow A (HSYA) was shown to reduce intracellular ROS, apoptosis, DNA damage, and lipid peroxidation. | [108] |
Study Focus | Therapy | Study Design Phase, N, Year | Novelty | Outcome | Ref. |
---|---|---|---|---|---|
Oxidative Stress | |||||
ALD | CYP2EI inhibitor CMZ | RCT, P2, 60, 2023 | Inhibition of ethanol metabolism pathway in decreasing liver toxicity and damage | CMZ treatment significantly decreased hepatic steatosis more effectively than no treatment or CZP treatment only. | [115] |
Skin Damage | GSH synthesis booster GAP | RCT, 21, 2024 | Increased stability of topical GSH protection through GAP formulation | Topical GAP application induced higher GSH expression in human keratinocytes and mitigated damaged-induced oxidative stress and ROS production. | [116] |
Chronic Pain | Phytocannabinoid, omega-3 fatty acids, glucosinolates | RCT, 25, 2023 | Decrease in ROS through dietary changes involving nutrients in hemp oil, calamari oil, and broccoli | Participants who received the multi-ingredient therapeutic supplement experienced significantly reduced ROS production and pain levels due to OxS. | [117] |
Immune Cells | |||||
Fanconi Anemia | Quercetin | CT, P1, 30, 2025 | Treatment of immune-deficiency disorder through oral quercetin interventions | Some patients showed less ROS in blood and bone marrow stem cell regions, increase in platelet count, decrease in neutrophil and hemoglobin levels. | [118] |
Myocardial Infarction | CoQ10 | RCT, 131, 2024 | CoQ10 as a therapeutic recovery agent post MI | MI patients who received CoQ10 experienced improved cardiac function recovery, and animal studies indicated decreased pro-inflammatory immune cell recruitment as the cause. | [119] |
Cancer Immunotherapy | OX40 agonist GSK3174998 | CT, P1, 138, 2023 | Use of antibody GSK3174998 alone or in combination regimen with PD-1 blocker to inhibit cancer growth | While treatment was tolerated by patients, there was little success in inducing immune cell activation in controlling disease progression using either regimen. | [120] |
IRI | |||||
Aneurysm Repair | Sevoflurane and Desflurane | RCT, 80, 2024 | Use of volatile anesthetics in avoiding OxS/IRI and ROS production during surgery | While individual biomarkers for OxS/antioxidant effect were not significantly different in treatment groups, there was an improved OXY-SCORE in patients who received Desflurane post aneurysm repair. | [121] |
Myocardial Infarction | Pentoxifylline | RCT, P2, 161, 2023 | Pentoxifylline intravenous pre-treatment ahead of PCI to avoid IRI | While treatment was tolerated by patients, there was no significant difference between treatment group and control. | [122] |
Nerve cell recovery | miR-106a Nanoparticles carrying DEX | RCT, 2022 | Use of combination treatment in nanoparticles to attenuate IRI in hippocampal neurons | Pro-inflammatory and apoptotic activity, as well as IRI reduced through treatment with miR-106a nanoparticles and DEX. | [123] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dery, K.J.; Chiu, R.; Kasargod, A.; Kupiec-Weglinski, J.W. Feedback Loops Shape Oxidative and Immune Interactions in Hepatic Ischemia–Reperfusion Injury. Antioxidants 2025, 14, 944. https://doi.org/10.3390/antiox14080944
Dery KJ, Chiu R, Kasargod A, Kupiec-Weglinski JW. Feedback Loops Shape Oxidative and Immune Interactions in Hepatic Ischemia–Reperfusion Injury. Antioxidants. 2025; 14(8):944. https://doi.org/10.3390/antiox14080944
Chicago/Turabian StyleDery, Kenneth J., Richard Chiu, Aanchal Kasargod, and Jerzy W. Kupiec-Weglinski. 2025. "Feedback Loops Shape Oxidative and Immune Interactions in Hepatic Ischemia–Reperfusion Injury" Antioxidants 14, no. 8: 944. https://doi.org/10.3390/antiox14080944
APA StyleDery, K. J., Chiu, R., Kasargod, A., & Kupiec-Weglinski, J. W. (2025). Feedback Loops Shape Oxidative and Immune Interactions in Hepatic Ischemia–Reperfusion Injury. Antioxidants, 14(8), 944. https://doi.org/10.3390/antiox14080944