Association Between Blood Free Fatty Acid Concentrations in Midlife and Cerebral Small Vessel Disease
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Measurement of FFA Concentrations
2.3. Clinical Characteristics of the Participants
2.4. Brain MRI Findings
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Patients
3.2. Inverse Association Between the Total Serum FFA Concentrations and SVD in the Midlife Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
aOR | Adjusted odds ratio |
CI | Confidence interval |
CMBs | Cerebral microbleeds |
DSWMH | Deep subcortical white matter hyperintensity |
FFA | Free fatty acid |
IQR | Interquartile range |
MASH | Metabolic dysfunction-associated steatohepatitis |
MRI | Magnetic resonance imaging |
NADPH | Nicotinamide adenine dinucleotide phosphate |
NCVC | National Cerebral and Cardiovascular Center |
PVH | Periventricular hyperintensity |
ROS | Reactive oxygen species |
RVOT-ACT | Right ventricular outflow tract acceleration time |
SVD | Cerebral small vessel disease |
WMHs | White matter hyperintensities |
References
- Yazici, D.; Sezer, H. Insulin Resistance, Obesity and Lipotoxicity. In Obesity and Lipotoxicity; Advances in Experimental Medicine and Biology; Engin, A.B., Engin, A., Eds.; Springer: Cham, Switzerland, 2017; Volume 960, pp. 277–304. [Google Scholar]
- Opie, L.H. The metabolic vicious cycle in heart failure. Lancet 2004, 364, 1733–1734. [Google Scholar] [CrossRef]
- Zhang, H.W.; Zhao, X.; Guo, Y.L.; Zhu, C.G.; Wu, N.Q.; Sun, J.; Liu, G.; Dong, Q.; Li, J.J. Free fatty acids and cardiovascular outcome: A Chinese cohort study on stable coronary artery disease. Nutr. Metab. 2017, 14, 41. [Google Scholar] [CrossRef]
- Pilz, S.; Scharnagl, H.; Tiran, B.; Seelhorst, U.; Wellnitz, B.; Boehm, B.O.; Schaefer, J.R.; Marz, W. Free fatty acids are independently associated with all-cause and cardiovascular mortality in subjects with coronary artery disease. J. Clin. Endocrinol. Metab. 2006, 91, 2542–2547. [Google Scholar] [CrossRef]
- Yuan, D.; Xu, N.; Song, Y.; Zhang, Z.; Xu, J.; Liu, Z.; Tang, X.; Han, Y.; Chen, Y.; Zhang, Y.; et al. Association Between Free Fatty Acids and Cardiometabolic Risk in Coronary Artery Disease: Results from the PROMISE Study. J. Clin. Endocrinol. Metab. 2023, 109, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Gruzdeva, O.; Uchasova, E.; Dyleva, Y.; Belik, E.; Karetnikova, V.; Shilov, A.; Barbarash, O. Multivessel coronary artery disease, free fatty acids, oxidized LDL and its antibody in myocardial infarction. Lipids Health Dis. 2014, 13, 111. [Google Scholar] [CrossRef]
- Djoussé, L.; Benkeser, D.; Arnold, A.; Kizer, J.R.; Zieman, S.J.; Lemaitre, R.N.; Tracy, R.P.; Gottdiener, J.S.; Mozaffarian, D.; Siscovick, D.S.; et al. Plasma free fatty acids and risk of heart failure: The Cardiovascular Health Study. Circ. Heart Fail. 2013, 6, 964–969. [Google Scholar] [CrossRef]
- Bays, H.; Mandarino, L.; DeFronzo, R.A. Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus: Peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach. J. Clin. Endocrinol. Metab. 2004, 89, 463–478. [Google Scholar] [CrossRef]
- Geng, Y.N.; Faber, K.N.; de Meijer, V.E.; Blokzijl, H.; Moshage, H. How does hepatic lipid accumulation lead to lipotoxicity in non-alcoholic fatty liver disease? Hepatol. Int. 2021, 15, 21–35. [Google Scholar] [CrossRef]
- Shiota, G.; Tsuchiya, H. Pathophysiology of NASH: Insulin resistance, free fatty acids and oxidative stress. J. Clin. Biochem. Nutr. 2006, 38, 127–132. [Google Scholar] [CrossRef]
- Ahmed, B.; Sultana, R.; Greene, M.W. Adipose tissue and insulin resistance in obese. Biomed. Pharmacother. 2021, 137, 111315. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Fujimoto, S.; Mukai, E.; Sato, H.; Tahara, Y.; Ogura, K.; Yamano, G.; Ogura, M.; Nagashima, K.; Inagaki, N. Palmitate induces reactive oxygen species production and β-cell dysfunction by activating nicotinamide adenine dinucleotide phosphate oxidase through Src signaling. J. Diabetes Investig. 2014, 5, 19–26. [Google Scholar] [CrossRef]
- Ly, L.D.; Xu, S.; Choi, S.K.; Ha, C.M.; Thoudam, T.; Cha, S.K.; Wiederkehr, A.; Wollheim, C.B.; Lee, I.K.; Park, K.S. Oxidative stress and calcium dysregulation by palmitate in type 2 diabetes. Exp. Mol. Med. 2017, 49, e291. [Google Scholar] [CrossRef]
- Pereira, S.; Shah, A.; George Fantus, I.; Joseph, J.W.; Giacca, A. Effect of N-acetyl-l-cysteine on insulin resistance caused by prolonged free fatty acid elevation. J. Endocrinol. 2015, 225, 1–7. [Google Scholar] [CrossRef]
- Straub, L.G.; Efthymiou, V.; Grandl, G.; Balaz, M.; Challa, T.D.; Truscello, L.; Horvath, C.; Moser, C.; Rachamin, Y.; Arnold, M.; et al. Antioxidants protect against diabetes by improving glucose homeostasis in mouse models of inducible insulin resistance and obesity. Diabetologia 2019, 62, 2094–2105. [Google Scholar] [CrossRef]
- Inoguchi, T.; Li, P.; Umeda, F.; Yu, H.Y.; Kakimoto, M.; Imamura, M.; Aoki, T.; Etoh, T.; Hashimoto, T.; Naruse, M.; et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C—Dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 2000, 49, 1939–1945. [Google Scholar] [CrossRef] [PubMed]
- Maloney, E.; Sweet, I.R.; Hockenbery, D.M.; Pham, M.; Rizzo, N.O.; Tateya, S.; Handa, P.; Schwartz, M.W.; Kim, F. Activation of NF-kappaB by palmitate in endothelial cells: A key role for NADPH oxidase-derived superoxide in response to TLR4 activation. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 1370–1375. [Google Scholar] [CrossRef] [PubMed]
- Borlaug, B.A.; Jensen, M.D.; Kitzman, D.W.; Lam, C.S.P.; Obokata, M.; Rider, O.J. Obesity and heart failure with preserved ejection fraction: New insights and pathophysiological targets. Cardiovasc. Res. 2023, 118, 3434–3450. [Google Scholar] [CrossRef] [PubMed]
- Pfenniger, A.; Yoo, S.; Arora, R. Oxidative stress and atrial fibrillation. J. Mol. Cell. Cardiol. 2024, 196, 141–151. [Google Scholar] [CrossRef]
- Sridhar, A.; DeSantiago, J.; Chen, H.; Pavel, M.A.; Ly, O.; Owais, A.; Barney, M.; Jousma, J.; Nukala, S.B.; Abdelhady, K.; et al. Modulation of NOX2 causes obesity-mediated atrial fibrillation. J. Clin. Investig. 2024, 134, e175447. [Google Scholar] [CrossRef]
- Niu, Z.; Hu, H.; Tang, F. High Free Fatty Acid Levels Are Associated with Stroke Recurrence and Poor Functional Outcome in Chinese Patients with Ischemic Stroke. J. Nutr. Health Aging 2017, 21, 1102–1106. [Google Scholar] [CrossRef]
- Taniguchi, A.; Sakai, M.; Teramura, S.; Fukushima, M.; Hama, K.; Marumoto, K.; Nezumi, N.; Yoshida, T.; Nagasaka, S.; Hayashi, R.; et al. Serum nonesterified fatty acids are related with carotid atherosclerotic plaque in nonobese nonhypertensive Japanese type 2 diabetic patients. Diabetes Care 2001, 24, 1505–1507. [Google Scholar] [CrossRef]
- Choi, J.Y.; Kim, J.S.; Kim, J.H.; Oh, K.; Koh, S.B.; Seo, W.K. High free fatty acid level is associated with recurrent stroke in cardioembolic stroke patients. Neurology 2014, 82, 1142–1148. [Google Scholar] [CrossRef]
- Seo, W.K.; Jung, J.M.; Kim, J.H.; Koh, S.B.; Bang, O.Y.; Oh, K. Free Fatty Acid Is Associated with Thrombogenicity in Cardioembolic Stroke. Cerebrovasc. Dis. 2017, 44, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Wardlaw, J.M.; Smith, C.; Dichgans, M. Small vessel disease: Mechanisms and clinical implications. Lancet Neurol. 2019, 18, 684–696. [Google Scholar] [CrossRef] [PubMed]
- Wardlaw, J.M.; Smith, E.E.; Biessels, G.J.; Cordonnier, C.; Fazekas, F.; Frayne, R.; Lindley, R.I.; O’Brien, J.T.; Barkhof, F.; Benavente, O.R.; et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013, 12, 822–838. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Baidya, R.; Chakraborty, T.; Samanta, A.K.; Roy, S. Pharmacological basis and new insights of taxifolin: A comprehensive review. Biomed. Pharmacother. 2021, 142, 112004. [Google Scholar] [CrossRef]
- Clancy, U.; Gilmartin, D.; Jochems, A.C.C.; Knox, L.; Doubal, F.N.; Wardlaw, J.M. Neuropsychiatric symptoms associated with cerebral small vessel disease: A systematic review and meta-analysis. Lancet Psychiatry 2021, 8, 225–236. [Google Scholar] [CrossRef]
- Duering, M.; Biessels, G.J.; Brodtmann, A.; Chen, C.; Cordonnier, C.; de Leeuw, F.E.; Debette, S.; Frayne, R.; Jouvent, E.; Rost, N.S.; et al. Neuroimaging standards for research into small vessel disease-advances since 2013. Lancet Neurol. 2023, 22, 602–618. [Google Scholar] [CrossRef]
- Duering, M.; Biessels, G.J.; Brodtmann, A. Correction to Lancet Neurol 2023; 22: 602-18. Lancet Neurol. 2023, 22, e10. [Google Scholar] [CrossRef]
- Kremer, R.; Williams, A.; Wardlaw, J. Endothelial cells as key players in cerebral small vessel disease. Nat. Rev. Neurosci. 2025, 26, 179–188. [Google Scholar] [CrossRef]
- De Silva, T.M.; Miller, A.A. Cerebral Small Vessel Disease: Targeting Oxidative Stress as a Novel Therapeutic Strategy? Front. Pharmacol. 2016, 7, 61. [Google Scholar] [CrossRef]
- Ghosh, A.; Gao, L.; Thakur, A.; Siu, P.M.; Lai, C.W.K. Role of free fatty acids in endothelial dysfunction. J. Biomed. Sci. 2017, 24, 50. [Google Scholar] [CrossRef]
- Mathew, M.; Tay, E.; Cusi, K. Elevated plasma free fatty acids increase cardiovascular risk by inducing plasma biomarkers of endothelial activation, myeloperoxidase and PAI-1 in healthy subjects. Cardiovasc. Diabetol. 2010, 9, 9. [Google Scholar] [CrossRef]
- Steinberg, H.O.; Paradisi, G.; Hook, G.; Crowder, K.; Cronin, J.; Baron, A.D. Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production. Diabetes 2000, 49, 1231–1238. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, H.O.; Tarshoby, M.; Monestel, R.; Hook, G.; Cronin, J.; Johnson, A.; Bayazeed, B.; Baron, A.D. Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. J. Clin. Investig. 1997, 100, 1230–1239. [Google Scholar] [CrossRef]
- Adams, H.P., Jr.; Bendixen, B.H.; Kappelle, L.J.; Biller, J.; Love, B.B.; Gordon, D.L.; Marsh, E.E., 3rd. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 1993, 24, 35–41. [Google Scholar] [CrossRef]
- Fazekas, F.; Niederkorn, K.; Schmidt, R.; Offenbacher, H.; Horner, S.; Bertha, G.; Lechner, H. White matter signal abnormalities in normal individuals: Correlation with carotid ultrasonography, cerebral blood flow measurements, and cerebrovascular risk factors. Stroke 1988, 19, 1285–1288. [Google Scholar] [CrossRef] [PubMed]
- Gregoire, S.M.; Chaudhary, U.J.; Brown, M.M.; Yousry, T.A.; Kallis, C.; Jäger, H.R.; Werring, D.J. The Microbleed Anatomical Rating Scale (MARS): Reliability of a tool to map brain microbleeds. Neurology 2009, 73, 1759–1766. [Google Scholar] [CrossRef]
- Pan, Y.; Wu, T.T.; Mao, X.F.; Hou, X.G.; Yang, Y.; Deng, C.J.; Wang, S.; Zheng, Y.Y.; Xie, X. Decreased free fatty acid levels associated with adverse clinical outcomes in coronary artery disease patients with type 2 diabetes: Findings from the PRACTICE study. Eur. J. Prev. Cardiol. 2023, 30, 730–739. [Google Scholar] [CrossRef] [PubMed]
- Jansen, M.G.; Griffanti, L.; Mackay, C.E.; Anatürk, M.; Melazzini, L.; Lange, A.G.; Filippini, N.; Zsoldos, E.; Wiegertjes, K.; Leeuw, F.E.; et al. Association of cerebral small vessel disease burden with brain structure and cognitive and vascular risk trajectories in mid-to-late life. J. Cereb. Blood Flow Metab. 2022, 42, 600–612. [Google Scholar] [CrossRef]
- Petrea, R.E.; O’Donnell, A.; Beiser, A.S.; Habes, M.; Aparicio, H.; DeCarli, C.; Seshadri, S.; Romero, J.R. Mid to Late Life Hypertension Trends and Cerebral Small Vessel Disease in the Framingham Heart Study. Hypertension 2020, 76, 707–714. [Google Scholar] [CrossRef]
- Khadour, F.H.; Panas, D.; Ferdinandy, P.; Schulze, C.; Csont, T.; Lalu, M.M.; Wildhirt, S.M.; Schulz, R. Enhanced NO and superoxide generation in dysfunctional hearts from endotoxemic rats. Am. J. Physiol. Heart Circ. Physiol. 2002, 283, H1108–H1115. [Google Scholar] [CrossRef]
- Yang, J.; Wu, L.J.; Tashino, S.; Onodera, S.; Ikejima, T. Reactive oxygen species and nitric oxide regulate mitochondria-dependent apoptosis and autophagy in evodiamine-treated human cervix carcinoma HeLa cells. Free Radic. Res. 2008, 42, 492–504. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; McMillan-Ward, E.; Kong, J.; Israels, S.J.; Gibson, S.B. Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species. J. Cell Sci. 2007, 120, 4155–4166. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhai, X.; Ashraf, M. Direct evidence that initial oxidative stress triggered by preconditioning contributes to second window of protection by endogenous antioxidant enzyme in myocytes. Circulation 1996, 93, 1177–1184. [Google Scholar] [CrossRef]
- Garrido-Pascual, P.; Alonso-Varona, A.; Castro, B.; Buron, M.; Palomares, T. H2O2-preconditioned human adipose-derived stem cells (HC016) increase their resistance to oxidative stress by overexpressing Nrf2 and bioenergetic adaptation. Stem Cell Res. Ther. 2020, 11, 335. [Google Scholar] [CrossRef] [PubMed]
- Maia, L.F.; Kaeser, S.A.; Reichwald, J.; Lambert, M.; Obermüller, U.; Schelle, J.; Odenthal, J.; Martus, P.; Staufenbiel, M.; Jucker, M. Increased CSF Aβ during the very early phase of cerebral Aβ deposition in mouse models. EMBO Mol. Med. 2015, 7, 895–903. [Google Scholar] [CrossRef]
- Jensen, M.; Schröder, J.; Blomberg, M.; Engvall, B.; Pantel, J.; Ida, N.; Basun, H.; Wahlund, L.O.; Werle, E.; Jauss, M.; et al. Cerebrospinal fluid A beta42 is increased early in sporadic Alzheimer’s disease and declines with disease progression. Ann. Neurol. 1999, 45, 504–511. [Google Scholar] [CrossRef]
- Noda, K.; Hattori, Y.; Nishii, T.; Horinouchi, H.; Nakaoku, Y.; Ogata, S.; Inagaki, Y.; Asano, R.; Yoshimoto, T.; Nishimura, K.; et al. Relationship Between RNF213 p.R4810K and Echocardiographic Findings in Patients with Cerebrovascular Diseases: A Multicenter Prospective Cohort Study. J. Am. Heart Assoc. 2025, 14, e036333. [Google Scholar] [CrossRef]
- Tomita, K.; Teratani, T.; Yokoyama, H.; Suzuki, T.; Irie, R.; Ebinuma, H.; Saito, H.; Hokari, R.; Miura, S.; Hibi, T. Plasma free myristic acid proportion is a predictor of nonalcoholic steatohepatitis. Dig. Dis. Sci. 2011, 56, 3045–3052. [Google Scholar] [CrossRef]
- Beauchamp, E.; Goenaga, D.; Le Bloc’h, J.; Catheline, D.; Legrand, P.; Rioux, V. Myristic acid increases the activity of dihydroceramide Delta4-desaturase 1 through its N-terminal myristoylation. Biochimie 2007, 89, 1553–1561. [Google Scholar] [CrossRef]
- Martínez, L.; Torres, S.; Baulies, A.; Alarcón-Vila, C.; Elena, M.; Fabriàs, G.; Casas, J.; Caballeria, J.; Fernandez-Checa, J.C.; García-Ruiz, C. Myristic acid potentiates palmitic acid-induced lipotoxicity and steatohepatitis associated with lipodystrophy by sustaning de novo ceramide synthesis. Oncotarget 2015, 6, 41479–41496. [Google Scholar] [CrossRef]
- Deshpande, R.; Mansara, P.; Suryavanshi, S.; Kaul-Ghanekar, R. Alpha-linolenic acid regulates the growth of breast and cervical cancer cell lines through regulation of NO release and induction of lipid peroxidation. J. Mol. Biochem. 2013, 2, 6–17. [Google Scholar]
- Couëdelo, L.; Buaud, B.; Abrous, H.; Chamekh-Coelho, I.; Majou, D.; Boué-Vaysse, C. Effect of increased levels of dietary α-linolenic acid on the n-3 PUFA bioavailability and oxidative stress in rat. Br. J. Nutr. 2022, 127, 1320–1333. [Google Scholar] [CrossRef]
- Bernick, C.; Kuller, L.; Dulberg, C.; Longstreth, W.T., Jr.; Manolio, T.; Beauchamp, N.; Price, T. Silent MRI infarcts and the risk of future stroke: The cardiovascular health study. Neurology 2001, 57, 1222–1229. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.T.; Lei, C.Y.; Zhong, L.M. Research Advancements on the Correlation Between Spontaneous Intracerebral Hemorrhage of Different Etiologies and Imaging Markers of Cerebral Small Vessel Disease. Neuropsychiatr. Dis. Treat. 2024, 20, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Lovelock, C.E.; Cordonnier, C.; Naka, H.; Al-Shahi Salman, R.; Sudlow, C.L.; Edinburgh Stroke Study, G.; Sorimachi, T.; Werring, D.J.; Gregoire, S.M.; Imaizumi, T.; et al. Antithrombotic drug use, cerebral microbleeds, and intracerebral hemorrhage: A systematic review of published and unpublished studies. Stroke 2010, 41, 1222–1228. [Google Scholar] [CrossRef] [PubMed]
All Patients (n = 95) | Midlife Patients (n = 48) | Late-Life Patients (n = 47) | p-Value | |
---|---|---|---|---|
Age [years] | 59 (49–73) | 49.5 (42.5–55) | 73 (67–77) | — |
Female sex | 30 (31.6) | 18 (37.5) | 12 (25.5) | 0.21 |
Smoking | 54 (56.8) | 26 (54.2) | 28 (59.6) | 0.60 |
Hypertension | 72 (75.8) | 36 (75.0) | 36 (76.6) | 0.86 |
Diabetes | 29 (30.5) | 15 (31.3) | 14 (29.8) | 0.88 |
Dyslipidemia | 62 (65.3) | 30 (62.5) | 32 (68.1) | 0.57 |
Body mass index [kg/m2] | 23.3 (21.0–26.4) | 24.4 (22.7–27.0) | 22.2 (19.9–25.3) | 0.003 |
Liver function | ||||
| 0.6 (0.43–0.7) | 0.5 (0.4–0.63) | 0.6 (0.5–0.7) | 0.13 |
| 21 (16–27.5) | 19.5 (16–23) | 23 (18–29) | 0.034 |
| 16 (13–22) | 17.5 (14–23.25) | 16 (12–19.5) | 0.24 |
Subtypes of ischemic stroke | ||||
| 7 (7.4) | 0 (0.0) | 7 (14.9) | 0.005 |
| 36 (37.8) | 20 (41.7) | 16 (34.0) | 0.44 |
| 23 (24.2) | 6 (12.5) | 17 (36.2) | 0.007 |
| 29 (30.5) | 22 (45.8) | 7 (14.9) | 0.001 |
All Patients (n = 95) | Midlife Patients (n = 48) | Late-Life Patients (n = 47) | |
---|---|---|---|
Lacunes | 42 (44.2) | 18 (37.5) | 24 (51.1) |
Deep CMBs | 18 (20.0) | 6 (13.0) | 12 (27.3) |
Lobar CMBs | 13 (14.4) | 6 (13.0) | 7 (15.9) |
PVH grade > 2 | 22 (23.2) | 4 (8.3) | 18 (38.3) |
DSWMH grade > 2 | 49 (51.6) | 16 (33.3) | 33 (70.2) |
Total FFA levels [µg/mL] | 28.4 (21.0–32.3) | 24.7 (20.0–31.7) | 29.5 (23.2–32.8) |
All Patients | SVD Findings on Brain MRI (−) | SVD Findings on Brain MRI (+) | p-Value | |
---|---|---|---|---|
Lacunes | ||||
Number | n = 48 | n = 30 | n = 18 | |
Total bilirubin [mg/dL] | 0.50 (0.40–0.65) | 0.50 (0.40–0.60) | 0.60 (0.50–0.70) | 0.20 |
Aspartate aminotransferase [U/L] | 20 (16–23) | 20 (16–23) | 20 (16–26) | 0.72 |
Alanine aminotransferase [U/L] | 18 (14–24) | 16 (14–23) | 20 (14–27) | 0.41 |
Deep CMBs | ||||
Number | n = 46 | n = 40 | n = 6 | |
Total bilirubin [mg/dL] | 0.50 (0.40–0.70) | 0.50 (0.40–0.70) | 0.55 (0.40–0.70) | >0.99 |
Aspartate aminotransferase [U/L] | 19 (16–23) | 19 (16–25) | 20 (19–21) | >0.99 |
Alanine aminotransferase [U/L] | 17 (14–24) | 16 (14–24) | 18 (14–21) | >0.99 |
FFA Fraction [µg/mL] | Patients Without Lacunes (n = 30) | Patients with Lacunes (n = 18) | p Value |
---|---|---|---|
C12:0 | 0 (0–0) | 0 (0–0) | 0.37 |
C16:0 | 7.14 (6.21–8.63) | 6.55 (5.99–8.39) | 0.40 |
C16:1 | 0.63 (0.33–1.05) | 0.42 (0.3–0.6) | 0.072 |
C18:0 | 3.08 (2.54–4.23) | 2.77 (2.56–3.87) | 0.61 |
C18:1n9c | 8.5 (6.28–11.26) | 7.06 (4.66–8.71) | 0.083 |
C18:2n6c | 3.64 (2.73–5.35) | 3.25 (2.19–3.57) | 0.15 |
C20:1n9 | 0 (0–0) | 0 (0–0) | 0.28 |
C20:2n6 | 0 (0–0) | 0 (0–0) | 0.46 |
C20:3n6 | 0 (0–0) | 0 (0–0) | 0.59 |
C20:4n6 | 0.62 (0.41–0.95) | 0.42 (0.33–0.75) | 0.10 |
C20:5n3 | 0 (0–0.15) | 0 (0–0) | 0.64 |
C22:6n3 | 0.65 (0.51–1.11) | 0.44 (0.36–0.85) | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nukata, R.; Hattori, Y.; Noda, K.; Yoshimoto, T.; Ihara, M. Association Between Blood Free Fatty Acid Concentrations in Midlife and Cerebral Small Vessel Disease. Antioxidants 2025, 14, 1107. https://doi.org/10.3390/antiox14091107
Nukata R, Hattori Y, Noda K, Yoshimoto T, Ihara M. Association Between Blood Free Fatty Acid Concentrations in Midlife and Cerebral Small Vessel Disease. Antioxidants. 2025; 14(9):1107. https://doi.org/10.3390/antiox14091107
Chicago/Turabian StyleNukata, Ryotaro, Yorito Hattori, Kotaro Noda, Takeshi Yoshimoto, and Masafumi Ihara. 2025. "Association Between Blood Free Fatty Acid Concentrations in Midlife and Cerebral Small Vessel Disease" Antioxidants 14, no. 9: 1107. https://doi.org/10.3390/antiox14091107
APA StyleNukata, R., Hattori, Y., Noda, K., Yoshimoto, T., & Ihara, M. (2025). Association Between Blood Free Fatty Acid Concentrations in Midlife and Cerebral Small Vessel Disease. Antioxidants, 14(9), 1107. https://doi.org/10.3390/antiox14091107