Genotypic and Environmental Effects on Tocopherol Content in Almond
Abstract
:1. Introduction
2. Tocopherol Variability in Almond
3. Environmental Effects
4. Genetic Effects
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Gradziel, T.M.; Curtis, R.; Socias i Company, R. Production and growing regions. In Almonds: Botany, Production and Uses; Socias i Company, R., Gradizel, T.M., Eds.; CABI: Wallingford, UK, 2017; pp. 70–86. [Google Scholar]
- Socias i Company, R.; Felipe, A.J. Almond: A diverse germplasm. HortScience 1992, 27, 717–718. [Google Scholar]
- Albala, K. Almonds along the Silk Road: The exchange and adaptation of ideas from West to East. Petits Propos Culin. 2009, 88, 17–32. [Google Scholar]
- Mori, A.M.; Considine, R.V.; Mattes, R.D. Acute and second-meal effects of almond form in impaired glucose tolerant adults: A randomized crossover trial. Nutr. Metab. 2011, 8, 6. [Google Scholar] [CrossRef] [PubMed]
- Ryan, N.T. World almond market. In Almonds: Botany, Production and Uses; Socias i Company, R., Gradizel, T.M., Eds.; CABI: Wallingford, UK, 2017; pp. 449–459. [Google Scholar]
- Davis, P.A.; Iwasashi, C.K. Whole almonds and almond fractions reduce aberrant crypt foci in a rat model of colon carcinogenesis. Cancer Lett. 2001, 165, 27–33. [Google Scholar] [CrossRef]
- Davis, P.A.; Law, S.; Wong, J. Colonic interposition after esophagectomy for cancer. Arch. Surg. 2003, 138, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Waldron, K.W.; Pacy, J.F.; Ellis, P.R. Chemical and histochemical characterization of cell wall polysaccharides in almond seeds in relation to lipid bioavailability. In Biologically Active Phytochemicals in Food; Pfannhauser, W., Fenwick, G.R., Khokhar, S., Eds.; Royal Society of Chemistry: Cambridge, UK, 2001; pp. 448–452. [Google Scholar]
- Fraser, G.E.; Bennett, H.W.; Jaceldo, K.B.; Sabaté, J. Effect on body weight of a free 76 kilojoule (320 calorie) daily supplement of almonds for six months. J. Am. Coll. Nutr. 2002, 21, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Kendall, C.W.; Jenkins, D.J.; Marchie, A.; Ren, Y.; Ellis, P.R.; Lapsley, K.G. Energy availability from almonds: Implications for weight loss and cardiovascular health. A randomized controlled dose-response trial. FASEB J. 2003, 17, A339. [Google Scholar]
- Lovejoy, J.C.; Most, M.M.; Lefevre, M.; Greenway, F.L.; Rood, J.C. Effect of diets enriched in almonds on insulin action and serum lipids in adults with normal glucose tolerance or type 2 diabetes. Am. J. Clin. Nutr. 2002, 76, 1000–1006. [Google Scholar] [PubMed]
- Scott, L.W.; Balasubramanyam, A.; Kimball, K.T.; Ahrens, A.K.; Fordis, C.M.; Ballantyne, C.M. Long-term, randomonized clinical trial of two diets in the metabolic syndrome and type 2 diabetes. Diabetes Care 2003, 26, 2481–2482. [Google Scholar] [CrossRef] [PubMed]
- Spiller, G.A.; Jenkins, D.J.A.; Cragen, L.N.; Gates, J.E.; Bosello, O.; Berra, K.; Rudd, C.; Stevenson, M.; Superko, R. Effect of a diet high in monounsaturated fat from almonds on plasma-cholesterol and lipoproteins. J. Am. Coll. Nutr. 1992, 11, 126–130. [Google Scholar] [PubMed]
- Fulgoni, V.L.; Abbey, M.; Davis, P.; Jenkins, D.; Lovejoy, J.; Most, M.; Sabaté, J.; Spiller, G. Almonds lower blood cholesterol and LDL-cholesterol but not HDL-cholesterol in human subjects: Results of a meta-analysis. FASEB J. 2002, 16, A981–A982. [Google Scholar]
- Hyson, D.A.; Schneeman, B.O.; Davis, P.A. Almonds and almond oil have similar effects on plasma lipids and LDL oxidation in healthy men and women. J. Nutr. 2002, 132, 703–707. [Google Scholar] [PubMed]
- Jenkins, D.J.A.; Kendall, C.W.C.; Marchie, A.; Parker, T.L.; Connelly, P.W.; Qian, W.; Haight, J.S.; Faulkner, D.; Vidgen, E.; Lapsley, K.G.; et al. Dose response of almonds on coronary heart disease risk factors—Blood lipids, oxidized LDL, lipoprotein(a), homocysteine and pulmonary nitric oxide: A randomized controlled cross-over trial. Circulation 2002, 106, 1327–1332. [Google Scholar] [CrossRef] [PubMed]
- Sabaté, J.; Haddad, E.; Tanzman, J.S.; Jambazian, P.; Rajaram, S. Serum lipid response to the graduated enrichment of a Step I diet with almonds: A randomized feeding trial. Am. J. Clin. Nutr. 2003, 77, 1379–1384. [Google Scholar] [PubMed]
- Schirra, M. Postharvest technology and utilization of almonds. Hortic. Rev. 1997, 20, 267–292. [Google Scholar]
- Sabaté, J.; Hook, D.G. Almonds, walnuts, and serum lipids. In Lipids in Human Nutrition; Spiller, G.A., Ed.; CRC Press: Boca Raton, FL, USA, 1996; pp. 137–144. [Google Scholar]
- Hollis, J.; Mattes, R. Effect of chronic consumption of almonds on body weight in healthy humans. Br. J. Nutr. 2007, 98, 651–656. [Google Scholar] [CrossRef] [PubMed]
- Cassady, B.A.; Hollis, J.H.; Fulford, A.D.; Considine, R.V.; Mattes, R.D. Mastication of almonds: Effects of lipid bioaccessibility, appetite, and hormone response. Am. J. Clin. Nutr. 2009, 89, 794–800. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.; Kendall, C.W.; Josse, A.R.; Salvatore, S.; Brighenti, F.; Augustin, L.S.; Ellis, P.R.; Vidgen, E.; Rao, A.V. Almonds decrease postprandial glycemia, insulinemia, and oxidative damage in healthy individuals. J. Nutr. 2006, 136, 2987–2992. [Google Scholar] [PubMed]
- Foster, G.D.; Shantz, K.L.; Vander Veur, S.S.; Oliver, T.L.; Lent, M.R.; Virus, A.; Szapary, P.; Rader, D.J.; Zemel, B.S.; Gilden-Tsai, A. A randomized trial of the effects of an almond-enriched, hypocaloric diet in the treatment of obesity. Am. J. Clin. Nutr. 2012, 96, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Socias i Company, R.; Kodad, O.; Alonso, J.M.; Gradziel, T.M. Almond quality: A breeding perspective. Hortic. Rev. 2008, 34, 197–238. [Google Scholar]
- Kodad, O.; Socias i Company, R. Variability of oil content and of major fatty acid composition in almond (Prunus amygdalus Batsch) and its relationshipwith kernel quality. J. Agric. Food Chem. 2008, 56, 4096–4101. [Google Scholar] [CrossRef] [PubMed]
- Saura Calixto, F.; Cañellas, J.; Soler, L. La Almendra: Composición, Variedades, Desarrollo y Maduración; INIA: Madrid, Spain, 1988. [Google Scholar]
- Yada, S.; Lapsley, K.; Huang, G. A review of composition studies of cultivated almonds: Macronutrients and micronutrients. J. Food Compos. Anal. 2011, 24, 469–480. [Google Scholar] [CrossRef]
- Kodad, O. Chemical composition of almond nuts. In Almonds: Botany, Production and Uses; Socias i Company, R., Gradizel, T.M., Eds.; CABI: Wallingford, UK, 2017; pp. 428–449. [Google Scholar]
- Kamal-Eldin, A.; Appelqvist, L.A. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 1996, 31, 671–701. [Google Scholar] [CrossRef] [PubMed]
- Sen, C.K.; Khanna, S.; Roy, S. Tocotrienols in health and disease: The other half of the natural vitamin E family. Mol. Asp. Med. 2007, 28, 692–728. [Google Scholar] [CrossRef] [PubMed]
- Senesi, E.; Rizzolo, A.; Colombo, C.; Testoni, A. Influence of pre-processing storage conditions on peeled almond quality. Ital. J. Food Sci. 1996, 2, 115–125. [Google Scholar]
- Zacheo, G.; Cappello, M.S.; Gallo, A.; Santino, A.; Cappello, A.R. Changes associated with postharvest ageing in almond seeds. Lebensm. Wiss. Technol. 2000, 33, 415–423. [Google Scholar] [CrossRef]
- García-Pascual, P.; Mateos, M.; Carbonell, V.; Salazar, D.M. Influence of storage conditions on the quality of shelled and roasted almonds. Biosyst. Eng. 2003, 84, 201–209. [Google Scholar] [CrossRef]
- Kodad, O.; Socias i Company, R.; Prats, M.S.; López Ortiz, M.C. Variability in tocopherol concentrations in almond oil and its use as a selection criterion in almond breeding. J. Hortic. Sci. Biotechnol. 2006, 81, 501–507. [Google Scholar] [CrossRef]
- Font i Forcada, C.; Kodad, O.; Juan, T.; Estopañán, G.; Socias i Company, R. Genetic variability and pollen effect on the transmission of the chemical components of the almond kernel. Span. J. Agric. Res. 2011, 9, 781–789. [Google Scholar] [CrossRef]
- Kodad, O.; Estopañán, G.; Juan, T.; Mamouni, A.; Socias i Company, R. Tocopherol concentration in almond oil: Genetic variation and environmental effect under warm conditions. J. Agric. Food Chem. 2011, 59, 6137–6141. [Google Scholar] [CrossRef] [PubMed]
- Kodad, O.; Estopañán, G.; Juan, T.; Socias i Company, R. Protein content and oil composition of almond from Moroccan seedlings: Genetic diversity, oil quality and geographical origin. J. Am. Oil Chem. Soc. 2013, 90, 243–252. [Google Scholar] [CrossRef]
- Yada, S.; Huang, G.; Lapsley, K. Natural variability in the nutrient composition of California-grown almonds. J. Food Compos. Anal. 2013, 30, 80–85. [Google Scholar] [CrossRef]
- Kodad, O.; Estopañán, G.; Juan, T.; Socias i Company, R. Tocopherol concentration in almond oil from Moroccan seedlings: Geographical origin and post-harvest implications. J. Food Compos. Anal. 2014, 33, 161–165. [Google Scholar] [CrossRef]
- Maestri, D.; Martínez, M.; Bodoira, R.; Rossi, Y.; Oviedo, A.; Pierantozzi, P.; Torres, M. Variability in almond oil chemical traits from traditional cultivars and native genetic resources from Argentina. Food Chem. 2015, 170, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Kodad, O.; Alonso, J.M.; Espiau, M.T.; Estopañán, G.; Juan, T.; Socias i Company, R. Chemometric characterization of almond germplasm: Compositional aspects involved in quality and breeding. J. Am. Soc. Hortic. Sci. 2011, 136, 273–281. [Google Scholar]
- López-Ortiz, C.M.; Prats-Moya, S.; Beltrán Sanahuja, A.; Maestre-Pérez, S.E.; Grané-Teruel, N.; Martín-Carratalá, M.L. Comparative study of tocopherol homologue content in four almond oil cultivars during two consecutive years. J. Food Compos. Anal. 2008, 21, 144–151. [Google Scholar] [CrossRef]
- Rizzolo, A.; Baldo, C.; Polesello, A. Application of high-performance liquid chromatography to the analysis of niacin and biotin in Italian almond cultivars. J. Chromatogr. 1991, 553, 187–192. [Google Scholar] [CrossRef]
- Zhu, Y. Almond (Prunus dulcis (Mill.) D.A. Webb) Fatty Acids and Tocopherols under Different Conditions. Ph.D. Thesis, University of Adelaide, Adelaide, Australia, March 2014. [Google Scholar]
- Brigelius-Flohé, R.; Kelly, F.J.; Salonen, J.T.; Neuzil, J.; Zingg, J.M.; Azzi, A. The European perspective on vitamin E: Current knowledge and future research. Am. J. Clin. Nutr. 2002, 76, 703–716. [Google Scholar] [PubMed]
- Lampi, A.M.; Kamal-Eldin, A. Effect of α-and γ-tocopherols on thermal polymerization of purified high-oleic sunflower triacylglycerols. J. Am. Oil Chem. Soc. 1998, 75, 1699–1703. [Google Scholar] [CrossRef]
- Warner, K.; Neff, W.E.; Eller, E.J. Enhancing quality and oxidative stability of aged fried food with gamma-tocopherol. J. Agric. Food Chem. 2003, 51, 623–627. [Google Scholar] [CrossRef] [PubMed]
- Kodad, O. Criterios de Selección y de Evaluación de Nuevas Obtenciones Autocompatibles en un Programa de Mejora Genética del Almendro. Ph.D. Thesis, University of Lleida, Lleida, Spain, 2006. [Google Scholar]
- Munné-Bosch, S.; Alegre, L. The function of tocopherols and tocotrienols in plants. Crit. Rev. Plant Sci. 2002, 21, 31–57. [Google Scholar] [CrossRef]
- Maranz, S.; Wiesman, Z. Influence of climate on the tocopherol content of sheabutter. J. Agric. Food Chem. 2004, 52, 2934–2937. [Google Scholar] [CrossRef] [PubMed]
- Ali, Q.; Ashraf, M.; Anwar, F. Physico-chemical attributes of seed oil from drought stressed sunflower (Helianthus annus L.) plants. Grasas Aceites 2009, 60, 475–481. [Google Scholar]
- Ali, Q.; Ashraf, M.; Anwar, F. Seed composition and seed oil antioxidant activity of maize under water stress. J. Am. Oil Chem. Soc. 2010, 87, 1179–1187. [Google Scholar] [CrossRef]
- Britz, S.J.; Kremer, D.F. Warm temperatures or drought during seed maturation increase free α-tocopherol in seed of soybean (Glycine max [L.] Merr.). J. Agric. Food Chem. 2002, 50, 6058–6063. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Taylor, C.; Sommer, K.; Wilkinson, K.; Wirthensohn, M. Influence of deficit irrigation strategies on fatty acid and tocopherol concentration of almond (Prunus dulcis). Food Chem. 2015, 173, 821–826. [Google Scholar] [CrossRef] [PubMed]
- Romero, M.P.; Tovar, M.J.; Ramos, T.; Motilva, M.J. Effect of crop season on the composition of virgin olive oil with protected designation of “Les Garrigues”. J. Am. Oil Chem. Soc. 2003, 80, 423–430. [Google Scholar] [CrossRef]
- Richards, A.; Wijesundera, C.; Salisbury, P. Genotype and growing environment effects on the tocopherols and fatty acids of Brassica napus and B. juncea. J. Am. Oil Chem. Soc. 2008, 87, 469–481. [Google Scholar] [CrossRef]
- Almonor, G.O.; Fenner, G.P.; Wilson, R.F. Temperature effects on tocopherols composition in soybeans with genetically improved oil quality. J. Am. Oil Chem. Soc. 1998, 75, 591–596. [Google Scholar] [CrossRef]
- Beltrán, G.; Jiménez, A.; del Rio, C.; Sánchez, S.; Martínez, L.; Uceda, M.; Aguilera, M.P. Variability of vitamin E in virgin olive oil by agronomical and genetic factors. J. Food Compos. Anal. 2010, 23, 633–639. [Google Scholar] [CrossRef]
- Munné-Bosch, S.; Schwarz, K.; Alegre, L. Enhanced formation of alpha-tocopherol and highly oxidized abietane diterpenes in water-stressed rosemary plants. Plant Physiol. 1999, 121, 1047–1052. [Google Scholar] [CrossRef] [PubMed]
- Munné-Bosch, S.; Peñuelas, J. Drought-induced oxidative stress in strawberry tree (Arbutus unedo L.) growing in Mediterranean field conditions. Plant Sci. 2004, 166, 1105–1110. [Google Scholar] [CrossRef]
- Zamany, A.J.; Samadi, G.R.; Kim, D.H.; Keum, Y.S.; Saini, R.K. Comparative study of tocopherol contents and fatty acids composition in twenty almond cultivars of Afghanistan. J. Am. Oil Chem. Soc. 2017, 6, 805–817. [Google Scholar] [CrossRef]
- Baydar, H.; Erbaf, S. Influence of seed development and seed position on oil, fatty acids and total tocopherol contents in sunflower (Helianthus annuus L.). Turk. J. Agric. For. 2005, 29, 179–186. [Google Scholar]
- Ayerdi-Gotor, A.; Berger, M.; Labalette, F.; Centis, S.; Daydé, J.; Calmon, A. Variabilité des teneurs et compositions des composés mineurs dans l’huile de tournesol au cours du développement du capitule. Partie I—Tocophérols. OCL 2006, 13, 206–212. [Google Scholar] [CrossRef]
- Britz, S.J.; Kremer, D.F.; Kenworthy, W.J. Tocopherols in soybean seeds: Genetic variation and environmental effects in field-grown crops. J. Am. Oil Chem. Soc. 2008, 85, 931–936. [Google Scholar] [CrossRef]
- Izquierdo, N.G.; Nolasco, S.; Mateo, C.; Santos, D.; Aguirrezábal, L.A.N. Relationship between oil tocopherol concentration and oil weight per grain in several crop species. Crop Pasture Sci. 2011, 62, 1088–1097. [Google Scholar] [CrossRef]
- Soll, J.; Schultz, G. Comparison of geranylgenariol and phytyl substituted methyl-quinols in the tocopherol synthesis of spinach chloroplasts. Biochem. Biophys. Res. Commun. 1979, 91, 715–720. [Google Scholar] [CrossRef]
- Soll, J.; Kemmerling, M.; Schultz, G. Tocopherol and plastoquinone synthesis in spinach chloroplast subfractions. Arch. Biochem. Biophys. 1980, 204, 544–550. [Google Scholar] [CrossRef] [Green Version]
- Soll, J.; Schultz, G. Phytol synthesis from geranylgeraniol in spinach chloroplasts. Biochem. Biophys. Res. Commun. 1981, 99, 907–912. [Google Scholar] [CrossRef] [Green Version]
- Herbers, K. Vitamin production in transgenic plants. J. Plant Physiol. 2003, 160, 821–829. [Google Scholar] [CrossRef] [PubMed]
- Gilliland, L.U.; Magallanes-Lundback, M.; Hemming, C.; Supplee, A.; Koornneef, M.; Leo, B.; Della Penna, D. Genetic basis for natural variation in seed vitamin E levels in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2006, 49, 18834–18841. [Google Scholar] [CrossRef] [PubMed]
- Chander, S.; Guo, Y.G.; Yang, X.H.; Yan, J.B.; Zhang, Y.R.; Song, T.M.; Li, J.S. Genetic dissection of tocopherol concentration and composition in maize grain using quantitative trait loci analysis and the candidate gene approach. Mol. Breed. 2008, 22, 353–365. [Google Scholar] [CrossRef]
- Tang, S.; Hass, C.G.; Knapp, S.J. Ty3/gypsy-like retrotransposon knockout of a 2-methyl-6-phytyl-1,4-benzoquinone methyltransferase is non-lethal, uncovers a cryptic paralogous mutation, and produces novel tocopherol (vitamin E) profiles in sunflower. Theor. Appl. Genet. 2006, 113, 783–799. [Google Scholar] [CrossRef] [PubMed]
- Font i Forcada, C.; Fernández i Martí, A.; Socias i Company, R. Mapping quantitative trait loci for kernel composition in almond. BMC Genet. 2012, 13, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Tocopherol Homologue | Range of Variability | Origin | Reference | |
---|---|---|---|---|
mg/kg Kernel | mg/kg Oil | |||
α-tocopherol | 85–190 | Spain | [42] | |
335.3–551.7 | [39] | |||
309–656.7 | Morocco | [37] | ||
180–320 | California | [38] | ||
250–840 | Italy | [32] | ||
350–471 | [43] | |||
370–571 | Argentina | [40] | ||
200 | Australia | [44] | ||
β-tocopherol | 50–80 | Italy | [32] | |
1.2 | Australia | [44] | ||
γ-tocopherol | 6.1–50.2 | Spain | [34,39] | |
1.4–8.4 | [42] | |||
75 | Italy | [31] | ||
2.4–13.5 | Morocco | [37] | ||
5.7 | Australia | [44] | ||
δ-tocopherol | 0.2–1.6 | Spain | [42] | |
0.2–22 | [34,39] | |||
0.1–0.3 | Morocco | [37] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kodad, O.; Socias i Company, R.; Alonso, J.M. Genotypic and Environmental Effects on Tocopherol Content in Almond. Antioxidants 2018, 7, 6. https://doi.org/10.3390/antiox7010006
Kodad O, Socias i Company R, Alonso JM. Genotypic and Environmental Effects on Tocopherol Content in Almond. Antioxidants. 2018; 7(1):6. https://doi.org/10.3390/antiox7010006
Chicago/Turabian StyleKodad, Ossama, Rafel Socias i Company, and José M. Alonso. 2018. "Genotypic and Environmental Effects on Tocopherol Content in Almond" Antioxidants 7, no. 1: 6. https://doi.org/10.3390/antiox7010006
APA StyleKodad, O., Socias i Company, R., & Alonso, J. M. (2018). Genotypic and Environmental Effects on Tocopherol Content in Almond. Antioxidants, 7(1), 6. https://doi.org/10.3390/antiox7010006